
Received 1 December 2023, accepted 5 January 2024, date of publication 17 January 2024, date of current version 29 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3355319

Exploring a Self-Replication Algorithm
to Flexibly Match Patterns
PAUL LEGER 1, (Member, IEEE), HIROAKI FUKUDA 2,
NICOLÁS CARDOZO3, AND DANIEL SAN MARTÍN 1
1Escuela de Ingeniería, Universidad Católica del Norte, Coquimbo 1781421, Chile
2Shibaura Institute of Technology, Tokyo 135-8548, Japan
3Systems and Computing Engineering Department, Universidad de los Andes, Bogotá 111711, Colombia

Corresponding author: Paul Leger (pleger@ucn.cl)

ABSTRACT Pattern matching algorithms have been studied on numerous occasions, mainly focusing on
performance because of the large amount of data used in a matching process. However, a strong focus on
performance can entail particular issues like the lack of flexibility to match patterns. As a consequence,
programming developers need to tweak matching algorithms in contortive ways or create new specialized
ones altogether if their specific needs are not supported. Inspired by the self-replication behavior of cells
in biology, we explore and evaluate the design and implementation of an algorithm to flexibly match
patterns, named Matcher Cells. Through the composition of simple rules applied to cells, developers can
adjust the matching semantics of this algorithm to different needs. We describe this algorithm using a
pure functional language as a recipe for any Turing-complete programming language and then offer an
object-oriented architecture for languages like Java. To show the flexibility of our proposal, we use a
concrete implementation in TypeScript to describe two applications, from different domains, that use pattern
matching in a stream of tokens. Additionally, we carry out performance and developer experience empirical
evaluations with undergraduate students usingMatcher Cells. Finally, we discuss the pros and cons of using a
biological-based algorithm, exploiting the compositions of rules, to match patterns.

INDEX TERMS Pattern matching, self-replication algorithms, string matching, context-aware systems.

I. INTRODUCTION
Pattern matching algorithms [1] check the occurrences
of a pattern in a sequence of tokens. Such patterns are
usually expressed using abstractions (e.g., automata [2]),
or languages (e.g., regular expressions [3]). Although these
algorithms have undergone extensive historical study, they
continue to be a focal point of attention in contemporary
times. This interest is attributed to their wide-ranging
applications across several domains, including but not limited
to spam filters, digital libraries, natural language processing,
word processors, web search engines, parsers, computational
molecular biology, and screen scrapers [4], [5]. A common
characteristic among these applications is the abundant
availability of large datasets that require filtration, extraction,

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

and processing to uncover valuable data for researchers
and practitioners. Thus, pattern-matching techniques should
demonstrate their efficiency by identifying one or more
patterns within datasets in a relatively short timeframe [5].
They should also possess the necessary flexibility and
user-friendliness to accommodate pattern matching without
requiring developers to possess an in-depth understanding of
pattern matching algorithms or the need to fine-tune existing
algorithms to meet their specific requirements [6].

One specific context that exemplifies the needs for
flexible and extensible pattern matching algorithms is web
scraping, which involves the practice of retrieving content
from websites to store in repositories like databases or
CSV files [7], [8]. Within the sphere of web scraping,
a diverse array of pattern matching techniques are employed,
including regular expressions (Regex), HTML Document
Object Model (DOM), and XPATH. Nonetheless, these

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 13553

https://orcid.org/0000-0003-0969-5139
https://orcid.org/0000-0003-1228-3186
https://orcid.org/0000-0001-5274-0148
https://orcid.org/0000-0002-3685-3879

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 1. Methodology used in this study.

methodologies have been perceived as not so flexibility, and
complex in terms of implementation, and dependence on
the structure of the data source [9]. For instance, websites
often employ similar yet inconsistent templates for creating
pages of the same category. Therefore, over time, the inner
structure of a webpage can change without prior notification
due to periodic updates in the layout, which may imply
rewriting the matcher pattern algorithm to get the desired
data. Consequently, these changes could impact the time,
effort, and cost associated with web scraping and data
extraction tasks [9]. A web scraping tool, which considers an
approximate or flexible pattern matching algorithm, can help
address the issue related to the website evolution.

In this paper, we present an algorithm founded on the
principles of Biologically Inspired Computing (BIC) [10],
which provides researchers with the basis to create flexible
algorithms for pattern matching. This algorithm centers
around a self-replication algorithm called Matcher Cells,
which takes inspiration from the self-replicating behavior of
biological cells to articulate a broad spectrum of matching
semantics [11]. This work extends an initial proposal of
Matcher Cells [12], where it was mainly employed for
matching program execution traces in the context of aspect-
oriented programming [13]. It is worth noting that, to the
best of our knowledge, the application of BIC concepts in the
realm of pattern matching remains relatively unexplored.

This paper extends our work in the following aspects:

1) A mature description of Matcher Cells using the
Scheme programming language [14] to provide a
generic implementation of our proposal that works on
Turing-complete programming languages. We selected
Scheme as a functional language that provides few
and simple constructs to formally describe, as much as
possible, a generic implementation.

2) An architecture to realize Matcher Cells in object-
oriented languages like Java. We exemplify this
architecture with a concrete implementation in
TypeScript [15] for NodeJS (v16) [16], available
at: https://github.com/pragmaticslaboratory/match-cell-
base (rev. e4c556d).

3) Two case studies validating Matcher Cells. First, a pat-
tern matching tool to analyze streaming services
as social network sites (e.g., Twitter [17]). Second,
a context-aware system [18] that adapts the difficulty of
addition exercises tasked to students, according to their
performance (i.e., context). Both case studies are avail-
able at: https://pragmaticslaboratory.github.io/matcher-
cells-study-cases [19].

4) An experience evaluation of our proposal incorporating
23 undergraduate students from Universidad Católica
del Norte (Chile). The usability of Matcher Cells is
evaluated using the System Usability Scale (SUS) [20]
approach.

5) A preliminary performance evaluation with a compar-
ison to other two pattern matching algorithms, brute-
force and KMP.

6) A discussion about the trade-off between programming
abstractions and expressiveness of Matcher Cells.

7) A deep reference frame that contains proposals related
to Matcher Cells, that is flexible-pattern matching
algorithms.

Roadmap: Fig. 1 shows the methodology followed in
this article. Section II presents two flexibility issues in pat-
tern matching algorithms with their consequences, focused
mainly on performance. After the motivation, Section III
presentsMatcher Cells, our self-replication algorithm to flex-
ibly match patterns through a conceptual design. The design
is followed by a concrete implementation of Matcher Cells
in TypeScript, named MCJs. Section IV validates our
implementation with two applications: a Twitter analyzer and
a context identifier for context-aware systems. Additionally,
we present our user experience evaluation from three
perspectives: (1) developer experience, (2) performance,
and (3) abstractions and expressiveness. Finally, the paper
discusses different algorithms for pattern matching in per-
spective of our proposal in Section VI, leading to Section VII
with the conclusion and avenues of future work.

II. FLEXIBILITY IN PATTERN MATCHING
With a large number of pattern matching algorithms available
in the body of literature [21], pattern matching is currently

13554 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

TABLE 1. Description of pattern matching algorithms.

used in several fields such as string matching [1], execution
trace matching in aspect-oriented programming [22], and
intrusion detection [23]. However, as most of these algo-
rithms mainly focus on their performance or algorithmic
complexity, some issues can appear when more flexibility
is needed. We now present existing pattern matching
algorithms, followed by the issues detected in existing
approaches.

A. MATCHING ALGORITHMS AND RESTRICTIONS
There are eleven main algorithms describing the families of
pattern matching algorithms, as described in TABLE 1. For
the evaluation of the algorithms, we assume a data set of
n tokens and a pattern of m tokens. Naïve or brute-force
algorithms enumerate all possible matchings of a pattern
by checking the satisfiability of each potential matching of
the pattern in the complete dataset. This algorithm implies
comparing the pattern with every data point, leading to a
worst-case performance (i.e., time complexity) of O(n ∗ m).
Brute-force algorithms have proven useful when matching
over small datasets, due to their simplicity. However, the
algorithm looses efficiency whenever the matching string
has too many prefixes to match the pattern (e.g., pattern
p = ‘‘ddde’’ to match string s = ‘‘ddddddddddddde’’).
The Rabin-Karp algorithm [24] offers an optimization over

the naïve approach, and a general framework for other string
matching algorithms by preprocessing the pattern string. The
algorithm uses modulo equivalences and rolling hashes to
process the string, taking the module of the pattern elements,
and the search string taking windows of size m, with a time
complexity of2(m). Given this, the complexity of the match-
ing algorithm reduces the complexity to 2(n−m+1). Given
the use of hashed data, the Rabin-Karp algorithm is applicable
for situations where there might be many matches in the
string, processing them faster. Additionally, the algorithm is
used to match bitmap objects (e.g., images) easier.
The Knuth-Morris-Pratt (KMP) algorithm [1] uses

sequences of pre-processed tokens. The matching time
complexity of KMP is O(n) in its best case time complexity.
At first glance, KMP shows a much better performance
than brute-force algorithms, however, KMP’s performance
can degrade to O(n + m) if a sequence of tokens does not

allow KMP to appropriately reuse information of previous
partial matchings of the patterns. For example, consider a
pattern p = ‘‘aaa’’ and a sequence s = ‘‘aabaab’’; here,
the matching fails every time the pattern is about to match,
i.e., when a ‘‘b’’ is found. KMP is useful for matching large
data sets, like DNA sequence analysis or image processing
(i.e., its parallel version) with a better performance than naïve
or Rabin-Karp.

The Boyer-Moore (BM) algorithm [25] flips the algorithm
to match from the tail-end of the pattern. The algorithm uses
a bad match heuristic to move forward in the search of the
pattern, skipping over the characters before the bad match,
until the first match in the pattern with the bad character.
The time complexity of the algorithm is O(n ∗ m) in the
worst case, given its dependence on the token sequence. The
BM algorithm is used for text editors, command substitution,
or intrusion detection.

BNDM (Backward Non-deterministic DAWG Match-
ing) [26] is a bit-parallel algorithm based on suffix automata,
extending BDM for faster execution. The algorithm uses
a table to store bitmasks, a sequence of bits to keep/clear
bits from another sequence, for each token to search. The
algorithm shifts the search window according to the word
size (ω), detecting matches whenever the last word bit is 1.
The time complexity of the algorithm is O(n∗m

2

ω
) for general

patterns, but can be O(n ∗m) (as in BDM) if the pattern used
is smaller than the word size. BNDM is applicable in general
matching scenarios but most efficient for searching patterns
smaller than the memory word size.

The BOM (Backward Oracle Matching) algorithm [27]
expands on the Boyer-Moore suffix matching by matching
prefixes (i.e., using a suffix oracle on the reverse pattern).
As a consequence, BOM optimizes search window shifts,
obtaining a better performance. On average, the performance
of BOM is O(n ∗ log|6|(m)/m), but degrades to O(m ∗ n) in
the worst case. BOM is used for DNA sequence matching and
general string matching.

So far, the described algorithms have gained linear
speedups proportional to the size of the data, i.e., O(n).
In order to improve such execution time, it is possible to
preprocess the data. Suffix data structures are used for such a
purpose, keeping track of suffixes from the data set. Suffix

VOLUME 12, 2024 13555

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

trees [28] use common sequences in edges going down
the tree. Tree leaves then contain the index in which the
suffix, going down to that leave, starts in the data set. The
processing of the suffix tree takes O(n) time, as it requires
going through the complete data set. However, once built, it is
possible to directly match any possible pattern in O(m) time.
Given this property, suffix trees are of special interest for
matching problems, as for example the case of DNA sequence
search. Similar to Suffix trees, Suffix arrays [29] propose an
alternative of matching algorithms that compromise search
time performance to increase flexibility of matching patterns.
Finding all k matches on a dataset takesO(m∗ log(n)+k ∗m)
time, with an additional best-time of O(n) to build the array.
Suffix arrays are built by extracting all possible suffixes of
the dataset, keeping their start index, and then sorting said
array. Suffix automata [30], [33], similar to the previous two
cases, are used to pre-process the dataset to search patterns.
The difference between the automaton and the array and tree
structures lies in the memory used for its construction, suffix
automata presenting an optimization on the space used.

The Aho-Corasick algorithm [31], [34] builds a finite
state machine with additional links between internal nodes
to speedup transitions between failed matches. In particular,
Aho-Corasick is used to match multiple patterns in the data
set, with a time complexity of O(n + l + z) with l as an
upper bound on patterns’ size, and z the total number of
appearances of the patterns, and a preprocessing time of
O(n). This algorithm is used mainly for string search, as for
example finding the smallest string of a given length, that
contains k strings.

The bit-vector parallel algorithm for string matching [32].
This algorithms is built from the ideas of the dynamic pro-
gramming algorithm for string matching, taking advantage
of a bit-mask representation of the matching dynamic pro-
gramming matrix. The matrix captures the bit representation
of the difference between that data and the pattern, being able
to manipulate the matrix in parallel using bit-wise operations.
This approach constitutes a significant matching speedup
with a time complexity of O(n∗mw), where w is the word size.
This algorithms is of special interest in bioinformatics and
DNA sequencing, as it is able to detect pattern matches with
a bounded error between the pattern and its match string in
the data set, for example a maximum error of 3 molecules.

Taking into account existing matching algorithms, we note
that when considering a large amount of data as the sequence
of tokens, some pattern matching algorithms like BM or
brute-force, in their worst case, are not usable in practice
(cf., Section V-B). From this analysis, we can conclude
that it is necessary to know the features of many pattern
matching algorithms as a specific strategy may be used to
boost performance, depending on the sequence of tokens and
used patterns.

B. UNKNOWN SEQUENCES OF TOKENS AND PATTERNS
To exemplify the shortcomings of existing matching algo-
rithms, with respect to their flexibility, consider a scenario

where a web application has a filtering policy to prevent
malicious requests that can affect its availability, compromise
security, or consume excessive resources (e.g., application
firewalls for Amazon Web Services [35]). Here, the use of
algorithms like KMP or BM may not work appropriately
because the token sequence and the pattern to search may be
unknown beforehand. More precisely, when it is necessary
to filter for malicious requests, we may not know exactly
which patterns, that represent malicious requests, should be
used. For example, we may need to extend the filtering
policy with new kinds of patterns if new variants of security
attacks are observed. In this example, if we are using exact
patternmatching (i.e., a key-value table), changing the pattern
model to use regular expressions may be necessary; that is,
a completely different implementation is needed (e.g., using
a deterministic finite automaton).

In application domains such as stream processing over the
Internet, patterns and their conditions to be matched (e.g., a
period of time) can vary on the fly;meaning that the semantics
of pattern matching algorithms should be flexibly adaptable
without tweaking or changing these algorithms.

III. MATCHER CELLS
Through small entities with simple rules, self-replication
algorithms [11] allow developers to flexibly express the
semantics of a process. This is because each rule defines a
portion of the semantics, and their composition defines the
full semantics. The composition process allows developers to
easily adjust or create new semantics (on the fly), bringing a
flexible expressiveness to define matching semantics.

This section defines a self-replication algorithm, named
Matcher Cells, to flexibly match patterns, brining a variety
of matching semantics that allows developers to express dif-
ferent the pattern matching algorithm semantics (Section 1).
This section is organized as follows.We first start introducing
self-replication behaviors in cells to describe how to use
these behaviors to match patterns. The section then describes
how to express a wide range of pattern matching semantics
through compositions of cell behavior rules. Using the
language Scheme [36], in Section III-D, we describe a generic
recipe to implement our proposal in different paradigms such
as programming languages like JavaScript.We finally present
a concrete implementation of Matcher Cells in TypeScript,
a typed version of JavaScript.

A. SELF-REPLICATION ALGORITHMS
Self-replication algorithms are inspired by cellular behav-
ior [11]. Concretely, these algorithms emulate the reactions
of a set of biological cells to a sequence of reagents in a
solution. Fig. 2 shows the different possible reactions of a cell
to a reagent, which can be:
1) the creation of an identical copy of the cell, or with a

small variation to persist in the solution,
2) nothing,
3) death, or
4) a combination of the previous ones.

13556 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 2. Different reactions of a cell to a reagent.

An algorithm that follows self-replicating behavior is
defined by a pair (Seeds,R), where Seeds is the first set of
cells into a solution, and R is the set of rules that govern
the evolution of the solution using combinations of reactions.
Additionally, if we consider that a solution is an autopoietic
system [37], this solution can add or remove cells to maintain
itself after all the current cells react to a reagent.

B. MATCHING PATTERNS
To match patterns, Matcher Cells’ algorithm borrows con-
cepts from self-replication algorithms, giving flexibility to
match patterns. For this proposal, we consider reagents as
tokens that must be matched, and cells to contain patterns
of tokens and metainformation. We use the notation c(P) to
represent a cell c that must match a pattern P, and c($) for
a matched cell, which is the match of a pattern. When a cell
creates a new cell, the new cell can gather metainformation
like the link to the parent or the time when the cell was
created. Fig. 3 illustrates the reaction to reagent a of two
solutions:

Solution 1 - c(a): a cell that must match the pattern a
(i.e., only one token), creating a cell c($) when
a is matched.

Solution 2 - c(a→b): a cell that must match a pattern that
is composed of the sequence a→b (i.e., a and
then b). When this cell matches a token a,
it will create a new cell, c(b), which must
match the token b.

In both solutions shown in Fig. 3, the cell reaction is
creation, and the links between them are stored in the
metainformation of the created cell. Additionatlly, Solution
2 shows the seed cell, c(a→b), gathers its creation time
information, which is passed to the new cell when it is created.

FIGURE 3. Reactions of two solutions to a reagent a. Solution 1 contains
a cell that must match a. The cell in solution 2 must match a→b.

Fig. 4 shows three different evolutions of the same solution
with a cell c(a→b) and a sequence of tokens a→a→b→b.
The first evolution ends with only one match (i.e., c($))
because a cell dies when this one creates new one(s);
for this reason, c(a→b) dies when it matches a token b,
and c(b) when it matches b. The second evolution ends
with four matches because no cell dies when there is a
match. In the third evolution, the solution evolves with two
matches because the seed (i.e., c(a→b)) never dies, but other
cells die when they match a token. Which is the correct
evolution? The answer will depend on the semantics required
by programmers, opening up the flexibility for programmers
to choose the most convenient option for their case.

C. MATCHING PATTERNS WITH FLEXIBLE SEMANTICS
As Fig. 4 shows, matching semantics strongly affects how a
pattern is matched as well as how many times each pattern
will be matched with a specific sequence of tokens.

In our self-replication algorithm, Matcher Cells, different
matching semantics can be expressed through compositions
of simple rules, which can be per-cell or per-solution:
1) per-cell rules: They are applied to each cell in a current

manner using the same token.
2) per-solution rules: They are applied after all per-cell

rules. Aiming to emulate the behavior of an autopoietic
system, per-solution rules point to keep a solution useful
to continue the developer-defined matching process.

VOLUME 12, 2024 13557

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 4. Three different evolution scenarios of a solution to the same sequence of tokens and pattern. The first
evolution ends with a match, the second one ends with four matches, and the last one ends up with two matches.

FIGURE 5. Using the same pattern and sequence of tokens, five different results because of matching semantics.

An example is the per-cell rule namedmatch token, which
executes the reaction of each cell to a token as shown in Fig. 2.

Using this and other rules, Fig. 5 illustrates five different
potential matching semantics of our algorithm:

13558 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

1) MULTIPLE MATCHES
Using only the match token rule, Matcher Cells provides
multiple matching semantics. For example, Fig. 5. shows that
c(a→b) generates two c($)s when it meets the sequence of
a→a→b.

2) SINGLE MATCH
This semantics is provided by the composition of
match token and kill creator rules. This new rule kills the
parent cell when a new cell is created. For example, c(a→b)
creates only one c($) because c(a→b) is killed by the rule
when c(b) is created as it is shown in Fig. 5.2.

3) ONE MATCH AT A TIME
Programmers often need to execute an action every time
that the same pattern occurs, e.g., when a security flaw
occurs [38]. However, the composition of match token and
kill creator will kill the seed cell such as c(a→b), resulting
in a single match. Using the composition ofmatch token and
kill creator together with add seed, a per-solution rule that
works after previous rules is applied; then it is possible to
match the same pattern every time it occurs (Fig. 5.3). The
add seed rule creates a copy of the seed cell whenever there
is no cell in the solution, allowing the matcher to start a new
matching process (i.e., with a new cell and solution).

4) ALWAYS START A MATCH
The same pattern might start simultaneously, making simul-
taneous processes of matching work at the same time. For
example, this semantics can be useful to capture simultaneous
multi-intruders [39]. However, the previous compositions of
rules does not allow Matcher Cells to start a new match
if there is a matching process already executing. If we
replace the add seed rule with always add, the algorithm
will always be able to start the process of a new matching
(Fig. 5.4). Note this semantics does not keep a link between
the seed and its child cell because the kill creator rule kills the
seed, and the always add rule inserts a new seed. Although
this matching semantics and multiple matches lead to the
same number of matches, both semantics are different. This
is because themultiple matches semantics allows the matcher
to continue a match from any part of a pattern already
matched, instead the always start a match semantics can only
start a match from the beginning of a pattern. To illustrate
this difference, consider that the sequence of tokens has b
as suffix, i.e., a→a→b→b. With this extended sequence,
multiple matcheswould have two newmatches, while always
start a match semantics would not have any new match when
the last b token is received by the solution.

5) MATCH PER TIME FRAME
Suppose the scenario presented in Section Unknown
Sequences of Tokens and Patterns, where malicious requests
occur in a short period of time (e.g., seconds). Here,
patterns should be matched before 1time elapses. Using the

trace time-life rule, all cells are killed when the time period
elapsed from the first token match is greater than 1time.
Fig. 5.5 shows an example of such situations.

D. EXPRESSING CELLS AND RULES
Cells and rules can be expressed using different programming
paradigms’ abstractions (e.g., objects). To illustrate our
proposal with one of the most straightforward programming
abstractions, we use functional programming, as realized in
Scheme [36]. As such, cells and rules are entirely expressed
using only plain functions. The benefit of using a pure
functional abstraction is that this description can be used as a
recipe for any Turing-complete programming language.

As token and pattern definitions strongly depend on the
application domain (e.g., string matching), they are not
considered as part of Matcher Cells’ core. In the validation
section, we discuss two applications, where concrete imple-
mentations for tokens and patterns are presented.

1) CELLS
A cell is a function composed of a pattern and its metainfor-
mation, which may create other cells when it reacts to a token
(Fig. 2). In our proposal, the signature and implementation of
a cell are:

; ; Signature
; ; Cell : Pattern x MetaInf −> (Token) −> MetaInf U List<Cell>
(define (Cell pattern meta−inf)

(lambda (token null)
(if (null? token) meta−inf

(let ([result (react token pattern)])
(if (pattern−matched? result)

(return−list−with−new−cells result))
(return−empty−list)))))

A Cell function returns its metainformation whenever it is
called without a token, otherwise it returns the reaction to the
token. The result of a cell reaction is a (possibly empty) list
of matching cells.

2) RULES
We define per-cell and per-solution rules, which correspond
to the functions applied to a list of cells (Section III-C).
Application of a rule may remove or add other cells from
the cells list. A per-cell rule is applied to each cell into
a solution, which consumes a token of its sequence to
match. A per-solution rule is applied to resultant cells after
applying all per-cell rules. The most basic example of
a per-cell rule is identity, which given a cell, it returns
it untouched. An example of a per-solution rule can be
remove-match-cells, which removes all match cells that
are into a solution. Both rule examples are presented in the
following Snippets with their corresponding signatures.

; ; Signature
; ; Per−Cell Rule: Token x List<Cell> −> List<Cell>
(define (identity token cells)

cel ls)

; ; Signature
; ; Per−Solution Rule: List<Cell> x Pattern −> List<Cell>
(define (remove−match−cells cel ls pattern)

(remove−match−cells cel ls))

VOLUME 12, 2024 13559

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 6. Main components of Matcher Cells’ architecture.

Additionally, we introduce composable rules. A compos-
able rule is a function that takes a rule (say rule 1) as
parameter and returns a new rule (rule 2), implying that a
rule is applied first and then its composition rule. We posit
kill creator as a composable rule:
; ; Signature
; ; Composable−Rule: Rule −> Rule
(define (kill−creator rule)

(lambda (cel ls token)
(let ([new−cells (rule cel ls token)])

(remove∗ (map get−creator new−cells) new−cells))))

Using composable rules, we can create different semantics
like the ones shown Fig. 5. In the code snippet below,
we present the multiple match and single-match semantics
using composable rules, both starting with the identity
rule.
(define multiple−match (match−token identity))
(define single−match (kill−creator (match−token identity)))

E. AN OBJECT-ORIENTED ARCHITECTURE
This section now shows an object-oriented architecture for
Matcher Cells that can be used in languages like Java,
JavaScript, and TypeScript. Fig. 6 shows the core components
defined in our proposal. A solution carries out the matching
process and is created with seeds, and the composition of
per-cell and per-solution rules. Both types of rules evolve
the cells in the solution. In addition, a developer can use
of the Composite design pattern [40] to create composable
rules, where the identity rule is the leaf component of this
design pattern. A cell contains the pattern that must match,
and metainformation that is cloned with potential mutations
when passed to children cells. With the react method, a cell
reacts to a token, potentially returning the creation of new
cells.

We provide a concrete implementation of our object-
oriented architecture, namedMCJs, using TypeScript, a typed
version for JavaScript (one of the most used programming
languages to develop Web applications [41], [42]). In the
following code snippet, we illustrate the matching of pattern
abc using this object-oriented implementation. Lines 1 to
5 define the pattern abc. Lines 4 and 5 use an object
composition to set the sequence. The solution, which is

composed of a cell and two rules, is defined in Line 9.
Line 13 uses the defined solution to match the pattern with
the input “abc”.

1 let a:Token = new Token("a") ; //match a
2 let b:Token = new Token("b") ; //match b
3 let c :Token = new Token("c") ; //match c
4 let ab:Sequence = new Sequence(a ,b) ; //match ab
5 let abc:Sequence = new Sequence(ab, c) ; //match abc
6

7 let seed: Cell = new Cell (abc , new MetaInformation()) ;
8

9 let sol : Solution = new Solution([seed)] , // l i s t of seeds
10 new OnlyOneMatch() , //cel l rule
11 new AddSeed()) ; //solution rule
12

13 sol .match("abc") ; //find one match

IV. VALIDATION
This section validates the usability and applicability of
Matcher Cells through two applications, from different
domains, that focus on matching stream sequences of tokens,
a distinguishing feature of our proposal. The first application
is the identification of tweets in the Twitter feed. The second
application is the implementation of context identifications
in a context-aware system [18]. Both implementations are
available online [19].

A. APPLICATION 1: IDENTIFYING TWEETS
Fig. 7 shows our emulated Twitter environment using a real
data set of 100,000 tweets related to the video game subject
during 2020. Every 60 seconds (a customizable parameter),
these tweets appear in the Web page’s feed (the central panel
in the figure). A user can identify specific tweets through
the matching of a pattern in one tweet, as the figure shows
with a red background. In this application, the token sequence
corresponds to appearing tweets as time passes; this behavior
is similar to that of streaming services.
As tweets are freely written, the same concept in a

tweet might be written in different ways, for example,
‘‘play’’,‘‘play station’’, or ‘‘ps1’’ all refer to the same
concept. Additionally, a concept can be expressed more times
than others, identifying potentially more enthusiastic tweets.
Taking into account the previous two observations, this Web
application exhibits two features of Matcher Cells: regular
expressions and multiple matching semantics. We highlight
that, although the definition of a specific pattern language is
not part of our proposal, it is not difficult to use a pattern
language specification.
In this application, the multiple matches semantics is used

to identify the intensity of a pattern. Fig. 7 shows that
users can select this semantics in the Web page. As regular
expressions (regex) are used to match different strings that
can represent a same concept because these strings follow a
similar structured form, users can enable the use of regexs to
match similar tweets in this application. To implement regex
in our proposal, we define cells that if they do (not) match
a token, these cells create other cells that expect to match
the following term in a regex. For example, Fig. 8 shows
the matching process of a+b. When token a is matched, the

13560 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 7. Web application that uses Matcher Cells to match tweets.

FIGURE 8. Using regular expressions in Matcher Cells.

cell creates a new cell with the pattern a∗b. Additionally, the
following code snippet shows the use of functions that sketch
the a+ regex operator implementation for Matcher Cells in
TypeScript.1 While the star function returns a function that
continues matching the same pattern (a∗) until a different
token appears, the plus function applies star when there is
a match (a+

= aa∗).
function star (op:function) {

return function inner(token:string) :function {
let result :function = op(token);

i f (/∗ result does not match ∗/) return result ; //a match cel l
i f (/∗ result matches ∗/) return inner ;

} }

function plus(op:function) {
return function inner(token:string) {

let result :function = op(token);
i f (/∗ result does not match ∗/) return inner ; //end of the match
i f (/∗ result matches ∗/) return star (token); //continue with star

} }

let a_plus :function = plus("a") ; // this function matches "a+"

Given that Matcher Cells ess more complex regular
expression-based patterns to match URLs, Hashtags (#),
or mentions (@). For example, a programmer might need to
match all tweets containing a given URL.

B. APPLICATION 2: IDENTIFYING CONTEXTS
A context-aware system adapts its behavior according to the
current identified context [18] from its surrounding execution

1A full implementations of this and other operators are available on
https://github.com/pragmaticslaboratory/match-cell-base. In this implemen-
tation, the functions are exchanged with objects.

environment. Fig. 9 shows a context-aware system that
adapts the difficulty of addition exercises tasked to students,
according to their performance (i.e., context). In this system,
we identify three contexts:
1) Good performance. If a student answers a number

(parametrized) of exercises correctly in a row, the system
increases by one the number of digits of both terms in
the following exercises.

2) Bad performance. If a student answers a number
(parametrized) of exercises wrong in a row, the system
decreases by one the number of digits of both terms in
the following exercises.

3) No performance evaluated. If a student skips a number
(parametrized) of exercises, the system starts from the
first level (i.e., additions with one digit).

The context-aware system can use the events associated
with correct, wrong, and skip exercises to identify the
previous contexts. Given that the Matcher Cells algorithm
matches a sequence of tokens, we modified the callbacks
of these events to add the creation of the tokens correct,
wrong, and skip. These tokens represent the respective
events, and the sequence of these tokens represents a stream
of events. To implement this context-aware system, we added
three Matcher Cells instances, where each instance is used
to identify a particular context. When one Matcher Cells
instance matches a pattern, the system executes its associated
adaptation, e.g., adding one digit in the addition terms in the
Good Performance context.

V. EMPIRICAL EVALUATION
In addition to the usability and applicability validation
of Matcher Cells in the previous section. We now turn
our attention to the evaluation of the developer experi-
ence, algorithm performance, and programming abstraction
expressiveness of self-replication algorithms for pattern
matching.

VOLUME 12, 2024 13561

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 9. Web application that uses Matcher Cells to identify the context associated with the student performance to resolve additions.

A. DEVELOPER EXPERIENCE
Throughout this paper, we claim that Matcher Cells is simple
to use by developers because of the rule composition;
comparing to other pattern matching algorithms like regex,
which is perceived as difficult by both students and pro-
fessional programmers [43], [44]. This section presents the
results of four evaluations related to developer experience.
These evaluations were carried out by 23 undergraduate
students in the third-year computer science program at the
Universidad Católica del Norte (Chile). After a 40-minute
session teaching Matcher Cells, the students are asked to
answer five tasks of pattern matching, where they have
to express the correct pattern and composition of rules in
Matcher Cells, specifically using a Web interface [19] for
MCJs. Table 2 contains a brief description of the five tasks,
ordered by incremental complexity.

1) EXPERIENCE RESULTS
As a first result, we highlight that 100% of the developers
recommended Matcher Cells for the development of pattern
matching algorithms. The usability of Matcher Cells is
evaluated using the System Usability Scale (SUS) [20]
approach, which has been widely used for years in dif-
ferent contexts [45], [46], [47]. This usability evaluation
works as a proxy to measure how error-prone is to use
a matching pattern algorithm that requires to compose a
set of rules before using it. The data used to create the
charts and SUS evaluation are anonymized and available
on http://pleger.cl/sites/matchercells/results.html (responses
in Spanish and translated to English).

a: PERCENTAGE OF DEVELOPERS WHO SOLVED A TASK
Fig. 10 compares the percentage of participants who solved a
task. For the first two tasks, which are the easiest ones, over

FIGURE 10. Percentage of students that finished the task.

95% of participants solved these tasks. The percentages of the
remaining tasks had a lower success rate than the previous
ones. The last task had the lowest percentage (close to 80%),
given that this task is the most challenging one, as it requires
the use of a time constraint to match a pattern.

b: AVERAGE TIME TO SOLVE A TASK
Fig. 11 shows the average solution time per task. For the first
four tasks, the participants solved them significantly faster
than the last task, which took almost double the time. As in
the previous evaluation, we think this task took more time
because it requires an extra configuration to be solved: the
time to match a pattern.

c: HOW EASY A TASK WAS RESOLVED
Using a Likert scale [48] of five levels (from ‘‘Strongly
agree’’ to ‘‘Strongly disagree’’), we asked to the participants
the question: ‘‘How easy was the task?’’. The answers to the
question are shown in Fig. 12. Although the ‘‘Strongly agree’’
option is not the most chosen in all tasks, there is a clear
preference towards the ‘‘Agree’’ option; in fact, no participant

13562 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

TABLE 2. Pattern matching tasks that developers asked to be solved.

FIGURE 11. Average time per task.

FIGURE 12. Using a Likert scale: how easy was the task?

FIGURE 13. Using SUS, the value range determines how usable an
interface is.

chose the ‘‘Strongly disagree’’ option. Using this evaluation,
we might claim that the use of Matcher Cells is not complex.

d: USABILITY
To evaluate Matcher Cells in terms of usability, we used the
SUS approach [20]. To use SUS, the participants who use a
product (e.g., software) are asked to score the following ten
sentences using the five-level Likert scale:
1) ‘‘I think that I would like to use this system frequently’’
2) ‘‘I found the system unnecessarily complex’’
3) ‘‘I thought the system was easy to use’’
4) ‘‘I think that I would need the support of a technical

person to be able to use this system’’
5) ‘‘I found the various functions in this system were well

integrated’’

6) ‘‘I thought there was too much inconsistency in this
system’’

7) ‘‘I would imagine that most people would learn to use
this system very quickly’’

8) ‘‘I found the system very cumbersome to use’’
9) ‘‘I felt very confident using the system’’
10) ‘‘I needed to learn a lot of things before I could get going

with this system’’
To calculate a final score, we follow a three-step

procedure:
1) Add up the final score for all odd-numbered questions,

then subtract 5 from the total to get final-odd.
2) Add up the final score for all even-numbered questions,

then subtract 25 from the total to get final-even.
3) Add final-odd and final-even, then multiply the result

by 2.5.
The final score is in the range of 0-100, which determines

a tool’s usability, shown in Fig. 13 for Matcher Cells.2

Fig. 14 shows, in ascending order, the score of the usability
evaluation using SUS for each participant. At first glance,
we observe that most participants (52.2%) find ‘‘Acceptable’’
the use of Matcher Cells. A percentage of 39.1% of students
find its use ‘‘Good’’ or ‘‘Excellent’’, and 8.7% (equivalent
to two students) find its use ‘‘Poor’’. The average score is
66.19, meaning that the usability to use Matcher Cells is
‘‘Acceptable’’, close to ‘‘Good’’.

e: CONCLUSION
Considering the results of our four empirical evaluations,
we can observe that even if this pattern matching algorithm
requires to configure a set of rules before using, developers
are able to use it without a steep learning curve. The trade-off
between a pre-configuration of the rule composition and
the flexibility to express matching semantics can affect the
preference of Matcher Cells. Nevertheless, if developers can
use an external library for rule compositions, it might give
preference towards Matcher Cells.

B. PERFORMANCE
The main goal of this study focuses on defining a
self-replication algorithm to flexibly express matching
semantics; hence, we have yet to sacrifice any potentially
valuable feature based on its expected cost. Nonetheless,
any pattern matching algorithm must exhibit a performance

2Subtle variations in the ranges can be found on the Web.

VOLUME 12, 2024 13563

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 14. In ascending order, the SUS score for 23 students.

FIGURE 15. Scenario 1: Sequence of tokens anx and pattern x .

FIGURE 16. Scenario 2: Sequence of tokens (ax)n and pattern ax .

evaluation against large amounts of data. Hence, we carry out
a preliminary performance evaluation using the TypeScript
implementation of Matcher Cells.

In our proposal, we evaluated Matcher Cells with three
scenarios with different effects, where each one increases
the number of cells or rules to manage. The first scenario

13564 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

FIGURE 17. Scenario 3: Sequence of tokens anx and pattern an. Note the brute-force algorithm is not in the chart
because its performance evaluation is out of the chart range, i.e., too slow.

only manages one cell in the solution. The second scenario
manages a limited number (n) of cells in the solution. The
last one creates cells for every new token that appears in
the sequence, meaning that Matcher Cells has to manage
a massive number of cells simultaneously in the solution.
To execute these three scenarios, we used NodeJS (v16) [16]
on a Macbook Pro (2020) with a 2 GHz Quad-Core Intel
Core i5 and 16GB of RAM running macOS Big Sur, and
Matcher Cells’ GitHub revision e4c556d (April 7, 2021).
Fig. 15, Fig. 16, and Fig. 17 show these three scenarios
of the performance evaluation comparing three algorithms
(TABLE 1): brute-force (baseline), KMP [1] (efficient
algorithm), and Matcher Cells.

For KMP, we use an implementation available on the NPM
repository [49]. Each scenario’s length sequence goes from
50,000 tokens to 2,500,000 tokens.

Fig. 15 shows the evaluation of the simplest scenario
of a pattern consisting only of one character (x), which
appears at the end of the sequence. For example, if the
sequence length is 50,000, the sequence is defined by
a49,999x, and the pattern is x. Given that this scenario is
simple, we can observe the brute-force algorithm has the best
performance, and our proposal has the worst performance.
This is because Matcher Cells and KMP require overload to
work; for example, our proposal must keep cells and execute
a set of rules that are composed.

Fig. 16 shows the multiple matches of the pattern ax
in a sequence defined by the regex (ax)n. For example,
if n = 3, the sequence is axaxax, and the pattern is ax.
In this case, we can see that KMP has the best performance,
while our proposal has a similar performance with the brute-
force algorithm. Compared to the previous Matcher Cells
evaluation, the performance in this case is 3 times better for
large sequences. This is because every time there is a match,
all cells except the seed are removed from the solution.

Fig. 17 shows the performance evaluation of a complex
pattern, an, in a sequence of anx. For example, if n = 3,

the sequence is aaax and the pattern is aaa. First, note that
the figure does not display the brute-force algorithm. This
is because its performance is orders of magnitude slower
than the performance of the other algorithms. Therefore,
we excluded it to be able to observe the difference between
Matcher Cells and KMP. Second, although KMP is better
than Matcher Cells, both algorithms have a similar trend,
indicating that our proposal might be scalable to more
complex sequences and patterns.
Conclusion: With this preliminary evaluation, we can

observe that our proposal is not as efficient as existing pattern
matching algorithms. Indeed, if we carry out a preliminary
time complexity of the current version of Matcher Cells,
we might estimate:

• Worst case. If no rule removes cells, the time complexity
is O(cr ∗ n), where c is the number of cells, r is number
of rules, and n is the length of the input. Although
this result is clearly much slower than the existing
algorithms, we can observe that the use ofMatcher Cells
with regular expressions is better than that of the brute-
force algorithm (Fig. 17). This case shows that our
algorithm is exponentially time-consuming, meaning
that this algorithm can be extremely slow.

• Best case. If a rule like kill creator is used, the time
complexity might improve toO(1r ∗n) → O(n) because
only one cell is alive during the matching process. This
time complexity means that Matcher Cells is linear,
making it works fast. However, this efficient result only
happens when a programmer wants to match the first
match in an input, and not all possible matches.

Although this paper explores how we might use self-
replication algorithms to flexibly match patterns, we think,
as a future step, that is possible to explore efficient ways
to process units like cells. For example, as our current
implementation evaluates all cells within a solution for every
new token, we might index or classify cells to prevent
evaluations when specific tokens do not affect some cells.

VOLUME 12, 2024 13565

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

C. PROGRAMMING ABSTRACTIONS AND
EXPRESSIVENESS
A distinguishing feature of our proposal is the composition of
simple abstractions, i.e., rules, to flexibly express matching
semantics. By simple, we mean a rule that only targets one
concern in an isolated manner, where compositions of these
rules are able to express advanced semantics. The use of
simple abstractions boosts modularity [50], meaning that
the reuse of abstractions (components) by allowing separate
concerns. However, the effect of tyranny of the dominant
decomposition [51] raises the following issue: a concern that
does not fit into the initial view of a system ends up being
tangled and scattered with other concerns, implying that this
concern cannot be defined in an isolated manner. This issue
appears in the rule compositions of our proposal as well.

Consider as an example a mobile context-aware system
scenario where the system must match malicious patterns if
and only if the Internet connection context is unsafe. For this
scenario, an intuitive composition of the per-solution rules
is to use the add-seed and then the kill-all-on-safe rules,
as presented in the code snippet below. In this composition,
add-seed creates new cells to match malicious patterns,
while the kill-all-on-safe rule kills all cells, that match
malicious patterns, when the Internet connection is safe
because these patterns are only relevant in an unsafe context.
Unfortunately, note that the composition will not match all
desired malicious patterns. In particular, any pattern that
starts in a safe context and ends the matching process in
an unsafe context will not be matched. This is because the
rule kill-all-on-safe kills any cell in a safe context, involving
the cell seeds added by the add-seed rule. The erroneous
behavior arises due to the composition of two isolated rules
whose impacts affect each other, e.g., kill-all-on-safe impacts
on add-seed.

(define one−match−at−a−time−on−unsafe
(kill−all−on−safe (add−seed identity)))

Regarding Matcher Cells’ expressiveness, we claim the
composition of simple rules in our proposal allow for an
expressive definition of the matching semantics. To affirm
that our proposal can express and execute any matching
semantics that a Turing-complete language can express,
we only need to simulate one of these languages with
our rules. The λ-calculus [52] is a Turing-complete and
functional programming language whose abstractions consist
of functions that take one function as parameter and return a
function as a result. Like the λ-calculus, Matcher Cells’ rules
are also functions that take functions (cells) as parameters and
return functions (cells) as a result. Using the currying design
pattern [53] to remove the need of a second parameter in rules,
we can say our proposal simulates the λ-calculus; therefore,
Matcher Cells is a Turing-complete expressive.
Conclusion: We can affirm that Matcher Cells users will

have to understand how to compose rules; indeed, we used
a 40-minute session to teach developers how to compose
rules before evaluating Matcher Cells. Likewise, if functions

can use all the power of a Turing-complete language,
we can also affirm that these rules are expressive enough.
However, the use of high-level programming abstractions and
expressiveness present the following trade-off:

• Programming abstractions. Using simple abstractions
like rules, developers can enhance the flexibility to
express different matching semantics in one algorithm;
being careful in the composition of rules. However, if a
rule has to tangle concerns, modularity and reuse for the
composition of rules might be affected.

• Expressiveness. To define rules, developers can use a
Turing-complete language. However, the use of the full
power of a language can break the spirit to be simple
enough only to implement one concern of a particular
matching semantics.

A potential solution is to set a boundary between abstrac-
tions and expressiveness. This boundary can be addressed
by the use of a domain-specific language [54] to define
language-level rules that enforce the simple spirit of matching
rules that are expressive enough.

VI. RELATED WORK
String pattern matching has been a subject of study since
the late 1970s and remains a vibrant research field due to
its diverse applications that encompass a broad spectrum
of domains, including intrusion detection systems, bioinfor-
matics, web search engines, spam filters, natural language
processing, and web scraping. According to [6], string
matching algorithms fall into two main categories: exact
string matching algorithms and approximate string matching
algorithms. The former aims to identify a complete match,
whereas the latter is designed to locate a substring that closely
resembles a specified pattern string.

Exact string matching algorithms can be further catego-
rized into single-pattern and multiple-pattern exact matching
approaches. In single-pattern matching algorithms, the
algorithm is designed to work with a single pattern as input,
directing its efforts to locating that specific pattern within
the target database (i.e., sequence of tokens). In contrast,
multiple-pattern matching algorithms are equipped to handle
a single input, tasked with searching for multiple instances
of that input throughout the target database. Moreover,
software based exact matching algorithms can be divided
into character comparison, hashing, bit-parallel, and hybrid
approaches [6], [55].
Unlike exact string matching algorithms, approximate

algorithms can be classified as filtration-based algorithms
and backtracking-based algorithms. The first one follows
a two-stage process. In the initial stage, these algorithms
pinpoint potential occurrences of patterns within the text.
In the subsequent stage, all of these identified locations
undergo comprehensive verification. On the other hand,
approximate algorithms build upon the foundations of exact
string matching algorithms but precise string matching
algorithms are adapted to facilitate approximate searching
through edit distance operations [56], [57], [58].

13566 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

For instance, the Levenshtein distance [59], also known
as edit distance, is a measure of the minimum number of
single-character edits (insertions, deletions, or substitutions)
required to change one word into another. For example,
let’s consider two words: ‘‘kitten’’ and ‘‘sitting’’. In total,
we needed seven operations to transform ‘‘kitten’’ into
‘‘sitting’’. Thus, the levenshtein distance between these two
words is 7. The smaller the levenshtein distance, the more
similar the words are in terms of their spelling or structure.
Such approaches often promote the utilization of compact
data and data structures based on suffix indexing [60], [61].
To evaluate Matcher Cells against the most relevant

approaches in terms of flexibility, we categorize them into
three sets: classical general-purpose algorithms, domain-
specific algorithms, and nature-inspired models.

A. CLASSICAL GENERAL-PURPOSE ALGORITHMS
Classical general-purpose algorithms for string pattern
matching are foundational techniques designed to efficiently
locate occurrences of a specific pattern within a given text or
a sequence of tokens. These algorithms encompass character-
based, hashing, suffix automata, bit-parallel, and hybrid
approaches, as categorized by [62]. A concise overview of
each follows.

The character-based approach is a classical method that
addresses string matching problems by directly comparing
individual characters. This method does not entail any
preprocessing and typically involve two essential stages: the
searching phase and the shift phase. Previous research has
sought enhancements for both stages. Significantly, among
various character-based approaches, the BM algorithm [25]
stands as a benchmark and standard method in the field.

The suffix automaton is a composite structure involving
two interconnected yet separate automaton constructors: the
deterministic acyclic finite state automaton, which serves as
a data structure representing a finite set of strings, and the
suffix automaton, a finite automaton functioning as a suffix
index for matching purposes [63]. This strategy is suitable
for long-length patterns and performs very well because as
it gives a pre-generated prefix table, so the procedure allows
skipping certain comparisons during matching.

KMP [1] and BM [25] are examples of algorithms that
uses the concept of automata, mainly focus on performance.
The Matcher Cells algorithm, on the contrary, focuses on
the runtime flexibilities that enables developers to cus-
tomize matching semantics, inspired by the self-replicating
behavior of cells. Therefore, we should not directly com-
pare Matcher Cells with existing proposals in terms of
performance; rather we should compare them regarding the
flexibility to match patterns in different ways.

In hashing-based strategies, characters are represented
by hash values rather than being compared individually,
significantly reducing computational overhead through the
comparison of integer values instead of characters [64].
For instance, the Karp-Rabin algorithm [24] employs this
method to address string matching challenges, conducting

comparisons from left to right. However, the approach
is constrained by hash collisions, where two distinct
strings may map to the same numerical value. While
these methods accelerate pattern matching, they ultimately
rely on character-based comparisons and lack the runtime
flexibilities offered by Matcher Cells.

Other classical algorithms are bit-parallel and hybrid
approaches. The first one relies on the principles of parallel
computing, reducing the number of operations within the
algorithm to match the number of bits in a computer
word [65]. This algorithm demonstrates speed and efficiency,
particularly when the length of the provided pattern p is
shorter than the word length [64]. The second one combines
the advantages of different algorithms and is performs
better than individual algorithms [66]. These approaches can
combine one or more character-based methods, one or more
methods from automata-based and character- and automata-
based methods [6]. In terms of flexibility, each of them lacks
the option for semantic customization.

B. DOMAIN-SPECIFIC ALGORITHMS
Domain-specific algorithms for pattern matching are tailored
methods designed to address specific application domains
or types of data. Unlike general-purpose algorithms that
aim for versatility across various scenarios, domain-specific
algorithms are optimized to excel in particular contexts.
While Matcher Cells can operate in the same domains as
classical algorithms, it could be especially advantageous in
domains where temporal information is crucial for pattern
detection, particularly in highly dynamic environments.

In the realm of information security, specifically concern-
ing spambots, algorithms play a crucial role in protecting
digital systems and user data from the actions of automated
programs engineered for spam distribution [67]. Spambots,
also known as spam robots, are automated scripts or software
applications designed to create and propagate unsolicited
and potentially harmful content, including unwanted adver-
tisements, phishing schemes, and malware [68]. According
to [69], there are four types of spam detection tech-
niques: content-based, link-based, machine learning, and
string pattern matching-based. Subsequently, we compare
Matcher Cells with techniques based on string pattern
matching in the domain of spambot detection.

Alamro et al. [69] propose an algorithm that can detect one
or more sequences of indeterminate actions in text T in linear
time. The algorithm takes into account temporal information,
because it considers time-annotated sequences and requires a
match to occur within a time window t. Authors state that
some spambots might attempt to disguise their actions by
varying certain actions. For example, a spambot takes the
actions ABCDEF, then ACCDEF, then ABDDEF, etc. Thus, the
sequence can be described as A[BC][CD]DEF. Spambots
try to deceive by changing the second and third action so
actions [BC] and [CD] are variations of the same sequence.
Additionally, spambots can execute these variations across
different time frames, adding complexity to their detection.

VOLUME 12, 2024 13567

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

In reference to the research conducted byAlamro et al. [69],
Matcher Cells exhibits comparable functionality by amal-
gamating multiple rules to identify variations in actions.
Employing the One Match at a Time and Match per Time
Frame semantic rules, Matcher Cells seamlessly incorporates
temporal information, enabling it to effectively detect
spambots that disguise their actions. Furthermore, a pivotal
feature distinguishing Matcher Cells could be the ability to
identify multiple spambots through the application of the
Always Start a Match rule. This rule facilitates a concurrent
process of matching sequences, leading to the simultaneous
identification of multiple spambots.

To detect the spambot sequences, the algorithm requires
as input sequences temporally annotated actions from user
logs. Specifically, each request in a user log is mapped to a
predefined index key in the sequence and the date timestamp
for the request in the user log is mapped to a time point in the
sequence. Then, by using Manber and Myers algorithm [29]
and bit masking operation, the algorithm can detect one or
more indeterminate sequences in a Web user log.

Ghanaei et al. [70] present a technique for identifying Web
spambots, addressing spam-related issues on the Web. This
method relies on analyzing Web usage behavior, extracting
discriminative features known as action strings from user
logs to distinguish between spambot and human actions.
An action is defined as a set of user efforts aimed at
achieving specific purposes, while action strings represent
sequences of actions for a particular user in a transaction.
To implement a real-time, on-the-fly classification method,
the authors construct a trie data structure based on action
strings.Within this structure, each trie edge includes an action
key index, and each node incorporates the probability of
a given action string being associated with either human
or spambot behavior. Consequently, new actions can be
classified into two categories: Match and NotMatched.

Hayati et al. [68] introduce a method for detecting web
spambots. The authors propose a rule-based approach that
analyzes web usage behavior action strings using Trie data
structures. These action strings are indicative of spambot
activity. The system is designed for on-the-fly classification,
meaning it can quickly and effectively identify web spambots
in real-time.

In light of the research conducted byGhanaei et al. [70] and
Hayati et al. [68], it is anticipated that Matcher Cells would
exhibit superior performance in spambot detection. This
expectation arises from the observation that these studies do
not incorporate temporal information. Therefore, in the con-
text of evaluating the most pertinent works on string-based
approaches to spambot detection, Matcher Cells is expected
to showcase enhanced flexibility in rule composition, thereby
boosting its effectiveness in identifying spambots.

C. NATURE-INSPIRED MODELS
Nature-inspired models are computational or mathematical
models that draw inspiration from natural processes, phe-
nomena, or systems observed in the natural world. We have

identified two models for comparison with Matcher Cells:
cellular automaton and chemical abstract machine. We elab-
orate on these comparisons below.

A cellular automaton [71] is a collection of cells that
evolves through a number of discrete time steps according
to a set of simple rules based on the states of neighboring
cells. In contrast to its simplicity, cellular automata can
model complex behavior in various areas such as physics,
engineering, and theoretical biology. For example, it is
known that pores of leaves in plants can be represented
using a cellular automaton [72]. Similarly, in Matcher Cells,
a programmer can use a composition of simple rules to
define their own matching semantics. Although cellular
automata can be Turing-complete, so it can be applied to
pattern matching, to the best of our knowledge there is
no research proposing them as concrete interfaces for this
subject. In contrast, our proposal provides a concrete interface
of rules that are composed and applied for pattern matching.

A chemical abstract machine [73] is a model for asyn-
chronous concurrent computations. This solution borrows an
idea from a chemical solution in which floating molecules
can interact with each other according to reaction rules,
allowing for contact among molecules. This model gives
expressive power to proposals such as Petri Nets [74] in
concurrent programming. Indeed, it is possible to represent
the full Calculus of Communicating Systems (CSS) [75]
using elements such as agents, molecules and rules defined
in chemical abstract machines. Matcher Cells also adopt a
set of reaction rules to represent expressiveness for defining
programmers’ own semantics. It also might be possible to
improve the performance of Matcher Cells, introducing the
concept of a membrane that encapsulates molecule evolutions
locally [73].

VII. CONCLUSION
The field of patternmatching algorithms has been vastly stud-
ied, with solid contributions from the research community.
Most of the contributions in the field are related to efficiency
and performance, leaving the flexibility to express different
matching semantics aside. As a consequence, developers of
these algorithms need to learn many algorithmic techniques,
tweak them in contortive ways, or create new specialized
techniques altogether if their specific needs are not supported
off-the-shelf. This paper explores the use of self-replication
algorithms to express different matching semantics flexibly.
As a result of this exploration, we propose Matcher Cells,
an algorithm inspired by the self-replication behavior of
cells that allows developers to match patterns flexibly.
The matching semantics of Matcher Cells is expressed by
the composition of simple match rules. We provide a
functional description of our proposal to implement it in
any Turing-complete language that provides functions like
abstractions. Additionally, we provide a concrete imple-
mentation for TypeScript used to evaluate our proposal by
means of two applications for streaming data sequences.
Additionally, we evaluate the performance of our approach

13568 VOLUME 12, 2024

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

with an empirical evaluation to assess the usability aspects of
Matcher Cells.

Considering this paper as a first step to propose
self-replication algorithms to match patterns, there are
still some open issues to address. For example, although
performance is beyond the scope of our evaluation, we are
aware that the current implementation needs to improve its
performance.We plan to explore and evaluate index strategies
in cells and rules to solve this issue.

ACKNOWLEDGMENT
The authors want to thank Marcelo Lazo (marcelo.lazo@
alumnos.ucn.cl), an undergraduate student from Universidad
Católica del Norte, Chile, who implemented the TypeScript
version ofMatcher Cells. Additionally, they thank Éric Tanter
(etanter@dcc.uchile.cl) for providing initial ideas.

REFERENCES
[1] D. E. Knuth, J. H. Morris, and V. R. Pratt, ‘‘Fast pattern matching in

strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jun. 1977.
[2] J. Sakarovitch, Elements of Automata Theory. Cambridge, U.K.:

Cambridge Univ. Press, Oct. 2009.
[3] K. Thompson, ‘‘Programming techniques: Regular expression search

algorithm,’’ Commun. ACM, vol. 11, no. 6, pp. 419–422, Jun. 1968.
[4] L. Chen, S. Lu, and J. Ram, ‘‘Compressed pattern matching in DNA

sequences,’’ in Proc. IEEE Comput. Syst. Bioinf. Conf., Standford, CA,
USA, Aug. 2004, pp. 62–68.

[5] B. A. Hamed, O. A. S. Ibrahim, and T. Abd El-Hafeez, ‘‘A survey
on improving pattern matching algorithms for biological sequences,’’
Concurrency Comput., Pract. Exper., vol. 34, no. 26, p. e7292, Nov. 2022.

[6] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and
M. Imran, ‘‘Exact string matching algorithms: Survey, issues, and future
research directions,’’ IEEE Access, vol. 7, pp. 69614–69637, 2019.

[7] G. Barbera, L. Araujo, and S. Fernandes, ‘‘The value of web data scraping:
An application to TripAdvisor,’’ Big Data Cognit. Comput., vol. 7, no. 3,
p. 121, Jun. 2023.

[8] M. Khder, ‘‘Web scraping or web crawling: State of art, techniques,
approaches and application,’’ Int. J. Adv. Soft Comput. Appl., vol. 13, no. 3,
pp. 145–168, Dec. 2021.

[9] P. Gao, M. Saeki, J. Guo, and H. Han, ‘‘Stable web scraping: An approach
based on neighbour zone and path similarity of page elements,’’ Int. J. Web
Eng. Technol., vol. 13, no. 4, pp. 301–333, 2018.

[10] A. K. Kar, ‘‘Bio-inspired computing: A review of algorithms and scope of
applications,’’ Exp. Syst. Appl., vol. 59, pp. 20–32, Oct. 2016.

[11] J. V. Neumann, Theory of Self-Reproducing Automata. Champaign, IL,
USA: Univ. Illinois Press, 1966.

[12] P. Leger and É. Tanter, ‘‘A self-replication algorithm to flexibly match
execution traces,’’ in Proc. 11th Workshop Found. Aspect-Oriented Lang.,
Potsdam, Germany, Mar. 2012, pp. 27–32.

[13] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda,
and A. Mendhekar, ‘‘Aspect-oriented programming,’’ in Special Issues in
Object-Oriented Programming. Berlin, Germany: Springer, 1996.

[14] R. A. Kelsey and J. A. Rees, ‘‘A tractable scheme implementation,’’ LISP
Symbolic Comput., vol. 7, no. 4, pp. 315–335, 1994.

[15] TypeScript. (Oct. 1, 2023). JavaScript With Syntax for Types. [Online].
Available: https://www.typescriptlang.org

[16] The OpenJS Foundation. (Oct. 1, 2023). NodeJS: A Javascript Runtime
Built for the Server Side. [Online]. Available: https://nodejs.org

[17] Twitter. (Oct. 1, 2023). A Microblogging and Social Networking Service.
[Online]. Available: http://twitter.com

[18] M. Satyanarayanan, ‘‘Pervasive computing: Vision and challenges,’’ IEEE
Pers. Commun., vol. 8, no. 4, pp. 10–17, Aug. 2001.

[19] P. Leger and M. Lazo. (Oct. 1, 2023). Case Studies of Matcher Cells.
[Online]. Available: http://pragmaticslaboratory.github.io/matcher-cells-
study-cases

[20] J. Brooke, Usability Evaluation in Industry. Boca Raton, FL, USA: CRC
Press, 1996.

[21] A. Apostolico and Z. Galil, Pattern Matching Algorithms. Oxford, U.K.:
Oxford Univ. Press, 1997.

[22] P. Leger, É. Tanter, and H. Fukuda, ‘‘An expressive stateful aspect
language,’’ Sci. Comput. Program., vol. 102, pp. 108–141, May 2015.

[23] S. Kumar and E. H. Spafford, ‘‘A pattern matching model for misuse
intrusion detection,’’ in Proc. 17th Nat. Comput. Secur. Conf., Oct. 1994,
pp. 11–21.

[24] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, Mar. 1987.

[25] R. S. Boyer and J. S. Moore, ‘‘A fast string searching algorithm,’’Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[26] G. Navarro and M. Raffinot, ‘‘A bit-parallel approach to suffix automata:
Fast extended string matching,’’ in Proc. Annu. Symp. Combinat. Pattern
Matching. Cham, Switzerland: Springer, 1998, pp. 14–33.

[27] C. Allauzen, M. Crochemore, and M. Raffinot, ‘‘Factor oracle: A new
structure for pattern matching,’’ in Proc. Conf. Current Trends Theory
Pract. Informat. Cham, Switzerland: Springer, Nov. 1999, pp. 295–310.

[28] P. Weiner, ‘‘Linear pattern matching algorithms,’’ in Proc. 14th Annu.
Symp. Switching Automata Theory, Oct. 1973, pp. 1–11.

[29] U. Manber and G. Myers, ‘‘Suffix arrays: A new method for on-line string
searches,’’ SIAM J. Comput., vol. 22, no. 5, pp. 935–948, Oct. 1993.

[30] M. Crochemore and D. Perrin, ‘‘Two-way string-matching,’’ J. ACM,
vol. 38, no. 3, pp. 650–674, Jul. 1991.

[31] A. V. Aho and M. J. Corasick, ‘‘Efficient string matching: An aid
to bibliographic search,’’ Commun. ACM, vol. 18, no. 6, pp. 333–340,
Jun. 1975.

[32] G. Myers, ‘‘A fast bit-vector algorithm for approximate string matching
based on dynamic programming,’’ J. ACM, vol. 46, no. 3, pp. 395–415,
May 1999.

[33] M. Rubinchik and A. M. Shur, ‘‘EERTREE: An efficient data structure
for processing palindromes in strings,’’ Eur. J. Combinatorics, vol. 68,
pp. 249–265, Feb. 2018.

[34] B.Meyer, ‘‘Incremental string matching,’’ Inf. Process. Lett., vol. 21, no. 5,
pp. 219–227, Nov. 1985.

[35] Amazon. (Oct. 1, 2023). AWS WAF and AWS Shield Documentation.
[Online]. Available: https://aws.amazon.com/documentation/waf

[36] G. Springer and D. P. Friedman, Scheme and the Art of Programming.
Cambridge, MA, USA: MIT Press, 1989.

[37] H. R. Maturana and F. J. Varela, Autopoiesis and Cognition: The
Realization of the Living, vol. 42. Berlin, Germany: Springer, 2012.

[38] M. Martin, B. Livshits, and M. S. Lam, ‘‘Finding application errors and
security flaws using PQL: A program query language,’’ in Proc. 20th ACM
SIGPLAN Conf. Object-Oriented Program. Syst., Lang. Appl., San Diego,
CA, USA, Oct. 2005, pp. 365–383.

[39] T. Shoji, M. Takimoto, and Y. Kambayashi, ‘‘Capture of multi intruders by
cooperative multiple robots using mobile agents,’’ in Proc. 12th Int. Conf.
Agents Artif. Intell., Valletta, Malta, 2020, pp. 370–377.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Professional Computing
Series). Reading, MA, USA: Addison-Wesley, Oct. 1994.

[41] W3 Techs. (Oct. 1, 2023). Usage of Client-side Programming
Languages. [Online]. Available: https://w3techs.com/technologies/
history_overview/client_side_language/all

[42] Stackover Flow. (Sep. 1, 2022). Developer Survey Results. [Online].
Available: https://insights.stackoverflow.com/survey/2021

[43] C. W. Brown and E. A. Hardisty, ‘‘RegeXeX: An interactive system
providing regular expression exercises,’’ inProc. 38th SIGCSE Tech. Symp.
Comput. Sci. Educ. New York, NY, USA: Association for Computing
Machinery, Mar. 2007, pp. 445–449.

[44] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, ‘‘Regexes
are hard: Decision-making, difficulties, and risks in programming regular
expressions,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2019, pp. 415–426.

[45] A. Bangor, P. T. Kortum, and J. T. Miller, ‘‘An empirical evaluation of
the system usability scale,’’ Int. J. Hum.-Comput. Interact., vol. 24, no. 6,
pp. 574–594, Jul. 2008.

[46] D. Derisma, ‘‘The usability analysis online learning site for supporting
computer programming course using system usability scale (SUS) in a
university,’’ Int. Assoc. Online Eng., Austria, Tech. Rep., Jun. 2020.

[47] P. Vlachogianni and N. Tselios, ‘‘Perceived usability evaluation of
educational technology using the system usability scale (SUS): A
systematic review,’’ J. Res. Technol. Educ., vol. 54, no. 3, pp. 392–409,
May 2022.

VOLUME 12, 2024 13569

P. Leger et al.: Exploring a Self-Replication Algorithm to Flexibly Match Patterns

[48] G. Albaum, ‘‘The Likert scale revisited,’’Market Res. Soc. J., vol. 39, no. 2,
pp. 1–21, Mar. 1997.

[49] M. Mota. (2022). A Concrete Implementation of KMP Available on
the NPM Repository. Accessed: Oct. 1, 2023. [Online]. Available:
https://www.npmjs.com/package/kmp

[50] D. Parnas, ‘‘On the criteria for decomposing systems into modules,’’
Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[51] P. Tarr, H. Ossher,W. Harrison, and S.M. Sutton, ‘‘N degrees of separation:
Multi-dimensional separation of concerns,’’ in Proc. Int. Conf. Softw. Eng.,
Los Angeles, CA, USA, May 1999, pp. 107–119.

[52] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 1984.

[53] H. B. Curry, ‘‘Some philosophical aspects of combinatory logic,’’ in Proc.
The Kleene Symp., vol. 101, J. Barwise, H. J. Keisler, and K. Kunen, Eds.
1980, pp. 85–101.

[54] A. Van Deursen and P. Klint, ‘‘Domain-specific language design requires
deature descriptions,’’ J. Comput. Inf. Technol., vol. 10, no. 1, pp. 1–17,
2002.

[55] K. Al-Khamaiseh and S. Al Shagarin, ‘‘A survey of string matching
algorithms,’’ Int. J. Eng. Res. Appl., vol. 4, pp. 144–156, Aug. 2014.

[56] M. Farach-Colton, G. M. Landau, S. C. Sahinalp, and D. Tsur, ‘‘Optimal
spaced seeds for faster approximate stringmatching,’’ J. Comput. Syst. Sci.,
vol. 73, no. 7, pp. 1035–1044, Nov. 2007.

[57] J. Kärkkäinen and J. C. Na, ‘‘Faster filters for approximate string match-
ing,’’ in Proc. Meeting Algorithm Eng. Experiments, 2007, pp. 84–90.

[58] G. Kucherov, L. Noé, and M. Roytberg, ‘‘Multi-seed lossless filtration,’’ in
Combinatorial Pattern Matching, S. C. Sahinalp, S. Muthukrishnan, and
U. Dogrusoz, Eds. Berlin, Germany: Springer, 2004, pp. 297–310.

[59] F. P. Miller, A. F. Vandome, and J. McBrewster, Levenshtein Distance:
Information Theory, Computer Science, String (Computer Science),
String Metric, Damerau? Levenshtein Distance, Spell Checker, Hamming
Distance. Alpha Press, 2009.

[60] G. Kucherov, K. Salikhov, and D. Tsur, ‘‘Approximate string matching
using a bidirectional index,’’ Theor. Comput. Sci., vol. 638, pp. 145–158,
Jul. 2016.

[61] G. Navarro and R. Baeza-Yates, ‘‘A hybrid indexing method for
approximate string matching,’’ J. Discrete Algorithms, vol. 1, pp. 205–239,
Jan. 2001.

[62] A. N. M. E. Rafiq, M. W. El-Kharashi, and F. Gebali, ‘‘A fast string search
algorithm for deep packet classification,’’ Comput. Commun., vol. 27,
no. 15, pp. 1524–1538, Sep. 2004.

[63] W. Yang, ‘‘Mealy machines are a better model of lexical analyzers,’’
Comput. Lang., vol. 22, no. 1, pp. 27–38, Apr. 1996.

[64] A. Akram Abdulrazzaq, N. Abdul Rashid, A. Hasan, andM. Abu-Hashem,
‘‘The exact string matching algorithms efficiency review,’’ Global J.
Technol., vol. 4, pp. 576–589, Jan. 2013.

[65] S. Faro and T. Lecroq, ‘‘The exact online string matching problem:
A review of the most recent results,’’ ACM Comput. Surv., vol. 45, no. 2,
pp. 1–42, Mar. 2013.

[66] F. Franek, C. G. Jennings, and W. F. Smyth, ‘‘A simple fast hybrid pattern-
matching algorithm,’’ J. Discrete Algorithms, vol. 5, no. 4, pp. 682–695,
Dec. 2007.

[67] P. Heymann, G. Koutrika, and H. Garcia-Molina, ‘‘Fighting spam on social
web sites: A survey of approaches and future challenges,’’ IEEE Internet
Comput., vol. 11, no. 6, pp. 36–45, Nov. 2007.

[68] P. Hayati, V. Potdar, A. Talevski, and W. Smyth, ‘‘Rule-based on-the-fly
web spambot detection using action strings,’’ inProc. Annu. Collaboration,
Electron. Messaging, Anti-Abuse Spam Conf., 2010, pp. 1–7.

[69] H. Alamro, C. S. Iliopoulos, and G. Loukides, ‘‘Efficiently detecting
web spambots in a temporally annotated sequence,’’ in Advanced
Information Networking and Applications. Cham, Switzerland: Springer,
2020, pp. 1007–1019.

[70] V. Ghanaei, C. S. Iliopoulos, and S. P. Pissis, ‘‘Detection of web spambot
in the presence of decoy actions,’’ in Proc. IEEE 4th Int. Conf. Big Data
Cloud Comput., Dec. 2014, pp. 277–279.

[71] P. Sarkar, ‘‘A brief history of cellular automata,’’ ACM Comput. Surv.,
vol. 32, no. 1, pp. 80–107, Mar. 2000.

[72] D. Peak, J. D. West, S. M. Messinger, and K. A. Mott, ‘‘Evidence for
complex, collective dynamics and emergent, distributed computation in
plants,’’ Proc. Nat. Acad. Sci. USA, vol. 101, no. 4, pp. 918–922, Jan. 2004.

[73] G. Berry and G. Boudol, ‘‘The chemical abstract machine,’’ Theor.
Comput. Sci., vol. 96, no. 1, pp. 217–248, Apr. 1992.

[74] W. Reisig, Petri Nets: An Introduction, vol. 4. Berlin, Germany: Springer,
2012.

[75] R. Milner, A Calculus of Communicating Systems. Berlin, Germany:
Springer, 1982.

PAUL LEGER (Member, IEEE) received the Ph.D.
degree in computer science from the University
of Chile. He is currently an Associate Professor
with Universidad Católica del Norte, Chile. His
research interests include issues related to pro-
gramming languages, software engineering, and
different programming approaches.

HIROAKI FUKUDA received the Ph.D. degree
in computer science from Keio University. He is
currently an Associate Professor with the Shibaura
Institute of Technology, Japan. His research inter-
ests include software engineering and distributed
programming.

NICOLÁS CARDOZO received the joint Doctoral
Diploma degree from Université Catholique de
Louvain and Vrije Universiteit Brussel, Belgium.
He was a Postdoctoral Fellow with Trinity College
Dublin and Vrije Universiteit Brussel. He is
currently an Associate Professor with Universidad
de los Andes, Colombia. His research inter-
est includes the design and implementation of
programming languages for distributed adaptive
software systems. He has worked in the imple-

mentation of dynamic distributed adaptations in the smart cities domain
from different perspectives, such as automated personalized assistants and
evolutionary models for dynamic adaptations.

DANIEL SAN MARTÍN received the B.S. degree
in engineering science and computer engineering
from Universidad Católica del Norte, Coquimbo,
Chile, and the M.Sc. and Ph.D. degrees in
computer science from Universidade Federal de
São Carlos, Brazil. He is currently an Assistant
Professor with the School of Engineering, Uni-
versidad Católica del Norte. Also, he has held
pivotal positions as a Chief Information Security
Officer (CISO), the ProjectManager (PM), and the

Information Analyst in both public and private sectors. His current research
interests include software engineering, software architecture, programming
languages, and models.

13570 VOLUME 12, 2024

