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ABSTRACT The study addresses the limitations of traditional centrality measures in complex networks,
especially in disease-spreading situations, due to their inability to fully grasp the intricate connection between
a node’s functional importance and structural attributes. To tackle this issue, the research introduces an
innovative framework that employs machine learning techniques to evaluate the significance of nodes in
transmission scenarios. This framework incorporates various centrality measures like degree, clustering
coefficient, Katz, local relative change in average clustering coefficient, average Katz, and average degree
(LRACC, LRAK, and LRAD) to create a feature vector for each node. These methods capture diverse
topological structures of nodes and incorporate the infection rate, a critical factor in understanding
propagation scenarios. To establish accurate labels for node significance, propagation tests are simulated
using epidemic models (SIR and Independent Cascade models). Machine learning methods are employed
to capture the complex relationship between a node’s true spreadability and infection rate. The performance
of the machine learning model is compared to traditional centrality methods in two scenarios. In the first
scenario, training and testing data are sourced from the same network, highlighting the superior accuracy of
the machine learning approach. In the second scenario, training data from one network and testing data from
another are used, where LRACC, LRAK, and LRAD outperform the machine learning methods.

INDEX TERMS Complex networks, influential nodes, local centralities, machine learning techniques.

I. INTRODUCTION

The rapid growth of the internet and social networks has led to
emerging challenges in network analysis, including detecting
highly influential nodes and examining information propaga-
tion dynamics within complex networks [1]. Addressing the
crucial task of identifying pivotal nodes presents numerous
practical applications in areas such as advertising, education,
and news dissemination [2]. Conventional methodologies
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for tackling this challenge primarily rely on structural
characteristics, including node degree [3], shortest path
length between all node pairs [4], average shortest path
length between all pairs [5], and node eigenvalues [6],
to assess and rank nodes according to their influence.
To pinpoint the relationships between nodes and gauge their
influence within the network, network structure is crucial.
Various approaches based on network structure can be
categorized into two groups. The first category focuses on the
neighborhood of nodes, including Degree centrality (D) [7],
K-shell decomposition [8], and H-index [9], among others.
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The second category examines the paths between nodes, such
as Eccentricity [10], and Katz centrality (K) [11]. Some of the
iterative-based centrality methods are eigenvector [12] and
PageRank [13].

In practical scenarios, networks often generate a sub-
stantial volume of data, leading to high time complexity
and difficulties in measuring centrality. Centrality measures
are crucial in identifying critical and influential elements
within large datasets [14]. The finding of key nodes is a
common challenge in various network applications, includ-
ing virus spreading [15], image recognition [16], disease
propagation [17], [18], spam detection [19], information
dissemination [20], and online/offline network activities.
Various centralities are proposed to find the vital nodes in
complex networks [21], [22], [23].

In a recent study by Lvetal. [24], a novel centrality
measure known as relative change of average shortest path
(RASP) centrality was introduced, focusing on the overall
structure of the network. The RASP method evaluates the
change in the average shortest paths across the entire network
upon removing a specific node, providing a quantitative
measure of information propagation between all pairs of
nodes when that node is absent from the network. However,
the authors are considered for the entire network, and
computational time is also more if the entire network is
considered. Later, there has been a proposal for a new
centrality measure (Local RASP) that explores information
propagation in networks, even considering the removal of
nodes with the importance of local structure [25].

Recently, Zhao et al. [26], [27] introduced a data-driven
machine-learning approach to identify influential nodes
in complex networks. Their method involved employing
a classification model for vital node identification and
training it on a significant portion of nodes from the
original network. Rezaei et al. [28] introduced an innovative
sampling technique named cluster sampling, which guar-
antees the inclusion of nodes with diverse structural and
influential properties in the training set. The sampling size
is confined to a mere 0.5% of the complete network, leading
to compact training sets, even in the case of expansive
networks. To tackle the constraint of inadequate training
data, they selected a Support Vector Regression machine
featuring a Radial Basis kernel as their machine learning
model. Nonetheless, generalizing the relative change in local
centralities is not a typical strength of machine learning
algorithms.

From this motivation, our paper presents a novel approach
to assessing the significance of nodes, which differs from
conventional methods that typically rely on evaluating node
importance based on specific local topologies. Our proposed
framework leverages machine learning techniques, trans-
forming the evaluation of node relevance in a classification
challenge. Within this framework, each node’s feature vector
comprises the values of six well-known and established
centralities alongside the spread of infection rate in a
propagation environment. The assignment of labels to each
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node is determined by evaluating the actual propagating capa-
bility achieved through simulated propagation. We employed
seven ML algorithms to extract the rules governing node
importance evaluation.

In the testing and training of a network, we apply ML
methods by using centrality and infection rate features to
find the ML-based and centrality-based accuracy. More
specifically, the main contributions of our work are given as
follows.

1) We introduce a universal centrality metric by utilizing

the relative alteration in local centrality. In this context,
we examine the impact of the centrality metric when a
vertex is removed.

2) We introduce three novel centrality metrics, namely

LRAD, LRACC, and LRAK, and perform a compar-
ative analysis with conventional measures such as D,
CC,K,NBA, DT, RF, SVM, KNN, LR, MLP, and SVM
combined with k-means. These newly proposed metrics
prove to be highly valuable in examining complex
networks, offering reduced computational complexity.
3) To validate the extent of information dissemination,
we evaluate our centrality metrics on real-world
datasets employing SIR and IC models.

The rest of this paper is organized as follows. We give
the related work to the study in Section II and the
preliminaries in Section III. Section I'V describes generalizing
the relative change in local centralities. Section V presents the
proposed framework, providing detailed information about its
components. We describe the experimental data sets used in
Section VI. The results section is described in Section VII.
The discussion section is described in Section VII-C.
Finally, we address the conclusion and extended works in
Section VIII.

ABBREVIATIONS
Here is a list of the abbreviations employed in this document.
1) D: Degree centrality
2) CC: Clustering Coefficient
3) K: Katz centrality
4) LRAD: Local Relative change in Average Degree
5) LRACC: Local Relative change in Average Clustering
Coefficient
6) LRAK: Local Relative change in Average Katz
7) SIR: Susceptible Infected Recovered
8) NBA: Naive Bayesian
9) DT: Decision Tree
10) RF: Random Forest
11) SVM: Support Vector Machine
12) KNN: K-Nearest Neighbor
13) LR: Logistic Regression
14) MLP: Multi-Layer Perceptron
15) SVM+K-means: Support Vector Machine + k-means

Il. RELATED WORK

In this section, we delve into the existing research concerning
ranking nodes’ influence within complex networks. Over the
years, researchers have introduced several classic centrality

10187



IEEE Access

K. Hajarathaiah et al.: Node Significance Analysis in Complex Networks Using ML and Centrality Measures

techniques aimed at gauging the topological significance
of nodes. These methods can broadly be classified into
four categories: (a) Neighborhood-based Centrality: This
category includes metrics like degree and H-index [3].
These metrics assess a node’s importance based on the
number of immediate or multi-step neighbors, emphasizing
local connections. (b) Path-based Centrality: Metrics like
closeness [29] and Katz centrality [11] fall under this
category. They measure a node’s importance by considering
the shortest paths to other nodes, focusing on efficient
communication within the network. (c¢) Iterative Refinement
Centrality: Techniques like Eigenvector centrality [6] and
LeaderRank [30] belong to this group. The assessment of
a node’s significance involves appraising the importance of
its neighbors through a systematic iteration of the network
structure. (d) Node-operation-based Centrality: This cate-
gory encompasses methods such as connectivity-sensitive
approaches [31] and stability-based techniques [32]. These
methods evaluate a node’s importance by observing the
impact on the network’s structure when the node is deleted or
merged. While these methods effectively identify influential
nodes within specific structural confines, they often focus
on particular network attributes. Additionally, some studies
have employed machine learning techniques to identify
influential nodes, especially in context-specific scenarios,
such as determining user influence on social platforms like
Facebook [33]. Berahmand et al. [34] introduced a novel
centrality measure rooted in the inherent features of com-
plex networks. Their innovative approach assigns elevated
rankings to structural holes, recognizing them as superior
spreaders within the network. This centrality measure utilizes
the positive impact of second-level neighbors’ clustering
coefficients and simultaneously accounts for the negative
influence of a node’s clustering coefficient in evaluating
node importance. As a result, this approach guarantees the
identification of spreaders that are not excessively close to
each other. The relevant literature on machine learning and
centralities is outlined in Table 1.

In this study, we focus on devising centrality measures
to pinpoint the vital node that ensures maximum infor-
mation spread while maintaining minimal time complexity.
To achieve this objective, we introduce three novel centrality
measures: LRACC, LRAD, and LRAK. These approaches
focus on local average structural information. They are
derived from generalized centrality measures that assess the
relative change in degree, Katz, and clustering coefficient
after the removal of a node. Specifically, the local centrality
measures are labeled LRACC, LRAD, and LRAK. To evalu-
ate their effectiveness, we compare these proposed methods
against standard measures in existing literature, including D,
CC, K, and various machine learning algorithms.

lIl. PRELIMINARIES

One can ascertain the significant importance of nodes in
a network by employing centrality metrics. To determine
influential nodes, the following are measures that are
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frequently used: The centrality degree of a node depends
on the number of connections it possesses. The symbols
and annotations utilized in this work have been outlined in
Table 2.

High-degree nodes are seen as having enormous influence.
Node i’s degree centrality [3] in the network can be calculated
using the following formula

d; !
VD e))

where d; represents the node’s degree i, and N denotes nodes
present in the network. The clustering coefficient gauges
how interconnected a node’s neighbors are. It measures the
likelihood that a node’s neighbors are also connected to one
another, forming a cluster. It is a measure that provides
information about the network’s local structure. In complex
networks, influential nodes often have a high clustering [39],
as they tend to connect to other highly connected nodes,
forming dense clusters.

A node with a significantly high clustering coefficient
indicates it is well connected to its neighbors and is likely
to operate as a network influencer node. For a specific given
node i, the clustering coefficient is defined as triangles (i.e.,
fully connected triads) involving node i divided by triangles
possibility that could involve node i. Mathematically, it can
be represented as

Cqs()) =

2T;

di(di — 1)
where T; denotes the number of triangles centered on the
node i and d; denotes the degree of node i. Every node’s
relative influence is determined by Katz centrality (K) by
considering the immediate neighboring nodes along with the
subsequent nodes that are neighboring nodes and connected
to the immediate neighbors. The K for a node v; is known as

Ci 2

n
K@) =a) A K@), 3)
j=1
where o« is a dumping factor, which is considered less
significant than the biggest eigenvalue.

Our goal was to identify important nodes in complex
networks using diverse methods in machine learning (ML),
including Support Vector Machines (SVM) [40], [41],
Decision Trees (DT) [42], Logistic Regression (LR) [43],
k-Nearest Neighbors (KNN) [44], Random Forests (RF)
[45], Naive Bayes (NBA) [46], Multilayer Perceptron (MLP)
[47], and a combination of clustering and classification
(K-means + SVM). By leveraging these ML algorithms,
we can accurately predict and classify the significant nodes
within complex networks, providing a streamlined approach
to network analysis.

A. SUPERVISED LEARNING

One of the machine learning approaches is Supervised
learning [48], where a function is trained to convert inputs to
outputs using labeled training data. The function is inferred
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TABLE 1. Literature related to machine learning methods and Centralities.

Reference

Contribution

Advantages

Limitations

Zahao et al. [26]

Introduced a machine learning-based framework for assessing the sig-
nificance of nodes in the context of information propagation.

Based on the labels, spreadability is
easy.

No  assessment
of the influence
of node removal

on the relative

change in ML

algorithms.
Hajarathaiah et | Proposed a new centrality measure (Local RASP) that explores infor- | Computation is less No  generalized
al. [25] mation propagation in networks, even considering the removal of nodes the local

with the importance of local structure. centrality.

Hajarathaiah et | Introduced metrics that rely on evaluating the proportional shift in | Generalized the local centralities ML  algorithms
al. [35] clustering coefficient, degree, and Katz centralities following the elimi- not applied

nation of a vertex.

Rezaei et al. [28]

Proposed a unique sampling method named cluster sampling, designed
to incorporate nodes with varied structural and influential characteristics
into the training set. The sampling strategy involves selecting only 0.5%
of the complete network, resulting in modest training sets, even for
extensive networks. To address the constraint of limited training data,
a Support Vector Regression (SVR) machine with a Radial Basis (RBF)
kernel was adopted as the machine learning model.

The SVR machine with an RBF ker-
nel as their ML model to overcome
the limited training data.

No generalized
ML  algorithms
applied.

Alshahrani et al.
[36]

The algorithms introduced combine degree centrality as a local metric
and Katz centrality as a global measure within the frameworks of
Independent Cascade (IC) and Linear Threshold (LT) models, focusing
on spreading ability and time complexity.

No generalized ML algorithms ap-
plied.

Grando et al. [37]

Utilizing artificial neural networks for proposing, explaining, testing,
and comparing centrality measures, addressing the challenges in com-
puting centrality in large, real-world networks.

Showcasing a generative model’s
ability to provide unlimited training
data and reduce computation costs
by 30% in real-world scenarios.

Accuracy and
computational
resources are
limited

Jeyasudha  and
Usha [38]

This paper introduces a method to (1) detect communities using the
Laplacian Transition Matrix and community algorithms based on popu-
lar hashtags, (2) identify influential nodes within the community using
intelligent centrality measures, and (3) implement machine learning
algorithms for classifying user intensity, with extensive experiments

The proposed approach demon-
strates high accuracy (98.6%) using
SVM and PCA compared to lin-
ear regression when employing new
centrality measures.

Require  further
refinement
for precise

differentiation.

conducted on COVID-19 datasets.

TABLE 2. List of notations used in this research work.

Symbol Description

G A graph

|4 Set of vertices or nodes

E Set of Edges

N Number of nodes

d; Degree of node ¢

T; Number of triangles centered on the node %

L Neighborhood level

Nr(v) Set of neighboring vertices of vertex v in the
network up to level L

Gy (v) A subgraph on set of nodes N, (v)

GNp(v) \V A subgraph after deleting a vertex v from
GN L (o)

LRAvg? Local relative change of average centrality ¢’

ADIG] Average degree of the graph G

ACCIG] Average clustering coefficient of the graph G

AK[G] Average Katz centrality of the graph G

using a set of training instances with corresponding inputs
and outputs. The algorithms used in this sort of learning use
a dataset divided into training and testing sets and depend
on outside assistance. By identifying patterns from the input-
output pairs in the training set, the objective is to predict or
categorize the output variable in the test set.

1) LOGISTIC REGRESSION (LR)

A predictive analytic technique known as logistic regres-
sion [43] addresses issues with machine learning catego-
rization. By calculating the probabilities that fall between

VOLUME 12, 2024

0 and 1, independent factors are used to predict the categorical
dependent variable. The outcome of an LR analysis must be
discrete or categorical. The method uses a logistic function
in the shape of ““S” to predict the two highest values instead
of a regression line and provides probabilistic values rather
than precise values. The classification of various data types,
the provision of probabilities, and the speedy identification
of the most pertinent factors for classification make logistic
regression a significant tool.

2) NAIVE BAYES (NBA)

Webb et al. [46] stated that Naive Bayes is a classification
technique that relies on the Bayes theorem and assumes
predictor independence. The fundamental tenet of this
strategy is that no other features in the class are affected
by the presence of one feature. Text categorization typically
uses Naive Bayes based on the conditional likelihood of
occurrence. It is mostly used to group and categorize things,
where

P(c|x)P(c)

P(clx) = P 4

3) DECISION TREES (DT)
Instances are categorized using Decision Trees [42], which
sort instances according to the values of their features. Every

individual branch within the tree represents a specific value
assigned to the corresponding node, which indicates a feature
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in the instance being classified. Instances are organized and
categorized by feature values starting from the root node.
In decision tree learning, a machine learning technique,
observations of an item are linked to predictions of its
intended value using a decision tree model. These models can
be referred to as regression trees or classification trees. Post-
pruning procedures are used to evaluate the effectiveness
of the decision trees after they have been pruned using a
validation set. Even if a node is removed, the instances can
still be sorted and assigned to the most common class.

4) RANDOM FOREST (RF)

By employing bagging to create many decision trees, the
Random Forest approach [45] classifies fresh incoming data
instances into classes or groups. Instead of being pruned,
trees are built. When decision trees are being built, the Gini-
index cost function is used to locate the best-split point,
hence the name randomly, which is a pick of random n
features or attributes. The trees are less correlated and have
a reduced error rate because the predictor variables are
chosen at random. The newly observed data is shared with
all classification trees within the random forest in order to
compute the target value for the new data instance. The
number of predictions made by each classification tree for
each class is counted. When a new data instance is created,
it returns and considers the class label with the highest votes.

5) K-NEAREST NEIGHBORS (KNN)

Compared to other algorithms, such as Naive Bayes, Random
Forest, and Decision Trees, the k-Nearest Neighbours (KNN)
algorithm [44] has a faster training time. One notable
difference is that KNN, a lazy-learning algorithm, requires
less time during classification. In KNN, the training dataset
is directly stored in memory and used for making predictions.
The algorithm identifies the k closest objects in the data that
is trained to the input instance by employing an Euclidean
distance metric. The class with the highest number of votes
among these nearby classes is assigned to categorize the
unknown data. The effectiveness of the classifier hinges
on choosing the optimal value for k. In this study, the
KNN classifier explores odd values of k up to 25. Distance
metrics, such as Euclidean and Manhattan, can be used to
determine the proximity of the new instance to the training
examples, with Euclidean distance being the most commonly
used. In this work, Euclidean distance is used for the KNN
classification algorithm. The following specific equation can
be used to retrieve the Euclidean distance (d) from one point
to another point (y, z), and

d@y,z) = )

6) MULTI-LAYER PERCEPTRON (MLP)
The perceptron algorithm [47] uses a set of training examples
to train a prediction vector that correctly predicts the output
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labels for the input instances in the training set. It achieves
this by updating the network weights through a quadratic
programming problem with linear constraints in stead of
a nonconvex, unconstrained optimization problem used in
traditional neural network training. The algorithm runs over
the training set until a correct prediction vector is found. In the
test set, the labels of the cases are predicted by considering the
prediction vector obtained.

7) SUPPORT VECTOR MACHINE (SVM)

The Support Vector Machine (SVM) [40], [41] is frequently
utilized as a supervised learning method for both regression
and classification analysis. These models utilize specific
learning algorithms and are capable of handling both
linear and non-linear classification tasks by employing the
“kernel trick” that maps the inputs to higher-dimensional
feature spaces. By maximizing the margin, which refers
to the distance between classes, SVMs aim to minimize
classification errors.

8) K-MEANS
The k-means algorithm is a straightforward unsupervised
learning method used to solve the clustering problem [48],
[49]. The data set is categorized into a pre-determined number
of clusters (k) without using labeled data. It is a method
for transforming general guidelines into highly accurate
prediction rules by consistently discovering classifiers that
perform slightly better than random.

Subsequently, we expand the centrality measure by utiliz-
ing the relative change in centrality.

IV. GENERALIZING THE RELATIVE CHANGE IN LOCAL
CENTRALITY

In this section, we present a generalized centrality measure
that examines the relative variation in centrality. By evalu-
ating the influence of centrality measures when removing a
vertex, we extend the notion of assessing centrality for nodes
within a network. While existing centrality measures focus
on the network’s local and global structures, our approach
is tailored to local centrality measures, analyzing the impact
of node removal on the relative change in various centrality
measures.

Here, we introduce a local measure that relies on the
graph’s local structure, requiring access to local network data.
Let us consider the neighborhood level denoted as L for a
given vertex v within the graph G. The L may consider values
from O up to the graph’s diameter. Consider the following
definition for the local measure:

|AvgE G, ) \ V] — Avg€ (G, ]|
AvgE G, )] '

The graph G, () \ v represents the outcome of eliminating
vertex v from the graph Gy, (. Determine the Avg?
associated for induced subgraph Gy, (v) in the graph G,
where Gy, (v) consists of the vertices in the neighborhood
N (v). The centrality measure LRAvg% is a local method

LRAvg%61(v) = (6)
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used to calculate centrality for a vertex. It considers only
the neighboring vertices within a certain level L (see for all
notations in table 2).

When the centrality measure € is treated as degree (D)
[50], then average degree is computed as

2 dy
AD[G] = % (7

where d,, indicates the vertex degree. The average degree [35]
of local relative change for node v in G evaluate as

|AD[Gn, () \ v] — AD[Gy, (]|

LRAD =
L) ADIGy, ]

(®)

When the centrality measure % is considered as the
clustering coefficient (CC) [51], the average CC is computed
as

> cCw)

ACC[G] = GVT )

where CC(v) denotes the vertex clustering coefficient.

The average clustering coefficient [35] can be determined
using the vertex v of local relative change, which is
determined as

[ACCIGy 0 \ V] = ACCIGry ]|
ACCIGn, ] '

LRACCL(v) = (10)

When the centrality measure % is considered to be as Katz
centrality (K) [52], then the average Katz centrality (AK) is
calculated as

2. KW

AK[G] = % (11)

where K (v) represents the vertex Katz centrality. The local
relative change in average Katz centrality [35] is defined as
[AK [Gn,) \ V] = AK[Gn, ]|

LRAK, =
L) AK[Gny )]

(12)

We opted to emphasize classical centrality measures, along
with LR measures, aligning with our study’s particular
context and objectives. Due to the high computation time
associated with individual classical centrality measures,
we employed neighborhood level (L) values adjustable within
the range of 1 to the diameter. Through examinations,
we determined that setting L to half of the diameter
effectively captures more local neighbor’s information while
maintaining lower time complexity. Some studies have
looked into the rich-club [34] and directive properties of
complex networks to identify exact nodes in the network
and their influence [53]. Additionally, some studies use
machine learning approaches to determine influential nodes
in their particular contexts, including user influence over
Facebook [33]. However, the universal propagation scenario
is not examined in these works.
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V. IMPLEMENTATION

A methodology for using machine learning methods is used
to recognize and relate the nodes in the network that are
highly influential, as shown in Figure 1. The key step
in constructing a training dataset for model development
involves highlighting the dependency of each node’s feature
vector on conventional centrality measures and the infection
probability beta within the model’s propagation. After con-
structing this dataset, the spreading ability of each person can
be determined by employing the SIR model and IC diffusion
models with the infection probability rate, which acts as the
post-computational label for the individual. Subsequently,
diverse ML approaches are applied to the training data to
uncover categorization patterns and generate corresponding
classification models. Leveraging these trained models,
assessing the significance of any person within the same
network or another node from various networks becomes
possible. A framework model follows five steps: (1) Eval-
uating node influence based on the SIR and IC model. (2)
Computing the label of the node based on its influence. (3)
Choose the features of the node. (4) Extracting the real label
of node based on SIR and IC models. (5) Node is labeled
based on centrality methods. These five steps are explained
more in detail in the following subsections (see Figure 1).

A. ASSESSING NODE IMPACT USING SIR AND IC MODELS
In this study, we utilize the Susceptible-Infectious-Recovered
(SIR) model widely recognized to evaluate the spread of
nodes in a network and propose a node labeling strategy based
on their propagation ability. The SIR, prevalent epidemic
model classifies nodes as susceptible, infected, or recovered.
Infectious nodes can transmit the infection to susceptible
neighbors through the infection and recovery rate, eventually
leading to recovery. Recovered nodes become immune to
further infections and cannot infect others. The dynamics
of the SIR model are characterized by randomness and
interactions between nodes. Our objective is to identify an
initially infected node while considering the magnitude of
the resulting epidemic as a measure of its true influence. The
extent of the epidemic in our research is determined by the
total infected and recovered nodes, with nodes contributing
to a larger outbreak considered to have a greater impact. For
our results, we considered the recovery rate X to a fixed value
of 1. As for the infection rate 8, we varied it within the range
of 0.1 and 0.2.

B. ASSIGNING LABELS BASED ON NODE'’S INFLUENCE
Our objective is to identify significant nodes within networks
using machine learning techniques that involve labeling.
However, directly assigning labels to nodes based on the
exact scale of outbreaks obtained from SIR tests can result
in excessive granularity. Therefore, in this study, we establish
the labels based on the following concept that

(13)

i — MinScal
label; — [&} 41,

range
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Training network
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LRAD
LRACC
LRAK

Machine Learning Methods

Naive Bayes, Decision Tree, Random Forest, Support Vector
Machine, K-Nearest Neighbor, Logistic Regression, Multi-Layer
Perceptron, SVM + K-means

4. Extracting the real label of node j based on SIR and IC models
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> Label j
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Methods

Y
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FIGURE 1. An overview of the machine learning-based methodology for node influence identification in networks.
This figure illustrates the five-step process: (1) influence evaluation of nodes using the SIR and IC models, (2)
computation of node labels based on influence, (3) selection of node features, (4) extraction of real node labels
using SIR and IC models, and (5) labeling of nodes based on centrality methods. The methodology integrates
conventional centrality measures, infection probability beta, and machine learning techniques to effectively
determine and categorize the spreading ability of nodes within a network.

In this context, MinScale denotes the smallest observed
scale of outbreaks in the SIR results, while S; represents
the final scale of an outbreak associated with node i. The
range indicates the interval size between labels, as defined
in Equation (2), and is given by
MaxScale — MinScale

N

In this case, MaxScale signifies the highest scale attained by
the outbreaks, while N denotes the number of labels present.
Specifically, if a node’s computation result is N + 1, the node
will be assigned the label of V.

Labeling the vertices in the network is important as we try
to identify the node’s influence by utilizing machine-learning
techniques. SIR experiments produce too fine a granularity
when utilizing an outbreak final scale. Where N is the number
of labels, MinScale denotes the outbreak’s minimum final
scale, and MaxScale denotes the outbreak’s maximum final
scale, as determined by SIR and IC methods.

Assigning labels to the vertices in the network is essential
as our goal is to determine the influence of each node using

range = (14)

10192

machine learning techniques. However, applying the precise
outbreak scale discovered through SIR research leads to an
inappropriate level of granularity.

To overcome this challenge, we introduce the following
variables Minscale, Maxscale, and V, where N is the number
of labels. The outbreak’s minimum and maximum final
scale is determined by SIR and IC methods. By taking
these variables into account, we can establish a more
appropriate and manageable granularity level when labeling
the network’s vertices.

C. DEFINING NODE’S ATTRIBUTES

The key objective in creating the training data set is to
establish the features and their respective values for each
node, as these features play a fundamental role in evaluating
the significance of nodes. Previous studies have proposed
diverse centrality measures to evaluate node importance.
Therefore, we can select specific traditional centrality mea-
sures as features in our dataset. Furthermore, considering that
the scales of node outbreaks can vary with different infection
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rates, the infection rate becomes a critical factor that affects
node propagation ability. Thus, in this study, the infection
rate is included as one of the node attributes. To capture
a comprehensive range of structural aspects of nodes, our
study incorporates multiple types of centrality approaches.
By incorporating various centrality measures, we aim to
encompass different perspectives on node importance within
the data set.

In addition, this study applies normalization to the
centrality features to prevent overfitting and enhance the
generalizability of the trained classifier to different networks.
The normalization technique employed for each centrality
feature, denoted as k, is as follows

Py
fk—ﬁ

where Py indicates the ranking position based on centrality
value k, and N suggests the nodes exist in the network.

, (15)

1) TRAINING ML MODELS

After constructing the training data, we implemented various
machine learning methodologies to build ML models. In our
study, we consider the following eight commonly used
machine learning algorithms: 1) NBA, 2) DT, 3) RF, 4) SVM,
5)KNN, 6) LR, 7) MLP, and 8) SVM-+k-means. To create our
machine learning models, we utilize the scikit-learn package.
We use grid search to fine-tune the pertinent hyperparameters
in order to improve the method’s performance.

2) NODES LABELING BASED ON CENTRALITY MEASURES

To evaluate and know the effectiveness of the ML model that
is shown in Figure 1, we introduce six centrality methods for
comparison: 1) D, 2) CC, 3) K, 4) LRAD, 5) LRACC, and
6) LRAK. The experimentation begins by utilizing a real-
world network for both training and testing purposes. The
nodes are randomly split between 30% for testing and 70%
for training data. Subsequently, machine learning methods
are applied during the testing phase to generate classification
outputs. By comparing these outputs with the actual labels,
we calculate the accuracy of the ML methods. Furthermore,
we compare the accuracy achieved by ML methods with that
of traditional centrality methods.

It is important that the centrality methods and infection
rate serve as labels for the nodes in this process. The
results demonstrate that machine learning methods exhibit
higher accuracy than traditional centrality methods. For a

specific label i, the calculation of the distribution’s location
N N

is > P;> Pj, where P; represents the label proportion.
j=itl Cj=i

VI. DATASETS

To evaluate and observe the efficacy of our approach, this
study incorporates various traditional information transmis-
sion scenarios, namely USAir97, bio-celegans, ca-netscience,
and web-polblogs. These scenarios were carefully selected to
encompass a diverse range of network characteristics. The
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datasets utilized for these networks were obtained from a
reliable source [54]. The USAir97 network dataset represents
the connectivity between airports in the United States during
1997. Widely recognized as a benchmark dataset in network
analysis and research, it captures the relationships between
airports based on direct flight connections. In USAir97,
each node represents an airport, and the edges depict direct
flights between airports. The USAir97 network consists of
332 nodes and 2126 edges. On the other hand, the bio-
celegans network dataset provides a representation of the
neural connectivity in the nematode worm Caenorhabditis
elegans. This dataset illustrates the connections between
various neurons within the worm’s nervous system, where
neurons are represented as nodes and synapses as edges.

The bio-celegans contain 453 nodes and 2025 edges.
The ca-netscience network dataset illustrates a collaboration
network among authors in network science. In this network,
authors are represented as nodes, and the edges depict co-
authorship relationships. The ca-netscience network consists
of 379 authors and 914 edges. The web-polblogs network
dataset portrays the political blogosphere during the 2004 US
presidential election. Nodes in this network represent polit-
ical blogs, while the edges represent hyperlinks between
them. The web-polblogs network encompasses 643 blogs
and 2280 hyperlinks between them. These carefully selected
networks provide a solid foundation for evaluating the
effectiveness of our methodology in various network analysis
scenarios.

VII. RESULTS AND ANALYSIS

Our study involved several experiments aimed at comparing
the effectiveness of an ML model with traditional centrality
methods across various scenarios. In this research study,
we conducted experiments on a high-performance computing
system boasting 128GB of RAM. The system operated on
the Windows 11 Pro operating system, featuring an 11th
Gen Intel Core i9-1190 processor with 3.8 GHz speed.
The system type was a 64-bit operating system, and Python
3.7.10 was employed for data analysis. Implementation of
this work in Python code is available in GitHub link in [55].
Graphical representations were crafted using Origin PRO
software. The experiments were divided into two sections.
In the first section, we focused on evaluating the performance
of the ML model by training and testing it on data within
the same network. The second section involved examining
scenarios where the training and testing nodes belonged to
different networks, allowing us to assess the scalability of
the ML model. One notable observation was the significant
impact of the number of labels, which represent node
categories, on the classification accuracy. As the number of
labels increased, the accuracy of categorization decreased.
To further investigate this effect, we trained seven classifiers
using seven algorithms for each label count and evaluated
their classification performance. In addition to label count,
we also considered the influence of the infection rate on the
spreading ability within the training phase. Our approach
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FIGURE 2. ML algorithms are applied to various data sets for training and testing to determine the accuracy of proposed

centralities (0.1).

involved incorporating various data points, each representing
different infection rates and label values for every node.
This enabled the ML algorithms to learn about the effect
of infection rate on the significance of nodes. For our
experiments, we selected infection rates ranging from 0.1 to
0.2. During the testing phase, we simplified the studies
by using two infection rates (0.1 and 0.2) to predict the
performance of the classifiers.

A. TESTING AND TRAINING CONDUCTED ON THE SAME
NETWORK

The tests were split into two parts. We used the same network
in the first section for both training and testing. In the
second portion, we tested with a different network from
the one we trained with. The quantity of labels (number of
node categories) has a significant impact on categorization
accuracy. The accuracy of categorization decreases as the
number of labels increases.

Each network’s nodes were randomly divided into 30% and
70% for testing and training data. The results, considering
various infection rates and label counts, are presented. The
overall findings indicate that machine learning methods
outperformed centrality approaches such as degree (D),
clustering coefficient (CC), Katz (K), LRAD, LRACC,
and LRAK. These results are visualized in Figure 2, and
Figure 3. Moreover, it was observed that the infection rate,
as well as the number of labels, influenced the accuracy
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of ML techniques. Across all networks, accuracy decreased
as the number of labels increased and slightly decreased
with higher infection rates. This decrease in accuracy can
be attributed to the reduced distinguishability of node
spreading capabilities as infection rates rise, leading to
compromised classification performance. Specifically, the
SVM-+k-means algorithm demonstrated superior accuracy
compared to other ML models and centrality approaches.
The SVM and KNN models also achieved high accuracy to
other machine learning models. For small-sized networks,
the accuracy of machine learning models initially increased
and then decreased. However, in large networks, accuracy
either remained constant or decreased as the number of
labels increased. In contrast, classical centrality approaches
exhibited an initial increase in accuracy for a smaller number
of labels, followed by stabilization as the number of labels
increased at a constant infection rate.

In the USAir97 network, the SVM-+k-means method
demonstrated higher accuracy than other D, CC, K, LRAD,
LRACC, and LRAK centrality approaches, as shown in
Figure 2, and Figure 3. Subsequently, the KNN method
achieved higher accuracy compared to other centrality mea-
sures. Similarly, in the bio-celegans network, the SVM+k-
means method yielded higher accuracy than other centrality
approaches, as depicted in Figure 2, and Figure 3. Later,
the SVM method exhibited better accuracy than the other
methods. The SVM-+k-means technique achieved good
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FIGURE 3. ML algorithms are applied to various data sets for training and testing to determine the accuracy of proposed

centralities (0.2).

accuracy in the ca-netscience network. Next, KNN method
is performed with higher accuracy than DT, RF, SVM, LR,
MLP, D, CC, K, LRAD, LRACC, and LRAK, as shown
in Figure 2, and Figure 3. In the web-polblogs dataset, the
SVM-+k-means method demonstrated higher accuracy than
other methods as shown in Figure 2 and Figure 3.

B. TESTING AND TRAINING ON VARIOUS NETWORKS

In this section, our experiments aim to assess the generaliz-
ability of the proposed model by evaluating the performance
of ML models when training and test data are obtained
from dissimilar networks. We consider the impact of label
quantity and infection rate on the accuracy of each model.
The experimental results consistently demonstrate that irre-
spective of the approach employed, classification accuracy
tends to decrease as the number of labels and infection
rate increase. Notably, regardless of network size, machine
learning approaches exhibit significantly lower classification
accuracy than centrality methods. These results are depicted
in Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, and
Figure 9.

When comparing the LRAD centrality method with
machine learning models and other centrality approaches
such as D, CC, K, LRACC, and LRAK, we observe that
it achieves the highest accuracy. Additionally, the accuracy
of the LRACC and K centrality methods remains stable
across various infection rates. In contrast, the accuracy
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of machine learning classifiers displays multiple fluctua-
tions, initially increasing, then decreasing, and eventually
stabilizing as the infection rate, as well as the number of
labels, increase. In our analysis of the USAir97 and bio-
celegans networks, we found that the LRAD and D centrality
methods demonstrated superior performance compared to
machine learning approaches, as illustrated in Figure 4. The
conventional centrality measures achieved higher accuracy
than the machine learning methods in these networks.
To evaluate their performance, we used USAir97 as the
training set and bio-celegans as the testing set, as well as
vice versa. Additionally, we employed ca-netscience as the
training set and web-polblogs as the testing set, as depicted
in Figure 5. Within the ca-netscience network, the D and
K centrality methods outperformed the machine learning
approaches.

In the evaluation of the USAir97 and web-polblogs
networks, we observed that the degree and Katz central-
ity methods exhibited superior performance compared to
machine learning approaches, as presented in Figure 6.
Traditional centrality measures achieved higher accuracy
than the machine learning methods. For these networks,
we utilized USAir97 as the training set and web-polblogs
as the testing set, and vice versa. Similarly, in the case
of the ca-netscience and bio-celegans networks, we found
that the LRAK and K centrality methods performed well.
We employed ca-netscience as the training set and bio-
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celegans as the testing set, and vice versa, as illustrated in
Figure 6.

In Figure 7, we can notice that the LRAD and degree cen-
trality methods outperformed machine learning approaches
in the USAir97 and bio-celegans networks. Traditional
centrality measures demonstrated higher accuracy compared
to machine learning methods. For the training and testing sets,
we utilized the USAir97 network and bio-celegans, respec-
tively, and vice versa. Furthermore, in the ca-netscience and
web-polblogs networks, we employed ca-netscience as the
training set and web-polblogs as the testing set, as depicted in
Figure 7. In both networks, the degree and Katz centralities
exhibited superior accuracy compared to other centrality
measures.

In Figure 8, we notice that the degree centrality method
outperformed machine learning approaches in the USAir97
and ca-netscience networks. Conventional centrality mea-
sures achieved higher accuracy compared to machine learn-
ing methods. For the training and testing sets, we used
USAIir97 and ca-netscience, respectively, and vice versa.
Similarly, in the case of the bio-celegans and web-polblogs
networks, we found that the degree centrality method
exhibited good performance. We employed bio-celegans as
the training set and web-polblogs as the testing set, and vice
versa, as depicted in Figure 8.

In Figure 9, we can notice that the degree and Katz
centrality methods demonstrated superior performance over
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machine learning approaches in the USAir97 and web-
polblogs networks. Traditional centrality measures achieved
higher accuracy compared to ML methods. The USAir97
network was used as the training set, while web-polblogs
served as the testing set, and vice versa. Similarly, in the case
of the bio-celegans and ca-netscience networks, we employed
bio-celegans as the training set, while ca-netscience served as
the testing set, as depicted in Figure 9.

C. DISCUSSIONS

To pinpoint crucial nodes within intricate networks, con-
ventional centrality methods are typically constructed by
directly analyzing specific topological structures of the
network. However, this approach imposes constraints on both
performance and adaptability when identifying influential
nodes in propagation scenarios. To address these limitations,
this study reframed the challenge of identifying influential
nodes as a classification problem. The provided model
utilizes machine learning techniques to improve the preci-
sion and adaptability of identifying influential nodes. The
experimental results presented in this section highlight the
substantial impact of network scale on the effectiveness of the
introduced machine learning model, especially when training
and testing networks exhibit variations. The findings suggest
that the machine learning classifier demonstrates superior
performance compared to centrality methods when trained
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on a small-scale network and later tested on a large-scale
network.

VIil. CONCLUSION
In our study, we introduced three innovative centrality
measures that leverage local structural details. These novel
metrics, LRACC, LRAD, and LRAK, were developed by
considering the relative changes in CC, degree, and Katz
centrality following node deletion. Our analysis revealed that
these proposed centralities exhibited superior performance
compared to traditional metrics like D, CC, and K, as well
as machine learning algorithms. Centrality methods such as
degree, clustering coefficient, Katz, LRAD, LRACC, and
LRAK are primarily designed to identify important nodes
to spread the disease in complex networks by focusing on
their topological structures. To address centrality measures
that generalize based on the relative alterations in CC, D, and
K centrality after the removal of nodes. This study approaches
the problem of identifying influential nodes as a classification
problem and proposes the utilization of machine learning
models for this purpose. Unfortunately, there are only a few
studies that have explored the application of machine learning
techniques in the specific context of discovering vital nodes.
By conducting SIR and independent cascade experiments,
the study suggests a person labeling method and employs
machine learning algorithms to refine the classification
criteria based on node attributes and labeling results. The
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proposed SVM+-k-means algorithm exhibits higher accu-
racy compared to conventional centrality methods when
trained and tested within the same network. However, when
applied to a different network for training and testing,
the betweenness centrality method demonstrates superior
accuracy compared to machine learning approaches. Notably,
when the machine learning classifiers are trained in a larger
network and then tested in a smaller network, they perform
less effectively than centrality methods. While machine
learning classifiers are more efficient than centrality methods
for training and testing in a larger network, their performance
deteriorates when tested in a smaller network after being
trained in a larger network. Exploring novel avenues for
research, a promising direction involves devising centrality
measures that optimize information dissemination efficiently.
One approach worth considering is the integration of both
local and global centrality metrics, aiming to maximize
information spread while minimizing computational time.
Additionally, it is valuable to explore the relative changes
observed in existing centralities within the literature, thereby
enhancing our understanding of the effectiveness of current
methods or deep learning methods.
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