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ABSTRACT This study proposes a novel motion planning strategy to address localization uncertainty in
autonomous buses. Conventional motion planning algorithms utilize information from high-definition (HD)
maps to overcome the limited detection range of on-board sensors. However, this information contains
uncertainty due to the utilization of estimated localization results during reference frame transformation.
The wider dimensions of autonomous buses, compared to regular vehicles, amplify the potential dangers
associated with localization uncertainty. Therefore, this research focuses on enhancing motion planning for
autonomous buses by effectively addressing localization uncertainty. The investigation of manual driving
data from autonomous buses highlights the need to handle three issues: heading bias, lateral position error,
and longitudinal position error. Firstly, the heading bias was dealt with by implementing an Offset-free
Model Predictive Control (OF-MPC) with a Moving Horizon Estimation (MHE) scheme for lateral motion
planning. Secondly, the lateral position error was handled by incorporating a drivable corridor to determine
the desired path. Lastly, the longitudinal position error was resolved by implementing a chance-constrained
MPC for longitudinal motion planning. The proposed approach showed noticeable enhancement in path
tracking performance while still securing ride comfort in lateral motion, collision safety, and prevention of
stop-line violations. We evaluated the feasibility of the proposed approach through vehicle tests on a test
track, and its applicability was further confirmed through fully autonomous driving tests on actual urban
bus-only lanes.

INDEX TERMS Autonomous bus, autonomous driving, chance-constrained model predictive control,
localization uncertainty, moving horizon estimation, offset-free model predictive control.

I. INTRODUCTION
Recently, autonomous buses (ABs) have received great atten-
tion for their potential to improve the efficiency and safety
of public transportation [1], [2], [3], [4]. Unlike taxis and
private cars, ABs used in urban public transportation typically
operate along specific routes, making them an ideal plat-
form for developing and demonstrating autonomous driving
systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Atif Iqbal .

With the growing adoption and practical demonstrations of
autonomous vehicles (AVs), including ABs, in public trans-
portation, ensuring passenger safety and ride comfort has
become a primary concern [5], [6]. These factors are critically
linked to uncertainties inherent in the data used for AVs’
motion planning and control. During these processes, AVs
rely on various estimates, including their own state, their posi-
tion and orientation with respect to global coordinates, and
the states and future trajectories of surrounding objects. In the
past, many motion planning and control approaches assumed
precise knowledge of these values, neglecting potential errors
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in estimation and inherent uncertainties. However, after rec-
ognizing the growing importance of enhancing the safety of
AVs, research has been conducted to address these uncertain-
ties.

Research tackling uncertainties in the ego vehicle’s (EV’s)
state has been pursued through two approaches: (1) esti-
mating errors within the state and (2) utilizing assumed
error bounds. The error estimation approach employs the
offset-free Model Predictive Control (OF-MPC) technique
when errors within the EV’s state are observable. OF-MPC
estimates and mitigates these disturbances by utilizing the
estimated disturbance-free state as the actual state of the EV.
Chen et al. [7] applied OF-MPC to regulate the integrated
brake system of AVs, accounting for model mismatches
and parameter variations. Similarly, studies in [8] and [9]
employed OF-MPC to address performance degradation in
AV motion control due to mismatches in vehicle dynamics
models.

In contrast, the approach utilizing assumed error bounds
employs robust state-feedback controllers, tube-based MPC
(TMPC), and stochastic MPC (SMPC) techniques. For
instance, Jin et al. [10] proposed a nonlinear robust H-infinity
control to improve trajectory tracking performance of AVs,
considering system parameter uncertainties and nonlineari-
ties. However, regulating transient behaviors in the presence
of disturbances remains challenging for robust control meth-
ods. Consequently, optimal control approaches have been
proposed. Wischnewski et al. [11] implemented TMPC to
consider model uncertainty for path planning in AV rac-
ing. Hu and Cheng [12] adopted a dynamically adjustable
TMPC scheme to overcome model mismatch errors in AV
path tracking. Despite its advantages, the TMPC method
may be overly cautious for stochastic disturbances. Con-
sequently, SMPC incorporates uncertainties by tightening
constraints based on the probabilistic distribution of uncer-
tainties. Knaup et al. [13] presented control strategies for
autonomous off-road driving scenarios, using SMPC to
account for the distribution of EV trajectories subject to
Gaussian noise.

Research addressing inherent uncertainties in the states
and future trajectories of surrounding vehicles has been con-
ducted by incorporating uncertainty distributions into EV
motion planning and control through the aforementioned
TMPC and SMPC techniques. Khaitan et al. [14] proposed
a method to avoid moving obstacles, integrating TMPC to
account for uncertainties in the targets’ state. Studies in [15]
and [16] utilized SMPC to consider uncertainties in the
predicted future trajectories of surrounding vehicles when
planning the AV’s overtaking maneuver. Mosharafian and
Velni [17] applied a stochastic hybrid MPC scheme to the
cooperative adaptive cruise control problem, incorporating
uncertainties related to the operating modes of human-driven
vehicles.

While previous studies have addressed uncertainties in the
EV’s state and surrounding objects’ state and future trajecto-

ries, they have largely overlooked the uncertainty associated
with the global position and orientation of the EV. This
oversight substantially impacts autonomous driving perfor-
mance, primarily due to the utilization of High-definition
(HD) maps in motion planning [8], [18], [19], [20]. Lim-
ited sensor perception range in existing AVs compared to
human drivers necessitates heavy reliance on HD maps [16],
[21], [22]. These maps provide key information, including
centerlines, lanes, road boundaries, and stop lines for bus
stops and intersections [23], [24]. The integration of this data
into motion planning involves a transformation from global
to body-fixed reference frames, using the estimated global
position and orientation. During this transformation, errors in
this estimation inherently influence motion planning results.
Autonomous driving algorithms employ localizationmodules
to estimate the EV’s global position and orientation [25], [26],
highlighting the critical significance of localization accuracy.

Localization uncertainty arises from factors such as sen-
sor signal noise, signal delays or omissions, and sensor
data accuracy influenced by environmental conditions [25].
Specifically, in urban driving environments, the accuracy of
GPS signals may degrade due to satellite signal blockage.
While localization uncertainty is crucial for enhancing esti-
mation performance, its impact varies based on the driving
environment and the target platform. Therefore, consider-
ing localization uncertainty within the motion planning and
control modules is imperative to ensure safe driving. The
challenges posed by localization uncertainty become partic-
ularly notable for ABs navigating complex urban environ-
ments with narrow clearances, presenting a more demanding
scenario for precise and safe control compared to private
cars. Consequently, for fully autonomous driving of ABs,
the uncertainties in localization results must be carefully
considered.

While most of the research has concentrated on quanti-
fying and reducing localization errors [27], only a limited
number of studies have addressed the impact of localization
uncertainty on motion planning and control performance.
In these studies, two distinct approaches have emerged: (1)
leveraging the variance of localization uncertainty and (2)
adopting a cautious driving strategy based on the extent of
localization uncertainty. Artunedo et al. employed a driv-
able corridor-based motion planning method that utilizes the
variance of localization uncertainty [20]. They generated a
probabilistic occupancy grid map to describe the drivable
corridor, integrating road boundary data from HD maps with
the propagated variance of localization uncertainty along the
road boundary. Conversely, in [18] and [19], motion control
methods were proposed that reduce the set speed of the EV
as localization uncertainty increases. This strategy accounts
for the heightened risk of collisions with nearby objects and
the degradation of path-tracking performance associated with
increased uncertainty.

However, the applicability of these methods to ABs is
restricted for the following reasons. Firstly, the absence of
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compensation for uncertainty in the form of a bias can lead
to impractical solutions when navigating narrow paths. Espe-
cially, the impact of heading uncertainty is more pronounced
in narrowing the drivable corridor in comparison to positional
uncertainties [20]. Furthermore, the probabilistic occupancy
grid map-based method was designed for compact passen-
ger vehicles with considerably narrower dimensions than the
paths. Secondly, relying solely on a motion control strategy
that reduces set speed based on the degree of localization
uncertainty is insufficient. This uncertainty affects not only
collision risks with nearby obstacles but also the accuracy
of referred values used in motion planning, including stop
lines. An appropriate strategy considering localization uncer-
tainty’s varying attributes with AV’s driving conditions and
changes in referred sensor status is crucial, necessitating
its treatment as a variable and consideration of its distribu-
tion [26].

To mitigate the described limitations, this study proposes
a novel motion planning strategy for ABs to cope with
localization uncertainty. Specifically, the scope of this study
involves determining the desired motions that follow the
planned reference motions while ensuring safe driving in the
presence of localization uncertainty. First of all, planning
algorithms for lateral and longitudinal motions were sepa-
rately constructed to enhance computational efficiency for
implementation [16]. Both motion planning algorithms were
designed to account for the localization uncertainty since the
uncertainty could cause heading bias, lateral position error,
and longitudinal position error. Here, ‘‘bias’’ refers to the
error in which an estimated or measured value deviates from
an actual value. The details of the proposed approach are
as follows.

First, for lateral motion planning, the heading bias was
assumed to be a disturbance and handled through the imple-
mentation of OF-MPC. The OF-MPC was constructed by
using a Linear Parameter-varying (LPV)-MPC with a distur-
bance estimation method. The estimator was designed using
a Moving Horizon Estimation (MHE) scheme based on a
dynamic bicycle model. Using the same dynamics model, the
LPV-MPC was designed to follow the desired path within
the drivable corridor by optimizing the control input. Second,
for longitudinal motion planning, a chance-constrained MPC
was implemented to manage the longitudinal position error.
The chance constraint utilized the error covariance from the
localization module to restrict the EV’s longitudinal travel
distance. From the proposed lateral and longitudinal motion
planning approaches, path-tracking performance could be
enhanced by compensating for the heading bias while secur-
ing ride comfort. In addition, safety against collisions with
obstacles and stop line violations could be secured through
the implemented drivable corridor and chance constraint.
Finally, the feasibility and applicability of the proposed
approach were confirmed through vehicle tests conducted on
both a test track and actual urban driving environments.

The contribution of this research can be summarized as
follows:

• We established a motion planning strategy for ABs
to mitigate localization uncertainty by examining the
characteristics of localization uncertainty its impact on
driving performance, utilizing real-world vehicle test
data. Specifically, we categorized localization uncer-
tainty into heading bias, lateral position error, and
longitudinal position error. We then devised correspond-
ing strategies tailored to the characteristics of each
component.

• By compensating for the dominant influence of heading
bias using OF-MPC with an MHE scheme, which sig-
nificantly affects narrowing the drivable corridor, and
by incorporating variance of lateral and longitudinal
errors, we achieved fully autonomous driving for ABs,
enabling them to navigate relatively narrow paths than
their dimensions with improved path-tracking perfor-
mance and enhanced safety.

• The effectiveness of our proposed approach was val-
idated using actual ABs, and its performance was
demonstrated in both controlled test track environments
and uncontrolled complex urban road scenarios.

The rest of this paper is organized as follows. Section II
introduces the details of the test vehicle set-up and prelimi-
nary test results in urban driving environments, investigating
the characteristics of localization uncertainty. Section III pro-
vides an overview of the proposed motion planning approach.
Section IV and Section V describe the lateral and longitudinal
motion planning algorithms in detail, respectively. Section VI
shows the performance evaluation results of the vehicle tests,
assessing the feasibility and applicability of the proposed
approach. Finally, Section VII concludes the paper and pro-
vides future perspectives on this research.

II. PRELIMINARY
This section provides details regarding the test vehicle set-up
and the actual urban driving environments. Characteristics of
the observed localization uncertainty are investigated using
the data acquired from manual driving of the bus along the
urban bus-only lanes.

A. HARDWARE CONFIGURATION
Fig. 1(a) shows the test vehicle, a full-sized bus for urban
public transportation with a width of 2.5 m and a length
of 11.0 m. Equipped with off-the-shelf on-board sensors,
processors, and a control interface, the perception module
utilizes measured data from LiDAR only [28]. The local-
ization module implements data from LiDAR, cameras, and
the high-precision GPS/INS system (OxTS RT3000) with
Real-time Kinematic (RTK) corrections, measuring global
position, orientation, speed, and acceleration [29]. The front
camera and Around View Monitor (AVM) are installed for
lane detection around the vehicle. In Fig. 1(b), the on-board
sensors have detection ranges from 10 m to 100 m, shorter
than those of typical human drivers. Consequently, it is nec-
essary to make use of HD maps to overcome this limited
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detection range. The state of the test vehicle, including yaw
rate, steering wheel angle, longitudinal speed, and longitu-
dinal acceleration, is acquired from in-vehicle sensors and
provided through the Controller Area Network (CAN) mes-
sages of the chassis.

FIGURE 1. The hardware configuration of the test vehicle: full-sized,
electric-driven bus (Hyundai Elec-city).

The control interface of the test vehicle is constructed using
the desired steering wheel angle and the desired acceleration.
After the desired motion commands are computed from the
autonomous driving algorithm in an industrial PC, they are
sent to the Electronic Control Units (ECUs) of the vehicle
via the chassis CAN bus. These ECUs compute actuator
commands for steering wheel angle, motor torque, and brake
pressure to follow the desired motions. The motion control
algorithm, operating within the ECUs, consists of two sub-
modules: lateral and longitudinal motion control. The lateral
motion control sub-module takes the desired steering wheel
angle input and computes control commands to manipulate
the steering wheel angle, while the longitudinal motion con-
trol sub-module calculates motor torque and brake pressure
to follow the desired acceleration.

In the case of large buses’ lateral motions, there are delays
in both the actual responses of the steering wheel angle
to the desired steering wheel angle input and an additional
delay in the vehicle’s yaw rate response to the actual steering

wheel angle input. To address these delays, we developed and
implemented a controller employing a sliding mode control
approach to minimize the yaw rate response delay concerning
the desired steering wheel angle input [30].

B. ACTUAL DRIVING ENVIRONMENTS: URBAN BUS-ONLY
LANES
Fig. 2(a) illustrates the test course located in the bus rapid
transit (BRT) lanes of Sejong City, South Korea, spanning
approximately 4.5 km. This course comprises a two-way two-
lane configuration with diverse curvatures and road gradients,
including straight sections, curves, high-curvature regions
near bus stops, underground tunnels, and overpasses. It is
important to note that the presence of high buildings and
roadside structures along the lanes (Fig. 2(b)) can obstruct
GPS satellite signals. In addition, GPS-denied areas exist in
underground tunnels, as shown in Figs. 2(c) and (d).

FIGURE 2. Vehicle test course in BRT lanes, Sejong City, South Korea.

The urban bus-only lanes exhibit narrow gaps between the
side of a bus and lane boundaries, as shown in Fig. 3(a).
Considering the test vehicle’s width, which is 2.7 m inclusive
of the 0.2 m sensor width, the preferable gap between each
lane and the test vehicle is measured to be 0.2 m on average,
as shown in Fig. 3(b). Furthermore, obstructions such as
curbs, median strips, and sidewalls are present along the lanes
in the underground tunnels, overpasses, and near bus stops.

We selected this specific test course due to the following
reasons. First, it was essential to ensure precise path track-
ing and safe driving for ABs on this course. The algorithm
proposed in this study is universally applicable to various
driving scenarios. Despite the bus-only lane configuration
with restricted driving scenarios, this course encompasses
diverse road types and roadside structures. In addition, the
narrow preferable gap between lanes and vehicles poses chal-
lenges. Consequently, accounting for localization uncertainty
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FIGURE 3. Preferable gap considering lane width of BRT course and
width of the test vehicle.

becomes necessary to ensure safe motion planning and
control. Secondly, GPS-denied areas, particularly within
underground tunnels, introduce considerable fluctuations in
localization uncertainty. These variations provide opportune
settings for illustrating the impact of localization uncertainty
on motion planning and control performance and for show-
casing how the proposed approach addresses and mitigates
these challenges.

C. PRELIMINARY INVESTIGATION ON CHARACTERISTICS
OF LOCALIZATION UNCERTAINTY DURING MANUAL
DRIVING OF THE BUS ALONG THE URBAN BUS-ONLY
LANES
Before conducting the autonomous driving tests, the per-
formance of the localization module was evaluated through
manual driving along the urban bus-only lanes. This pre-
liminary investigation aimed to determine the characteristics
of localization uncertainty. The estimated values from the
localization module were compared to the values acquired
from the GPS/INS system. Because GPS/INS data obtained
in GPS-denied areas cannot be treated as ground truth val-
ues, the focus was on reviewing the trend of the difference
between the two sets of values.

During the investigation, potential dangers were observed
in sections with weak or absent GPS satellite signals. Fig. 4
illustrates three such sections located near the entrance of
underground tunnels at stations of approximately 780 m,
1,600 m, and 3,700 m, where the accuracy of the GPS/INS
system deteriorates. Upon exiting the tunnels, theGPS signals
are recovered at different locations according to repeated
driving tests, as shown in Fig. 4(a). The magnitude and sign
of relative errors in heading, lateral position, and longitudinal

FIGURE 4. RTK GPS availability and relative errors between the measured
value of GPS/INS system and estimated value of localization module.

position are also different according to the tests as shown in
Figs. 4(b), (c), and (d). The red dotted lines in the figures
indicate the validation gates of the first test, set as three-sigma
regions around the predicted observations. Here, measured
values are regarded as valid in the localization module if
their errors fall within the bounds of the localization module.
Lateral and longitudinal position errors occasionally exceed
the bounds of the validation gates, while the error in heading
always remains within the bounds. From Fig. 4, it can be seen
that, unlike the errors in lateral and longitudinal positions,
the error in the heading is so small that it is adopted as a
measurement in the localization module.

Fig. 5 displays the estimated deviations of heading, lat-
eral position, and longitudinal position from the localization
module. In Fig. 5(a), the maximum deviation of heading
is approximately 0.59 deg at the station of 1,916 m. The
maximum deviations of the lateral and longitudinal position
errors are approximately 0.24 m at stations of 2,138 m and
1.15 m at the station of 1,822 m, respectively (Figs 5(b)
and (c)). These estimated values are well-matched with those
reported in previous research [31], where maximum errors in
heading and lateral position were found to be 1.05 deg and
0.13 m, respectively.
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FIGURE 5. Estimated deviation of heading, lateral position, and
longitudinal position from localization module.

Significant drifts in heading error are observed at sev-
eral locations, in addition to changes in the sensor’s status,
as shown in Fig. 5(a). In autonomous driving, heading bias
is known to cause lateral position error, with a 1 deg dis-
turbance in heading bias leading to lateral position errors
of up to 0.35 m [8]. Assuming the proportional relationship
between heading error and resulting lateral position error, the
potential lateral position error due to the maximum head-
ing bias (0.59 deg) is expected to be roughly over 0.24 m.
While this heading bias is a common occurrence in localiza-
tion modules, the resulting lateral position error exceeds the
preferable gap in the urban bus-only lanes, highlighting the
significant risks associated with localization uncertainty in
autonomous operations. Consequently, it can be confirmed
that a motion planning strategy considering the impact of
localization uncertainty is crucial for ensuring consistent
driving performance.

Furthermore, the investigations in Figs. 5(b) and (c) reveal
that the evaluated deviation in lateral position error is notably
smaller than that of the longitudinal position error, consis-
tent with the observation in the recent surveys [26]. These
studies have indicated that the estimated lateral position tends
to be more accurate than the longitudinal position in most
localization-related studies. Consequently, the lateral position
can be regarded as credible in comparison to the longitudinal
position.

III. OVERVIEW OF THE PROPOSED MOTION PLANNING
APPROACH
In this section, the outline of the proposed motion planning
approach, including the interface with the localization, per-
ception, and control modules, is described. In addition to

the modules, the vehicle dynamics models adopted in the
proposed motion planning approach are explained.

A. OVERALL ARCHITECTURE OF THE PROPOSED MOTION
PLANNING APPROACH
The proposed motion planning approach aims to ensure
safe driving in the presence of localization uncertainty.
It achieves this by determining desired motions that mitigate
localization uncertainty while following planned reference
motions. These desired motions correspond to the desired
steering wheel angle and desired longitudinal acceleration,
while planned reference motions involve reference paths and
reference longitudinal motions (longitudinal clearance and
longitudinal speed). Fig. 6 illustrates the proposed motion
planning module, which is divided into two sub-modules:
lateral motion planning with OF-MPC implemented and lon-
gitudinal motion planning using chance-constrained MPC.
The lateral motion planning algorithm includes disturbance
estimation using MHE, drivable corridor determination,
and motion optimization using LPV-MPC. The longitudinal
motion planning algorithm involves constraint determination
and motion optimization using linear MPC. Once desired
motions are determined, the vehicle’s motion control module
manipulates the steering, throttle, and brake actuators to track
these desired motions.

B. VEHICLE DYNAMICS MODEL
1) LATERAL VEHICLE DYNAMICS MODEL
The lateral vehicle dynamics model was constructed through
a combination of a dynamic bicycle model with error dynam-
ics equations along with a reference path [33]. As shown
in Fig. 7, the relevant errors of a path tracking problem are
defined as the heading error (eψ ) and lateral position error
(ey) from the center of gravity (CG) with respect to the ref-
erence path. In general lane-keeping situations, the reference
path is the lane centerline.

The state-space model of the lateral dynamics can be rep-
resented as follows:

ẋlat = Alat.Cxlat + Blat.Culat + Flat.Cρpath

s.t. xlat =
[
β γ eψ ey

]T
ulat = δFSA.des

Alat.C =


−

2Cf +2Cr
mvx

−1+−2Cf ℓf +2Crℓr
mv2x

0 0

−2Cf lf +2Cr lr
Iz

−
2Cf ℓ2f +2Crℓ2r

Izvx
0 0

0 1 0 0
Vx 0 vx 0



Blat.C =


2Cf
mvx
2Cf lf
Iz
0
0

 , Flat.C =


0
0

−vx
0

 (1)

where xlat is the state vector, which is composed of side slip
angle (β), yaw rate (γ ), heading error (eψ ), and lateral posi-
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FIGURE 6. Outline of the proposed motion planning approach.

FIGURE 7. Definition of path tracking errors about reference path.

tion error (ey). The control input ulat represents the desired
front-wheel steering angle (FSA), and ρpath is the curvature of
the reference path. For amild urban driving condition targeted
in this research, a reasonable assumption is made that the
lateral tire force is linear with respect to the side slip angle.
Accordingly, constant stiffness coefficients (Cf , Cr ) can be
adopted.

2) LONGITUDINAL VEHICLE DYNAMICS MODEL
The longitudinal vehicle dynamics model was constructed
using a kinematics model, assuming that the actual accel-
eration of the vehicle tracks the desired acceleration with a
first-order delay (τd ). The state-space representation of the
longitudinal dynamics is as follows:

ẋlon = Alon.Cxlon + Blon.Culon

TABLE 1. Parameters of ego vehicle’s lateral and longitudinal dynamics
models.

s.t. xlon =

[
px vx ax

]T
ulon = ax.des

Alon.C =


0 1 0

0 0 1

0 0 −
1
τd

 , Blon.C =


0

0
1
τd

 (2)

where xlon is the state vector, which is composed of travel
distance (px), longitudinal speed (vx), and longitudinal accel-
eration (ax). ulon represents the control input of desired
longitudinal acceleration (ax.des).

To discretize the continuous-time state-space models writ-
ten in Eq. (1) and Eq. (2) with a fixed sampling time (1t),
the zero-order hold (ZOH) discretizationmethodwas applied.
The parameters adopted for modeling the EV’s dynamics are
listed in Table 1.
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IV. OFFSET-FREE MPC-BASED LATERAL MOTION
PLANNING
In this section, the lateral motion planning algorithm to tackle
both the heading bias and lateral position error is described in
detail. To estimate the heading bias, the disturbance estima-
tion method is developed using MHE. To prevent potential
collisions due to lateral position error, the drivable corridor
is implemented for the determination of the desired path.
Considering the estimated heading bias, OF-MPC is designed
to follow the desired path within the established drivable
corridor.

Before delving into the algorithm, the heading bias from
localization is explained in a conceptual manner. Initially,
a reference path is determined using data from HD maps
about a global reference frame. Then, the path is transformed
from the global to the body-fixed reference frame based on
the estimated global position and heading of the EV. Sub-
sequently, the path tracking errors (heading error and lateral
position error) are computed using the reference path about
the body-fixed frame. During this process, the calculated
path tracking error is influenced by localization uncertainty.
Specifically, the heading bias from localization is directly
added to the EV’s heading error about the reference path.
As a result, the measured heading error, which is calculated
referring to the localization result, can be represented as
follows:

eψ.measured = eψ.actual + δeψ (3)

where δeψ represents the heading bias from the localization
result, and we will hereafter refer to it as the bias of head-
ing error to avoid confusion. Here, lateral position error is
assumed to be minimal, providing a practical assumption for
feasible solutions in autonomous buses navigating narrow
roads. As a supplementation, we implemented drivable cor-
ridor determination to guarantee collision-free driving in the
presence of surrounding obstacles.

The following three assumptions have been employed for
the interworking with the localization and perception mod-
ules.

1) The localization module effectively minimizes the lat-
eral position error, maintaining a small deviation from
the actual value without sudden changes.

2) The perception module effectively recognizes roadside
structures as static obstacles, represented as a proba-
bilistic occupancy gridmap named Static ObstacleMap
(SOM) [28].

3) The disturbance can be accurately estimated using the
nominal dynamics model, which remains relatively sta-
ble in the target driving condition.

The first assumption is based on the findings from
the preliminary investigation of localization uncertainty in
Section II-C. The second assumption relies on credible recog-
nition of static obstacles, supported by previous research on
the perception module [28], making the impact of perception
uncertainty on motion planning negligible. The third assump-
tion states that changes in the dynamics model parameter

have insignificant effects on motion planning. Considering
the proposed method’s application in mild urban driving
environments, this assumption can be regarded as valid.

A. DISTURBANCE ESTIMATION USING MHE
This research aimed to estimate the bias of heading error
using only the measured states and control input signals
along with the vehicle’s lateral dynamics model. The fol-
lowing input values were utilized for this estimation: three
measurements among the four state variables, the control
input (front-wheel steering angle), and the disturbance (road
curvature). Among the state’s four variables indicated in Eq.
(1), three of them – yaw rate, heading error, and lateral
position error, are measurable. In particular, yaw rate and
the control input can be obtained through chassis sensors.
Heading error, lateral position error, and the disturbance (road
curvature) are computed based on the information from the
desired path. However, side slip angle, which is typically not
directly accessible through chassis sensors, is excluded from
the measurements.

The disturbance estimator is developed using MHE, which
is a receding horizon, optimization-based state estimation
technique [34], [35]. For vehicle state estimation prob-
lems, MHE has shown better performance than the Kalman
filter-based method in terms of convergence rate, estimation
accuracy, and robustness against initial deviations [36], [37].
In addition, since MHE can handle inequality constraints on
state estimation, it is beneficial for estimating values within
known ranges.

To construct theMHE-based disturbance estimator, an aug-
mented disturbance model is formulated utilizing the OF-
MPC scheme. In Eq. (1), with one control input serving as
the reference state for zero-offset, the lateral position error
(ey) is selected as the target state for achieving zero-offset.
The dimension of the disturbance (nd ) is set to three to
match the number of measurements (p), ensuring indepen-
dence from the estimator’s performance [38]. In addition to
the bias of heading error (δeψ ), the bias of control input
(δulat ) and the bias of road curvature (δρpath) are chosen as
disturbance variables. Typically, these two terms are directly
used in the estimation calculation as they correspond to the
control input and known disturbance. Adopting additional
disturbance variables related to these terms helps mitigate
the effect of potential noise on estimation accuracy. Conse-
quently, the MHE-based disturbance estimator provides the
estimation results for the current state (four variables) and the
disturbance vector (three variables)

The discrete-time LPV system’s state-space equation, the
adopted disturbance variables, and corresponding state and
measurement matrices are written as follows:

xlat (k + 1 | t) = Alat (k | t) xlat (k | t)+ Blat (k | t) ulat (k | t)

+ Flat (k | t) ρpath (k | t) (4)

ylat (k | t) = Clatxlat (k | t)

dlat (k | t) =
[
δeψ (k| t) δulat (k| t) δρpath (k| t)

]T
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Blat.d (k | t) =
[
04×1 Blat (k | t) Flat (k | t)

]
Clat.d (k | t) =

 0 0 0
1 0 0
0 0 0


ylat (k | t)=

[
γ (k | t) eψ (k | t)+δeψ (k| t) ey (k | t)

]T
(5)

where themeasurementmatrix (Clat ) is given byClat (k | t) =[
03×1 I3×3

]
.

By combining the lateral dynamics model stated in Eq. (4)
and the disturbance model in Eq. (5), the augmented system
model can be represented as follows:

xe (k + 1 | t) = Ae (k | t) xe (k | t)+ Be (k | t) ulat (k | t)

+ Fe (k | t) ρpath (k | t)

= f k|t
(
xe (k | t) , ulat (k | t) , ρpath (k | t)

)
ylat (k | t) = Ce (k | t) xe (k | t)

s.t. xe (k | t) =
[
xlat (k | t) dlat (k | t)

]T
Ae (k | t) =

[
Alat (k | t) Blat.d (k | t)

04×3 I3×3

]
Be (k | t) =

[
Blat (k | t)

03×1

]
Fe (k | t) =

[
Flat (k | t)

03×1

]
Ce (k | t) =

[
Clat (k | t) Clat.d (k | t)

]
(6)

Here, the disturbance state (dlat (k | t)) is assumed as a
random walk process [39].
Using the augmented system in Eq. (6), the MHE problem

is formulated as follows:

min
xe.Ne (t)

J (xe)

=

t∑
k=t−Ne

∥∥ylat (k| t)− Ce (k | t) x̂e (k | t)
∥∥2
V−1
lat

+

t−1∑
k=t−Ne

∥∥x̂e (k + 1| t)

− f k|t
(
x̂e (k | t) , ulat (k | t) , ρpath (k | t)

)∥∥2
W−1

lat

+
∥∥x̂e ( t − Ne| t)− x̂e ( t − Ne| t − 1)

∥∥2
P−1
lat

s.t. δeψ.min ≤ δeψ (k| t) ≤ δeψ.max (7)

where x̂e.Ne (t) is the set of states to be estimated (x̂e.Ne (t) ={
x̂e ( t − Ne| t) , . . . ,x̂e ( t| t)

}
). V−1

lat andW−1
lat are the weight

matrices of measurements and process models, which are
inversely proportional to the noise covariance matrices. P−1

lat
is the arrival cost at the time t − N e.Ne is the estimation
horizon step, which is determined by dividing the estimation
window length into sampling time. The constraints for the
bias of heading error, denoted as δeψ.min and δeψ.max , are
chosen as the same bound as the validation gate from the
localization module.

B. DRIVABLE CORRIDOR DETERMINATION
The drivable corridor denotes the area where the EV can
safely navigate while avoiding obstacles. To determine the
desired path within this corridor, we implemented a method
proposed in previous research for private cars [24]. This study
extended the approach to account for the dimensions of a
large bus. Specifically, we considered not only the reference
path but also the future trajectories of the rear and front
bumper points as the vehicle’s center of gravity follows the
reference path. Here, the algorithm is briefly outlined in a
conceptual manner.
The drivable corridor is defined by the left and right

envelopes, which are obtained through the following sequen-
tial process. Initially, the reference path, left envelop, and
right envelope are assumed to be the centerline and the left
and right lanes, respectively. Then, the envelops are checked
to see if the SOM within the region of interest invades them.
If violations are detected, the envelopes are updated accord-
ingly. Fig. 8 illustrates a case where a guardrail invades the
right lane. After calculating the SOM for the guardrail, the
right envelop is corrected using SOM information. Subse-
quently, the distances from the left and right envelops to the
initial desired path (same as the reference path) are computed.
If these distances are narrow compared to half of the vehicle’s
width plus a preferable gap, the desired path in that section is
shifted to secure a preferable gap. This process of modifying
the desired path is carried out repeatedly, taking into consid-
eration the future trajectories of the rear and front bumper
points.

FIGURE 8. The determination of the desired path considering drivable
corridor.

After determining the desired path, we calculate a refer-
ence speed profile, considering both the drivable corridor
and the desired path’s curvature, with a focus on passenger
comfort and driving safety. The speed profile for the drivable
corridor is established by inversely correlating it with the
distance between the vehicle’s desired path and the driv-
able corridor. This inverse relationship between the reference
speed and the distance was heuristically estimated based
on data collected from expert drivers [24]. In addition, the
speed profile concerning the desired path’s curvature is com-
puted while considering the lateral acceleration limit [30].
The reference speed profile for longitudinal motion is then
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determined as the smaller value between these two calculated
speed profiles.

C. MOTION OPTIMIZATION USING LPV-MPC
MPC problem is formulated using the lateral dynamics model
in Eq. (4) with the estimated state and disturbance values
using MHE in Eq. (7). The optimization problem for the
lateral motion is defined as follows:

min
ulat. Np

J (xlat , ulat )

=
∥∥x̃lat (Np | t

)∥∥2
Plat

+

∑Np−1

k=0

{∥∥x̃lat (k + 1 | t)
∥∥2
Qlat

+ ∥ulat (k | t)∥2Rlat

}
(8a)

s.t. xlat (0 | t)= x̂lat (0 | t) , ulat (−1 | t)= ûlat (−1 | t) (8b)

xlat (k + 1 | t) = Alat (k | t) xlat (k | t)

+ Blat (k | t) ulat (k | t)

+ Flat (k | t) ρpath (k | t) (8c)

δFSA.des.min ≤ ulat (k | t) ≤ δFSA.des.max

|ulat (k + 1 | t)− ulat (k | t)| ≤ dt · δ̇FSA.max (8d)

where ulat.Np (k | t) is the set of control inputs to be opti-
mized (ulat.Np (k | t) =

{
ulat (0 | t) , . . . , ulat

(
Np − 1 | t

)}
).

x̃lat (k | t) :=xlat (k | t)−xlat.ref (k | t) represents the reference
tracking error. Plat is the terminal cost at the time step of Np.
The control input constraints are defined as the bounds of
magnitude and jerk, following the control interface specifi-
cations. Heading and lateral position errors in the vehicle’s
current state (x̂lat (0 | t)) are linked to the reference path,
resulting in an inaccurate representation of the vehicle’s state.
The current state is corrected by employing the estimation
results of the disturbance estimator using MHE (Eq. (8b)).
Moreover, the disturbance estimator utilizing MHE corrects
the external disturbance value in terms of road curvature
(ρpath (k | t)). By eliminating the bias of heading error, the
MPC formulation becomes heading offset-free. The parame-
ters adopted for modeling the MHE and LPV-MPC are listed
in Table 2.

V. CHANCE-CONSTRAINED MPC-BASED LONGITUDINAL
MOTION PLANNING
A. CHANCE CONSTRAINT FOR CONSIDERING THE
LOCALIZATION UNCERTAINTY ALONG LONGITUDINAL
DIRECTION
The upper bound of the EV’s travel distance is primarily
determined by the state of the targets. These targets, consid-
ered in longitudinal motion planning, consist of both those
from the perception module and those virtually generated
using stop lines in HD maps. The states of virtual targets are
influenced by localization uncertainty. The stop line positions
are defined in the global reference frame and then trans-
formed into the EV’s body-fixed reference frame. Then a
stationary, virtual target is generated on the location, as shown

TABLE 2. Parameters for lateral motion planning algorithm.

in Fig. 9. Therefore, errors in the virtual target’s position arise
from the localization module.

FIGURE 9. Chance-constraint for uncertainty of target’s position from
localization module.

To handle the localization uncertainty in the longitudinal
position error, we adopt a chance constraint as an inequality
constraint for travel distance. As investigated in Section II-
C, the deviation of longitudinal position error about the
body-fixed reference frame is assumed to have zero mean and
be normally distributed. Similarly, we assume the uncertainty
of the virtual target’s position follows the same distribu-
tion. To account for this uncertainty effectively, we employ
the analytic reformulation method to transform the chance
constraint for the upper bound of travel distance into deter-
ministic constraints, as shown below [40]:

px (k| t) ≤ pmax (k| t)− γ (k| t) , k ∈
{
1, . . . ,Np

}
s.t.γ (k| t) =

√
26e

kerf
−1 (1 − 2ε) (9)

where γ (k| t) is the tightening parameter. 6e
k represents the

covariance of the longitudinal position error (here, uncer-
tainty) at kth step. The covariance is obtained by projecting
the covariance of longitudinal and lateral position errors,
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estimated by the localizationmodule, onto the direction of the
vehicle’s reference path. ε is the chance constraint parameter
which represents the probability level. erf denotes the error
function. As observed in Fig. 5(c), the covariance varies with
the sensor’s state. To address this variation and considering
the practical challenges in accurately predicting the future set
of covariance, the error covariance is assumed to keep its level
within the MPC calculation interval.

B. MOTION OPTIMIZATION USING
CHANCE-CONSTRAINED MPC
The chance-constrained MPC is set up as shown in Eq. (10),
including the longitudinal dynamics model presented in Eq.
(2) and the chance constraint detailed in Eq. (9). The objec-
tive function encompasses minimizing the reference tracking
error, control input, and a slack variable related to travel
distance. To ensure real-time feasibility in the MPC problem,
the slack variable is introduced to soften the constraint for
travel distance. The inclusion of a delay model to describe
longitudinal dynamics in Eq. (2) ensures that the optimal
control inputs are calculated to compensate for this model’s
delay.

min
ulon .Np

J (xlon , ulon )

=

∑Np−1

k=0

{∥∥x̃lon (k + 1 | t)
∥∥2
Qlon

+ ∥ulon (k | t)∥2Rlon +
∥∥qp (k + 1 | t)

∥∥2
Qp

}
s.t. xlon (k + 1| t) = AlonDxlon (k| t)+ Blon.Dulon (k| t)

ax.min≤ulon (k| t) ≤ ax.max
GT
lonxlon (k + 1| t) ≤ xlon.bound (k + 1| t)

qp (k + 1| t) ≥ 0,

k ∈
{
0, . . . ,Np − 1

}
, (10)

where

Glon =

[
1 0 0

−1 0 0

]T
xlon.bound (k + 1| t)

=

[
px.upper (k + 1| t)

−px.lower (k + 1| t)

]
=

[
px.max (k + 1| t)− γ (k + 1| t)+ qp (k + 1| t)

−px.min

]
where ulon.Np (k | t) is the set of control inputs to be opti-
mized (ulat.N (k | t) =

{
ulon (0 | t) , . . . , ulon

(
Np − 1 | t

)}
).

x̃lon (k | t) :=xlon (k | t)− xlon.ref (k | t) is the reference track-
ing error. xlon.ref (k | t) is the vector of reference motions,
which is composed of the travel distance (px.ref ) and longi-
tudinal speed (vx.ref ). The vehicle’s current state (xlon (k | t))
is composed of the travel distance from the current position,
longitudinal speed, and longitudinal acceleration, which are
unaffected by localization uncertainty. When the preceding
target is a virtual target (stop line), computing the clear-
ance between the ego vehicle and the virtual target relies

TABLE 3. Parameters for longitudinal motion planning algorithm.

on the stop line’s position relative to the body-fixed frame,
thus introducing inaccuracies into the state’s reference value
due to localization uncertainty. By implementing the pro-
posed chance constraint, the constraint on travel distance is
adjusted to prevent violations of stop lines. qp denotes the
slack variable for travel distance. The prediction horizon and
time step of the MPC are identical to those used for lateral
motion planning. The parameters adopted for modeling the
chance-constrained MPC are listed in Table 3.

VI. VEHICLE TESTS
In this section, the feasibility and applicability of the
proposed approach are evaluated from the vehicle tests con-
ducted in a test track and actual urban bus-only lanes,
respectively. The test track provided a controlled environment
due to restricted external vehicle access. In contrast, the
actual urban bus-only lanes were accessible to other vehicles,
including buses during testing.

During the vehicle tests, the autonomous driving algo-
rithms operated on an industrial PC with an Intel Xeon
E-2176GCPU (3.7 GHz), 32GBDDR4 RAM, and a GeForce
RTX-2080 GPU. To handle the MPC and MHE problems
within our proposed approach, we employed the CVXGEN
software [41], optimization tool that generates custom C
code tailored for embedding these optimization problems in
real-time applications. Implementation was conducted within
the Robot Operating System (ROS)-C++ environment and
integrated with other interoperating algorithms.

To ensure real-time performances of our proposed MPC
and MHE problems, we investigated their computational
times on the industrial PC. The computation times were
evaluated using urban driving data obtained from the vehicle
tests. Actual computation times on this PC may vary due
to other concurrent logics, impacted by the optimization of
computing resources within the real-time operating system.
When each algorithm operates independently, the average
computational times for the MPC and MHE problems in
lateral motion planning were 1.26 ms and 3.22 ms, respec-
tively, with maximum times of around 2.33 ms and 6.58 ms.
For the MPC in longitudinal motion planning, average and
maximum computational times were 1.13 ms and 2.39 ms,
respectively. The combined maximum computation time of
the MPC and MHE problems used in lateral motion planning
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FIGURE 10. Vehicle test results when implementing the proposed and reference algorithms on the test track with intentional bias of heading.

is 8.91 ms, which falls within the sampling times of the
perception logic (50 ms) and the MPC problem (100 ms),
making them suitable for practical application in an actual
autonomous driving system.

A. FEASIBILITY TEST WITH INTENTIONAL BIAS OF
HEADING IN TEST TRACK
We aimed to investigate the effectiveness of the proposed
lateral motion planning algorithm, specifically the OF-MPC
with the disturbance estimator using MHE. The following
three types of heading bias were considered: 1) intentional
constant heading bias, 2) shift in the intentional constant
bias, and 3) perturbation according to changes in road cur-
vatures and longitudinal speed limits. The first bias was
adopted to replicate the localization uncertainty in areas
with degraded localization module accuracy. The second bias
imitated uncertainty from inconsistent sensor accuracy. The
third perturbation was investigated for assessing unexpected
disturbances from changes in the dynamics model’s input
variables under actual driving conditions. To implement the
intentional heading bias, we added a constant value to the
heading (orientation) term obtained from the localization
module.

To investigate the impact of constant heading bias, a bias of
−0.5 deg was added in Zone 1 (marked in Fig. 10(a)), while
a bias of −1.0 deg was added in the rest of the track. This
allowed a separate assessment of the impact of the intentional
constant heading bias in Zone 1 and Zone 2. The shift in

the intentional bias was observed near the section between
Zone 1 and Zone 2, where the effect of the perturbations
on performance was also examined. Since Zone 1 featured
a curved section, the bus drove at a slow speed of 15 kph.
On the other hand, Zone 2 had a straight path, and the bus
drove at a higher speed of 40 kph, which is the speed limit for
urban roads in Section II-B.
To assess the feasibility of the proposed OF-MPC with

MHE, path-tracking performance was evaluated. Especially,
lateral position error with respect to the desired path and
its convergence rate against perturbations were reviewed.
To provide a comprehensive evaluation, two reference algo-
rithmswere also assessed: 1) conventional LPV-MPCwithout
a disturbance estimator and 2) OF-MPC with a disturbance
estimator using an Extended Kalman Filter (EKF). By com-
paring our approach to the first algorithm, the role of the
OF-MPC method for coping with localization uncertainty
could be confirmed. From the comparison to the sec-
ond algorithm, the advantages of the proposed MHE-based
approach could be demonstrated.

As shown in Fig. 10(b), the intentional constant heading
bias causes lateral position errors. Without implementing the
OF-MPC scheme, the averaged lateral position errors are
approximately 0.2 m in Zone 1 and 0.4 m in Zone 2, respec-
tively. This aligns with the concerns raised in Section II-C.,
indicating that without compensation for the heading bias, the
AB may invade lane boundaries. However, by using the pro-
posed approach, the lateral position error could be effectively
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maintained within the preferable gap of 0.2 m. Through the
observations, the necessity of OF-MPC with a disturbance
estimator for counteracting the localization uncertainty has
been clearly confirmed.

The effectiveness of the proposed approach using MHE
could be confirmed through a comparison with the second
reference algorithm: OF-MPC with an EKF-based distur-
bance estimator. When using OF-MPC with EKF, the lateral
position error exceeds the preferable gap of 0.2 m near the
entrance of Zone 1, as shown in Fig. 10(b). On the contrary,
OF-MPC with MHE shows two noticeable improvements.
First, the lateral position error when using OF-MPC with
MHE is smaller, with a root mean square (RMS) error of
0.061 m, reduced by 31 % compared to that of OF-MPC with
EKF (RMS error of 0.088 m). Second, OF-MPC with MHE
effectively reduces the offset of the lateral position error. The
averaged error when using OF-MPC with MHE is −0.006 m,
which is only 2% compared to OF-MPCwith EKF (0.054m).
In particular, the error with MHE is mostly within the range
of −0.029 m to 0.062 m, except for sections with changes
in road curvatures and speeds (from 0 m to 50 m and from
150 m to 270 m). When usingMHE, offsets of approximately
0.006 m and −0.013 m are observed at these stations, while
EKF shows offsets of approximately 0.1 m and 0.03 m at the
same stations.

The advantages of MHE implementation could also be
explained in terms of convergence rates for estimating
uncertainty against perturbations, particularly evident in two
sections: 150 m to 160 m and from 270 m to 400 m. In the
range of 150 m to 160 m, MHE shows minimal lag compared
to EKF’s phase lag of 4.5 m, as shown in Fig. 10(c). Although
both estimators handle the shift in heading bias (relatively
large value), the difference is insignificant in this range.
Conversely, from 270 m to 400 m, EKF exhibits a phase lag
of 32.5 m, indicating slower convergence compared to MHE.
This slower convergence rate significantly impacts lateral
position error. Consequently, MHE can effectively deal with
uncontrollable heading bias (relatively small value) with an
improved convergence rate.

The improved performance of the proposed approach using
MHE in reducing lateral position error allowed us to interpret
the results of the estimated bias of heading error presented
in Fig. 10(c). While MHE exhibits faster convergence than
EKF, it shows lower accuracy in estimating the intentional
constant heading bias. This contrasting trend can be under-
stood according to the range of lateral position errors in
Fig. 10(b), where OF-MPC with MHE displays minimal
deviation and insignificant drift. It can be reasonably inferred
that the estimated bias of heading error obtained fromMHE is
more reliable than that from EKF. Besides the assumed inten-
tional heading bias, the estimated bias may involve external
variables due to uncontrollable factors, such as changes in
lane detection accuracy and EV state estimation. It could be
inferred that the impact of these uncontrollable factors on
offset-free performance was better mitigated in the approach
using MHE than using EKF.

B. APPLICABILITY TEST IN URBAN BUS-ONLY LANES
To confirm the applicability of the proposed approach under
actual localization uncertainty, fully autonomous driving tests
were conducted in the urban bus-only lanes. The test course,
as marked in Fig. 11(a), includes three underground tunnels.
As shown in Fig. 2 and Fig. 11(d), the entrances of the first
and second tunnels are located on straight sections, while
their exits exhibit significant curvature due to bus stops just
beyond the exits. The entrance of the third tunnel is located
on a curved section, while the exit is near a straight section.
As shown in Fig. 11(e), the speed limits vary along the course:
35 kph, 25 kph, and 40 kph for the three tunnels, sections near
the bus stops, and the rest of the course, respectively. To min-
imize the impact of longitudinal speed differences between
tests on performance analysis, only the test results conducted
with minimal or no preceding vehicles were selected. Along
the test course, there are hazardous road structures on the right
side of the AB, as vehicles typically keep to the right lane.

To ensure safety during the applicability tests, it was
necessary to develop the reference algorithm further. In the
reference algorithm, conventional LPV-MPC without a dis-
turbance estimator was adopted for the lateral motion
planning algorithm. In addition, the drivable corridor had
to be considered to secure safety against collisions dur-
ing autonomous driving on the course. For the longitudinal
motion planning algorithm, the identical MPC scheme was
adopted as in the proposed algorithm, except that the chance
constraint was excluded from the reference algorithm.

Before assessing performance, we examined whether the
calculated control input and output responses of these MPC
schemes meet specified constraints. In Fig. 12(a), lateral
motion planning’s control inputs (desired front-wheel steer-
ing angle (FSA)) range from −3.9 to 2.6 degrees, within the
−45.0 to 45.0 degree range in Table 2. Similarly, Fig. 12(b)
shows longitudinal motion planning’s control inputs (desired
longitudinal acceleration) ranging from -2.4 m/s2 to 1.0 m/s2,
meeting the range of −5.0 to 1.0 m/s2 in Table 3. Conse-
quently, it can be confirmed that the MPC schemes satisfy
the control input constraints.

The applicability evaluation was conducted in terms of the
following three features: 1) path-tracking performance, 2)
ride comfort related to lateral motion, and 3) safety against
road boundaries and stop lines. Quantitative analysis assessed
path-tracking and ride comfort improvements, while safety
enhancements were qualitatively investigated using captured
photographs due to challenges in directly measuring the
actual localization error or the gap between the road bound-
aries and the test vehicle in actual urban environments.

1) PATH-TRACKING PERFORMANCE
The improvement in path-tracking performance when imple-
menting the proposed approach can be assessed by analyzing
the RMS values, peaks, and ranges of lateral position error
and estimated heading error. Table 4 presents a summary
of the RMS values corresponding to each implemented
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FIGURE 11. Vehicle test results in urban bus-only lanes when implementing the proposed and reference approaches.

algorithm. In addition, box plots for the chosen errors are
depicted in Fig. 13. Detailed descriptions regarding the path
tracking performance are as follows.

First, the proposed approach achieves considerable reduc-
tions in RMS values of lateral position and estimated heading
errors in comparison to those of the reference approach.
When implementing OF-MPC with MHE, the RMS values
of lateral position and estimated heading errors are 0.0741 m
and 0.3195 deg for the entire course, respectively, show-
ing reductions of 31.6 % and 25.8 % in comparison to the
reference values of 0.1084 m and 0.4306 deg. Especially,

near the second tunnel, the RMS values are 0.0631 m and
0.3696 deg, indicating reductions of 56.8 % and 32.9 % in
comparison to LPV-MPC values of 0.1459 m and 0.5507 deg.
The difference in the bias of heading error estimated near
the second tunnel is approximately 0.86 deg, as shown in
Fig. 11(b). Compensating for this substantial bias of heading
error leads to a significant reduction in lateral position error,
allowing autonomous driving to maintain the preferable gap
of 0.2 m.

Second, the proposed approach exhibits a significant
reduction in peaks of lateral position error in comparison
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FIGURE 12. Distributions of the desired control inputs and actual
responses from the vehicle tests in urban bus-only lanes.

FIGURE 13. Box plot for the ranges of lateral position error and estimated
heading error from the vehicle tests in urban bus-only lanes.

to those of the reference approach. As shown in Fig. 11(a),
most of the lateral position errors when using the pro-
posed approach remain below the preferable gap of 0.2 m
for the entire course. Only two out-of-tolerance excep-
tions are observed at sections near the stations of 1,373 m
and 3,430 m, with deviations of 0.213 m and 0.262 m,
respectively. These exceptions, occurring near bus stops,
necessitated evasive maneuvers to avoid roadside obstacles,
temporarily exceeding the preferable gap. However, these
out-of-tolerance exceptions were strategically planned to
secure safety throughout the entire course.

Third, the proposed approach significantly reduces the
ranges of the lateral position and estimated heading errors
in comparison to those when using the reference approach.
In Figs. 13(a) and 13(b), the ranges are reduced by 32.2% and

TABLE 4. Comparison of performance in lateral motion planning
algorithms regarding Path tracking and ride comfort.

33.2 %, respectively. The most notable improvement occurs
in three sections near 1,200 m, 2,100 m, and 4,050 m, where
the accuracy of the GPS/INS system increases after exiting
the tunnels. As shown in Fig. 11(a), the reference approach
shows a rapid increase in lateral position error, around 0.3 m
near the station of 1,200 m, while the proposed approach
avoids this rapid change in the identical section.

2) RIDE COMFORT RELATED TO LATERAL MOTION
The ride comfort when implementing the proposed approach
can be assessed through lateral acceleration and yaw rate,
which are widely used metrics for analyzing ride comfort
related to lateral motion [42]. It should be reviewed due to
the concern that path tracking performance when applying
the proposed approach could be improved by using excessive
control inputs. As shown in Table 4, the RMS values of
lateral acceleration and yaw rate are slightly reduced when
implementing the proposed approach compared to the ref-
erence approach. Notably, this reduction is observed in the
first tunnel, where the reference algorithm’s logic necessitates
additional control input in response to potential collision
risks. In contrast, the proposed algorithm eliminates this
need, contributing to an improvement in ride comfort by
minimizing unnecessary lateral motion. Consequently, it can
be confirmed that ride comfort is secured while enhancing
tracking performance with the proposed approach.

3) SAFETY AGAINST ROAD BOUNDARIES AND STOP LINES
The enhanced safety can be assessed by examining pho-
tographs taken from the AVM camera during vehicle tests,
which allow us to observe whether the bus invades road
boundaries and stop lines. Several distinct differences are
recognized from Figs. 14, 15, 16, and 17. During the tests, the
most dangerous situations occur near the underground tunnels
where the accuracy of the localization module is reduced.
The estimated gap between the body of the bus and the lane
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FIGURE 14. Top view captured from AVM camera according to dangerous sections when implementing the reference approach.

FIGURE 15. Top view captured from AVM camera according to dangerous sections when implementing the proposed approach.

FIGURE 16. Top view near the bus stop behind the second underground
tunnel when implementing the reference approach.

boundaries is less accurate than on surface roads. Therefore,
displaying the top view captured by the AVM camera is
effective in verifying enhanced safety against road boundaries
and stop lines.

When driving near the bus stop behind the first under-
ground tunnel as shown in Figs. 14(b) and 15(b), there is
little difference in safety between the proposed and refer-
ence approaches. The test vehicle drifts approximately 0.2 m
from the road centerline to avoid collision with the guard

FIGURE 17. Top view near the bus stop behind the second underground
tunnel when implementing the proposed approach.

rail along the road. Both approaches ensure safety against
roadside structures by considering the drivable corridor in
common. On the contrary, noticeable improvements when
implementing the proposed approach are observed in other
scenarios, as shown in Figs. 14(a), (c), (d), and Figs. 15(a),
(c), (d). With the reference approach, the test vehicle comes
close to the right wall and lane boundaries. The vehicle
attempts to maintain a preferable gap after the gap decreases
due to the change in bias of heading error. In contrast, the
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proposed approach allows the test vehicle to drive along the
centerline while maintaining the gap, as shown in Figs. 15(a),
(c), and (d), providing sufficient gaps from the vehicle body
to the right road boundaries.

Figs. 16 and 17 show the top view of the test vehicle when
driving near the bus stop at the station of 2,700 m. As the
bus stop was located right behind the second underground
tunnel, the GPS satellite signal was not recovered until the
bus approached the bus stop. As shown in Figs. 16(a), (b), and
Figs 17(a), (b), the actual distance from the test vehicle’s front
bumper to the stop line is smaller than the value estimated
by the localization module. With the reference approach,
the test vehicle stops close to the stop line, as shown in
Fig. 16(b). However, with the proposed approach, the test
vehicle maintains a clearance with a margin against the stop
line, as shown in Fig. 17(b). It can be seen that the proactive
motion was executed to maintain a safe distance against stop
lines. Overall, the observations confirm the improvements in
safety.

VII. CONCLUSION
This study has presented a novel motion planning strategy
to address the challenges posed by localization uncertainty
in ABs. After analyzing the characteristics of localization
uncertainty using manual driving data, lateral and longitudi-
nal motion planning algorithms were suggested to counteract
the uncertainty. The feasibility of the proposed approach was
evaluated from vehicle tests carried out on the test track,
followed by fully autonomous driving tests in actual urban
bus-only lanes to confirm its applicability. Based on this
study, three conclusions can be drawn below.

Firstly, the characteristics of the localization uncertainty in
urban bus-only lanes were observed in terms of heading bias,
lateral position error, and longitudinal position error. Changes
in the sensor’s status showed significant drifts in the heading
error, which in turn brought potential errors in the lateral posi-
tion. Although the lateral position showed higher credibility
than the longitudinal position, there still exists a risk of colli-
sion with roadside structures due to the excessive width of a
bus. To actualize fully autonomous driving, these characteris-
tics have to be dealt with. Therefore, Secondly, OF-MPCwith
an MHE scheme has been implemented for lateral motion
planning to counteract the heading bias. The effectiveness
of OF-MPC with MHE was confirmed through improved
path-tracking performance and enhanced ride comfort by
reducing unnecessary lateral motion through the utilization
of the corrected heading without bias. Lastly, the drivable
corridor and chance constraint have been implemented to
handle lateral and longitudinal position errors, respectively.
The drivable corridor enabled planned lateral motion to effec-
tively prevent collisions with roadside structures. With the
chance constraint, the proactive longitudinal motion could
be obtained with regard to stop lines. Consequently, safety
against road boundaries and stop lines could be secured.

Although the proposed motion planning approach for
ABs showed good performance against the localization

uncertainty in actual urban driving environments, there still
exists room for further performance improvements. Based
on the assumption described in Section IV-A., the pro-
posed approach could be inapplicable at moments when
there are distinct changes in performances from localization
and perception modules. Furthermore, system uncertainties
and nonlinearities raised from significant variations in the
EV’s actual dynamics from the dynamics model, as well as
changes in operating conditions, could potentially deteriorate
the accuracy of the disturbance estimator. As a follow-up
study to address these potential problems, we plan to improve
the robustness of the proposed motion planning approach
through real-time estimation of the dynamics model’s param-
eters using learning-based MPC and adaptive tube-based
nonlinear MPC schemes. In addition, while the proposed
approach effectively addressed delays, particularly at lower
speeds encountered on urban roads, unaddressed factors such
as computational time and communication delays must be
considered when applying the approach over a wider speed
range.
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