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ABSTRACT We propose an accurate and noise-robust deep learning model to diagnose bearing faults
for practical implementation in industry. To achieve high classification accuracy in a noisy environment,
we designed a time-frequency multi-domain fusion block, incorporated bearing-fault physics into the
model parameters, and employed attention modules. The proposed model individually extracts essential
features from the time-domain vibration signal and the corresponding spectrum in a parallel pipeline.
Subsequently, multi-domain feature maps are fused to capture a wider representation of bearing fault signals.
The performance was enhanced by incorporating physical knowledge of fault frequencies in the design of
the frequency-domain feature extraction network. The employment of an attention mechanism to selectively
focus on high-importance fault characteristics on the multi-domain feature maps further improved the
accuracy under high noise levels. Experiments on bearing datasets with artificially added noise demonstrated
the effectiveness of the proposed model compared to other benchmark models.

INDEX TERMS Additive white Gaussian noise, ball bearing, condition monitoring, convolutional
neural networks, fault diagnosis, feature extraction, machine learning algorithms, prognostic and health
management, reliability, robustness.

I. INTRODUCTION
Bearings are core components of rotational machinery. Under
harsh industrial environments, bearing failure is one of the
main reasons for machinery breakdown. To ensure effective
maintenance and reduce the cost of unexpected breakdowns
of machinery, the monitoring of machinery health is a vital
factor in industry, and research on fault monitoring and
diagnosis of bearings has attracted specific attention.

Bearings are encased inside the structures of rotational
machinery, making direct inspections of bearing conditions
highly complex. Various methods of indirect sensing of
bearing conditions have been developed, including thermal
imaging [1], acoustic emission [2], and vibration [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

Vibration signals are commonly used in monitoring because
of their rapid and high sensitivity to fault detection.

Traditional machine learning methods for diagnosing
bearing failure have consisted of the standard sequence of raw
signal preprocessing, feature extraction, and classification.
The raw vibration signals are contaminated by resonance and
noise from other machinery; therefore, the signals are gener-
ally prepared using several signal processing techniques. The
predominant techniques for preprocessing vibration signals
are envelope analysis [4], the wavelet packet transform [5],
and the Hilbert-Huang transform [6]. The fault characteristic
features are extracted by using statistical parameters such
as the root mean square, kurtosis, multi-scale root mean
square, and principal component analysis [7], [8], [9]. The
features are subsequently incorporated in a machine-learning
model for classifying bearing faults. Traditionally, machine
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learning models such as support vector machines [4], [5],
[9], the K-nearest neighbors algorithm [10], and linear
discriminant analysis [11] have been utilized in studies of
bearing diagnostics.

Recently, the rapid growth of computing power and the
exceptional performance levels facilitated by advancedmodel
architectures have brought deep learning models to greater
prominence in studies of bearing diagnostics [12]. In contrast
to traditional machine learning approaches that require the
processes of manual feature extraction and classification to
be conducted separately, deep learning models can perform
an end-to-end diagnosis directly from the input signal.
Furthermore, it has been demonstrated that deep learning
models can outperform traditional machine learning models
because of their high level of abstraction in capturing the
complex and non-linear features of fault characteristics [12],
[13], [14].

Among several deep learning methods, convolutional
neural networks (CNNs) have been extensively applied in
studies of bearing fault diagnostics. In these networks, the
input time-series vibration signal is processed directly by
1D CNNs for a cost-effective classification of bearing faults
[15], [16], [17], [18], [19]. Zhang et al. designed a 1D
CNN with a wide first layer kernel size to diagnose bearing
faults [15]. Song et al. applied a wide-kernel 1D CNN for
a wide receptive field [16], whereas Huang et al. used the
varied scale of the filters of a 1D CNN model to obtain more
valuable information for diagnosing the bearing states [17],
and He et al. proposed multi-scale kernels with varied
dilation rates for the multi-scale features of a 1D CNN [18].
In addition, Chen et al. proposed a 1D bearing fault diagnosis
model that integrated CNN with a long short-term memory
(LSTM) network [19]. The model extracts features covering
the low- and high-frequency regions of the input signal
with a multi-scale kernel. However, the aforementioned
1D CNN models with time-domain vibration input may
become compromised when the input signals are corrupted
by resonances, noise, and other disturbance signals associated
with other machinery.

In contrast with analysis in the time domain, the repre-
sentation of vibration signals in the frequency domain has
the advantage of easily separating signals associated with
fault characteristics from background and noise signals [20].
However, the fault frequency characteristic may not be
readily visible in the early stages of bearing decay [21].
Therefore, approaches (using 2D CNN) that capture feature
representations from both the time and frequency domains
have been proposed. The input 1D time-domain vibration
signal is processed to transform it into a 2D time-frequency
signal that is then applied in a powerful 2D CNNmodel [22].
Several methods have been used to transform bearing
signals, including the wavelet packet energy [23], short-
time Fourier transform (STFT) [24], [25], and continuous
wavelet transform (CWT) [26], [27]. Huang et al. proposed
a 2D multi-scale CNN that extracted local and global

information from the feature map using a multi-scale kernel,
and focused on important information using channel and
spatial attention [26]. However, 2D CNNs are usually heavier
and slower than 1D CNN models because of the 2D models’
larger number of trainable parameters.

Recently, a light-weighted and faster 1D CNNmodel using
multi-transformation domain signals has been proposed for
monitoring bearing health. Liu et al. proposed a parallel
CNN model combining an STFT-based 2D CNN and a time
domain 1DCNN [28]. The model used multi-domain data but
was constrained by the large number of trainable parameters
resulting from the inclusion of a 2D CNN architecture. Dong
et al. designed a 1D dilated CNN with multi-domain inputs,
consisting of the manually prepared statistical features of the
vibration signals, to diagnose bearing conditions [29]. Sun et
al. proposed a 1D CNN of residual dense network time that
used multi-domain data [30]. The time and the transformed
frequency signals were first concatenated and then applied as
input to the CNN model.

Similarly to the study by Sun et al., the present study
is focused on the design of a light-weighted 1D CNN
model based on multi-domain signal information. However,
in contrast with previous studies, the proposed model
contains independent time-domain and frequency-domain
feature extraction layers, to capture a wider representation of
fault features in a parallel pipeline.

None of the aforementioned published studies considered
the noisy and harsh environments in which rotating machines
operate in real-world industrial sites. For example, the vibra-
tion signals emanating from a particular set of machinery in
a heavy-industry manufacturing environment are susceptible
to various shocks and disturbances emanating from other
machinery. As a further consideration, many previous studies
have been developed using open datasets applied to bearings,
such as the Case Western Reserve University (CWRU)
datasets [31], which are prepared in a laboratory environment.
Because the noise contained in a vibration signal can

diminish the accuracy of bearing fault diagnosis [32], various
noise-robust bearing diagnosis models that account for high
noise levels have recently been proposed. Li et al. [33]
proposed a deep distance metric learning method based on
a CNN to address the domain shift problem caused by envi-
ronmental noise. The method used the frequency features as
input and was tested under noise levels ranging from an SNR
of −8 dB to 8 dB. In [34], a deep transfer learning method
was proposed that applied the bearing diagnosis model to the
target domain after being trained on multiple source domains.
The method was tested under various noise levels ranging
from an SNR of −4 dB to 8 dB. Zhang et al. applied adaptive
batch normalization to a 1D CNN with a wide first-layer
kernel (WDCNN) to obtain a robust diagnosis of bearing
faults in a noisy environment with SNR values ranging from
−4 dB to 10 dB [15]. A transformer-based convolutional
model with linear self-attention (CLFormer) was designed to
boost the accuracy of a lightweight model [35]. The model
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achieved a high accuracy with SNR values ranging from
−8 dB to 8 dB with the self-made dataset. A composite
of 1D CNN and LSTM model is proposed in MCNN-
LSTM [19] that extracted high-frequency and low-frequency
components of the vibration signal with multi-scale kernels.
Another 1D CNN used both the frequency spectrum and
the phase information of bearing vibration signals for noise
robustness [36]. However, the aforementioned studies were
designed for either time or frequency domain input only,
not for multi-domain signals; such signals can effectively
enhance the robustness against noise, as we also demonstrate
in the present study.

Furthermore, our proposed model implements an attention
mechanism to boost the accuracy of bearing diagnosis in a
strong-noise environment. A number of studies have also
applied attention mechanisms in deep learning models to
achieve robustness against noise. Wang et al. [37] applied
multi-head attention to a 2D CNN, and Peng et al. [38]
proposed a 1D CNN with multiple residual mixed domain
attention modules to extract semantic information in the time
and channel domain. Yin et al. employed a Squeeze-and-
Excitation network [39] on a 1D CNN with a time domain
signal [40]. Zhong et al. proposed an ensemble model con-
sisting of SqueezeNet based on the 2D image of a continuous
wavelet transformation with self-attention [41]. An adaptive
model for anti-noise bearing diagnosis (CLFormer) [35]
applied linear attention on a GRU block and exhibited a slight
enhancement in accuracy. However, all the aforementioned
attention-based models were based on time-domain input
signals. In contrast to these studies, we propose an attention
module for rescaling the essential weights of features in time-
frequency multi-domains.

A number of research groups have attempted to employ
prior physical knowledge of fault bearings to the deep
learning model as a particular approach for improving
bearing diagnosis [42], [43], [44]. A neural network whose
learning is guided by physical information is known as
a physics-informed neural network (PINN) [45]. Shen et
al. designed a bearing diagnosis model that applied a
physics-informed threshold algorithm to the input signal to
increase the reliability of the diagnosis [42]. Sadoughi et al.
proposed a physics-based CNN that extracts periodic fault
signals using a kernel design based on bearing fault physics
[43]. Lu et al. improved the performance and reliability
of a data-driven bearing diagnosis model by applying high
weights to the bearing fault key frequencies in the proposed
CNN model [44]. Although the employment of bearing fault
physics has shown promising results, only a few such studies
have been conducted. Consequently, our proposed model
employs bearing-fault physics using a different approach for
designing kernels in the frequency-domain CNN to enhance
the model’s diagnostic performance further.

In summary, we propose a highly accurate bearing
fault diagnosis model that accommodates a strong noise
environment and is based on a physics-informed 1D CNN

of time-frequency multi-domain fusion combined with a
Squeeze-and-Excitation attention block (MDFN+SE). The
main contributions of this study are:

1) We propose an accurate and light-weighted 1D CNN
that is composed of a parallel network for extract-
ing each time- and frequency-domain feature, and
a multi-domain fusion block for capturing a wider
representation of bearing fault characteristics across
multi-domains.

2) Physical knowledge of bearing fault frequencies was
incorporated in the design of the model parameters
of the frequency-domain network to enhance the
robustness against noise effectively.

3) To facilitate a further increase in model accuracy under
strong noise, a channel-wise attention mechanism was
employed to assist the model in selectively focusing
on the essential fault-related features in multi-domain
representations.

4) Ablation studies and experiments on multiple bearing
datasets with added noise at SNR levels ranging from
−6 dB to 6 dB were conducted and the results were
compared with those of related models to confirm
the effectiveness of the proposed model in diagnosing
bearing faults.

The remainder of this paper is organized as follows.
The bearing physics-informed preprocessing methods are
explained in Section II. In Section III, the architecture of the
proposed model is described in detail. Sections IV and V
include the experimental results for commonly-used bearing
datasets, in order to verify the proposed model in comparison
with similar models. Finally, the conclusions of this study are
presented in Section VI.

II. DOMAIN-INFORMED PREPROCESSING
The raw bearing vibration signal exists in the time domain;
however, we also used the transformed frequency domain
signal in this study, to capture a wider representation of fault
characteristics.

The transformed frequency-domain spectrum is a mixture
of fault-specific frequencies, inter-machine resonance, and
other sources of noise. Consequently, we applied the bearing
physics-informed preprocessing to the model to prepare for
an enhanced form of frequency-domain signals.

A. BEARING FAILURE PHYSICS
An understanding of the physics of bearing faults facilitates
the insight into signal processing methods to prepare datasets
of higher quality. A bearing is composed of several main
parts: the inner race, outer race, rolling elements, and cage
elements. If a defect occurs in the bearing, a periodic impulse
signal is generated when the fault area collides with the
rolling elements. Depending on the types of bearing faults, the
impulse signals have specific fault frequency characteristics
that can be estimated from the bearing model specifications.
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FIGURE 1. Comparison of frequency spectrum from raw signal and envelope extracted signal. Fault characteristic frequencies are more
clearly visible by envelope extraction.

This study concentrated on three types of bearing faults:
inner race faults, outer race faults, and ball faults. The fault
characteristic frequencies of each fault type can be estimated
from the bearing physics [46]:

Ball pass frequency for inner race (BPFI):

fIR =
Z
(
1 + cosα ×

d
D

)
2

× fr (1)

Ball pass frequency for outer race (BPFO):

fIR =
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(
1 − cosα ×

d
D

)
2

× fr (2)

Ball spin frequency (BSF):

fBS =
1
2
D
d

(
1 −

(
d
D

× cosα

)2
)

× fr (3)

where

fr : shaft rotational speed
Z : number of rolling elements
D: pitch circle diameter of the bearing
d : ball diameter
α: contact angle.

B. ENVELOPE ANALYSIS
The purpose of signal preprocessing is to highlight the
main fault characteristic frequencies in order to enhance
the feature extractions. The bearing fault impulse signal
is amplitude-modulated by the carrier signals of noise and
machinery resonance. When the modulated fault signal is
transformed to a frequency spectrum, as shown in the left
side of Fig. 1, the fault characteristic frequencies are masked.
Therefore, the raw signal needs to be demodulated to extract

the defect fault signals appropriately with the aid of the
bearing domain information.

The amplitude demodulation is processed by the envelope
analysis, which constructs the vibration signal as a complex
analytic signal with the imaginary component consisting of
the Hilbert transform of the real part. The mathematical
expression of the analytic signal xh (t) is

xh (t) = x (t) + jx̂ (t) (4)

where x̂ (t) is Hilbert transform of raw signal, x (t).
The absolute value of the analytic signal |xh (t)| is

the envelope of the raw signal, the demodulated fault
characteristic signal harmonics, which are clearly visible in
the frequency domain, as shown in Fig. 1.

C. DATASET AUGMENTATION BASED ON FAULT
FREQUENCIES
The raw vibration signal input data are the time-series
vibration signals obtained through monitoring the bearings.
The dataset applied in this study is the Case Western
Reserve University (CWRU) benchmark [31], which contains
bearing vibration signals sampled at a rate of 12 kHz. The
CWRU dataset contains only one set of vibration data of
approximately 10 s duration for each fault. To acquire a
sufficient number of datasets, a data augmentation method
was applied by using the overlapping window as illustrated
in Fig. 2.

The length of the overlapping window was designed by
considering the fault frequency analysis of the vibration
signals. The primary BPFI, BPFO, and BSF were all located
in a relatively low frequency range below 600 Hz. Therefore,
the frequency resolution of the vibration spectrum was
selected to be approximately 1 Hz, so that fault types could be
distinguished. Using the relationship expressed in Eq. 5, the
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FIGURE 2. Data augmentation method for time-domain and frequency-domain signals.

window length Lwindow was set to 10240 – as shown in Fig. 2.

fres = fsampling/Lwindow (5)

where fres is the frequency resolution and fsampling is the
sampling frequency of the accelerometer.

The time-domain input signal is generated from the
augmented dataset by reducing the data length tenfold to
1024 points. Considering the primary fault frequencies,
the reduced time-domain signal includes approximately
nine fault periodic signals, which is sufficient for feature
extractions.

D. PREPARATION FOR FREQUENCY-DOMAIN
Using the augmented dataset, the frequency spectrum is
prepared with the physics-informed preprocessing described
in II-A and II-B.

The demodulated vibration signal obtained through the
envelope analysis is transformed to the frequency represen-
tation using the fast Fourier transform (FFT). The sampling
frequency of the CWRU dataset is 12 kHz; accordingly, the
spectrum signal has a range from 0 to 6 kHz. Since the bearing
fault frequencies are located at a low bandwidth, we extracted
the spectrum signal from 0 to 600 Hz. The spectra included
fault signals up to the third harmonics. Accordingly, the
frequency-domain dataset contained 540 points with a
frequency resolution of approximately 1 Hz. The frequency-

domain signal is normalized by subtracting its average power
and re-scaling.

III. PROPOSED MODEL: MDFN+SE
A. NETWORK ARCHITECTURE
As shown in Fig. 3, the proposed multi-domain fusion
network with a Squeeze-and-Excitation block (MDFN+SE)
is composed of three main blocks: the time-domain feature
extraction module (TD module), the frequency-domain fea-
ture extraction module (FD module), and the multi-domain
fusion module (MDF module).

The TD module is a component of the feature extraction
process that is not well understood as yet. The FD module
employs more explicit information on the periodic fault
components using the frequency representation of the raw
signal. In addition, the design of the kernel size and stride
of the FD module was based on a physics-informed method
so that features of each fault type could be extracted. At the
conclusion of the feature extraction process in each module,
the extracted features are concatenated into the multi-domain
fusion layer in the MDF module. Since the important feature
domain differs for each fault type, the SE block (awidely used
attention module) is used to direct the focus of the network
toward the appropriate feature channels in a multi-domain
fusion layer in the MDF module. The SE block enables
the model to attend to significant channels by strengthening
the essential features and suppressing irrelevant information.
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FIGURE 3. Architecture of the proposed MDFN+SE model with preprocessing.

Finally, the feature layer is forwarded to the MLP layer to
predict the health state of the bearing. Each of these process
steps is explained in detail in the next section.

1) TIME-DOMAIN FEATURE EXTRACTION: TD MODULE
To improve the generalization performance of the model,
a 0.5 percentage dropout layer is inserted before the first
convolutional layer. In addition, a 0.2 percentage dropout
layer is inserted after each convolutional layer. The TD
module is based on a 1D CNN architecture as specified
in Table 5. The input is the time-domain vibration signal
of 2048 data points. The TD module consists of two
convolutional layers with a rectified linear unit (ReLU)
activation function. The batch normalization layers are

applied at each convolutional layer to ensure the stability of
the training process. The feature map from the TD module
is passed to the global averaging pooling layer to generate
a 1D vector input to the fully connected layer. It does not
use the classical feature map flattening, which can create
a computational bottleneck and overfitting. In contrast, the
global average pooling (GAP) of the channel-wise direction
can significantly reduce the number of trainable parameters
to avoid overfitting and exhibit improved performance [47].

2) FREQUENCY-DOMAIN FEATURE EXTRACTION: FD
MODULE
As with the TD module, a 0.5 percentage dropout layer is
added before the first layer, and a 0.2 percentage dropout
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TABLE 1. Detailed description of the CWRU dataset for case study 1.

FIGURE 4. Architecture of the proposed physics-informed feature
extracting layer.

layer is added after all convolutional layers, to generalize
the model. The FD module extracts features from the
spectrum input of 540 points. The FD module has one
physics-informed layer and two convolutional layers with the
ReLU activation function, batch normalization, and a global
average pooling layer. The vibration signal acquired from a
defective bearing has a periodic fault characteristic frequency,
and its harmonics appear at regular intervals in the frequency
domain. Because the fault characteristic frequency differs for
each fault location, the kernel and stride design was based
on physical information to capture features for each fault

type. Features of the inner race fault (IR), outer race fault
(OR), and ball fault (BA) are respectively extracted through
three parallel convolutional layers as shown in Fig. 4. Each
layer containing IR, OR, and BA fault-related features with
size 4 × 8 goes through a convolutional layer again (PI conv
layer 2). In this layer, three feature blocks share the same
kernel weights to extract features up to the third harmonic of
each fault characteristic frequency. Subsequently, the features
associated with each fault type are passed through one more
convolutional layer and are concatenated channel-wise. The
entire feature combining all fault types is finally passed
through a convolutional layer.

3) MULTI-DOMAIN FUSION NETWORK
The 1D feature vectors from the time- and frequency-domain
feature extraction modules are passed to the multi-domain
fusion multi-layer perception (MLP). The multi-domain
feature vectors are concatenated and passed to the Squeeze-
and-Excitation attention block. This channel-wise attention
block assists in assigning a higher weight to essential
features in the different domains, as explained in detail in
Section III-B. Subsequent to a series of fully connected
layers, the softmax output nodes are generated in the number
of fault classes for the classification.

B. ATTENTION MODULE FOR NOISE ROBUSTNESS
Industrial data are often corrupted with various unpre-
dictable types of noise, depending on the working envi-
ronment. Therefore, we applied an attention module to the
multi-domain fusion module to improve the overall accuracy
of the proposed network in a noisy environment.

The attention mechanism has been widely used in natural
language processing to enhance the performance of seq-to-
seq models by focusing on the essential parts in the input
sequence [48]. As the attention mechanism has been shown
to enhance model performance, a number of studies have
applied it in bearing diagnosis [37], [38], [40], [41]. However,
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TABLE 2. Parameters of the model variants of time-domain module network with different layer depth.

TABLE 3. Parameters of the model variants of freuency-domain module network with different layer depth.

the attention modules used in those studies were not designed
for multi-domain fused features.

The input data for the proposed model are the vibration
time signal and its frequency spectrum, which are related
to the bearing condition. Consequently, the overall shape of
the spectrum and features of the local parts of each domain
signal are both important information. Among various types
of attention modules, we selected channel-wise attention to
capture the essential global features of fault characteristics
in both the time and frequency domains. Also, channel-
wise attention can analyze the interdependencies between the
channels to highlight the essential fault features across the
different domains.

This study applied the Squeeze-and-Excitation block (SE
block) in Squeeze-and-Excitation networks (SENet) [39]
that performs dynamic modeling of channel-wise feature
dependencies. The architecture of the SE block, as illustrated
in Fig. 3, directs the model to focus on important features in
the channel direction by squeezing and exciting the feature
map of the model.

The convolution of a filter operates in conjunction with
a local receptive field that is unable to exploit features
outside the region. This limitation can be eased by squeezing
global spatial information using GAP to generate channel-
wise statistics. The input feature map uc of size W × 2C is
squeezed to 1 × 2C by the squeeze function Fsq. The c-th

element of the squeezed vector from the c-th element of input
uc is calculated by:

zc = Fsq (uc) =
1
W

W∑
i=1

uc (i) (6)

The excitation operation captures the channel-wise depen-
dencies of the compressed information generated by the
squeeze operation. This constitutes a simple bottleneck with
two fully connected layers with sigmoid activation. The
dimension of the input channel, 2C , is reduced by the ratio
of r with ReLU activation. Subsequently, it is returned to
the input channel dimension by the second fully-connected
layer (FC layer) with the sigmoid activation. The output of
the excitation process is the vector sc of 1 × 2C :

sc = Fex (zc,W) = σ (W2δ (W1zc)) (7)

where σ is ReLU and δ sigmoid activation function, and
weightW1 ∈ R

2C
r ×2C , and W2 ∈ R2C×

2C
r .

The vector sc is the attention weight that emphasizes
significant features of the input feature map. Therefore,
the input feature map uc is rescaled by the element-wise
multiplication with the vector sc, producing the attention
weight applied feature map as follows:

x̃ = sc ⊙ uc (8)

where x̃ =
[
x̃1, x̃2, . . . , x̃c

]
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TABLE 4. Classification accuracy of ablation study with different SNR values on CWRU dataset B.

IV. CASE STUDY 1: CWRU DATASET
A. DATASET DESCRIPTION
The proposed model was initially designed for the bear-
ing dataset provided by Case Western Reserve University
(CWRU) [31]. The dataset consists of vibration signals
acquired at a sampling rate of 12 kHz on rotating machinery
that uses a deep groove ball bearing (SKF 6205-2RS). It is
driven by a 2 HP motor and operated under various motor
load conditions: 0, 1, 2, and 3 HP. The dataset was divided
by each motor load as shown in Table 1. Bearing faults are
artificially processed by electro-discharge machining (EDM)
and are classified as normal, inner race fault, outer race fault,
or ball fault. Each fault has three fault depth sizes of 0.007,
0.014, and 0.021 inches, respectively.

This study classified the state of bearing health according
to the types and severity of the failures as summarized
in Table 1. There were a total of ten classes, and each
class dataset included all motor load (Dataset A+B+C+D)
conditions in the same ratio. After the aforementioned data
augmentation process, a total of 8600 datasets were prepared,
which were divided into training, validation, and testing data
in a ratio of 6:2:2.

B. TRAINING CONFIGURATION
The model loss was calculated using the cross-entropy, and
the adaptive moment estimation (Adam) optimizer had an
initial learning rate of 0.001. Model training was stopped
early if the epoch number reached 60 or the validation
accuracy decreased continuously, to avoid overfitting.

C. ABLATION STUDY
A series of ablation studies of the network design was
conducted to select an optimal parameter configuration.

1) NOISE ENVIRONMENT
The model variants were trained under no-noise conditions
and tested under various noise conditions to evaluate
robustness and accuracy in noisy environments. The dataset
used for the ablation study is CWRU dataset B. For all
experiments, the performance of the model was evaluated
using the median result from five repetitive tests.

Although it is challenging to mimic the real noise
environment, additive white Gaussian noise is widely used
in noise robustness studies [15], [19], because it can closely
resemble many random noise in nature. The test dataset was
mixed with Gaussian white noise, which has zero mean,

and the standard normal distribution is based on a random
generator. The power of noise is calculated from the power
of the input signal to satisfy the desired signal-to-noise ratio
(SNR ratio). The SNR is defined as the ratio of the signal
power (Ps) to the noise power (Pn), i.e., SNR = 10log10

Ps
Pn
.

The model was trained without noise and evaluated with the
noise-added test data with different SNR levels from −6 dB
to 6 dB.

2) THE NUMBER OF CONVOLUTIONAL LAYERS
The feature extraction blocks of the time and frequency
domains consist of 1D convolutional layers and ReLU
activation functions. Padding is applied to all layers to prevent
the loss of features at the ends. The effect of the number
of convolutional layers in the CNN model was analyzed to
design an optimal number of layers that would enhance the
representation of the characteristics of the input signals.

In the analysis, the time-domain and frequency-domain
feature extraction modules were individually tested by
eliminating the other domain modules to minimize their
mutual effect. Furthermore, the SE block was removed in
this analysis. Each model for setting the number of layers
is summarized in Table 2. The time domain models with 6,
4, and 2 convolutional layers are named TD-A, TD-B, and
TD-C, respectively. Similarly, the frequency domain models
are named FD-A, FD-B, and FD-C, respectively, as listed in
Table 3. By setting the stride for each convolutional layer,
the feature-length was reduced as the convolution progressed.
For models with shallower, the stride was set wider so that the
final feature lengths of the models were similar.

The test results are shown in Fig. 5. All the model variants
achieved performance levels close to 100% under noise-free
conditions. As the noise level increased, the performance
of the time-domain feature extraction module started to
decrease with varying severity, according to the number of
convolutional layers. For both time- and frequency-domain
feature extraction, the model with the two convolutional
layers displayed superior performance across all noise
conditions. Therefore, the number of convolutional layers for
both the time and frequency-domain feature extractions in the
final model was selected to be two.

3) EFFECTIVENESS OF PHYSICS-INFORMED NETWORK
An experiment was conducted to evaluate the performance of
the purely data-driven layer and the physics-informed layer
in the FD module. As shown in Section IV-C2, the optimal
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FIGURE 5. Effect of convolutional layer numbers for (a) TD module and (b) FD module with different SNR values.

TABLE 5. Parameter description of the proposed network MDFN+SE.

FIGURE 6. Effect of physics-informed parameter design on the accuracy
of FD module.

performance exhibited by the purely data-driven FD modules
was that of FD-C. It was compared with the FD-PI model,
in which the first convolutional layer of the FD module was
replaced with a physics-informed layer. The performance
of the FD-PI-SE module, which added SE blocks to the
FD-PI module to improve prediction performance, was also
evaluated. All models displayed prediction performance
close to 100% in environments with no or weak noise;

the performance degradation as noise levels increased are
shown in Fig. 6. The reduction ratio of the SE block was
set to 4. In Fig. 6, when the first layer is replaced with a
physics-informed layer, the noise robustness of the module
is improved. When the SE block is added to the FD-PI
module, the prediction performance in a noisy environment
increases slightly. We ascribe the improvement in prediction
performance to the SE module’s emphasizing of appropriate
channels that include the features of each fault type.

4) REDUCTION RATIO OF SE BLOCK
The SE block was included to emphasize the essential part of
the multi-domain fused features in the MDFmodule. In order
to highlight the channel-wise features effectively, the SE
block needs to be configured with the appropriate reduction
ratio (r). It has been previously demonstrated that a reduction
ratio of 16 achieves an optimal balance between accuracy
and complexity for 2D image processing [39]. However, the
optimal ratio value should be re-analyzed for the 1D vibration
signals of fault bearings.

Several reduction ratios, ranging from 2 to 16, were
evaluated to determine the most appropriate reduction ratio
under noisy conditions. Fig. 7 shows that a reduction ratio of
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TABLE 6. Classification accuracy[%] of the proposed model compared to different methods under various SNR values on CWRU dataset.

FIGURE 7. Effect of reduction ratio of SE block on the model accuracy.

4 exhibited the highest performance at all noise levels. Under
the highest noise condition of SNR = −6 dB, this setting
demonstrated the strongest robustness, achieving an accuracy
of approximately 93%.

5) EFFECT OF MULTI-DOMAIN AND ATTENTION MODULE
The overall effect of applying a multi-domain model and
attentionmodule was analyzed. The comparedmodel variants
are: (1) time-domain module only network (TDN), (2)
frequency-domain module only network (FDN), (3) multi-
domain fusion network without attention (MDFN), and (4)
multi-domain fusion network with attention (MDFN+SE).

The effectiveness of multi-domain fusion under a strong
noise is clearly visible in Table 4. Under noise level of less
than −2 dB, the time-domain network (TDN) had a similar
performance as the multi-domain fusion network (MDFN).
As the noise level was increased, MDFN outperformed either
TDN or FDN networks. When the noise SNR is −6 dB,
the accuracy of MDFN dropped only to 86.34% while
the accuracy of TDN dropped at a higher rate to 80.69%.
From the results, it can be observed that extracting and
fusing features across different domains helps in capturing
comprehensive bearing fault information, which could not be
obtained by using only one domain.

When including the attention block in the MDFN model,
the overall performance was enhanced significantly. For
all noise conditions, the multi-domain fusion network with
SE attention (MDFN+SE) exhibited the highest accuracy
compared to other model variants, as shown in Table 4. From
this analysis, it can be concluded that an attention mechanism

enabled the model to focus on appropriate components in
the multi-domain features, with the aim of improving the
diagnostic performance in a noisy environment.

From this analysis, it can be concluded that an attention
mechanism enabled the model to focus on appropriate parts
in the multi-domain features to improve the diagnosing
performance in a noisy environment.

D. COMPARATIVE STUDY
The proposed model is also compared with the following
similar models that used the same dataset of CWRU.

• WDCNN [15] is a 1D CNN model whose input is a
time-domain vibration signal and which is often used as
a comparison model in studies of bearing diagnostics.

• MCNN-LSTM [19] is a composite of 1D CNN
and LSTM model, in which the CNN extracts
high-frequency and low-frequency components of the
vibration signal with multi-scale kernels.

• FD 1D-CNN [36] is a 1D CNN using both the frequency
spectrum and the phase information of bearing vibration
signals. The model that was trained without noise was
used in the analysis.

• TICNN [49] is a 1D CNN similar to WDCNN, but it
employed several additional algorithms to diagnose the
bearing states under noisy conditions.

Although all the compared models used the same CWRU
dataset, each model selected different data subsets of motor
loads. The trained and tested dataset of motor loads were
indicated in Table 6. FD 1D-CNN [36] showed comparatively
high performance for all noise levels. Under the noise SNR of
−6 dB, the accuracy decreased to 84.87%. Under the strong
noise level, the proposed model could maintain high accuracy
that outperform other methods. In addition, the proposed
model is moderately light-weighed in terms of parameter
numbers but could achieved the highest accuracy to all noise
levels.

E. t-SNE ANALYSIS: FEATURE VISUALIZATION
The effectiveness of feature extractions for diagnos-
tic performance can be visualized and analyzed using
t-distributed stochastic neighbor embedding (t-SNE). t-SNE
is a method that projects a high-dimensional feature map
to a two-dimensional map while preserving the significant
relationships among the features. The distance between the
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FIGURE 8. Feature visualization of the proposed model (MDFN+SE) using t-SNE with noise SNR of −6: (a) first
convolutional layer of TD module; (b) first convolutional layer of FD module; (c) second convolutional layer of TD module;
(d) second convolutional layer of FD module; (e) multi-domain fusion layer, (f) SE layer.

features in the plot indicates the similarity and separability
among the features of the fault classes.

The proposed model was designed to extract significant
and relevant fault features along the network layers, to ensure
high performance in fault-type classifications. Thus, at the
last layer of the network, the features of the same class on

the t-SNE plot should be clustered tightly while remaining
distinguishable from other inter-class features.

The t-SNE analysis was applied to the MDFN+SE model
against the test dataset with an added noise level (SNR
= −6 dB). Fig. 8 shows how the distribution of the
extracted features is changed from the first to the last layer
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FIGURE 9. t-SNE: dimension-reduced features extracted from the multi-domain fusion layer of the proposed model
(a) without attention (b) and with attention.

of the MDFN+SE model. The initial feature distribution
at the input stage in the time-domain module (Fig. 8
(a)) and in the frequency-domain module (Fig. 8 (b)) are
all interspersed, with low separability. As the convolution
operation progresses, the same-class features in each time
and frequency domain are clustered closer compared to the
first convolutional layers, as shown in Fig. 8 (c) and (d),
respectively. Nevertheless, these features are insufficient to
make an accurate diagnosis.

After the attention block and multidomain fusion module
in Fig. 8 (e)∼(f), the boundary between classes of features is
clearly visible for all classes that explain the high accuracy
performance even with strong noised signals.

After introducing the attention block and the multi-domain
fusion module, as shown in Fig. 8 (e)∼(f), the inter-class
feature boundaries are more clearly visible with a much
improved intra-class feature clustering. The distinct bound-
aries for all classes in the feature extraction performed by the
proposed model explain the high accuracy performance, even
with strong-noise signals.

The effectiveness of the attention for classification
enhancement is visualized by comparing the t-SNE plot for
the proposed model with and without the attention block,
as shown in Fig. 9. The t-SNE plot at the multi-domain fusion
layer indicates that applying the attention module yielded
a slightly higher degree of separation and clear boundaries
among different classes. In particular, the distance between
classes C0 and C5 increased and the boundary between
classes C4 and C6 became more distinctive. Therefore,
it can be concluded that the attention module is effective in
improving the robustness and accuracy of the model in noisy
environment applications.

V. CASE STUDY 2: PADERBORN DATASET
A. DATASET PREPARATION
For the second case study, the bearing vibration dataset
provided by Paderborn University (PU) [50] was analyzed.

TABLE 7. Description of the Paderborn(PU) dataset for case study 2.

This dataset consists of acceleration data acquired at 64 kHz
from a bearing mounted on a rotating machine driven by
a 425 W motor rotating at 1500 rpm; its specification is as
follows:

• Nominal torque: 1.35 [Nm]
• Nominal speed: 3, 000 [rpm]
• Nominal current: 2.3 [A]
• Pole pair: 4
The bearing used in this machinery is the 6203 ball-bearing

type. The PU dataset has the following varied operating
conditions: (1) load torque: 0.1 or 0.7 [Nm], (2) Radial force:
400 or 1000 [N]. Bearing fault types used in this study are
summarized in Table 7. The PU dataset was downsampled by
1/5 since its sampling frequency is five times larger than the
CWRU dataset. The total size of the dataset is 10260. It was
split in a ratio of 6:2:2 and used for training, validation, and
testing, respectively. In addition, similar signal preprocessing
to that discussed in Section II was applied, based on the
physics of the bearing fault frequencies using Eq. 1 and 2. The
kernel size of the PI module in the FD module was modified
according to the specifications of the bearing used in the
experiment.

B. RESULT ANALYSIS
The model was trained in a noise-free environment and tested
in environments under white Gaussian noise by using the
same procedure as explained above. Similarly, the model
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TABLE 8. Classification accuracy under various noise conditions of different model variants with PU dataset [%].

FIGURE 10. Testbench of bearing fault diagnosis used in case study 3.

TABLE 9. Description of our testbench dataset for case study 3.

was evaluated with the noise-added test data with different
SNR levels from −6 dB to 6 dB. Since the other models
did not apply the PU dataset in their studies, we evaluated
the effectiveness of MDFN+SE with the backbone network
variants of TDN, FDN, and MDFN.

The test results are summarized in Table 8. Without
noise addition, MDFN+SE and other variant models showed
similar performance. As the noise level increased, the
superiority of the proposed model was clearly demonstrated,
achieving the highest accuracy for all noise level ranges.
Under the noise level of −6dB, the accuracy of the proposed
model dropped only to 85.16%, while MDFN dropped the
accuracy to 73.1 %.

VI. CASE STUDY 3: LAB-MADE BEARING DIAGNOSIS
TESTBENCH DATASET
A. DATASET PREPARATION
To evaluate the generality of the proposed method
(MDFN+SE), another experiment is conducted using the
dataset from our bearing fault diagnosis testbed, as shown
in Fig. 10. This testbed is designed to emulate a small-scaled
wind turbine and it is composed of a motor, two gearboxes,
and a bearing box. The motor power is 1.4 [kW ] with a
rotating speed of 1200 [rpm]. The first gearbox reduces the
speed by 1/100 ratio, and then the second gearbox increases
the speed by a factor of 50. The shaft connected to the bearing
is rotated at a rate of 600 rpm, and the vibration on the

bearing housing is collected at a sampling rate of 10 [kHz].
The bearing specifications and the bearing fault classes are
explained in in Table 9. The artificial faults on the bearing
inner race and outer race are generated by electric discharge
machining with a fault size of 1 mm.

B. RESULT AND ANALYSIS
All the compared models were trained in a noise-free
environment and were evaluated with the noise-added test
data with different SNR levels from −6 dB to 6 dB.
We evaluated the effectiveness of multi-domain fusion with
attention by comparing the performance with the backbone
network variants of TDN, FDN, and MDFN. All models
diagnosed the bearing states with near 100% accuracy for
low noise levels less than 0dB, as shown in Table 10. As the
noise SNR increased, using only a single domain(TDN,
FDN) started to show much higher degradation compared to
the multi-domain network (MDFN). Under the noise level
of −6dB, the accuracy of MDFN is 81.88 %, while FDN
degraded to 77.29%. The results showed that multi-domain
based network outperforms a single-domain network for
bearing conditions. Employing attention mechanism as in
MDFN+SE, further improved the accuracy from 81.88 % to
94.38 % under the noise SNR of −6dB. In accordance with
previous case studies, the proposed model of MDFN+SE
showed the highest robustness performance under all noise
conditions by having the least accuracy degradation rate.

VII. CONCLUSION
In this study, we developed a noise-robust bearing diagnosis
model for practical industrial implementation in a heavy
noise environment. The proposed model is based on a
time-frequency multi-domain fusion 1D CNN model with
the Squeeze-and-Excitation (SE) attention block. A high
accuracy in classifying the bearing fault class and the
severity (fault sizes) under a strong noise level could be
achieved by designing a time-frequency multi-domain fusion
block, incorporating bearing-fault physics into the model
parameters, and employing attention modules. By extracting
features in the time domain, in the frequency domain, and
in the fused time-frequency domain, a comprehensive set of
essential information relating to bearing faults and sizes could
be obtained. Furthermore, applying the bearing fault physics
in designing the appropriate kernel size in the CNNmodel and
adding the channel-wise attentionmechanism further boosted
the performance of the proposed model. The effectiveness
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TABLE 10. Classification accuracy under various noise conditions of different model variants with our testbench dataset [%].

of the proposed model was validated on two datasets with
artificial noise added. Under the most substantial noise level
of SNR −6 dB on the CWRU dataset, the propoed model
maintained a high accuracy of 93.27%. Compared to similar
bearing diagnosis models, the proposed model exhibited the
highest noise robustness for all noise levels.

This study applied lab-environment datasets with added
Gaussian white noise, which may not represent the actual
industrial environment. Thus, for future work, fault-bearing
vibration signals from industrial sites should be collected and
analyzed to verify the practical implementations.
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