
Received 6 December 2023, accepted 8 January 2024, date of publication 17 January 2024, date of current version 13 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355278

Design and Development of FOODIEBOT
Robot: From Simulation to Design
ATA JAHANGIR MOSHAYEDI 1, (Member, IEEE), ATANU SHUVAM ROY 2, LIEFA LIAO1,
AMIR SOHAIL KHAN 1, AMIN KOLAHDOOZ 3,4, AND ALI EFTEKHARI 5, (Member, IEEE)
1School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
2Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
3Faculty of Technology, School of Engineering and Sustainable Development, De Montfort University, LE1 9BH Leicester, U.K.
4Faculty of Engineering, Universitas Negeri Padang, Padang, Sumatera Barat 25131, Indonesia
5Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr 84181-48499, Iran

Corresponding author: Amin Kolahdooz (amin.kolahdooz@dmu.ac.uk)

This work was supported by the Institute of Engineering and DORA at De Montfort University, Leicester, U.K., through
DMU ‘‘top-up’’ OA Fund.

ABSTRACT This investigation is centrally focused on the comprehensive evolution and enhancement
of FOODIEBOT(shortened name for food delivery robot, an adaptive service automaton with a wide
range of functionalities. Its capabilities encompass sophisticated image processing methods, seamlessly
integrated via mobile applications (APP) and web interfaces, tailored specifically for intricate object
manipulation in dining hall settings. During its developmental phase, the precise calibration of PID controller
coefficients emerged as an essential requirement. The model underwent meticulous scrutiny through
detailed simulations using MATLAB software. Following this phase, its operational efficiency navigating
through circular, elliptical, spiral, and octagonal trajectories underwent rigorous examination, utilizing
optimization methodologies like Beetle Antennae Search (BAS) Algorithm, Particle Swarm Optimization
(PSO), PelicanOptimizationAlgorithm (POA), and EquilibriumOptimizer (EO). The exposition emphasizes
the diverse dispersion of optimized coefficients within each algorithmic framework. The pinnacle of this
effort involved a comprehensive evaluation of pathway performance, amalgamating insights from each
optimization paradigm. The discussion extensively delineates both simulated and real-time performance
metrics of the robot, validating the accuracy and reliability of simulation in deriving PID controller values.
In the comprehensive evaluation of methodologies and the robotic system’s effectiveness, the BAS technique
excels in operational efficiency. This method consistently outperforms its counterparts in execution time,
primarily due to its meticulous optimization of particle count. The comparative analysis across various
trajectories reveals intriguing insights. The EO approach showcases outstanding accuracy in Path 1, while
the POA method achieves optimal precision in Path 3. Impressively, the BAS technique demonstrates
unparalleled accuracy in Path 4. Furthermore, in terms of solution optimization, the BASmethod consistently
displays the shortest execution times across all traversed pathways. When examining maximum velocity
along these routes, the PSO method excels in Paths 1, 3, and 4, consistently achieving the highest speeds.
Notably, Path 2 uniquely displays the peak velocity attained by the POA method. This article presents
comprehensive insights into the constituent elements of the robotic system’s design. The inquiry delves
into the intricate nuances of optimization methodologies, elucidating their profound impact on the service
automaton’s performance across diverse orientations. The pragmatic implications underscore the critical
role of temporal considerations in the judicious selection of these methodologies. The observed congruence
between simulated and practical performance serves as a definitive validation, affirming the precision of
simulation computations and the subsequent derivation of PID controller values.

INDEX TERMS FOODIEBOT, food delivery robot, service robot, particle swarm optimization (PSO), beetle
antennae search algorithm (BAS), pelican optimization algorithm (POA), equilibrium optimizer (EO).

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

I. INTRODUCTION
In recent years, robots were predominantly confined to
industry but have since diversified across sectors, from

36148

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-9457-6267
https://orcid.org/0000-0002-5522-9043
https://orcid.org/0000-0002-1232-8690
https://orcid.org/0000-0002-7888-0410
https://orcid.org/0000-0002-9730-4232
https://orcid.org/0000-0002-8022-1959

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 1. The current most utilized service robot spans across the primary categories of outdoor service robots: Outdoor Service Robots
(OSRs),Hotel Service Robots (HSRs),Home Service Robots (HoSRs),Restaurant Robots (ReRs).

household chores to space exploration [1]. The term ‘‘Service
Robot’’ has gained prominence in the world of robotics
in recent times. A service robot is a robot designed to
perform useful tasks for humans in various settings, from
healthcare to logistics. These robots assist with tasks such
as cleaning, transportation, and more, often improving
efficiency and convenience in their respective industries [2].
Service robots are primarily deployed to alleviate human
workloads, especially in industries facing challenges like
adverse environmental conditions, labor shortages, and rising
operational costs. Mohan et al. [3] focus on integrating
robots into healthcare tasks like documentation and patient
support, especially in scenarios with limited human presence.
Using a patient-centric interface, the study assesses economic
benefits by gathering insights from patients, caregivers, and
medical professionals in major cities. It unveils a 9.1% rise
in robotics adoption since 2022, supported by a robust model
fit exceeding 80%, showcasing high acceptance levels. The
overview showcases diverse robot classifications in hospitals,
spanning from basic cleaning to advanced surgical sys-
tems, highlighting the widening applications in healthcare.
However, the COVID-19 pandemic has ushered in fresh
opportunities for service robots, particularly in areas once
considered unthinkable. Notably, these robots have played a
vital role in minimizing virus transmission by taking on tasks
that necessitate direct human contact as hospital admissions
and medicine delivery, significantly enhancing safety in
subsequent interactions [4]. Adeleye [5] delved into service

robotics research, emphasizing their role in daily tasks,
highlighting limitations, and proposing solutions for seamless
integration into home environments. The study showcased
advancements in organizing groceries, rearranging household
items, and exploring human-robot interactions, emphasizing
the need for improved manipulation and adaptability with
novel objects in real-world scenarios.

A. SERVICE ROBOT TYPES ASPECT AND ARENA
The investigation into service robot diversity can be catego-
rized into two major groups: current products and ongoing
research.

1) THE CURRENT PRODUCT
With the researcher’s efforts, several products are currently
being developed to create the service robot (Figure 1).
Figure 1 illustrates the service robot divided primarily into
four groups:

• Outdoor Service Robots (OSRs): OSRs are employed
for efficient post and food delivery, navigating through
urban landscapes to ensure timely and secure deliveries,
and enhancing logistics in city environments.

• Hotel Service Robots (HSRs): HSR premises, service
robots streamline operations by delivering assorted
items, aiding guests with requests within the hotel
premises, enhancing guest experience, and optimizing
staff productivity.

VOLUME 12, 2024 36149

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

• Home Service Robots (HoSRs):HoSRs are designed to
assist with household tasks, offering support in chores,
security monitoring, and personalized assistance to
occupants, augmenting convenience and comfort within
residential settings [6].

• Restaurant Robots (ReRs): ReRs are functioning as
waiters, automate food service by efficiently navigating
dining spaces, taking orders, and delivering meals,
contributing to faster service and enhancing customer
experiences in dining establishments.

These service robots’ types within the extant framework
and architectural configuration, a meticulous examination
is conducted to scrutinize the diverse array of products
elucidated in Table 1 and delineated graphically in Figure 1.

Figure 1 and Table 1 highlight the burgeoning popularity
of service robots, notably the category of waiter service bots
deployed across hotel, home, and restaurant settings. Tailored
for specific environments, these robots have gained substan-
tial traction in recent times. Table 1 presents a comparative
analysis of service robot products, outlining their distinctions
across four key reference criteria, particularly emphasizing
their mission orientation as waiter substitutes. This diversity
among these robots is pronounced. While certain models
are tailored for specific industries like hospitality, others
showcase adaptability across various domains, ranging from
household to public spaces. Besides core design aspects such
as shape, speed, and load capacity, the critical choice of
position monitoring technologies stands as a pivotal factor.
Robots integrate diverse monitoring methods, finely tuned
to their respective environments and the precise tasks they
are designed to fulfill. This diversity in robot design and
functionality allows for more customized solutions to meet
various service needs. Different designs showcase the diverse
technologies and approaches used to create waiter robots
with specific functionalities [7], from enhanced navigation
and interactive capabilities to additional features like waste
management and disinfection. The surge in demand for waiter
service robots is driven by their contactless serving capabili-
ties, efficiency enhancements, and the imperative to address
labor shortages in the hospitality sector [8]. Waiter robots
excel at tasks like delivering food and beverages to tables,
taking orders, and navigating busy restaurant environments,
offering contactless and efficient service [9]. These robots not
only ensure a unique andmemorable customer experience but
also deliver cost-saving advantages. Their adaptability and
customization options make them a sought-after choice in a
range of service-oriented businesses [10].

2) ONGOING RESEARCH
On the other side, the review of previous research papers
highlights diverse designs and technologies that enhance
the robot’s ability to fulfill its tasks and responsibilities
effectively. Service robot design continually investigates
human-robot interaction, adaptability, and safety measures.
Research focuses on autonomy, materials, and long-term

reliability for enhanced functionality. Ongoing advancements
seek seamless user experiences and efficient robot perfor-
mance in diverse settings. diverse settings.

1) Human-Robot Interaction Challenges: Creating
intuitive interfaces and communication methods for
effective interaction between humans and robots
remains a significant hurdle.

2) Autonomy and Navigation in Complex Environ-
ments: Navigating diverse and dynamic environments
without human intervention poses challenges for
robots, especially in crowded or unstructured settings.

3) Reliability and Maintenance: Ensuring consistent
and reliable performance over time, along with min-
imizing maintenance needs, is crucial, especially in
commercial or industrial applications.

4) Safety Concerns: Developing robust safety protocols
to prevent accidents and ensure the safety of both the
robot and its surroundings is a prty.

5) Adaptability to Varied Tasks: Designing robots
capable of adapting to a wide range of tasks and
environments without compromising efficiency is an
ongoing challenge.

In a study by Qing-Xiao et al. [11], Optical Character
Recognition (OCR) technology and an Radio Frequency
Identification (RFID) based positioning algorithm were
employed to achieve real-time autonomous positioning of
robots. Experimental simulations, mimicking a restaurant’s
layout, demonstrated impressive positioning accuracy, with
the robot’s positioning typically deviating by only about
3 cm from the target position. Lin et al. [12] focused on
creating a humanoid robot capable of enhancing the dining
experience by engaging customers in the finger-guessing
game. Their design incorporated a high-speed camera to
record the player’s game movements, and a low Degree
of Freedom (DOF) facial expression generation device for
responsive interactions. Through gesture recognition exper-
iments, the robot achieved a recognition rate of 70%. The
study conducted by Cheong et al. [13], introduced a waiter
robot featuring mechanical wheels, designed to function
across various restaurants. This robot was equipped with the
ROS (Robot Operating System) framework and employed
a modular hardware design. Within the ROS framework,
the restaurant environment map was generated through the
SLAM (Simultaneous Localization and Mapping) algorithm
and autonomous positioning and path planning were accom-
plished using Adaptive Monte-Carlo Localization (AMCL).
In the research by Jahromi et al. [14], a waiter robot was
designed with the ability to sense the number of customers
using infrared sensors and navigate smoothly to their loca-
tions through ultrasonic sensors. Customers could place their
food orders through the robot’s LCD screen. Additionally,
an automated table was devised to intelligently manage
waste collection and disinfection to mitigate the spread of
COVID-19. In another study Freeman et al. [15] investigates
the potential of a collaborative robot system to perform
essential healthcare tasks within a simulated intensive care

36150 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 1. The acclaimed service robot products excel in terms of feasibility and practicality.

unit (ICU) for COVID-19 patients. The researchers tested five
discrete medical tasks, including interacting with intravenous
pole machinery, adjusting a ventilator knob, and responding
to false alerts on an ICU monitor. The results indicate
that these tasks were successfully completed robotically
after a training period of 45 minutes to 1 hour for each
task. The study suggests that utilizing collaborative robots
in healthcare settings, particularly for routine tasks, may
reduce the need for personal protective equipment (PPE) and
minimize healthcare workers’ exposure to the SARS-CoV-2
virus. However, the findings call for further validation and

healthcare worker training. Among the reported cases, the
use of LiDAR and cameras for positioning is common, but it
can be expensive, especially in stable internal environments.
Magnetic tapes are a cost-effective alternative, particularly
in smaller spaces [16]. Additionally, there’s limited mention
of a comprehensive evaluation system for precise customer
diagnosis and efficient delivery of multiple orders along a
single path, which is an area for potential improvement in
waiter robot design.

Deploying a robot waiter poses multifaceted challenges,
notably in areas like human interaction, order accuracy,

VOLUME 12, 2024 36151

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

customization, and maintenance. Additionally, consider-
ations such as the final design cost, safety protocols,
monitoring capabilities, and environmental adaptability are
pivotal factors that demand attention. Addressing these
challenges necessitates ongoing research, innovative solu-
tions, and the seamless integration of advanced technologies
into restaurant operations. This article endeavors to explore
these complexities by delving into the complete lifecycle of
FOODIEBOT’s design (shortened name for food delivery
robot), construction stages, and modeling. This versatile
robot holds potential across diverse applications, including
catering services, hotel management, healthcare facilities,
elderly care, and various service sectors [17].
The FOODIEBOT consists of a data resource sharing plat-

form, distributed task ideas, and highly integrated modular
expansion functions. In summary, the primary contributions
and focal points of this work encompass:

1) Regarding design:
• Development of an interactive robot waiter facil-
itating food orders via a mobile app, recogniz-
ing customers, and executing precise deliveries
through coded instructions. This includes auto-
mated order handling via a robotic arm or manual
customer control, enhancing operational efficiency
and offering varied options.

• Equipping the robot for seamless round-the-clock
online service, ensuring swift and continuous
assistance.

• Creation of a localized website dedicated to
assessing customer satisfaction levels based on
food quality, yielding valuable statistical insights
for ongoing improvements.

2) In design and simulation:
• Proposal of an extended Automated Guide Vehicle
(AGV) model, lauded for its effective and efficient
performance, capable of accurately emulating
real-world movement scenarios. Introduction of
a simulation model mirroring the robot’s design,
practically implemented and rigorously compared
with real-world robot behavior. This assessment
involves evaluating the performance of four nature-
inspired controllers, referred to as BAS, PSO,
POA, and EO, to optimize path-following behav-
iors.

3) Regarding Navigation Algorithms:
• Precisely calibrate controller coefficients to
enhance the robot’s operational precision, employ-
ing meticulous simulations using MATLAB
software.

• Scrutinize the robot’s performance across diverse
pathways - circle, ellipse, spiral, and octagon -
leveraging optimization methodologies such as
BAS, PSO, POA, and EO.

• Highlight the dispersion of optimized coefficients
within each algorithmic framework.

• Integrate insights from diverse optimization
paradigms to rigorously evaluate the robot’s
performance in combined pathways, both in
simulation and real-world scenarios.

• Validate the accuracy and efficacy of simulation
models in deriving PID controller values.

• Examine and articulate the profound impact of
optimization methodologies on the multifaceted
performance orientations of the service robot.

The article is organized into distinct sections: Part 1 scruti-
nizes the physical framework, peripheral elements encom-
passing the mobile application and the web-based analysis
system for robot data, along with the mathematical model
and simulations performed using MATLAB software. Part
3 elaborates on the optimization algorithms implemented
within the robot’s path controller. In Part 4, the outcomes
and assessment of the robot’s performance across various
pathways are presented, culminating in an evaluation of
combined path scenarios. Finally, the article concludes
by comparing methodologies, scrutinizing the model, and
outlining potential avenues for future research.

II. FOODIEBOT ROBOT DESIGN
The FOODIEBOT robot is a comprehensive system com-
prising both hardware (combination of various sensors) and
software (Mobile APP, and theWebApplication) components
working in harmony to execute a diverse range of tasks.
Among these tasks, a pivotal one involves navigating and
following predefined paths, placing food orders, identifying
individuals at the ordering counter, delivering food or
packages to recognized recipients, etc., which are described
as follows;

A. ROBOT HARDWARE SYSTEM
The robot’s physical structure comprises four wheels (4WD),
strategically positioned on both sides, with individual
instructions from the processors to control the movement
of the robot. At the top of the robot, its design features
a robotic arm manipulator equipped with 4 DOF [18],
along with Vision Camera1 (Vision 1) for user visual input,
a Food Dispenser for handling food items, an Obstacle
Avoidance System, Pixi Camera 2 (Vision 2) Ensuring user
verification and accurate order delivery to the intended
recipient as the additional imaging capabilities, a speaker
for audio output, and an LCD for displaying information.
The tasks for each part are described in Table 2 and
Figure 2. As depicted in Table 2, the comprehensive system
comprises six primary components: Body movement motor,
User interaction, Processor, Sensors, Food Dispenser, and
Power Key. The integration of these hardware components
empowers the robot to execute delivery tasks. Given the
higher sensor count and the cost implications in design,
the orchestration among the three CPUs, managed by the
main processor with a multitasking principle, efficiently
coordinates the system (Figure 2).

36152 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 2. The FOODIEBOT robot section and hardware list.

As depicted in Table 2, the comprehensive system
comprises six primary components: Body movement motor,
User interaction, Processor, Sensors, Food Dispenser, and
Power Key. The integration of these hardware components
empowers the robot to execute delivery tasks. Given the
higher sensor count and the cost implications in design,
the orchestration among the three CPUs, managed by the
main processor with a multitasking principle, efficiently
coordinates the system (Figure 2).
As Figure 2-B shows in this design three CPUs are

used to ensure the quickest response time and enhance
coordination among all robot components, the Multitasking
Principle, [30], is employed. This approach enables the robot
to boost processing speed by employing smaller processors,
resulting in faster task execution, quicker maintenance, and
troubleshooting procedures. and improved overall coordi-
nation. The choice of using specific processors, such as
the Raspberry Pi, Arduino Mega, and WeMo’s, is based
on their compatibility with the sensors and actuators used
in the system. These microcontrollers offer a rich set of
input/output pins, allowing for seamless integration with
various components. Additionally, their extensive community
support and a vast library of pre-built code make them ideal

choices for rapid prototyping and development. Utilizing two
ArduinoMega 2560 boards as Processor 1 and 2, a Raspberry
Pi 3B+ serves as the Main Processor. The WeMo’s,
functioning as the third CPU, collaborates with the Raspberry
Pi 3B+ for web-related functions within the system These
components are responsible for executing precise movements
and controlling the physical actions of the robot. The main
processor, which is the Raspberry Pi, and Camera1 (USB
camera) vision system governs the audio/Speech section, and
GUI, then the primary responsibilities of the FOODIEBOT
are delegated to the other controller, while other controllers
work collaboratively under the main controller’s guidance.
Processor 1 orchestrates movement commands to the right
and left motors via PID control and magnetic sensors,
ensuring obstacle avoidance using ultrasound sensors. It also
manages the buzzer and warning functionalities within the
system. Sound controlling and robotic arm controlling.
Processor 2 operates the Pixy Cam (Vision 2) as a secondary
vision systemwith the color recognition principle, facilitating
customer order recognition from a mobile application (APP)
and controlling the robotic arm. The Pixy camera stands
as a remarkably user-friendly and adaptable vision sensor,
empowering seamless and effective object detection and

VOLUME 12, 2024 36153

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 2. FOODIEBOT encompasses:A. A four-wheel drive skid-steered (4WD) robot featuring a manipulator platform designed for grasping
and handling various objects.C. The robot’s CPU with multitasking processors, each dedicated to specific parts and dutiesB. Different
perspectives of FOODIEBOT: 1. Arm dislocated, 2. Body disassembled, 3. Body assembled, 4. Arm disassembled, 5. Robot holding food, 6. Robot
arm moving forwards.

tracking. Processor 3 WeMo’s [31], are used to connect the
mobile apps order viaWi-Fi and send the data to the webpage
part. The Processor 4 (Raspberry Pi B+) hosts the webpage
and networking principle for food ordering management. The
Raspberry Pi serves as the communication hub within the
internal network, connecting the Android app to the robot,
and facilitating connectivity with the database through the
Raspberry Pi’s Wi-Fi network.

B. ROBOT SOFTWARE SYSTEM
In the software component, the designed structure encom-
passes both a website and a mobile application.

1) THE MOBILE APPLICATION
The ‘FOODIEBOT Robot’ is a mobile application designed
for ordering foods and controlling a robot arm in a manual
setting. The app par Developed using MIT app-inventor, the
app offers various functionalities and interfaces to enhance
the user experience with the workflow shown in figure 3.
The app page as it is shown in Figure 3 contains the
six-part:

• Page 1 (Welcome Page or Login Procedure): Wel-
comes users to the app and directs them to enter the
main app after selecting an entry section. Displays a
login page prompting users to input their mobile number
and table number. If the entry is correct, it displays a

‘‘Successful!!!’’ message; otherwise, it prompts users to
try again (Figure 3).

• Pages 2 to 5 (ORDERPAGEProcedure):Display food
information (numbered 1 to 6) with images, checkboxes
for food selection, food names, and a user feedback
section allowing evaluations (e.g., like/dislike) for each
food item. Each page includes navigation options for
Next Page and FrontPage. Upon selecting the options
for food ordering, various categories are shown on
the screen such as breakfast, dinner, lunch, drink, etc
(figure 3).

• User Selection Data Page: Displays the user’s selec-
tions across pages, possibly summarizing chosen food
items. It offers a submission feature where, upon
pressing ‘‘submit,’’ the data is sent to the web page.
An icon or indicator confirms data submission. After
submitting the list of chosen foods, a color (blue, green,
red, or gray) corresponding to four food locations is
assigned to the user. This color, determined through
Pixy camera recognition, will be used when the worker
transports the food. The color code is randomly assigned
to one of the four users for each robot (figure 3).

• SETINPAGE Procedure: Establishes a connection
with a WEMOS board, creating a web server using the
WEMOS and ESP8266 [32]. A dedicated control section
allows users tomanage food placement on their table and
transmit data to a local webpage. This section also offers

36154 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 3. A: The mobile application, the web application.(1:app selection in user mobile phone, 2&3: welcome page or login procedure
task selection),4: ORDERPAGE procedure,5: user selection data page, 6: DATAUPDATE Procedure,7: WEMOS and ESP8266,8: ROBOT
CONTROL Procedure 9: the color code generated by app, B: web app landing page, 1: app download option, 2: Control Panel, 3: order
management page 4: robot camera record order.

configuration settings that facilitate the establishment
of a connection with the WEMOS board, the creation
of a web server utilizing WEMOS and esp8266, and
access to the server’s IP address for various web pages
(figure 3).

• ROBOT CONTROL Procedure: Establishes a con-
nection to the WEMOS board and offers controls for
robot operations. It interacts with a web interface to
send commands and control the robot’s movements
(figure 3).

• DATAUPDATE Procedure: Uploads data to a server
using the POST method, utilizing JSON format for
data transmission. It structures the data into lists across
various pages for management and updates (figure 3).
These procedures represent the functionalities related to
a App interface for managing user login, food orders,
robotics control, and data management.

2) THE WEB APPLICATION
The design is equipped with a web application that greatly
enhances system management and monitoring capabilities.
The designed webpage offers a range of functionalities and
pages to serve various purposes. It all begins with the index
page, providing download links for the app and control
page (Figure 3-B). The control page is the gateway for
administrators upon successful login. Within the choice page
(Figure 3-C), users can explore different options, including
the camera control (for camera settings control), main view
page, feedback data, and order frequently (for user feedback
management), (Figure 3-C). the order management and the

robot’s camera through a service called Motion eye as the
final page of the webpage part shown (Figure 3-D) along
with the data export to CSV files option for analysis and
storage. The combined functionalities within the system
ensure effective management. They incorporate statistical
analyses of food demand for future planning and facilitate
real-time monitoring of FOODIEBOT. This setup offers
administrators valuable insights and control over the system.
To link the Mobile App with the web page, mobile devices
interact with the database by receiving orders and providing
feedback. The MySQL database is divided into two distinct
sections: ‘Data 1’ for managing user orders and ‘Data 2’
for collecting feedback from customers regarding their food
experience. Furthermore, an Arduino-controlled USB camera
with a rotating motor is connected to the Raspberry Pi,
enabling the capture and uploading of images from the
network interface to the FOODIEBOT server. This module
connects to the database and sends the food order to the
backend for it to be prepared so that the robot can deliver it
to the proper table.

III. FOODIT ROBOT 4WD MODEL AND SIMULATION
To facilitate Robot simulation, three primary sections are
identified for the simulation task: the physical system,
navigation sensor, and control logic (Figure 4).

A. PHYSICAL SYSTEM
The physical system encompasses the DC motor model,
incorporating both inverse kinematics and a dynamic model.
These elements are elaborated as follows:

VOLUME 12, 2024 36155

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 4. The FOODIEBOT robot simulation block parts.

1) DC MOTOR MODELING
The physical system incorporates four DC motor model
[1000] four-inch brushless electric wheel hub motors
(24 V DC, 280 rpm), with specifications sourced from the
manufacturer’s laboratory. The mathematical model for a
simple DC motor can be expressed using electrical and
mechanical equations. Let’s consider a basic DC motor with
a separately excited DC motor configuration summarized in
Table 3.

The equation displayed in Table 3 stands as the mathemat-
ical representation of the DC motor model. This comprehen-
sive model harmonizes the intricate interactions of electrical
and mechanical components within a DC motor, unveiling
how variations in input voltage can impact the resultant angu-
lar velocity, and illustrating the system’s dynamic behavior.
The electrical equation (Eq. 3) in a DC motor encapsulates
the impact of resistance (R), inductance (L), and the back
electromotive force (E) on the applied voltage (V), which
influences the current (I) passing through the system. This
equation Eq. (3) reflects the interplay of electrical elements
in influencing the current in the motor, considering the
resistance to the flow of current, the inductive behavior due
to coils and windings, and the generated back EMF resulting
from the motor’s rotation. The mechanical equation (Eq. 3)
in the context of a DC motor describes the balance between
mechanical forces and parameters governing the motor’s
motion and torque generation. It encapsulates the relationship
between the torque (T) produced by the motor and the factors
influencing it, notably the current (I) and the angular velocity
(ω) of the motor’s rotation. This equation delineates how the
generated torque is influenced by the current-driven torque
(determined by the torque constant Kt) and the opposing
force due to friction (F) acting against the motor’s motion,
as related to its angular velocity (ω). The Equation Eq. 3
highlights the direct correlation between the back EMF (E)
and the angular velocity (ω) of the motor. As the motor spins
faster, the back EMF increases proportionally according to
the back EMF constant. The Back EMF Equation is crucial
in understanding how the motor generates a counter-voltage

that opposes the applied voltage, affecting current flow and
motor performance. The Torque Equation (Eq. 3) depicts
the relationship between the generated torque (T) and the
current (I) passing through the motor. This equation serves as
a fundamental representation of themotor’s ability to produce
torque based on the electrical current applied to it. The
equation 3 illustrates that the torque produced by the motor
is directly proportional to the current passing through it,
as determined by the torque constantKt . It signifies that as the
current increases, the generated torque also increases linearly
according to the torque constant. Understanding this equation
is crucial in predicting and controlling the torque output of a
DC motor based on the applied electrical current. Equation
(Eq. 3) as Transfer Function represents the relationship
between the input voltage (Vin) applied to the motor and
the resulting angular velocity (�) of the motor’s rotation.
It encapsulates the system’s dynamic behavior, linking the
input voltage and the motor’s response in terms of angular
velocity through a mathematical function. It describes how
changes in the input voltage influence the motor’s speed
and how the motor’s electrical and mechanical properties
interact to determine the motor’s response in terms of angular
velocity.

2) KINEMATICS AND DYNAMIC MODEL OF THE 4WD AND
SIMULATION
The robot is configured with four wheels, where two wheels
on the right-side function as a single unit, and the two wheels
on the left side act as another unit. This setup defines the robot
as a ‘‘differential drive robot with four wheels,’’ effectively
partitioning it into two distinct differential drive systems: one
for the right side and one for the left side. In this design,
the fundamental principles of differential drive apply inde-
pendently to each side, much like they do in a conventional
two-wheel differential drive robot. This means that each
side can autonomously regulate the speeds and directions
of its wheels, enabling differential motion. To simulate and
control this robot, an extended simulation model based on the
previously introduced two-wheel differential drive model is

36156 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 3. Symbols and variables for motor equations. V is the applied voltage, Ia is the armature current, Ra is the armature resistance, E is the back
electromotive force (EMF), Kb is the motor constant, Kt is the torque constant, T is the torque developed by the motor, J is the moment of inertia of the
rotor, ω is the angular velocity of the motor shaft, B is the damping coefficient, �(s) is the Laplace transform of angular velocity, Vin is the Laplace
transform of input voltage, K is the motor constant relating applied voltage to angular velocity, J is the moment of inertia representing resistance to
changes in angular velocity, B is the damping coefficient accounting for viscous friction, and s is the laplace variable.

employed. This extended model is instrumental in replicating
the robot’s behavior and dynamics, facilitating the adjustment
and fine-tuning of control parameters, such as those utilized
in PID (Proportional-Integral-Derivative) controllers. These
controllers help manage and optimize the robot’s movements,
making it a versatile and controllable platform for various
applications. the kinematic and Dynamic models can be
breifly shown in Table 4.

The kinematic model provides a simplified representation
of the robot’s motion in terms of its linear and angular
velocities. It’s useful for path planning and control but doesn’t
consider the robot’s dynamics. The dynamic model is a more
complex representation that takes into account the robot’s
physical properties, such as mass, inertia, and wheel friction.
It relates wheel torques to linear and angular accelerations,
making it suitable for more accurate simulations and control
of the robot. These models are fundamental for understanding
and controlling the motion of differential drive robots. The
choice between the kinematic and dynamic models depends
on the level of accuracy required for a given application. The
dynamic model is typically used for tasks that involve precise
control and consideration of physical constraints, while the
kinematic model is often used for simpler tasks like path
planning and navigation.

3) NAVIGATION AND LOGIC
In the upcoming segment of the Foodit modeling, the sensor
component and logic section are tasked with executing
the reference line detection function. In this robot design,
an array of magnetic sensors is strategically positioned at the
front of the vehicle, functioning in a manner akin to infrared
sensors, as previously detailed in our publication [34]. These
sensors are oriented towards magnetic tape, which serves as

the demarcation line. When a sensor approaches a magnetic
strip, it registers peak values, aiding in the detection process.
Conversely, as the sensor moves away from the magnetic
strip, minimal reflection occurs, rendering the sensor inactive.
The simulation program emulates the positions of 16 sensors
through computational determination, placing each magnetic
sensor and comparing their locations with those of the
reference track. The current robot position (xpos, ypos) and
the robot position from the previous simulation frame
(xlast_pos, ylast_pos) serve as inputs to the Matlab function
block. The outputs of the Matlab function block represent the
states of each magnetic sensor (Figure 6).

As the Logic segment encompasses the computation
of errors and the implementation of the PID controller
(Figure 6), the motor’s direction hinges on sensor readings
and PID parameters within this module. The error compu-
tation segment undertakes the task of gathering readings
from 16 sensors. Subsequently, based on the respective
error sensor values, these are extracted and fed into the
PID segment. Operating as a classical controller, the PID
controller relies on error feedback and three parameters of
incremental significance—Kp (proportional), Ki (integral),
and Kd (derivative).

The proportional, integral, and derivative components are
leveraged to generate corresponding PWM signals, which,
in turn, dictate the robot’s speed. As delineated in the
primary controller section, the PID controller is adept at
harmonizing the speed differential between both sides of the
robot, enabling it to traverse the designated path. The input
value (Figure 6) to this PID controller is the error representing
the deviation between the robot’s heading and the target
direction of the path. This error is computed based on the
readings from the magnetic sensors.

VOLUME 12, 2024 36157

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 4. The two-wheel robot differentiation model involves several parameters and equations. Let V represent the linear velocity of the robot, ω denote
the angular velocity of the robot, ωl represent the angular velocity of the left wheel, and ωr represent the angular velocity of the right wheel. The
parameter r stands for the radius of the robot’s wheels, and w represents the distance between the wheels (wheelbase). Torques on the left and right
wheels are denoted by Tl and Tr respectively. The moment of inertia of the wheels is denoted by Iw , while αl and αr represent the angular accelerations
of the left and right wheels respectively [33].

FIGURE 5. Physical system with dc motor parameters and inverse kinematic & dynamic model. The DC motor used in the system has the following
values: armature resistance (Ra: 1.32 Ohm), Armature Inductance (La: 1.59 mH), Rotational Inertia (Jm: 0.0023 Kg.m2), Back-EMF Constant (Ke:
0.082 V sec/rad), Motor Torque Constant (Kt : 0.6 N m/A), and Viscous Friction (Bm: 0.01 N/rad/sec) [36]. In the inverse kinematic and dynamic
model, the angular velocity of the left wheel is denoted as F1 = ωL, while the angular velocity of the right wheel is marked as F2 = ωR . The robot’s
velocity (F3) is calculated as (F1 + F2) ·

r
2 , and the angular velocity of the robot (F4) is obtained through (F2 − F1) ·

r
b . For the robot’s motion

analysis, the x-axis velocity (F5) is computed as F3 · cos θ , the y-axis velocity (F6) as F3 · sin θ , and the robot’s x-axis position (x) is determined by∫
F5. Similarly, the robot’s y-axis position (y) is derived from

∫
F6, and the robot’s angle (θ) is obtained through

∫
F4.

The robot adeptly follows the path after extracting error
values from sensor readings. The assigned error values range
from −14 to −1, 0, and +1 to +14 for the left, middle, and
right sensors, respectively. The PID value is then calculated
to determine the robot’s speed. In instances where none

of the sensors are activated, indicating a deviation from
the reference path, the PID controller is bypassed. In this
scenario, the output values on both sides of the wheels are set
to constants, ensuring the robot continues moving forward.
Each sensor is assigned a coefficient number contingent

36158 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 6. The navigation sensor and logic section of foodit simulation.

on its position. Sensors on the left side possess negative
coefficients, while those on the right side have positive
coefficients. The error value is the sum of the coefficients
of all activated sensors. Ultimately, the voltage for the left
wheel motor is set as a constant augmented by the PID output
value, while the voltage for the right wheel is set as a constant
reduced by the PID output value. In this research, the PID
values (Kp = 3.263175, Ki = 43.677826, Kd = 0.060948)
undergo an initial tuning using the empirical method [35],
followed by optimization through the application of four
distinct optimization algorithms.

IV. PID CONTROLLER OPTIMIZATION ALGORITHMS
To refine the empirical PID values, four bio-inspired
algorithms—BAS, Particle Swarm Optimization (PSO),
POA, and EO—are employed to achieve optimized PID
controller values.

A. THE BEETLE ANTENNAE SEARCH ALGORITHM (BAS)
The Beetle Antennae Search Algorithm (BAS) is a
nature-inspired optimization method that uses a population
of beetles with random positions to find optimal solutions.
It operates iteratively, with beetles moving towards improved
solutions found by their neighbors and conducting local
searches. The algorithm gradually reduces the search radius
over time and continues until it converges. BAS mimics
the foraging behavior of beetles and doesn’t rely on
explicit mathematical formulations, adapting its approach
to each specific problem. It starts by initializing a group
of individualized solution vectors and uses a custom fitness
function to evaluate their quality. The algorithm also employs
a dynamic search radius (R) that changes during its evolution,
starting with an initial value (R-initial) and progressively
decreasing as the algorithm runs.

The Beetle Antennae Search (BAS) algorithm as shown
in Figure 7 initiates a population of N beetles, each with a
random position, and utilizes parameters like maximum itera-
tions, trials, initial and minimum search radius, and step size.
The algorithm identifies the best solution in the population
and returns this optimal outcome, leveraging the collective

Algorithm 1 Beetle Antennae Search (BAS)
Data: Initialize a population of N beetles with random

positions
Data: Initialize parameters: max_iterations, max_trials,

initial_radius, minimum_radius, step_size
1 for iteration = 1 to max_iterations do
2 for each beetle in the population do
3 Randomly select a neighboring beetle xj within

the current search radius Calculate fitness
values Fi for the current beetle and Fj for the
neighboring beetle if Fj > Fi then

4 Move the current beetle xi towards xj:
xi = xi + step_size · (xj − xi)(12)

5 else
6 Randomly move the current beetle within

its search radius:
xi = xi + random_step(13)

7 Optionally, apply local search operators to
improve xi: xi = LocalSearch(xi)(14)

8 Reduce the search radius R, possibly following a
schedule or decay factor:
R = ReduceRadius(R)(15) if R falls below
minimum_radius then

9 Reset it to initial_radius

10 Find the best solution in the population:
xbest = argmax(Fi) for all beetles in the population
(16) Return the best solution xbest found by the beetles

exploration and exploitation behaviors inspired by beetle
foraging. In the subsequent movement phase, occurring
consistently in each iteration, the algorithm grants individual
beetles (indexed as ‘i’) the autonomy to make deliberate
movements toward their neighboring counterparts (indexed
as ‘j’), contingent on the superior quality of ‘j’s solution.
This orchestrated mobility adheres to a defined algorithmic
expression (Equation 12). When ’j’ provides an inferior solu-
tion, the current beetle employs a tactic of random exploration
within its local area. This haphazard exploration is guided

VOLUME 12, 2024 36159

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 7. The beetle antennae search algorithm (BAS) algorithm
flowchart.

by another algorithmic directive (Equation 13).Subsequently,
the algorithm introduces the option for Local Search integra-
tion, enhancing the adaptability of the heuristic. This allows
the incorporation of problem-specific optimization strategies
to fine-tune individual beetle positions, as elucidated in
Equation 14. This orchestration progresses with the potential
contraction of the Search Radius. The controlled reduction
of ‘R’ is facilitated through a prospective mechanism, which
may follow a predetermined schedule or be guided by a decay
factor, exemplified as Equation 15.The algorithm concludes
with the anticipation of Termination, strictly adhering to
predefined stopping criteria. It ceases its operations when
it reaches either a specified number of iterations or attains
a predefined convergence criterion. Ultimately, the opti-
mization process yields the Optimal Solution, represented
by the final disposition of the most efficient beetle within

the population, succinctly denoted as Equation 16. It is
essential to emphasize that the practical application of BAS
invariably demands careful parameterization tailored to the
specific characteristics of the problem domain. As a result,
the heuristic’s effectiveness lies in its adaptive response to
the unique nuances of various problem domains, making it
a versatile tool among heuristic optimization methodologies.
Equations 12 through 16 describe various aspects of the
algorithm’s operation.

B. PARTICLE SWARM OPTIMIZATION (PSO)
Particle Swarm Optimization (PSO)is a nature inspired opti-
mization algorithm that simulates the social behavior of birds
or fish in search of optimal solutions. In PSO, a population of
particles explores a solution space, adjusting their positions
and velocities iteratively to improve their fitness based on a
defined objective function. The Particle Swarm Optimization
(PSO) algorithm embarks on its quest for optimization
excellence with the crucial Initialization step, where a swarm
of particles is artfully placed within the problem’s solution
space. Each particle possesses distinct attributes, delineating
their positions and velocities, setting the stage for an intricate
journey. In the subsequent Fitness Evaluation phase, during
each iterative cycle, every particle meticulously assesses its
fitness by invoking the objective function germane to the
optimization problem. This discerning function, infused with
mathematical rigor, acts as the arbiter of solution quality,
scrutinizing the spatial configuration represented by each par-
ticle. Personal Best Update follows, where particles vigilantly
safeguard their most illustrious past achievements. These
particles maintain a repository of personal best solutions,
venerating prior triumphs. Yet, when the current position
heralds a more commendable fitness, a steadfast transition
transpires as particles promptly update their personal best
to reflect this newfound zenith. Global Best Identification
stands as an operation of profound significance, where the
algorithm astutely identifies the paramount solution within
the collective swarm. Velocity and Position Update ensues as
a magnum opus within the PSO orchestration, an intricate
choreography governing the fluidity of particle movement.
Influenced by three key factors, this ballet commences with
the Inertia Weight, akin to an anchor, preserving particles
existing velocities. Subsequently, the Cognitive Coefficient
entices particles towards their personal best solutions, while
the Social Coefficient orchestrates a collective pursuit of the
global zenith.

These velocity updates harmoniously balance exploration
and exploitation while imposing constraints to curtail undue
excursions. Termination Criteria, a vigilant sentinel, oversees
the algorithm’s progression, scrutinizing.

Conditions that signal its culmination. These conditions
encompass a designated maximum iteration threshold or
criteria rooted in fitness enhancement. Upon meeting these
discerning criteria, the algorithm gracefully concludes;
otherwise, it resumes its iterative pursuit. The PSO odyssey
culminates with the unveiling of the Optimal Solution,

36160 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

Algorithm 2 Particle Swarm Optimization (PSO)
Data: Initialize a swarm of particles with random

positions and velocities
Data: Initialize parameters:
Data: max_iterations
Data: cognitive_coefficient
Data: social_coefficient
Data: inertia_weight
Data: maximum_velocity
Data: termination_criteria_threshold
11 for iteration = 1 to max_iterations do
12 for each particle in the swarm do
13 Calculate the fitness of the current particle’s

position: fitnessi = EvaluateFitness(positioni)
Update the particle’s personal best position if
the fitness is better: if
fitnessi > personal_best_fitness[i] then

14 personal_best_position[i] = positioni
personal_best_fitness[i] = fitnessi

15 Identify the global best position among all
particles in the swarm:
global_best_position = GetGlobalBestPosition()
for each particle in the swarm do

16 Update the particle’s velocity:
velocityi = inertia_weight · velocityi+
cognitive_coefficient · rand() ·

(personal_best_position[i] − positioni)+
social_coefficient · rand() ·

(global_best_position− positioni) Limit the
particle’s velocity to a maximum allowable
value if necessary: if
||velocityi|| > maximum_velocity then

17 velocityi = maximum_velocity ·
velocityi

||velocityi||

18 Update the particle’s position:
positioni = positioni + velocityi

19 Check the termination criteria:
||global_best_fitness−

previous_global_best_fitness|| <

termination_criteria_threshold if
||global_best_fitness−

previous_global_best_fitness|| <

termination_criteria_threshold then
20 Exit the loop

21 Identify the best solution found by the swarm:
best_solution = global_best_position Return the best
solution: best_solution

a singular gem fashioned from the collective endeavors
of the swarm. This zenith, a representative of the most
superlative solution uncovered by any particle within the
ensemble, provides a resounding answer to the optimization
riddle. The valediction, realized in the Output phase, signifies
the bequeathal of the optimal solution, accompanied by its

attendant fitness value. This latter metric, a yardstick of
unparalleled precision, serves as a testament to the solution’s
quality. The Particle Swarm Optimization (PSO) algorithm

FIGURE 8. Particle Swarm Optimization (PSO) algorithm flowchart.

aims to find an optimal solution by simulating the behavior
of a swarm of particles in a search spaceas shown in brief

VOLUME 12, 2024 36161

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

in Figure 8. Each particle represents a potential solution
with a position and velocity. In each iteration, the fitness
of each particle is evaluated, and if a particle’s current
position yields a better fitness than its personal best, the
personal best is updated. The particles adjust their velocities
based on inertia, cognitive influence (towards personal best),
and social influence (towards global best). The algorithm
continues iterating until a termination criteria and a best
solution is returned In the whole, these meticulously chore-
ographed stages, perpetuated within an unceasing iterative
continuum, epitomize the bedrock of the PSO algorithm.
With unwavering fidelity, they underpin an intricate waltz
of particle positions and velocities, harmoniously balancing
exploration and exploitation. In this orchestrated symphony,
PSO adeptly navigates the intricate mazes of complex
solution spaces, diligently seeking optimal or near-optimal
solutions across a vast landscape of pragmatic optimization
challenges.

C. PELICAN OPTIMIZATION ALGORITHM (POA)
The Pelican Optimization Algorithm (POA) is a nature-
inspired optimization algorithm that draws inspiration from
the behavior of pelicans, specifically their foraging and
hunting strategies.

The variable ‘w’ denotes the inertia weight, gradually
decreasing to strike a balance between exploration and
exploitation. ‘c1’ and ‘c2’ stand for cognitive and social
coefficients, steering the pelicans towards their personal best
and global best positions. ‘rand()’ generates random values
within the range of 0 to 1. ‘current Position’, ‘personal Best
Position’, and ‘global Best Position’ are vectors representing
the positions of the pelicans in the algorithm. The algorithm
starts by creating a population of pelicans, eachwith a random
initial position in the search space. These positions represent
potential solutions to the optimization problem.

In the Fitness Evaluation step, In each iteration, every
pelican evaluates its current position’s fitness using a
predefined objective function. The fitness function quantifies
how good a solution is in the context of the problem being
optimized. If a pelican discovers a better position (higher
fitness) than its personal best, it updates its personal best
accordingly. Global Best Identification step, The algorithm
identifies the pelican with the best fitness as the global best.
This pelican’s position represents the best solution found
across the entire population. Velocity and Position Update
step, Pelicans update their positions in the search space based
on their current velocities.

The Pelican Optimization Algorithm (POA) starts by
initializing a population of pelicans with random positions as
shown in Figure 9. Each pelican’s fitness is evaluated using an
objective function, and their personal best position and fitness
are updated if a better fitness is achieved. The global best
pelican is identified based on the best fitness. The algorithm
iterates until termination criteria are met. In each iteration,
pelicans’ velocities are calculated using a formula involving
inertia weight (w), cognitive coefficient (c1), and social

Algorithm 3 Pelican Optimization Algorithm (POA)
Data: Initialize population of pelicans with random

positions
22 for each pelican in population do
23 Evaluate the fitness of the pelican’s position using

the objective function if fitness is better than the
pelican’s personal best fitness then

24 Update pelican’s personal best position and
fitness

25 Find the pelican with the best fitness as the global best
while termination criteria not met do

26 for each pelican in population do
27 Calculate velocity using formula:

velocity = w · velocity+ c1 · rand() ·

(personal_best_position−

current_position) + c2 · rand() ·

(global_best_position− current_position)
Update pelican’s position using formula:
position = current_position+ velocity
Evaluate the fitness of the new position using
the objective function if fitness is better than
the pelican’s personal best fitness then

28 Update pelican’s personal best position
and fitness

29 if fitness is better than the global best fitness
then

30 Update global best position and fitness

31 Decrease w (inertia weight) over time to reduce
exploration

32 Return the global best position and fitness as the
optimal solution

coefficient (c2). Pelicans’ positions are updated accordingly,
and fitness is evaluated for the new positions. If the fitness
surpasses personal or global bests, corresponding updates
are made. The inertia weight decreases over time to reduce
exploration. The algorithm concludes by returning the global
best position and fitness as the optimal solution.

D. EQUILIBRIUM OPTIMIZER (EO)
The Equilibrium Optimizer (EO) algorithm is a nature-
inspired optimization approach that mimics equilibrium-
seeking behavior in natural systems to find optimal solutions
for optimization problems. The algorithm utilizes random
values, position vectors, cognitive and social coefficients, and
velocity updates to guide solutionswithin certain bounds. The
process involves:

• Initialization: Creating a population of potential solu-
tions with random positions in the solution space.

• Fitness Evaluation: Assessing each individual’s fitness
by applying the objective function.

• Global Best Identification: Identifying the best-
performing individual, known as the global best, which

36162 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 9. Pelican optimization algorithm (POA algorithm flowchart.

represents the best solution found in the entire popula-
tion in terms of fitness.

During each iteration, individuals in the algorithm calcu-
late their velocities, which are influenced by a randomization
factor for exploration, cognitive coefficients for personal
learning, and social coefficients for collective learning.
Using these velocities, they update their positions within the
solution space to effectively explore and exploit the search
space while staying within predefined boundaries.

The algorithm continues iterating until specific termination
criteria are met, which could be a maximum number of
iterations or convergence based on fitness improvement.
As the algorithm progresses, it gradually reduces the
randomization factor. EO’s strength lies in its ability to
balance exploration and exploitation effectively, inspired by
the equilibrium-seeking behavior found in various natural
systems.

It has been applied to a wide range of optimization
challenges across different domains, including engineering,
finance, and machine learning. As with any optimization
algorithm, parameter tuning and adaptation to specific
problem domains are crucial for achieving optimal results.

In the Figure 10, the optimization algorithm is shown
in brief. The Equilibrium Candidate-based Particle Swarm
Optimization (ECPSO) algorithm aims to optimize a given
fitness function. It initializes particle populations, assigns
equilibrium candidates’ fitness a large number, and sets
free parameters. The algorithm iterates until the maximum
iteration count is reached. In each iteration, it calculates
fitness values for particles and equilibrium candidates. Based
on fitness comparisons, particles in the equilibrium pool are
updated, and the pool is recalculated. After a certain iteration
threshold, a secondary loop generates random vectors and
constructs global best position of the equilibrium candidate
particle (GCP) based on mathematical equations. Then
concentrations calculated are updated using these parameters,
and the process continues until the maximum iteration count
is reached. The algorithm’s objective is to find the optimal
solution by dynamically adjusting equilibrium candidates and
concentrations.

V. RESULTS AND DISCUSSION
A. RESULT OF OPTIMIZER PERFORMANCE
At the outset, the PID values were initially tuned using the
empirical method outlined in the [36]. However, in pursuit of
optimized performance, four optimization algorithms (BAS,
PSO, POA, EO) were employed. These algorithms aimed to
refine the PID controller’s track and value, leveraging the
settings specified in Table 5.

Following the specified settings and expected PID values
for each optimizer algorithm, the robot’s movement was
tested across four distinct paths: Circle Shape, Ellipse Shape,
Spiral Path, and Eight Shape Path. The figure 11 illustrates
the robot’s movement, showcasing path trajectory, tracking
error, tangential velocity, and angular velocity across the
four distinct paths. In consideration of the optimization algo-
rithms’ trajectories and the pertinent parameters, illustrated
in the accompanying figure, it is evident that all paths,

VOLUME 12, 2024 36163

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

Algorithm 4 Equilibrium Candidate-based Particle
Swarm Optimization

Data: Start and Initialization
Data: Initialize the particle’s populations i = 1, . . . , n
Data: Assign equilibrium candidates’ fitness a large

number
Data: Assign free parameters: a = 2, a = 1,GP = 0.5
Data: Iter = 0, Max_iter = 1000, I = 500
33 while Iter < Max_iter do
34 for i = 1 to n do
35 Calculate fitness of i-th particle fit_G =

calculate_fitness(G) fit_Ceq1 =
calculate_fitness(Ceq1) fit_Ceq2 =
calculate_fitness(Ceq2) fit_Ceq3 =
calculate_fitness(Ceq3) fit_Ceq4 =
calculate_fitness(Ceq4) fit_C =
calculate_fitness(C) fit_Cegi =
calculate_fitness(Cegi)

36 if fit_G < fit_Ceq1 then
37 replace(Ceq1, Gi, fit_G, C)

38 else if fit_G > fit_Ceq1 and fit_G < fit_Ceq2
then

39 replace(Ceq2, Gi, fit_G, C)

40 else if fit_G > fit_Ceq1 and fit_G > fit_Ceq2
and fit_G < fit_Ceq3 then

41 replace(Ceq3, Gi, fit_G, C)

42 else if fit_C > fit_Cegi and fit_G > fit_Ceq2
and fit_G > fit_Ceq3 and fit_C < fit_Ceq4
then

43 replace(Ceq4, Gi, fit_G, C)

44 Update equilibrium pool Ceq_ave = (Ceq1 +
Ceq2 + Ceq3 + Ceq4) / 4 Ceq_pool = [Ceq1,
Ceq2, Ceq3, Ceq4, Ceq_ave]

45 if Iter > I then
46 Iter = Iter + 1 for i = 1 to n do
47 Randomly choose one candidate from

the equilibrium pool (vector) candidate
= random.choice(Ceq_pool) Generate
random vectors of A from Eq (16)
Construct F = a · sign(f − 0.5) · e−t−1

(Eq. 16) Construct GCP = 0.5 · ηG
(Eq. 17) Construct
Go = GCP(Ceg− Ceq) (Eq. 18)
Construct G = Go · F (Eq. 19) Update
concentrations
Ceg = Ceg+ (G− Ceg) · (1 − e−t)
(Eq. 20) Iter = Iter + 1

Result: End of while loop

defined by coefficients from four distinct methods, have been
successfully traversed by the robot. Notably, the path error
remains minimal for all trajectories, except for the spiral

FIGURE 10. Equilibrium candidate-based Particle Swarm Optimization
(PSO) algorithm flowchart.

path, where it escalates with an increase in radius. for all this
process each algorithm repeated 10 times.

Table 5 shows different optimization methods(BAS,
PSO, POA, EO) applied to various scenarios character-
ized by the number of particles(indicates the number
of particles used in the optimization process), maxi-
mum iterations(maximum number of iterations for the
optimization process), and paths(Path1 to path4), Elapsed
time(time taken for the optimization process to com-
plete in second), Avg Corr (Average Correlation) average
correlation coefficient obtained as a result of the opti-
mization, Speed (m/s)(the speed of the robot achieved
using the PID coefficients optimized through the respective
method). The outcomes of the robot’s movement utilizing

36164 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 5. The optimizer algorithm settings and PID extracted values.Maximum Iteration(MAX -It),random between 1 to zero(rand [0-1]).

FIGURE 11. Circle shape (x = 0.3 × cos(0.3 × t), y = 0.3 × sin(0.3 × t), Length: 7.9293 meters), Ellipse Shape (x = 0.5 × sin(0.3 × t),
y = 0.3 × cos(0.3 × t), Length: 7.9301 meters), Spiral Path (x = 0.1 × t × cos(0.3 × t), y = 0.1 × t × sin(0.3 × t), Length: 7.9309 meters), Eight
Shape Path (x = 0.5 × sin(0.3 × t), y = 0.5 × sin(0.3 × t) × cos(0.3 × t), Length: 7.9282 meters).

the optimized PID values for each path are detailed in
Table 6.

Table 6 shows the optimal conditions for achieving either
the highest speed along the route or the greatest accuracy

VOLUME 12, 2024 36165

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 6. The optimization algorithm (BAS, PSO, POA, EO) results for circle shape(shown as 1), ellipse shape(shown as 2), spiral path(shown as 3), and
Eight Shape Path(shown as 4) and elapsed time in the second, average correlation and speed meter/ second.

for each route. As shown, the elapsed time for each scenario
varies significantly, with some scenarios taking longer to
optimize than others. For example, the PSO method with
9 particles, 8 maximum iterations, and Path 4 took the
longest time at 1105.03 seconds. It appears that the speed
tends to be higher for some scenarios with certain parameter
settings. Different methods have varying performances across
different scenarios. For example, EO with 4 particles,
2 maximum iterations, and Path 1(Circle) achieved the lowest
speed at 1.366 m/s, while PSO with 7 particles, 2 maximum
iterations, and Path 1 achieved the highest speed at 1.443 m/s.
The optimizer performance over the speeds (Table 7) shows
that over the four paths, the BAS method demonstrates con-
sistent performance, achieving similar speeds across all paths
(approximately 1.396 to 1.397). In contrast, the PSO method
attains slightly higher speeds but exhibits greater variability,
with speeds ranging from approximately 1.443 to 1.506. The
POAmethod also displays variable speeds across paths, rang-
ing from approximately 1.410 to 1.485, notably outperform-
ing BAS on Path 3. Meanwhile, the EO method consistently
maintains speeds ranging from approximately 1.366 to 1.474,
showcasing stable performance across all paths.

To compare the correlation over the paths as shown in
Table 8 BAS generally exhibits a high correlation with all
paths, indicating that it performs well across different routes.
PSO also demonstrates a strong correlation with all paths,
suggesting it is effective in optimizing for these objectives.
POA appears to have a high correlation as well, indicating
its effectiveness in optimizing the specified objectives
along the paths. EO shows high correlations, suggesting its
effectiveness in achieving the desired objectives on the given
routes. On the whole, all four methods (BAS, PSO, POA,
EO) seem to perform well in optimizing for the specified
objectives along the different paths, as indicated by their high
correlation values. Utilizing the aforementioned outcomes,
we can now compute the PID coefficients for the new route
employing the four optimization methods. In this context,
the particle count is held constant at a predefined value,

as determined from the preceding results, and each algorithm
is executed ten times. This trend persists in a newly explored
route, showcasing increased errors in paths with larger radii.
This observation advocates for the recommendation to design
robot trajectories with either straight or gently curved paths,
aiming to minimize radii. Regarding velocity analysis, the
graphs indicate that the robot achieves a maximum linear
speed of 0.13 m/s. This speed, limited by the capabilities of
the engine and gearbox, aligns with the intended application
of the robot for food transportation.

Additionally, the angular speed is capped at a maximum of
1 rad/s, an appropriate parameter for a food-serving robot to
prevent spillage, as higher speeds could lead to unintended
consequences. Analyzing the angular speed across different
paths, it’s notable that elliptical and spiral paths exhibit
negative angular speeds, while the circular path displays
a positive angular speed. This discrepancy arises from the
clockwise traversal of oval and spiral paths, where the left
wheel’s speed surpasses that of the right. As a result, the
robot’s angular speed, defined by the difference between the
right and left wheel speeds, becomes negative. Conversely,
in the counterclockwise circular path, the angular speed
remains positive. Path eight introduces a unique dynamic by
transitioning from clockwise to counterclockwise traversal,
resulting in a change in the sign of angular velocity at the
midpoint of the path.

TABLE 7. Best speed for optimization algorithm (BAS, PSO, POA, EO) over
paths for circle shape(shown as 1), ellipse shape(shown as 2), spiral
path(shown as 3), and eight shape path (shown as 4).

B. OPTIMIZED PID VALUE EVALUATION
To assess the gathered data, the comparison involves two
main stages:

36166 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

TABLE 8. Best correlation for each method and path.

1) Assessing the performance on the compound path and
determining the success rate of traversing this route.

2) Investigating the relationship between variations in
optimized controller speeds and correlating these
changes with alterations in speed and error rates.

1) COMPOUND PATH EVALUATION
To thoroughly validate the optimized PID values, a 470-meter
compound path comprising both lines and arcs was metic-
ulously tested. This path includes all crucial sections from
previous iterations, ensuring a comprehensive assessment.
This evaluation aimed to affirm the robot’s performance
across various parameters, including path trajectory, tracking
error, tangential velocity, and angular velocity figure 12.
The compound path figure 12, was tested over all optimized
algorithms and the robot performance was tested. As the
sample Figure 12, it observes the values of tangential speed,
angular speed, and the speeds of the left and right wheels of
the robot, all of which have been determined using the PID
coefficients obtained through the PSOmethod. As illustrated,
the robot has achieved a linear speed exceeding 0.1 m/s,
an ideal performance level for its intended application.
Moreover, the simulation’s desired speed closely matches the
actual speed of the robot. secondly, the angular speed of the
left and right wheels, averaging around 2.4 radians/s and
peaking at 3.2 radians/s, comfortably below the maximum
capacity of the robot’s propulsion system.

The maximum angular velocity along the prescribed
path is graphically presented. This depiction illustrates that
the robot’s maximum angular speed in practical operation
reaches 0.2 radians/second, a fitting rate for its specific
functionality. The path diagram unmistakably reveals the
robot’s adeptness in faithfully following the designated route,
comprising diverse segments. Additionally, an analysis of the
error diagram indicates that errors are more pronounced in
path segments with larger radii, whereas they are negligible
in other portions, notably in straight paths and minor curves.

2) OPTIMIZED PID AND SPEED VARIATIONS
Each optimized algorithm, configured with the specified set-
tings outlined in table 9, underwent 10 iterations for rigorous
evaluation. The outcome of each algorithm iteration was
recorded and analyzed to discern performance consistency
and ascertain the algorithm’s effectiveness across BAS: For
the BAS, the duration of the optimization process fluctuates
based on various parameter setups. The optimization duration
ranges approximately between 103 seconds to 156 seconds
for these setups, which encompass diverse combinations
of PID coefficients. The values of kp, Ki, and Kd exhibit

variations across rows, sometimes displaying alterations
within the same column (such as differing Ki and Kd values
while maintaining a fixed kp). Across all cases, the average
correlation coefficients remain notably high, signifying a
robust correlation between the PID coefficients and the
desired outcomes. These coefficients consistently approach
a value of 1, indicating a positive association. Moreover,
the robot’s achieved speed demonstrates slight fluctuations
among different parameter configurations, maintaining rela-
tive consistency at around 0.1297 m/s.

The average correlation coefficients are relatively high in
all cases, indicating a strong correlation between the PID
coefficients and the desired outcomes. The values are consis-
tently close to 1, which is a positive sign. The speed achieved
by the robot also varies slightly across different parameter
configurations. The values are relatively consistent, hovering
around 0.1297 m/s. Overall, the BAS optimization method
performs consistently well in optimizing PID coefficients for
the given task, with slight variations in the speed achieved.
The strong correlation between the coefficients and the
desired outcomes suggests that the optimization process is
effective. For the PSO The elapsed time for the optimization
process varies across different parameter configurations.

TABLE 9. Best correlation for each method and path.

It ranges from approximately 104 seconds to 158 seconds
Different combinations of PID coefficients were tested. The
values of kp, Ki, and Kd vary across rows, with some
variations in the same column (e.g., different values of Ki and
Kdwith a fixed kp). The values are close to 0.9999 or 1, which
is a positive sign. The speed achieved by the robot is relatively
consistent across different parameter configurations, with
values around 0.1297 m/s.the PSO optimization method
performs consistently well in optimizing PID coefficients for
the given task. The strong correlation between the coefficients
and the desired outcomes indicates the effectiveness of the
optimization process. The PSO method parameters are their
results are shown in table 10.
For the POA The elapsed time for the optimization process

varies across different parameter configurations, ranging
from approximately 178 seconds to 201 seconds. Different
combinations of PID coefficients were tested. The values of
kp, Ki, and Kd vary across rows, with some variations in
the same column (e.g., different values of Ki and Kd with
a fixed kp). The values are close to 0.9999 or 1, which is a
positive sign The speed achieved by the robot is relatively

VOLUME 12, 2024 36167

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 12. The PSO algorithm PID values(P = 0.025498209,I = 0.001652876,D = 0.017505199) and robot performance.

TABLE 10. PSO method parameters and results.

consistent across different parameter configurations, with
values around 0.1297 m/s.the POA optimization method
performs consistently well in optimizing PID coefficients for
the given task. The strong correlation between the coefficients
and the desired outcomes indicates the effectiveness of the
optimization process. The PSO method parameters and their
results are shown in table 11.

TABLE 11. PSO method parameters and results.

for the EO method The elapsed time for the optimization
process varies across different parameter configurations,
ranging from approximately 53 seconds to 65 seconds.
Different combinations of PID coefficients were tested. The

values of kp, Ki, and Kd vary across rows, with some
variations in the same column (e.g., different values of Ki and
Kdwith a fixed kp). The values are close to 0.9999 or 1, which
is a positive sign. The speed achieved by the robot is relatively
consistent across different parameter configurations, with
values around 0.1297 m/s. the EO optimization method
performs consistently well in optimizing PID coefficients for
the given task. The strong correlation between the coefficients
and the desired outcome indicates the effectiveness of the
optimization process. All four optimization methods (BAS,
PSO, POA, EO) exhibit consistent performance in optimizing
PID coefficients. They achieve high average correlation
coefficients, indicating a strong correlation between the
optimized coefficients and the desired outcomes.

TABLE 12. EO method parameters and results.

The EO method parameters are their results are shown in
table 12. The speed achieved by the robot is also relatively
consistent across different parameter configurations for each
method. With the obtained PID coefficients, violin plots can
be created for each method. These visualizations not only
allow us to assess the range of resulting parameters but also
provides a clear view of data dispersion and distribution.
In the violin plots presented, each algorithm is executed
ten times, and the PID parameters are calculated. Based

36168 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

on the generated graphs, it is evident that all algorithms
exhibit a broad range for KP and KD values, while the
diversity in Ki values is considerably lower. This observation
suggests that Ki parameters have a significant impact on
the robot’s accuracy and should not be altered extensively.
In contrast, the influence of KP and KD parameters on
controller accuracy is less pronounced, allowing for more
noticeable variations in their values. Another noteworthy
observation when examining these charts is the distribution
of data points within the obtained range. These figures reveal
a distinct pattern: among the four optimization methods,
only the BAS method has produced parameter values at
the extreme ends of the range. In contrast, the other three
methods exhibit a more scattered distribution of data points
across the entire parameter space. This phenomenon appears
to be attributed to the specific characteristics of the BAS
optimization algorithm. Additionally, it’s worth noting that
each algorithm has identified a unique optimal region within
the PID coefficient space. Remarkably, all these algorithms
have effectively enabled the controller to track the desired
path with minimal error. In other words, achieving the
desired objective, which is precise path trackingwithminimal
error, is feasible with different sets of PID parameters.
Notably, these variations in controller coefficients have
resulted in nuanced adjustments in the robot’s accuracy
and speed in path following, albeit relatively minor and
generally inconsequential. It is essential to refer to the error
diagram, speed table, and correlation coefficient figures for a
comprehensive understanding of these findings. In the path
error diagram, one can observe that the curved path with
a large radius tends to exhibit a larger error compared to
other segments of the path (such as straight sections or
smaller curves). Importantly, despite these discrepancies, the
robot remains within the prescribed path boundaries. The
optimization method and the PID deviation saptial is shown
in figure 13.

FIGURE 13. Optimzation method vs PID deviation saptial.

C. FINAL DEMONSTRATION TEST AND IMPLEMENTATION
In the final phase, the acquired PID values were implemented
within the robot’s logic section. As depicted in Figure 14, the
robot adeptly tracked the predefined path for its delivery mis-
sion. In the controlled testbed scenario, the designated area
encompasses the testing laboratory and the adjoining depart-
ment corridor within a specific floor. The predetermined
path for experimentation is established within this spatial
context. The experimental setup involves the utilization of
tables situated within the controlled laboratory environment.
This careful selection ensures a controlled and replicable
testing environment, facilitating systematic observations and
assessments. As for the robot operations, firstly, the robot
adheres to a predefined path using magnetic strips until it
arrives at the specified location. Upon reaching the door,
the ultrasonic sensor detects obstacles, triggering an alarm.
Subsequently, the user stands before the robot, displaying
the pre-entered color code from the app.as it mentioned in
the Foodit Delivery Process the color code generated by the
app is used to identify the user and Pixy camera. These
unique color signatures encapsulate the distinct properties of
color, including hue, saturation, and brightness and trained
by the Pixy camera as the color signatures. This dispenser
is equipped with four distinct color-coded places: Blue, Red,
Green, and Yellow. By detecting these colors from a user’s
mobile device when ordering food, the robot accurately
ascertains the user’s location, facilitating the precise retrieval
of the ordered food. The Pixy camera’s role here is pivotal.
It initiates the process, reads the number of detected color
blocks, and communicates the specifics of the first detected
block, including its color. Since each place in the Food
Dispenser head corresponds to a specific color, the robot’s
arm can selectively retrieve the food from the designated
location and present it to the user. The procedure begins
with a check of the arm’s position. If the current position
does not align with the desired state (State0), the system
promptly adjusts the position. Subsequently, the arm executes
the pre-programmed movements corresponding to the food’s
location on the dispenser, deftly retrieving the item and
delivering it to the user. For enhanced service quality, face
detection algorithms come into play, aided by a USB camera.
This innovation allows the robot to identify the user’s face
for more personalized service and customer satisfaction. The
color signature assumes a pivotal role as it serves as the
unique identifier for the objects the Pixy camera recognizes.
The code continuously loops, diligently monitoring for fresh
detection’s and relaying this information to the serial monitor.
Taking a broader perspective, the robot leverages theOpenCV
API to engage in real-time face detection, utilizing the
Raspberry Pi and a USB camera. This approach ushers in
a versatile environment, enabling the robot to interact with
individuals.

Upon recognizing signs of ordering, the robot re-positions
itself and waits, providing an opportunity for users to
place their orders. Subsequent to this waiting phase, the

VOLUME 12, 2024 36169

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

FIGURE 14. The Foodit robot Step 1: Navigation and Prep(Figure 1 to 8), Step 2: Plating and Delivery(Figure 9 to 25),Step 3: Customer
Interaction(Figure 9 to 14), Step4: Returning and Reset(Figure 27 to 28).

system verifies if all orders have been collected, then
proceeds to process them accordingly. To optimize resource
utilization, the algorithm incorporates delays during face
detection, reducing computational overhead and ensuring
the efficient use of the Raspberry Pi’s hardware resources.
In summary, this algorithm underscores the integration of
Raspberry Pi 3B+ and OpenCV, facilitating intelligent robot
behavior in face detection and interaction scenarios. Notably,
FOODIEBOT is enriched with a voice performance system,
allowing it to communicate verbally and engage in partial
human-computer interaction. Additionally, this system can
provide entertainment by playing music. Moreover, the
integration of obstacle sensors, such as ultrasonic sensors,
serves as a crucial safety feature. These sensors are employed
to detect and avoid collisions with users. When the robot’s
proximity to an object or user falls below a critical threshold,
typically 20 cm, the robot halts its motion and emits an alarm
sound, ensuring the safety of both the robot and the people
it interacts with. Using this color code, the robot guides its
arm to the corresponding colored area and, recognizing the
user’s face, delivers the specified package. Once the task is
completed, it departs the area, tracing back its route along the
magnetic lines.

VI. CONCLUSION
In this article, the process of designing and simulating a
service robot named FOODIT has been discussed.In contrast
to commercialized models, the designed structure boasts dis-
tinctive features, particularly its economical pricing. Notably,
it accommodates the transport of four dishes, facilitating
delivery to multiple customers an advancement compared
to existing structures limited to serving a single table.
Additionally, this model allows seamless integration with
multiple platforms. Its straightforward routing system simpli-
fies operations. Furthermore, it enables customer interaction
through a mobile application, allowing patrons to assess
restaurant service and food quality, while also facilitating
real-time online environmental monitoring. In the simulation,
the designed model of MATLAB software has been checked
along with the initial setting of the PID controller parameters.
After that, to check the performance of the robot, the cost
values were evaluated by four methods BAS, PSO, POA,
and EO optimally, and the performance during the four
paths Circle Shape, Ellipse Shape, Spiral Path, and Eight
Shape PathThe obtained results show that Among the three
optimization methods (EO, PSO, OA), the highest accuracy
and correlation coefficient, with R = 0.99995, were achieved

36170 VOLUME 12, 2024

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

for the third path. In contrast, the BAS method demonstrated
its best accuracy with R = 0.999988 for the first path. It’s
noteworthy that the choice of the optimization method played
a significant role in accuracy outcomes, but there wasn’t a
clear pattern relating the method to maximum speed across
the different paths studied. Each method attained its peak
speed on a distinct path. An interesting finding is that superior
results were not necessarily tied to employing the largest
number of particles and repetitions. This observation carries
implications for the practical implementation of the method,
considering the time-intensive nature of the optimization
process. Additionally, it’s worth noting that various methods
yielded different speeds for the various routes. For instance,
for the first route, the PSO method achieved the highest
speed at 1.443536 meters per second, while the EO method
recorded the lowest speed at 1.366124 meters per second
for the same route. A similar trend was observed for the
second and fourth routes, where the PSOmethod consistently
delivered the highest speed, with the third route seeing
POA as the top performer. In terms of execution time, the
BAS method generally outperformed other methods, likely
due to the number of particles it utilized. This information
underscores the importance of considering execution time in
the choice of optimization method. In the context of the four
distinct paths, the choice of the most accurate optimization
method, as determined by the correlation coefficient, varies.
For the first and second paths, the EO method stands out,
while the third path demonstrates superior accuracy when
employing the POA method. Remarkably, the BAS method
yields the most favorable results for route number 4. When
considering the optimization solution time for all four paths,
it becomes evident that the BAS method exhibits the shortest
execution time, highlighting its efficiency. Examining the
maximum speed achieved along each route, the pattern
reveals the following trends: The PSO method attains the
highest speed in paths 1, 3, and 4, whereas route 2 showcases
the highest speed when optimized with the POA method. the
last obtained coefficients were finally implemented on the
robot processor and the robot was used. The performance
of the robot based on the coefficients obtained in reality and
the mission assigned to the robot indicates the correctness of
the calculations in the simulation and obtaining the optimal
values for the PID controller. The current robot phase faces
a major limitation in the delivery speed to the main tray,
requiring two minutes due to arm operation. An improved
design is essential to optimize the food delivery process. the
forthcoming phase of development involves evaluating the
integration of this structured design into a swarm format. This
progression marks a pivotal stride toward system refinement,
fostering comprehensive development and culminating in
the creation of innovative functionalities, thereby advancing
towards final completion.

REFERENCES
[1] L. Acosta, E. J. González, J. N. Rodríguez, A. F. Hamilton, J. A. Méndez,

S. Hernéndez, M. Sigut, and G. N. Marichal, ‘‘Design and implementation
of a service robot for a restaurant,’’ Int. J. Robot. Autom., vol. 21, no. 4,
p. 273, 2006.

[2] N. Kulaç and M. Engin, ‘‘Developing a machine learning algorithm for
service robots in industrial applications,’’Machines, vol. 11, no. 4, p. 421,
Mar. 2023.

[3] R. Mohan, A. A. Prakash, N. U. Devi, S. A. Sharma, N. A. Babu,
and P. Thennarasi, ‘‘Smart patient engagement through robotics,’’
in Proc. Hum.-Mach. Interface, Making Healthcare Digital, 2023,
pp. 115–159.

[4] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. C. Chen, E. J. de Visser,
and R. Parasuraman, ‘‘A meta-analysis of factors affecting trust in human–
robot interaction,’’ Human Factors, vol. 61, no. 2, pp. 201–262, 2019.

[5] A. O. Adeleye, ‘‘Enabling assistive service robots to contextually
organize household objects,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ.
California San Diego, La Jolla, CA, USA, 2023.

[6] A. J. Moshayedi, N. M. I. Uddin, X. Zhang, and M. Emadi Andani,
‘‘Exploring the role of robotics in Alzheimer’s disease care: Innovative
methods and applications,’’ Robotic Intell. Autom., vol. 43, no. 6,
pp. 669–690, Nov. 2023.

[7] A. L. Thomaz and G. Hoffman, ‘‘Computational human–robot interac-
tion,’’ J. Hum.-Robot Interact., vol. 8, no. 1, pp. 1–3, 2019.

[8] S. Karaman and E. Frazzoli, ‘‘Sampling-based algorithms for optimal
motion planning,’’ Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[9] S. Thrun, ‘‘Robotic mapping: A survey,’’ Exploring Artif. Intell., vol. 2,
pp. 237–267, Feb. 2002. [Online]. Available: http://robots.stanford.
edu/papers/thrun.mapping-tr.pdf

[10] W.-K. Kao and Y.-S. Huang, ‘‘Service robots in full- and limited-service
restaurants: Extending technology acceptance model,’’ J. Hospitality
Tourism Manage., vol. 54, pp. 10–21, Mar. 2023.

[11] Y. Qing-xiao, Y. Can, F. Zhuang, and Z. Yan-zheng, ‘‘Research of the
localization of restaurant service robot,’’ Int. J. Adv. Robotic Syst., vol. 7,
no. 3, p. 18, Sep. 2010.

[12] C.-Y. Lin, C.-C. Huang, L.-W. Chuang, B.-S. Lin, K.-Z. Lin, and C.-
S. Fahn, ‘‘Towards finger gaming humanoid robot: Mechanism and
perception development,’’ J. Chin. Inst. Engineers, vol. 38, no. 5,
pp. 621–635, Jul. 2015.

[13] A. Cheong, M. Lau, E. Foo, J. Hedley, and J. W. Bo, ‘‘Development
of a robotic waiter system,’’ IFAC-PapersOnLine, vol. 49, no. 21,
pp. 681–686, 2016.

[14] M. Jahromi, F. Goli, H. Emamiyeh, and V. Noei, ‘‘Design of a waiter robot
and automatic cleaning and disinfection table,’’ Turkish J. Comput. Math.
Educ., vol. 12, pp. 1869–1874, Jul. 2021.

[15] W. D. Freeman, D. K. Sanghavi, M. S. Sarab, M. S. Kindred, E. M. Dieck,
S. M. Brown, T. Szambelan, J. Doty, B. Ball, H. M. Felix, J. C. Dove, J.
M. Mallea, C. Soares, and L. V. Simon, ‘‘Robotics in simulated COVID-19
patient room for health care worker effector tasks: Preliminary, feasibility
experiments,’’Mayo Clinic Proceedings: Innov., Quality Outcomes, vol. 5,
no. 1, pp. 161–170, Feb. 2021.

[16] J. Kim, ‘‘Distributed herding ofmultiple robots in cluttered environments,’’
Robot. Auto. Syst., vol. 146, Dec. 2021, Art. no. 103889.

[17] X. Zhang, M. S. Balaji, and Y. Jiang, ‘‘Robots at your service: Value
facilitation and value co-creation in restaurants,’’ Int. J. Contemp.
Hospitality Manage., vol. 34, no. 5, pp. 2004–2025, Apr. 2022.

[18] A. Jahangir Moshayedi, K. S. Reza, A. Sohail Khan, and A. Nawaz,
‘‘Integrating virtual reality and robotic operation system (ROS) for AGV
navigation,’’ EAI Endorsed Trans. AI Robot., vol. 2, no. 1, p. e3,
Apr. 2023.

[19] R. Alami, M. Warnier, and M. Gharbi, ‘‘Towards socially aware robots:
A survey of the state of the art,’’ Robotics Auton. Syst., vol. 124, 2020,
Art. no. 103286.

[20] F. Galasso, D. L. Rizzini, F. Oleari, and S. Caselli, ‘‘Efficient calibration
of four wheel industrial AGVs,’’ Robot. Comput.-Integr. Manuf., vol. 57,
pp. 116–128, Jun. 2019.

[21] I. Choi, H. Shim, and N. Chang, ‘‘Low-power color TFT LCD display for
hand-held embedded systems,’’ in Proc. Int. Symp. Low Power Electron.
Design, 2002, pp. 112–117.

[22] C. Li, J. Park, H. Kim, and D. Chrysostomou, ‘‘How can i help you?
An intelligent virtual assistant for industrial robots,’’ in Proc. Companion
ACM/IEEE Int. Conf. Human-Robot Interact., Mar. 2021, pp. 220–224.

[23] S. E.Mathe, A. C. Pamarthy, H. K. Kondaveeti, and S. Vappangi, ‘‘A review
on raspberry Pi and its robotic applications,’’ in Proc. 2nd Int. Conf. Artif.
Intell. Signal Process. (AISP), Feb. 2022, pp. 1–6.

[24] J.-Y. Jang, S.-J. Yoon, and C.-H. Lin, ‘‘Automated guided vehicle (AGV)
driving system using vision sensor and color code,’’ Electronics, vol. 12,
no. 6, p. 1415, Mar. 2023.

VOLUME 12, 2024 36171

A. J. Moshayedi et al.: Design and Development of FOODIEBOT Robot: From Simulation to Design

[25] S. Zhou, G. Cheng, Q. Meng, H. Lin, Z. Du, and F. Wang, ‘‘Development
of multi-sensor information fusion and AGV navigation system,’’ in Proc.
IEEE 4th Inf. Technol., Netw., Electron. Autom. Control Conf. (ITNEC),
vol. 1, Jun. 2020, pp. 2043–2046.

[26] M. F. Aqillah, R. Mardiati, and A. E. Setiawan, ‘‘Prototype of robot
movement navigation system using pixy camera (CMUCAM 5),’’ in Proc.
8th Int. Conf. Wireless Telematics (ICWT), Jul. 2022, pp. 1–6.

[27] A. E. Setiawan, A. Rusdinar, S. Rizal, R. Mardiati, and E. A. Zaki Hamidi,
‘‘Design of multi robot AGV prototypemaneuver control based on inverted
camera,’’ in Proc. 16th Int. Conf. Telecommun. Syst., Services, Appl.
(TSSA), Oct. 2022, pp. 1–5.

[28] J. F. Gorostiza, J. Morales, and J. Ruiz-del-Solar, ‘‘Survey of self-repair in
robotics: A review from the cybernetic point of view,’’ Robot. Auton. Syst.,
vol. 133, Oct. 2020, Art. no. 103634.

[29] O. Khatib, ‘‘A unified approach for motion and force control of robot
manipulators: The operational space formulation,’’ Int. J. Robot. Res.,
vol. 3, no. 1, pp. 43–53, 2016.

[30] A. J. Moshayedi, A. S. Roy, L. Liao, and S. Li, ‘‘Raspberry Pi SCADA
zonal based system for agricultural plant monitoring,’’ in Proc. 6th Int.
Conf. Inf. Sci. Control Eng. (ICISCE), Dec. 2019, pp. 427–433.

[31] S. Chowdhury, R. Rahmani, H. N. Saha, and D. Taniar, ‘‘Predictive
maintenance for effective asset management in industry 4.0,’’ Proc.
Manuf., vol. 11, pp. 940–947, 2017.

[32] I. Nevliudov, S. Maksymova, O. Klymenko, and M. Bilousov, ‘‘Develop-
ment of a mobile robot prototype with an interactive control system,’’ Syst.
Manag., Navigat. Commun., vol. 3, no. 73, pp. 128–133, 2023.

[33] A. J. Moshayedi, J. Li, N. Sina, X. Chen, L. Liao, M. Gheisari, and
X. Xie, ‘‘Simulation and validation of optimized PID controller in AGV
(automated guided vehicles) model using PSO and BAS algorithms,’’
Comput. Intell. Neurosci., vol. 2022, pp. 1–22, Nov. 2022.

[34] A. Loganathan and N. S. Ahmad, ‘‘A systematic review on recent advances
in autonomousmobile robot navigation,’’Eng. Sci. Technol., Int. J., vol. 40,
Apr. 2023, Art. no. 101343.

[35] S. Levine and D. Shah, ‘‘Learning robotic navigation from experience:
Principles, methods and recent results,’’ Phil. Trans. Roy. Soc. B: Biol. Sci.,
vol. 378, no. 1869, Jan. 2023, Art. no. 20210447.

[36] E. S. Ghith and F. A. A. Tolba, ‘‘Tuning PID controllers based
on hybrid arithmetic optimization algorithm and artificial gorilla
troop optimization for micro-robotics systems,’’ IEEE Access, vol. 11,
pp. 27138–27154, 2023.

ATA JAHANGIR MOSHAYEDI (Member, IEEE)
received the Ph.D. degree in electronic science
from Savitribai Phule Pune University, India. He is
currently an Associate Professor with Jiangxi
University of Science and Technology, China.
He is a member of the editorial team of various
conferences and published various articles in
journals, two books published, and owns two
patents. His research interests include robotics and
automation/sensor modeling/bio-inspired robots,

mobile robot olfaction/plume tracking, embedded systems/machine vision-
based systems/virtual reality, and machine vision/artificial intelligence.
He is a member of different scientific societies, such as IEEE, ACM, the
Instrument Society of India, a Life Member, and a Lifetime Member of the
Speed Society, India.

ATANU SHUVAM ROY received the bachelor’s
degree in computer science and engineering from
Jiangxi University of Science and Technology.
He is currently pursuing the M.Tech. degree in
computer science and engineering with Indian
Institute of TechnologyKanpur. His research inter-
ests include embedded systems and the Internet of
Things (IoT).

LIEFA LIAO received the B.E. degree in computer
science and technology from Central South Uni-
versity, Changsha, China, in 1997, theM.E. degree
in automatic control engineering from Jiangxi
University of Science and Technology, Ganzhou,
China, in 2003, and the Ph.D. degree in system
management science and engineering from Xi’an
Jiaotong University, Xi’an, China, in 2011. He is
currently the Dean and a Graduate Tutor with
the School of Information Engineering, Jiangxi

University of Science and Technology. His research interests include
artificial intelligence and neural networks.

AMIR SOHAIL KHAN received the B.S. degree
in computer science from Jiangxi University
of Science and Technology, Ganzhou, Jiangxi,
China. He is focusing on embedded systems, deep
learning, and robotics in computer vision and
sensor systems in order to facilitate solutions for
smarter cities of the future.

AMIN KOLAHDOOZ is currently a Senior Lec-
turer in design with the School of Engineering
and Sustainable Development, De Montfort Uni-
versity. His academic focus spans manufacturing
materials processes, materials science, and the
utilization of virtual reality (VR) and augmented
reality (AR) in the manufacturing sector. Profi-
cient in finite element modeling, robotics, and
optimization methods, he leverages these tools to
address intricate design and production challenges

effectively. His significant involvement in multifaceted research projects
underscores a steadfast commitment to innovation. He was honored with
a fellow (FHEA) designation, acknowledging his adherence to the U.K.
Professional Standards Framework for exceptional teaching and learning
support within higher education.

ALI EFTEKHARI (Member, IEEE) received the
M.Sc. and Ph.D. degrees in applied mechanical
engineering from the Amirkabir University of
Technology, Tehran, Iran, in 2005 and 2011,
respectively. He is currently a Researcher and a
Faculty Member with the Mechanical Engineering
Department, Islamic Azad University, Khomein-
ishahr Branch, Isfahan.

36172 VOLUME 12, 2024

