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ABSTRACT This study addresses the randomness of training parameters in the Deep Belief Network (DBN)
and proposes an optimization method for rolling bearing fault diagnosis based on the Sparrow Search
Algorithm (SSA). SSA is employed to globally optimize the structural and training parameters of the
DBN network, effectively resolving the challenge of parameter determination. Simultaneously, vibration
signals are extracted from multiple dimensions to capture different types of fault features. These features are
derived through Wavelet Transformation (WT) for noise reduction and Intrinsic Mode Functions (IMFs)
extraction through Ensemble Empirical Mode Decomposition (EEMD). The fusion of time-domain and
frequency-domain dimensional features forms a multidimensional feature set. This comprehensive feature
set optimizes the parameters of the deep learning network and significantly improves the accuracy and
effectiveness of rolling bearing fault diagnosis. With a remarkable recognition accuracy of 99.17%, this
approach outperforms conventional feature sets and mainstream diagnostic methods such as PSO-DBN and
SSA-SVM while maintaining high levels of generalization and stability. The introduction of this method
represents a significant breakthrough in the field of rolling bearing fault diagnosis.

INDEX TERMS Deep belief network, fault diagnosis, multi-domain features, sparrow search algorithm.

I. INTRODUCTION
China’s future manufacturing system planning is marked
by critical terms such as the ‘‘14th Five-Year medium and
long-term manufacturing development plan’’ and ‘‘intel-
ligent manufacturing’’. These terms represent the direc-
tion of China’s manufacturing industry and reflect the
global trend in manufacturing development. China has
made significant advancements in its manufacturing capa-
bilities, transitioning from being known as the ‘‘world’s
factory’’ to becoming an ‘‘intelligent manufacturing power’’.
The continuous upgradation of industries and technolo-
gies has been crucial in supporting the steady growth of
China’s economy. Rolling bearings serve as vital compo-
nents in various large equipment and mechanical parts.
They perform several functions under challenging working
conditions and operating loads to ensure the safe opera-
tion of automated systems. With the continuous increase
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in the emphasis on the reliability of industrial products,
there have been increased demands for more accurate and
effective fault diagnosis systems. The AI technologies [1],
such as machine learning, deep learning, and pattern recog-
nition, have the advantages of enhancing fault diagnosis
accuracy, predictive maintenance, and fault prognosis. These
fault diagnosis systems are critical for promptly identifying
potential issues in rolling bearings. Through the early detec-
tion of faults, they aid in preventing unexpected failures,
minimizing downtime, and optimizing maintenance sched-
ules. Moreover, an accurate and effective fault diagnosis
system facilitates proactive maintenance strategies, result-
ing in improved productivity, reduced costs, and enhanced
overall system performance. Incorporating the background
of big industrial data, national policy guidelines, and current
industry trends, researchers have made significant progress
by integrating rolling bearing fault diagnosis with machine
learning algorithms, neural networks, and deep learning tech-
niques. This integration [2], [3], [4] has effectively addressed
the challenges of modern complex industrial equipment.
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Indeed, the Deep Belief Network (DBN) is recognized
as among the most representative and strongly compati-
ble algorithms in various fields, including fault diagnosis.
Researchers have increasingly favoured DBN [5] owing to
its advantages over traditional fault diagnosis methods. Thus,
fault diagnosis has evolved into amulti-method fusion pattern
recognition process. Although diagnostic models are crucial
to the overall process, the significance of signal processing,
feature extraction, and other related techniques [6], [7] cannot
be understated.

Typically, the vibration signal of the rolling bearing
includes pulse signals, external signals, background noise
signals, etc. The complexity of the vibration signal directly
corresponds to the progress of the follow-up work. A corre-
sponding signal analysis method is required to perform the
related analysis. Wavelet decomposition and reconstruction
can effectively remove noise, complete the preliminary opti-
mization of the vibration signal, and retain the original signal
characteristics. This [8] renders it suitable for vibration signal
processing of rolling bearings. There [9], [10], [11] exist
several novel methods for signal processing, among which
the most popular is the modal decomposition algorithm. Con-
sidering that the parameters of such algorithms affect the
signal decomposition effect under manual intervention, this
study employed the wavelet analysis algorithm with pow-
erful functions and deep industry experience. In the feature
extraction stage, Zhang and Huang [12] used the Empiri-
cal Mode Decomposition (EMD) algorithm to decompose
the vibration signal into a set of inherent mode functions.
Kumar et al. [13] proposed a frequency mode based on the
Variational Mode Decomposition (VMD) signal to monitor
the bearing health state. Ni et al. [14] identified a supe-
rior feature extraction method by comparing VMD, EMD,
and Local Mean Decomposition (LMD). Complete Ensem-
ble Empirical Mode Decomposition (CEEMDAN) [15] has
been employed to determine specific fault characteristics,
and TFR demodulation analysis has been used to obtain
accurate fault characteristics. Regarding pattern recogni-
tion, Kang et al. [16] proposed the deep domain adaptation
method, wherein convolutional and pooling theories were
integrated with DBN to solve the problem of multi-state
identification of rolling bearings. Xu and Tse [17] com-
bined DBN with the Affinity Propagation (AP) model, which
exhibited excellent results compared to traditional fault diag-
nosis methods. Zhong et al. [18] used the improved fault
diagnosis method that combined Ensemble Empirical Mode
Decomposition (EEMD) and DBN to achieve fault diagnosis.
The intelligent fault diagnosis method of PCA-DBN was
proposed [19], which reduced the dimension of complex
features before completing the fault diagnosis. Therefore,
to obtain a good fault diagnosis result based on the DBN
network model [20], the initial parameters of the model must
be improved and optimized. Deng et al. [21] proposed an
improved quantum-inspired differential evolution (MSIQDE)
algorithm, which avoided premature convergence, improved
global search ability, and optimized DBN parameters using

MSIQDE with global optimization ability. Furthermore,
Gao et al. [22] employed the intelligent optimization method
Salp SwarmAlgorithm to optimize DBN, effectively improv-
ing its classification accuracy.

The remainder of this paper was organized as follows.
Section II presented different methods applied in the study
to extract various features. Section III presented the fea-
ture extraction and model optimization process to prepare
multi-domain data sets for experiments. Section IV presented
the assignment of the experimental data sets and the com-
parison of results between this paper and the mainstream
methods. Section V summarized the whole study and the
future work.

II. METHODS
A. WAVELET DECOMPOSITION AND RECONSTRUCTION
The Short-time Fourier Transform (STFT) is an evolution
of the traditional Fourier Transform (FT). The size and
shape of the window function in STFT remain fixed and
independent of time, rendering it unsuitable for analysing
time-varying signals. An excessively narrow window func-
tion frame can result in poor frequency resolution, whereas a
wider frame can result in poor time resolution. This limitation
prevents STFT from satisfying the frequency requirements of
unsteady signal changes. However [23], the wavelet trans-
form differs from the STFT as it abandons the infinite
trigonometric function basis and adopts a finite and decaying
wavelet basis. This transformation facilitates both frequency
information and accurate time localization. In wavelet trans-
form, frequency information can be obtainedwhile accurately
determining the specific time location of a signal. The spe-
cific expression is as follows:

WT (α, τ ) =
1

√
α

∫
+∞

−∞

f (t) ∗ ψ

(
t − τ

α

)
dt (1)

Eq.(1) shows that in contrast to FT, the wavelet trans-
form incorporates two variables: scale α and position τ .
Scale α controls the scaling of the wavelet function, whereas
position τ determines its translation. Scale α is inversely
proportional to frequency, and position τ corresponds to
time. The wavelet analysis method outperforms traditional
Fourier analysis in denoising non-stationary signals. Fig.1
shows a diagram of a signal’s wavelet decomposition and
recomposition.

Wavelet noise reduction facilitates decorrelation. In wave-
let analysis [24], signal decomposition is performed using the
Mallat tower algorithm, resulting in approximate and detailed
signals at each decomposition level. This study employed the
Daubechies (Db) wavelet owing to its suitability for rolling
bearing fault characteristics. The Daubechies wavelet was
characterized by its outstanding orthogonality, effectively
reducing information loss during wavelet transformation and
inverse operations. Compared to other wavelet functions,
it offered a notably refined time resolution in its designated
time domain. Furthermore, there was a noticeable enhance-
ment in the smoothness and continuity of the processed
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FIGURE 1. Wavelet decomposition and recomposition.

signal as the wavelet coefficients increased. Samsingh [25]
employed the db4wavelet to denoisemedical images and jux-
taposed its performance with other techniques. The superior
efficacy of the db4 wavelet was distinctly manifested in his
comparisons.

FIGURE 2. Relationship between wavelet basis and SNR.

In Fig.2, when selecting the optimal wavelet base function,
the SNR post-Daubechies wavelet denoising experiences a
significant surge, plateauing around the db4 mark. Remark-
ably, all three wavelet functions nearly reach their SNR
zenith when the base is set at 4, with only marginal
gains observed beyond this point. Employing higher-order
wavelet base functions introduced the potential for sig-
nal over-decomposition and an upswing in computational
demand. Given these findings, this study earmarked the
Daubechies db4 wavelet as the focal point for vibration signal
denoising. In addition, the number of decomposition levels
should be chosen while considering the trade-off between
separation effectiveness and noise reduction during recon-
struction. A suitable scale of three decomposition levels was

selected to address this trade-off. This choice resulted in
the clear separation of noise and signal and an excellent
final noise reduction effect after reconstruction. Based on
the principles above and influencing factors of wavelet noise
reduction, the original signal comprising 20,480 sampling
points was processed using wavelet noise reduction.

B. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
Limitations, such as mode aliasing and end effects, plague
the traditional EMDmethod in signal processing. These defi-
ciencies can result in periodic signals and a loss of physical
meaning, ultimately affecting signal decomposition accuracy.
A novel method, called EEMD [26], was proposed to address
these issues. The EEMD method tackles the problem of
signal decomposition accuracy, particularly mode aliasing,
by introducing noise-assisted computation. EEMD involves
introducing random noise into a given time-domain signal,
performing multiple EMDs on the signal with added noise,
and then averaging the resulting IMFs across the decompo-
sitions to obtain a more robust decomposition, effectively
separating different frequency components within the orig-
inal signal. The IMF is defined as a single-component signal
obtained through decomposing the original signal after noise
reduction. The detailed decomposition steps are depicted
in Fig.3. Consequently, the EEMD method offers a reliable
solution for achieving accurate signal decomposition.

FIGURE 3. Flowchart of the EEMD algorithm.

C. SPARROW SEARCH ALGORITHM
SSA is a swarm optimization algorithm that outperforms
existing algorithms regarding convergence speed, stability,
and local optima avoidance. It achieves this by simulating
the foraging and anti-predation behaviour of sparrow popu-
lations. A new meta-heuristic algorithm called the Sparrow
Search Algorithm (SSA) [27] is proposed to optimize the
operation of microgrids. Furthermore, an improved version
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of the sparrow search algorithm [28] is utilized to solve
time-optimal trajectory problems. Numerous researchers
have acknowledged and affirmed the optimization capabili-
ties of SSA, and its feasibility has been demonstrated through
comparisons with ample data from multiple regions. The
specific flow of the algorithm is as follows.

The population and fitness function composed of n spar-
rows are expressed as follows:

X =


x11 x21 · · · xd1
x12 x22 · · · xd2
· · · · · · · · · · · ·

xn1 xn2 · · · xdn

 ,Fx =


f
([
x11 x21 · · · xd1

])
f
([
x12 x22 · · · xd2

])
...

f
([
xn1 xn2 · · · xdn

])

(2)

where d is the dimension of the variable to be solved and f is
the fitness function.

In SSA, the efficiency of food discovery is directly pro-
portional to the fitness value. After each iteration of the
algorithm, the discoverer in the sparrow population contin-
ually searches for food and updates its position and direction.
The number of discoverers typically accounts for approxi-
mately 10-20% of the total population. The expression for
updating the position can be described as follows:

X t+1
i,j =


X t+1
i,j · exp

(
−

i
α · itermax

)
,R2 < ST

X ti,j + Q · L,R2 ≥ ST

a ∈ (0, 1] ,R2 ∈ [0, 1] ,ST ∈

[
1
2
, 1
] (3)

where t is the number of iterations, itermax is the maximum
number of iterations, L is a matrix of 1 × d , α is the random
number in the range, R2 is the early warning value, and the
range is the safe value.

Its position update expression can be described as:

X t+1
i,j =


Q · exp

(
Xworst − X ti,j

i2

)
, i >

n
2

X t+1
p +

∣∣∣X ti,j − X t+1
p

∣∣∣ · A+
· L, i ≤

n
2

(4)

where X t+1
p is the optimal position of the discoverer in the

global when iteration t + 1 is reached and Xworst is the worst
position of the population in the global.

D. DEEP BELIEF NETWORK
DBN is a Restricted Boltzmann Machines (RBM) type that
combines low-level features with other nonlinear transforma-
tions. DBN is a deep learning model incorporating Neural
Networks and Backpropagation Neural Network (BPNN) to
capture high-level abstract features. It has been extensively
used in various fields, such as classification, prediction, and
speech recognition, wherein it has showcased remarkable
performance and thus established itself as a leading approach
in fault classification and diagnosis owing to its advantageous
combination of features. RBM serves as the foundation of
the DBN network model. Its structure comprises independent

layers without internal communication between them. Each
node processes input data units and independently decides
whether to pass on the input based on random judgment.
The parameters of RBM are randomly initialized, enabling
the calculation of the probability for each neuron individ-
ually. By multiplying these probabilities, RBM estimates
the activation of the entire layer of neurons. Consequently,
the computational complexity is reduced, and the connec-
tions within the visible and hidden layers are eliminated.
Thus, no connections exist between visible or hidden units,
as shown in Fig.4.

FIGURE 4. RBM infrastructure diagram.

By leveraging the main idea of unsupervised learning, the
fault feature identification in the DBN can be achieved by
adding a Softmax output layer at the top. This facilitates
supervised learning techniques, wherein labels are used to
evaluate and analyze the entire dataset. Through this pro-
cess, effective classification and prediction can be achieved.
Regarding the structural characteristics, the training model
for the DBN involves establishing the initial model and fixing
the weights w and bias values b, c of the first RBM layer.
Subsequently, the RBM network of each layer was trained
sequentially and stacked on top of each other. This greedy
layer-by-layer training process was optimized through multi-
ple iterations, forming the fundamental DBN model.

FIGURE 5. DBN structure model.

Fig.5 shows a basic RBM structure composed of m vis-
ible and n hidden neurons, where v is the visible layer of
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input data, h is the hidden layer of feature extraction, w is
the weight between layers, and b, c are the bias values of
the visual and hidden layers, respectively. The random vari-
able x was divided into two groups to represent it as: h =

{h1, h2, h3, · · · , hn}, v = {v1, v2, v3, · · · , vm}, and many
connections were omitted inside the visual and hidden layers.
The expression of its energy function is expressed as:

E (v, h) = −

 m,n∑
i,j=1

viwijhj +
m∑
i=1

bivi +
n∑
j=1

cjhj

 (5)

Substituting the energy function into the probability den-
sity function yields the final form of RBM:

P (x) = P (v, h) =
1
z

· e

m,n∑
i,j=1

viwijhj+
m∑
i=1

bivi+
n∑
j=1

cjhj
(6)

where Z =
∑
v,h
e−E(v,h) is the normalized factor, also known

as the partition function, and it represents the sum of energy
in all possible cases.

The formation of probabilities in an RBM involves calcu-
lating the energy of a specific state and dividing it by the sum
of the energies of all possible states. The energy function in
RBM follows the Boltzmann distribution, and it facilitates
the expression of a joint probability density by continuously
calculating the probabilities and connections between the two
layers. RBM builds a unified energy model by combining
energy functions with related probability distribution func-
tions. The shared weights between the two layers of RBM
determine the joint distribution probability.

The states of each unit in the visual and hidden layers are
independent of each other, and the conditional probability
expression as in Eqs.(7) and (8):

P (v, h) =
P (v, h)
P (h)

=

∏
P (vih) (7)

P (h, v) =
P (h, v)
P (v)

=

1
z · e−E(v,h)

1
z ·
∑
h
e−E(v,h)

=

∏
P
(
hj, v

)
(8)

The neuronal activation probabilities of the visual and
hidden layers are defined in Eqs.(9) and (10):

P (vi = 1, h) = sigmoid

 n∑
j=1

wijhj + cj

 (9)

P
(
hj = 1, v

)
= sigmoid

(
m∑
i=1

wijvi + bi

)
(10)

The sigmoid activation function facilitates the hidden layer
effect in the DBN network. Instead of receiving a linear func-
tion output from the previous layer, each node in the hidden
layer transforms the output value using a nonlinear function
such as the sigmoid function. This nonlinearity ensures the
model’s powerful expressive capabilities. Considering that
the selected experimental task involved multi-classification,
the sigmoid activation function was essential for achieving

the hidden layer effect. Therefore, the activation function
that yielded the maximum accuracy was chosen. Fig.4 shows
the complete training process of a DBN network, beginning
from the unsupervised pre-training of the input layer to the
top layer. After optimizing the initial parameters of each
layer, reverse supervised fine-tuning was conducted in com-
bination with labelled data. During the reconstruction phase,
the activation state of the hidden layer served as the input
during the backward transmission process. Similar to weight
adjustment in the forward transmission process, errors were
reconstructed and backpropagated based on weight adjust-
ments. Through continuous iterative learning, the errors were
minimized until convergence was reached.

III. FEATURE EXTRACTION AND DBN OPTIMIZATION
A. SIGNAL NOISE REDUCTION
Assume a known signal with sampling frequency Fs =

5120Hz, sampling number N = 1024, and sampling step
dt of 1

Fs
. A random noise was added in MATLAB using the

randn() function to form a signal containing noise, as shown
in Eq.(11):

x (i) = sin (2 ∗ pi ∗ 50 ∗ i ∗ dt)+ 0.5

∗sin (2 ∗ pi ∗ 1500 ∗ i ∗ dt)+ 1

∗ sin (2 ∗ pi ∗ 3000 ∗ i ∗ dt)+ 0.1 ∗ randn (1, 1)

(11)

Based on Eq.(11), the time-domain signal comprised com-
ponents at frequencies of 50, 1500, and 3000Hz, and random
noise. Among these, the 50Hz component represents the
effective signal, whereas the others correspond to interference
noise signals at different frequencies. Wavelet decomposition
was applied to obtain wavelet coefficients, which were then
used for signal reconstruction. To illustrate the impact clearly,
the first 500 signals are shown in Fig.6. The resulting signals
exhibited a noticeable effect of smooth noise reduction, ulti-
mately producing a cleaner representation.

FIGURE 6. Simulation signal noise reduction.

This study employed the wavelet transform to reduce
the noise present in the four operating states of the rolling
bearing. This technique effectively extracted the smooth and
meaningful components of the signal while eliminating the
noise. After decomposing the signal using wavelet transform,
the wavelet coefficients were used to reconstruct the denoised
signal. Fig.7-10 provide a visual comparison between the
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FIGURE 7. Normal signal after noise reduction.

FIGURE 8. Inner race fault signal after noise reduction.

FIGURE 9. Rolling element fault after noise reduction.

FIGURE 10. Outer race fault after noise reduction.

original signal and the denoised signal obtained through
wavelet transform. It is apparent from these figures that
wavelet transform exhibits remarkable denoising ability by
removing the unwanted noise components from the original
vibration signal. The vertical axis represents the amplitude,
measured in the unit m/s2, while the horizontal axis represents
the number of samples. To simplify the figures and emphasize
the impact of wavelet noise reduction, the first 2000 signals
were considered.

Fig.7-10 provide above illustrates the standard vibration
signal of the rolling bearing, along with the waveforms of the
inner ring fault, rolling element fault, and signal after noise
reduction for the outer ring fault. As evident, the vibration

FIGURE 11. Time-domain and frequency-domain feature distribution
diagram.

signal waveform became smooth and devoid of any sharp or
jagged points after noise reduction. This denoising process
preserved the essential characteristics of the original signal
while effectively eliminating unwanted noise. Consequently,
the denoised signal retained the integrity of the practical
components while ensuring the removal of invalid noise.

B. FEATURE EXTRACTION
After applying noise reduction, the sample data was sub-
jected to combined time-domain and frequency-domain index
analysis. The EEMD was then used to extract IMF energy
features. The distribution of these features in the time-domain
and frequency-domain is shown in Fig.11, which clearly
illustrates the contribution of mean and effective values to
fault diagnosis. Fig.12 shows the distribution of IMF energy
features, demonstrating the retention of compelling IMF
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FIGURE 12. Feature distribution diagram of IMFE.

TABLE 1. Feature parameters and expressions.

energy features while avoiding modal aliasing. The charac-
teristic parameters corresponding to these features are listed
in Table 1. When obtaining IMF component features through
EEMD, an additional white Gaussian noise with a mean
square error of 0.25 was introduced, with an overall aver-
age of 50 samples. This resulted in different characteristic
parameters and energy curves, providing additional bearing
information that could be reflected.

In Fig.11, the first one exhibited mean, effective, peak,
variance, and skew distribution values. The second one exhib-
ited kurtosis, peak, pulse, and margin factor distribution.

Figure 13 illustrates the variance contribution rates and
Pearson correlation coefficients of various modal compo-
nents post-EEMD decomposition for both denoised and raw
signals. The denoised signal maintains a strong linear corre-
lation with the original one and captures distinct frequency
details through EEMD, resulting in a smoother curve. This
combination of EEMD and db4 wavelet is instrumental in
extracting diverse frequency features for bearing fault diag-
nosis. In contrast, the raw signal exhibits enhanced frequency
periodicity after EEMD decomposition but lacks detailed
frequency characteristics.

FIGURE 13. Comparison of IMF related parameter trends.

C. DBN OPTIMIZED BY SSA
The SSA [29] was employed to optimize the structure
and weight parameters of the DBN. The results demon-
strate that the recognition rate of the SSA-DBN model
surpassed that of other classifiers, with a recognition accu-
racy approximately 2% higher than that of the unoptimized
DBNmodel. SSA-DBN, VMD andWigner-Ville distribution
(WVD) [30] were used for intelligent fault severity detection.
The model achieved an accuracy rate of 98%, indicating
its effectiveness in fault detection. Li et al. [31] compared
and verified the performance of DBN models combined
with different optimization algorithms, including Simulated
Annealing (SA), Particle Swarm Optimization (PSO), and
SSA. The evaluation results indicated that all three improved
DBN models outperformed the original DBN model. How-
ever, the SSA-DBN model achieved the highest evaluation
accuracy among them.

When proposing a relatively new algorithm, further
research and verification are necessary to assess its optimiza-
tion effectiveness. In the case of the algorithm considered,
which was proposed 2-3 years ago, it is expected that more
researchers will need to conduct experiments and validate its
performance using actual data.
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FIGURE 14. Process diagram of SSA-DBN.

Indeed, a DBN’s optimal performance relies on the optimal
network structure. While researchers typically set the DBN
network structure based on their experience, it may not fully
exploit the potential performance of DBN. To address this,
a new fault detection model called SSA-DBN was proposed
by optimizing DBNwith the SSA. The core idea behind using
SSA to optimize DBN was to determine the sparrow with
the best position and the individual sparrow with the high-
est fitness. Throughout the iteration process, the parameters
of the sparrow were used to determine the optimal net-
work structure of DBN. Subsequently, the labelled data was
selected and input into a Softmax classifier for fault classifi-
cation and diagnosis, as shown in Fig.14. This optimization
process aimed to obtain the optimal fault detection model.
By integrating SSA optimization with DBN, the SSA-DBN
model enhanced the performance and effectiveness of fault
detection. It utilized the optimization capabilities of SSA to
determine the optimal DBN network structure, resulting in an
improved fault detection model.

D. FAULT DIAGNOSIS PROCEDURE
The detailed steps of rolling bearing fault diagnosis based on
the SSA-optimized DBN are as follows:

(1)Denoising: Three-layer wavelet packet decomposition
and reconstruction were applied to denoise the original vibra-
tion signal of the rolling bearing. The denoising effect was
remarkable. Further, the practical signal dataset was divided
into different states.

(2)Feature Extraction: Time-domain and frequency-
domain features were extracted from the practical signal
dataset. In addition, IMF energy features were extracted using
the EEMD.

(3)Labeling: The sample labels in the entire dataset
were marked manually to distinguish different types of

sample data. The dataset contained 480 samples with four
classifications. The dataset was split into a ratio of 3:1, with
120 samples as the test set and 360 as the training set.

(4)Data Preprocessing: The data were normalized to ensure
that the values ranged between [0, 1]. This preprocessing step
reduced the computational load of themodel. Further, the data
were transposed to adapt to the model characteristics. Before
training, the maximum number of iterations and the number
of sparrows were set in the SSA algorithm, which were 50
and 100. Further, the momentum parameter was set as 0.5,
and the learning rate was set as 0.1. Through constant updat-
ing and iteration of sparrow positions, the optimal position
sparrow with the highest fitness value was determined.

(5)DBN Training: The number of nodes in the input layer
corresponded to the dimensionality of the input features, and
the number of output nodes was 4, representing the running
state of the four types of rolling bearings. A 2-layer RBM
was set up. The RBM was trained with 65 iterations, a learn-
ing rate of 0.01, and a fine-tuning process of 10 iterations.
Further, the integrated feature set was divided into a 3:1 ratio
and input into the optimized SSA-DBN network model.

(6)Fault Diagnosis: The labels were set, and the rolling
bearing faults were diagnosed using the trained SSA-DBN
network model.

(7)Result analyzing: The combination model applied in
this study was compared with other mainstream methods to
verify the effectiveness of the proposed method.

This paper’s diagnostic process and technical roadmap are
shown in Fig.15.

FIGURE 15. Technical roadmap.

IV. FAULT DIAGNOSIS PROCESS BASED ON SSA-DBN
In this study, the data set used was the life cycle data of
rolling bearings obtained from the NSF I/UCR Intelligent
Maintenance System Center. The data set can be accessed
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at https://www.nasa.gov. The experiments were conducted
using an ACmotor rotating at a constant speed of 2000 RPM.
Four ZA-2115 double-row roller bearings manufactured by
Rexnord were installed on the rotating shaft. Further, accel-
eration sensors were placed on the horizontal and vertical
directions of each bearing to measure and collect the cor-
responding vibration signals. Each data set recorded the
complete life cycle of a bearing, beginning from regular oper-
ation and progressing to the point of damage. The sampling
frequency for data collection was set at 20 kHz. Each interval
between data points was 10 min, resulting in the collection of
one sample per interval. The collection time for each sample
was approximately 1.024 s, yielding 20,480 data points for
each sample.

A. FEATURE SET
After preliminary analysis, the 10-dimensional time-domain
feature set T =

[
X Xrms Xp Dx K4 K3 Ls Lp Lα Ly

]T
and the 3-dimensional frequency-domain feature set P =[
fFC fMSF fVF

]T were obtained. In addition, the IMF com-
ponent of 11 witter collection E =

[
E1 E2 E3 · · · E11

]T ,
finally obtained the fusion multi-dimensional multi-domain
feature set L =

[
T P E

]
, which contained a total of

24 dimensions. The specific parameter characteristics are
presented in Tables 2 and 3.

TABLE 2. Part of time-domain feature parameters.

B. FAULT DIAGNOSIS
Using the vibration mentioned above signal data, 120 sam-
ples were obtained for each of the four working conditions
(normal, inner race fault, rolling element fault, and outer
race fault). These samples were divided into training and test
sets according to the specified proportion. The training set
was then used to learn and train the SSA-DBN model with
the parameters mentioned earlier. The experimental results
of the SSA-DBN model are shown in Fig.16. As evident,

TABLE 3. Frequency-domain feature parameters.

FIGURE 16. Diagnosis result graph based on multi-domain feature set
SSA-DBN.

high recognition accuracy and effective classification were
achieved by the DBN network model optimized by the SSA
algorithm. Fig.17 shows the fitness function curve of the
SSA-DBN model, indicating the decrease in the objective
function value with increasing iteration times. By the second
iteration, the objective function value reached its optimal
value.

To evaluate the paper’s experimental results, a visualiza-
tion tool, referred to as the Confusion Matrix, was added.
The Confusion Matrix is particularly suitable for supervised
learning tasks as it facilitates the comparison of the accuracy
of classification results. Fig.18 shows the Confusion Matrix
used in this study. In the Confusion Matrix, each row repre-
sents the actual class labels corresponding to the four bearing
states examined in this paper. Each column represented the
predicted class labels assigned by the SSA-DBN network
model. Based on the definitions of the Confusion Matrix,
it can be categorized into four types: True Positive (TP),
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FIGURE 17. Changed curve of fitness function.

FIGURE 18. Confusion matrix visualization.

False Negative (FN), False Positive (FP), and True Neg-
ative (TN). Notably, in the Confusion Matrix, there is an
occurrence of FP type. This implies that in one sample, the
actual state is an inner race fault; however, the SSA-DBN
network model misidentified it as a normal state, resulting in
a misdiagnosis. This observation suggests further refinement
in the data processing stage to enhance the overall diagnostic
performance.

In contrast, when the SSA was not used to optimize the
DBN network model, the diagnostic accuracy rate was only
75% for the same data division and parameters. However,
after applying the SSA optimization, the fault diagnosis rate
of the DBN network model improved significantly. This
demonstrates SSA’s effectiveness in enhancing the DBN
model’s performance for fault diagnosis. Furthermore, to val-
idate the effectiveness of the selected feature set L in this
study, all the characteristic parameters were input into the
SSA-DBNmodel for fault diagnosis, and the diagnosis results
were compared with mainstream methods. The parameters of
different methods were set as follows:

(1)PSO-DBN: The learning rate was set as 0.02, the
momentum parameter was set as 0.1, the activation func-
tion was the sigmoid function, the number of particle swarms
was 15, and the number of particle swarm training iterations
was 100. Other parameters were consistent with SSA-DBN.

(2)SSA-SVM: The number of iterations, sparrows, the
momentum parameter, and the learning rate were consistent

with SSA-DBN. The optimized penalty parameter was
60.309, and the kernel parameter was 0.5694.

The results of PSO-DBN and SSA-DBN are shown in
Fig.19. The compared results and accuracy of this analysis
are summarized in Table 4.

FIGURE 19. Results of mainstream methods.

TABLE 4. Diagnosis results of different feature sets.

Table 4 shows that the diagnostic accuracy distribution
of the SSA-DBN diagnostic model adopted in this study
spans different feature sets. Specifically, the performance
of the energy features derived from EEMD decomposi-
tion, represented by IMFEF, is relatively subpar. However,
when temporal and spectral feature sets are combined
(i.e., the combined feature set), there is a significant enhance-
ment in the overall diagnostic accuracy, reaching 99.17%.
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The percentage difference reveals that, prior to feature inte-
gration, the diagnostic precision of a single-dimensional
feature set lags behind that of multi-dimensional integrated
feature sets by approximately 8%. This underlines the com-
plementary nature of features from different dimensions and
domains, highlighting the superiority of multi-dimensional
integrated feature sets in fault diagnosis, thereby elevating
diagnostic accuracy and robustness. Additionally, Table 4
also offers a lateral comparison against various diagnos-
tic models. The results demonstrate that the DBN model,
without structural and parameter optimization, commits sig-
nificant errors in its diagnosis. Conversely, the diagnostic
accuracy of the DBN model, post-optimization with the
SSA algorithm, has increased by about 24%, attesting to the
necessity of algorithmic optimization. Furthermore, incor-
porating mainstream optimization algorithm PSO-DBN and
mainstream classification model SSA-SVM for comparison,
the analysis in conjunction with Figure 17 suggests that the
samemulti-dimensional integrated feature set, under different
optimization algorithms or different classification models,
presents variant outcomes with a disparity of around 5%.
Both methods have diagnostic errors across four labels,
impermissible in practical scenarios. Hence, deep learning
models, optimized in structure and parameters with optimiza-
tion algorithms, outshine shallow machine learning models.
The degree of model optimization varies among different
optimization algorithms. Empirical evidence confirms that
the SSA-DBN diagnostic model employed in this study
possesses genuine diagnostic capability and high precision
standards.

V. CONCLUSION AND FUTURE WORK
The multi-domain feature set, consisting of time-domain fea-
tures, frequency-domain features, and IMF energy features,
achieved a high accuracy of 99.17% in diagnosing the three
fault states (inner ring fault, rolling element fault, outer ring
fault) as well as the normal state of rolling bearings. Utiliz-
ing this feature set facilitated the efficient diagnosis process
in the network model. Furthermore, by comparing different
features’ impact on the diagnosis results, it was evident that
this study’s selected feature data set was highly effective.
The average diagnosis accuracy rate of 99.08% was obtained
after conducting ten experiments, highlighting the robust-
ness of the feature dataset. Compared to the non-optimized
diagnosis model, even including the mainstream models,
such as PSO-DBN and SSA-SVM, the proposed SSA-DBN
model outperformed in performance. This emphasizes the
significance of the feature dataset and the diagnosis model,
as each domain’s feature parameters contribute to diagnostic
characteristics and rely on each other. The SSA-DBN model
demonstrated excellent fault identification and diagnosis sta-
bility, ultimately enhancing overall diagnostic accuracy.

In terms of future work, there are several areas for further
improvement and research based on the method proposed
in this paper. These aspects can contribute to deploying the
proposed method in real-world engineering scenarios and

fundamentally contribute to the field. In addition, these sug-
gestions can serve as references for other scholars conducting
further research:

(1)Multi-Dimensional Fault Diagnosis: The integration of
multiple types of signals, such as vibration, current, tem-
perature, and sound from rolling bearings, can be explored.
Various types of sensors can be used for signal acquisition,
study sensor layout positions and quantities, and develop
suitable algorithms to extract features from different signal
types. This research can contribute to establishing a multi-
angle, multi-functional system for intelligent fault diagnosis
of rolling bearings under different working conditions.

(2)Addressing Sample Scarcity: In practical applications,
collecting an adequate number of fault samples can be chal-
lenging, resulting in imbalanced datasets. Although deep
learning fault diagnosis models can handle multiple types
of faults and perform identification and classification tasks,
addressing the classification error issue in the presence of
imbalanced samples becomes crucial. Further research can
focus on developing strategies tomitigate the effects of imbal-
anced datasets and improve classification performance.

These research directions can extend the current work
and contribute to the advancement of fault diagnosis in
rolling bearings. Thus, by addressing issues related to
multi-dimensional signal analysis and handling imbalanced
datasets, further improvements can be made to enhance the
practical applicability and effectiveness of fault diagnosis
methods.
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