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ABSTRACT The circular Pythagorean fuzzy (Cir-PyF) sets (Cir-PyFSs) not only contain the membership
and non-membership grades, but also have the radius around the circle of each element. Cir-PyFSs can cope
with many real-life problems. In this paper, we consider the Hamacher t-norm and t-conorm operational
laws for any two Cir-PyF numbers (Cir-PyFNs) and describe their exceptional cases such as algebraic
and Einstein operational laws. Furthermore, the Cir-PyF Hamacher averaging (Cir-PyFHA) operator, Cir-
PyF Hamacher ordered averaging (Cir-PyFHOA) operator, Cir-PyF Hamacher geometric (Cir-PyFHG)
operator, and Cir-PyF Hamacher ordered geometric (Cir-PyFHOG) operator are proposed. Some properties
and theorems for the above operators are also discussed in detail. Moreover, to select the simplest and
best procedure for evaluating the source of gold in mines, we illustrate the application of the multi-
attribute decision-making (MADM) technique based on the derived operators. Finally, we demonstrate some
examples for comparing the proposed operators with some existing methods to expand the attraction of the
proposed way.

INDEX TERMS Fuzzy sets, circular Pythagorean fuzzy sets, Hamacher aggregation operators, decision-
making problem, assessment of goldmines.

I. INTRODUCTION
In our genuine life problems, we continuously face distinct
types of decision-making problems, where our basic and
initial focus is to learn how to make a better decision.
So multi-attribute decision-making (MADM) becomes an
important procedure in the decision sciences. However, there
always exist ambiguity and uncertainty in our life issues in
which we cannot make decisions by only using crisp data.
To treat such issues, Zadeh [1] developed a novel theory
of fuzzy sets (FSs) where FSs have a truth grade whose
range is a unit interval, and had been applied in various areas
for handling uncertainty arising from ambiguity and partial
belongingness [2], [3], [4], [5]. During an election in any
country, many people have noticed that some people have put
their vote in favor of some candidates, some people have cast
their vote against some candidates, some people have refused
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their vote, or some people have not shown has presence in the
election because of some problems. In this case, many people
have observed that the FSs theory is not enough for evaluating
some awkward and unreliable problems, because FSs have
only one grade. However, for most of these problems, we face
positive, negative, and refusal responses, which is a very
complicated problem and FSs cannot cope them. For this,
Atanassov [5], [6] discovered the intuitionistic FSs (IFSs).
IFSs fully fit the criteria of the above problems and the
theory of IFSs is very suitable for evaluating or addressing
the above dilemma, because IFSs have two grades, called
truth ‘‘TCF ( )’’ and falsity ‘‘FCF ( )’’ with 0≤TCF ( ) +

FCF ( ) ≤1. IFSs have various applications because the
mathematical form of IFSs is strong and reliable due to their
condition [7], [8], [9], [10].

Although IFSs have many applications, but the condition
of IFSs with 0≤TCF ( ) + FCF ( ) ≤1 is failed when we
have TCF ( ) = 0.6 and FCF ( ) = 0.7, i.e. 0.6 + 0.7 =

1.3̸∈ [0, 1] . Because of the above problem, many scholars
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had avoided using it for addressing awkward and unreliable
problems. Yager and Abbasov [11] exposed Pythagorean
FSs (PyFSs), where PyFSs have the same structure as IFSs,
but changed its condition with 0≤T2

CF ( ) + F2
CF ( ) ≤1.

PyFSs become the extensions of FSs and IFSs with various
applications, such as [12], [13], and [14]. These different
types of FSs extensions had taken the truth and falsity
grades, but they avoided the angle between truth and falsity
grades. For this, Atanassov [15] exposed a novel extension
of IFSs, called circular IFSs (Cir-IFSs) in which Cir-IFSs
not only cover the truth and falsity grades, but also a radius
around the circle of each element. These Cir-IFSs had gotten
more applications, such as [16], [17], and [18]. Additionally,
Bozyigit et al. [19] gave the extension of Cir-IFSs to circular
PyFSs (Cir-PyFSs) in which Cir-PyFSs contain the truth
and falsity grades with radius, but replace the condition of
0≤TCF ( )+FCF ( ) ≤1 with the condition of 0≤T2

CF ( )+

F2
CF ( ) ≤1.

Hamacher [20] exposed the novel theory of Hamacher
norms by including a parameter in the modified version of
algebraic norms, where the algebraic norms and Einstein
norms are the subparts of the Hamacher norms. Huang [21]
considered aggregation operators (AOs) for IFSs based
on Hamacher norms. Garg [22] gave Hamacher AOs for
IFSs with entropy weight, Wu and Wei [23] addressed the
Hamacher AOs for PyFSs, and Ozer [24] gave Hamacher
prioritized AOs for complex picture FSs. The idea of
Cir-PyFSs was recently developed by Bozyigit et al. [19]
in 2023, and no one had evaluated any kind of operators,
methods, or measures based on Cir-PyFSs, but only was
considered by Alsattar et al. [25] in developing sustainable
smart living framework by the three-way decision-based
conditional probabilities in Cir-PyFSs. In this paper, we focus
on this new developed Cir-PyFSs, and give their Hamacher
AOs with properties and applied them in the assessment of
goldmines. Thus, the major contributions of this paper are
listed as follows:

1) To determine the Hamacher operational laws for any
two Cir-PyFSs and describe their exceptional cases like
algebraic and Einstein operational laws.

2) To derive the Cir-PyF Hamacher averaging (Cir-
PyFHA), Cir-PyF Hamacher ordered averaging
(Cir-PyFHOA), Cir-PyF Hamacher geometric (Cir-
PyFHG), and Cir-PyF Hamacher ordered geometric
(Cir-PyFHOG) operators the Cir-PyFHA operator.

3) To discuss the properties of the proposed operators on
Cir-PyFSs.

4) To select the best and simplest procedure for evaluating
the source of gold in mines, we construct the MADM
technique based on the derived operators.

5) To demonstrate some examples for comparing the
derived operators with some existing operators.

This paper is arranged as follows. In Section II,
we discuss the Cir-PyFSs and their operational laws with
Hamacher t-norm and t-conorm. In Section III, we give

the Hamacher operational laws for any two Cir-PyFNs
and describe their exceptional cases like algebraic and
Einstein operational laws. Furthermore, the Cir-PyFHA,
Cir-PyFHOA, Cir-PyFHG, and Cir-PyFHOG operators are
proposed. Additionally, some properties and unique cases for
the above operators are also discussed in detail. In Section IV,
we illustrate the MADM technique based on the derived
operators and then applied it in selecting the best and
simplest procedure for evaluating the source of gold in mines.
In Section V, we demonstrate some examples for comparing
the invented operators with some existing operators to expand
the attraction of the proposed operators. Some concluding
remarks are stated in Section VI.

II. PRELIMANARIES
This section briefly explains one of important ideas, such
as circular Pythagorean fuzzysets (Cir-PyFSs) and their
operational laws. Further, we state the basic idea of Hamacher
t-norm and t-conorm.
Definition 1: [19] Let be a universal set. The Cir-PyFS

CF is defined as:

CF =
{(

TCF ( ) , FCF ( ) , RCF ( )
)

: ∈X
}

where 0≤T2
CF ( ) + F2

CF ( ) ≤1 in which the term TCF ( )

represents the truth grade, FCF ( ) represents the falsity
grade, and RCF ( ) states the radius around the cir-
cle of each element. Furthermore, the refusal grade is

defined as P =

(
1 −

(
T2
CF ( ) + F2

CF ( )
)) 1

2
and a circular

Pythagorean fuzzy number (Cir-PyFN) is expressed with
CjF =

(
Tj
CF , FjCF , Rj

CF

)
, j = 1, 2, . . . , z.

Definition 2: [19] Let CjF =

(
Tj
CF , FjCF , Rj

CF

)
,

j = 1, 2 be any two Cir-PyFNs. Then, the following operators
are defined as shown in the equation at the bottom of the next
page.
Definition 3: [19] Let CjF =

(
Tj
CF , FjCF , Rj

CF

)
,

j = 1, 2 be any two Cir-PyFNs. Then, the score value S
(
CjF
)

and accuracy value H
(
CjF
)
are defined as:

S
(
CjF
)

=

((
Tj
CF

)2
−

(
FjCF

)2)
∗ Rj

CF∈ [−1, 1] ;

H
(
CjF
)

=

((
Tj
CF

)2
+

(
FjCF

)2)
∗ Rj

CF∈ [0, 1] .

The score and accuracy values with great rules have that,
if S

(
C1F
)

> S
(
C2F
)
, then C1F > C2F ; If H

(
C1F
)

> H
(
C2F
)
,

then C1F > C2F .
Definition 4: [20] Let CjF∈ [0, 1] , j = 1, 2 be any two

non-negative integers. Then, Hamacher t-norm and t-conorm
for ∅

s
c > 0 are defined as:

DTN
(
C1F , C2F

)
=

C1F ∗ C2F
∅sc +

(
1 − ∅sc

) (
C1F + C2F − C1F ∗ C2F

) ;
DTCN

(
C1F , C2F

)
=
C1F+C2F−C1F ∗C2F−

(
1 − ∅

s
c
)
∗C1F ∗ C2F

1 −
(
1 − ∅sc

) (
C1F ∗ C2F

) .
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Thus, for ∅
s
c = 1, 2, we can easily derive the algebraic and

Einstein norms, respectively.

III. HAMACHER AOs FOR CIR-PyFSs
In this section, we evaluate the following operators, Cir-
PyF Hamacher averaging (Cir-PyFHA), Cir-PyF Hamacher
ordered averaging (Cir-PyFHOA), Cir-PyF Hamacher geo-
metric (Cir-PyFHG), andCir-PyFHamacher ordered geomet-
ric (Cir-PyFHOG) operators, based on Hamacher operational
laws for Cir-PyFSs. Further, we discuss three basic properties
of the above operators. From now on, we consider the
collection of Cir-PyFNs with CjF =

(
Tj
CF , FjCF , Rj

CF

)
, j =

1, 2, . . . , z.
Definition 5: The following Hamacher operational laws

are defined, as shown in the equation at the bottom of
pages 4 and 5.
Definition 6: The Cir-PyFHAoperators are defined as:

CirPyFHATN
(
C1F ,C2F ,...,CzF

)
= U1

TNC
1
F⊕TNU2

TNC
2
F⊕TN . . . ⊕TNU zTNC

z
F

= ⊕TN
z
j=1

(
U jTNC

j
F

)
;

CirPyFHATCN
(
C1F ,C2F ,...,CzF

)
= U1

TCNC
1
F⊕TCNU2

TCNC
2
F⊕TCN . . . ⊕TCNU zTCNC

z
F

= ⊕TCN
z
j=1

(
U jTCNC

j
F

)
.

Further, for more simplification, we consider the weight
vector U jTN∈ [0, 1] with

∑z
j=1 U

j
TN = 1.

Theorem 1: For evaluating the operators defined in Def-
inition 6, we obtain Cir_PyFHATN

(
C1F , C2F , . . . , CzF

)
and

Cir_PyFHATCN
(
C1F , C2F , . . . , CzF

)
for Cir-PyFSs as fol-

lows, as shown in the equation at the bottom of page 6.
Proof:With the help of mathematical induction, we can

prove it. First, we set z = 2. Then, as shown in the equation
at the bottom of page 6. and

U2
TNC

2
F

=




(
1+(∅sc−1)

(
T2
CF

)2)U2
TN

−

(
1−
(
T2
CF

)2)U2
TN

(
1+(∅sc−1)

(
T2
CF

)2)U2
TN

+(∅sc−1)

(
1−
(
T2
CF

)2)U2
TN


1
2

,

(∅sc)
1/2

∗

(
F2
CF

)U2
TN

(1+(∅sc−1)

(
1−
(
F2
CF

)2))U1
TN

+(∅sc−1)

((
F2
CF

)2)U2
TN


1
2
,


(
1+(∅sc−1)

(
R2
CF

)2)U2
TN

−

(
1−
(
R2
CF

)2)U2
TN

(
1+(∅sc−1)

(
R2
CF

)2)U2
TN

+(∅sc−1)

(
1−
(
R2
CF

)2)U2
TN


1
2



.

Thus, as shown in the equation at the bottom of page 7.

C1F⊕TNC2F =

((T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2(
T2
CF

)2) 1
2

,
(
F1
CF

)
∗

(
F2
CF

)
,

(R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2(
R2
CF

)2


1
2

 ;

C1F⊕TCNC2F =

(((
T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2(
T2
CF

)2) 1
2

,
(
F1
CF

)
∗

(
F2
CF

)
,
(
R1
CF

)
∗

(
R2
CF

))
;

C1F⊗TNC2F =

((
T1
CF

)
∗

(
T2
CF

)
,

((
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2(
F2
CF

)2) 1
2

,
(
R1
CF

)
∗

(
R2
CF

))
;

C1F⊗TCNC2F =

(T1
CF

)
∗

(
T2
CF

)
,

((
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2(
F2
CF

)2) 1
2

,

(R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2(
R2
CF

)2


1
2

 ;

U sTNC
1
F =

(1 −

(
1 −

(
T1
CF

)2)U sTN) 1
2

,
(
F1
CF

)U sTN
,

(
1 −

(
1 −

(
R1
CF

)2)U sTN) 1
2
 ;

U sTCNC
1
F =

(1 −

(
1 −

(
T1
CF

)2)U sTCN) 1
2

,
(
F1
CF

)U sTCN
,
(
R1
CF

)U sTCN ;

(
C1F
)U sTN

=

(T1
CF

)U sTN
,

(
1 −

(
1 −

(
F1
CF

)2)U sTN) 1
2

,
(
R1
CF

)U sTN ;

(
C1F
)U sTCN

=

(T1
CF

)U sTCN
,

(
1 −

(
1 −

(
F1
CF

)2)U sTCN) 1
2

,

(
1 −

(
1 −

(
R1
CF

)2)U sTCN) 1
2
 .
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Further, we assume that it is also held for z = q, thus, as
shown in the equation at the bottom of page 8.

Finally, we evaluate that it should be also hold for z =

q + 1. We have that, as shown in the equation at the bottom
of page 9.

The required target is hold. After following the same
procedure, we can easily derive the below theory, such as,
as shown in the equation at the bottom of page 10.

Thus, this proves the theorem. □
Further, we simplify the basic properties of the above

procedures.

Property 1: When CjF = CF =
(
TCF , FCF , RCF

)
, j =

1, 2, . . . , z,then we haveCir_PyFHATN
(
C1F , C2F ,. . . ,CzF

)
=

CF and Cir_PyFHATCN
(
C1F , C2F , . . . , CzF

)
= CF .

Proof: We know that CjF = CF =
(
TCF , FCF , RCF

)
,

j = 1, 2, . . . , z, thus, as shown in the equation at the bottom of
page 11. We evaluate the same procedure and to have the fol-
lowing ideas, such as Cir_PyFHATCN

(
C1F , C2F , . . . , CzF

)
=

CF . □
Property 2: When CjF =

(
Tj
CF , FjCF , Rj

CF

)
≤Cj# =(

Tj
C# , FjC# , Rj

C#

)
, then we have Cir_PyFHATN (C1F , C2F , . . . ,

C1F⊕TNC2F =



(
T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2
∗

(
T2
CF

)2
−(1−∅

s
c)∗

(
T1
CF

)2
∗

(
T2
CF

)2
1−(1−∅sc)

((
T1
CF

)2
∗

(
T2
CF

)2)


1
2

,

(
F1
CF

)
∗

(
F2
CF

)
(

∅sc+(1−∅sc)

((
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2
∗

(
F2
CF

)2)) 1
2
,

(
R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2
∗

(
R2
CF

)2
−(1−∅

s
c)∗

(
R1
CF

)2
∗

(
R2
CF

)2
1−(1−∅sc)

((
R1
CF

)2
∗

(
R2
CF

)2)


1
2


;

C1F⊕TCNC2F =



(
T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2
∗

(
T2
CF

)2
−(1−∅

s
c)∗

(
T1
CF

)2
∗

(
T2
CF

)2
1−(1−∅sc)

((
T1
CF

)2
∗

(
T2
CF

)2)


1
2

,

(
F1
CF

)
∗

(
F2
CF

)
(

∅sc+(1−∅sc)

((
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2
∗

(
F2
CF

)2)) 1
2
,

(
R1
CF

)
∗

(
R2
CF

)
(

∅sc+(1−∅sc)

((
R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2
∗

(
R2
CF

)2)) 1
2


;

C1F⊗TNC2F =



(
T1
CF

)
∗

(
T2
CF

)
(

∅sc+(1−∅sc)

((
T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2
∗

(
T2
CF

)2)) 1
2
,

(
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2
∗

(
F2
CF

)2
−(1−∅

s
c)∗

(
F1
CF

)2
∗

(
F2
CF

)2
1−(1−∅sc)

((
F1
CF

)2
∗

(
F2
CF

)2)


1
2

,

(
R1
CF

)
∗

(
R2
CF

)
(

∅sc+(1−∅sc)

((
R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2
∗

(
R2
CF

)2)) 1
2


;

C1F⊗TCNC2F =



(
T1
CF

)
∗

(
T2
CF

)
(

∅sc+(1−∅sc)

((
T1
CF

)2
+

(
T2
CF

)2
−

(
T1
CF

)2
∗

(
T2
CF

)2)) 1
2
,

(
F1
CF

)2
+

(
F2
CF

)2
−

(
F1
CF

)2
∗

(
F2
CF

)2
−(1−∅

s
c)∗

(
F1
CF

)2
∗

(
F2
CF

)2
1−(1−∅sc)

((
F1
CF

)2
∗

(
F2
CF

)2)


1
2

,

(
R1
CF

)2
+

(
R2
CF

)2
−

(
R1
CF

)2
∗

(
R2
CF

)2
−(1−∅

s
c)∗

(
R1
CF

)2
∗

(
R2
CF

)2
1−(1−∅sc)

((
R1
CF

)2
∗

(
R2
CF

)2)


1
2


;
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CzF ) ≤Cir_PyFHATN
(
C1# , C

2
# , . . . , C

z
#

)
and Cir_PyFHATCN

(C1F , C2F , . . . , CzF )≤Cir_PyFHATCN
(
C1# , C

2
# , . . . , C

z
#

)
.

Proof: We know that CjF =

(
Tj
CF , FjCF , Rj

CF

)
≤Cj# =(

Tj
C# , FjC# , Rj

C#

)
. Thus,Tj

CF≤Tj
C# , FjCF≥FjC# andRj

CF≤Rj
C# .

Then, as shown in the equation at the bottom of page 12.

Additionally, we have, as shown in the equation at the
bottom of page 12.

Finally, we evaluate the radius, such as, as shown in the
equation at the bottom of page 12.

After evaluating the above inequality, we can easily
derive our required result based on the score values,

U sTNC
1
F =




(
1+(∅sc−1)

(
T1
CF

)2)UsTN
−

(
1−
(
T1
CF

)2)UsTN
(
1+(∅sc−1)

(
T1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
T1
CF

)2)UsTN


1
2

,

(∅sc)
1/2

∗

(
F1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
F1
CF

)2))UsTN
+(∅sc−1)

((
F1
CF

)2)UsTN ) 1
2
,


(
1+(∅sc−1)

(
R1
CF

)2)UsTN
−

(
1−
(
R1
CF

)2)UsTN
(
1+(∅sc−1)

(
R1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
R1
CF

)2)UsTN


1
2



;

U sTCNC
1
F =




(
1+(∅sc−1)

(
T1
CF

)2)UsTN
−

(
1−
(
T1
CF

)2)UsTN
(
1+(∅sc−1)

(
T1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
T1
CF

)2)UsTN


1
2

,

(∅sc)
1/2

∗

(
F1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
F1
CF

)2))UsTN
+(∅sc−1)

((
F1
CF

)2)UsTN ) 1
2
,

(∅sc)
1/2

∗

(
R1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
R1
CF

)2))UsTN
+(∅sc−1)

((
R1
CF

)2)UsTN ) 1
2



;

(
C1F
)U sTN

=



(∅sc)
1/2

∗

(
T1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
T1
CF

)2))UsTN
+(∅sc−1)

((
T1
CF

)2)UsTN ) 1
2
,


(
1+(∅sc−1)

(
F1
CF

)2)UsTN
−

(
1−
(
F1
CF

)2)UsTN
(
1+(∅sc−1)

(
F1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
F1
CF

)2)UsTN


1
2

,

(∅sc)
1/2

∗

(
R1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
R1
CF

)2))UsTN
+(∅sc−1)

((
R1
CF

)2)UsTN ) 1
2



;

(
C1F
)U sTCN

=



(∅sc)
1/2

∗

(
T1
CF

)UsTN
((

1+(∅sc−1)

(
1−
(
T1
CF

)2))UsTN
+(∅sc−1)

((
T1
CF

)2)UsTN ) 1
2
,


(
1+(∅sc−1)

(
F1
CF

)2)UsTN
−

(
1−
(
F1
CF

)2)UsTN
(
1+(∅sc−1)

(
F1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
F1
CF

)2)UsTN


1
2

,


(
1+(∅sc−1)

(
R1
CF

)2)UsTN
−

(
1−
(
R1
CF

)2)UsTN
(
1+(∅sc−1)

(
R1
CF

)2)UsTN
+(∅sc−1)

(
1−
(
R1
CF

)2)UsTN


1
2



.
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such as, Cir_PyFHATN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHATN(

C1# , C
2
# , . . . , C

z
#

)
. We evaluate the same procedure

and try to evaluate the following ideas, such as
Cir_PyFHATCN

(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHATCN(

C1# , C
2
# , . . . , C

z
#

)
. □

Property 3:When

C−

FTN =

(
minj T

j
CF ,maxj F

j
CF ,minj R

j
CF

)
,

C−

FTCN =

(
minj T

j
CF ,maxj F

j
CF ,maxj R

j
CF

)

and

C+

FTN =

(
maxj T

j
CF ,minj F

j
CF ,maxj R

j
CF

)
,

C+

FTCN =

(
maxj T

j
CF ,minj F

j
CF ,minj R

j
CF

)
,

we have C−

FTN≤Cir_PyFHATN
(
C1F , C2F , . . . , CzF

)
≤C+

FTN
and C−

FTCN≤Cir_PyFHATCN
(
C1F , C2F , . . . , CzF

)
≤C+

FTCN .

Proof: To choose the information in Property 1 and
Property 2, we have Cir_PyFHATN

(
C1F , C2F , . . . , CzF

)
≤

Cir_PyFHATN
(
C+1

F , C+2
F , . . . , C+z

F

)
= C+

FTN and

Cir_PyFHATN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏z
j=1

(
1−
(
TjCF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
FjCF

)U jTN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏z
j=1

((
FjCF

)2)U jTN
1
2
,


∏z
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏z
j=1

(
1−
(
Rj
CF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2



;

Cir_PyFHATCN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTCN
−
∏z
j=1

(
1−
(
TjCF

)2)U jTCN
∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTCN
+(∅sc−1)

∏z
j=1

(
1−
(
TjCF

)2)U jTCN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
FjCF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
FjCF

)2)U jTCN
1
2
,

(∅sc)
1/2

∗
∏z
j=1

(
Rj
CF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Rj
CF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
Rj
CF

)2)U jTCN
1
2



.

U1
TNC

1
F =




(
1+(∅sc−1)

(
T1
CF

)2)U1
TN

−

(
1−
(
T1
CF

)2)U1
TN

(
1+(∅sc−1)

(
T1
CF

)2)U1
TN

+(∅sc−1)

(
1−
(
T1
CF

)2)U1
TN


1
2

,

(∅sc)
1/2

∗

(
F1
CF

)U1
TN

(1+(∅sc−1)

(
1−
(
F1
CF

)2))U1
TN

+(∅sc−1)

((
F1
CF

)2)U1
TN


1
2
,


(
1+(∅sc−1)

(
R1
CF

)2)U1
TN

−

(
1−
(
R1
CF

)2)U1
TN

(
1+(∅sc−1)

(
R1
CF

)2)U1
TN

+(∅sc−1)

(
1−
(
R1
CF

)2)U1
TN


1
2



,
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Cir_PyFHATN
(
C1F , C2F , . . . , CzF

)
≥Cir_PyFHATN(

C−1
F ,C−2

F ,. . . , C−z
F

)
= C−

FTN .Thus, C−

FTN≤Cir_PyFHATN(
C1F , C2F , . . . , CzF

)
≤C+

FTN . We evaluate the same procedure
to evaluate the following result C−

FTCN≤Cir_PyFHATCN(
C1F , C2F , . . . , CzF

)
≤C+

FTCN . □

Definition 7: The Cir-PyFHOA operators are defined as
follows:

Cir_PyFHOATN
(
C1F , C2F , . . . , CzF

)
= U1

TNC
o(1)
F ⊕TNU2

TNC
o(2)
F ⊕TN . . . ⊕TNU zTNC

o(z)
F

= ⊕TN
z
j=1

(
U jTNC

o(j)
F

)
;

Cir_PyFHOATCN
(
C1F , C2F , . . . , CzF

)
= U1

TCNC
o(1)
F ⊕TCNU2

TCNC
o(2)
F ⊕TCN . . . ⊕TCNU zTCNC

o(z)
F

= ⊕TCN
z
j=1

(
U jTCNC

o(j)
F

)
.

Further for more simplification, we consider the weight
vector U jTN∈ [0, 1] with

∑z
j=1 U

j
TN = 1, where o(j)≤o(j− 1).

Theorem 2: For evaluating the operators defined in Def-
inition 7, we obtain Cir_PyFHOATN

(
C1F , C2F , . . . , CzF

)
and Cir_PyFHOATCN

(
C1F , C2F , . . . , CzF

)
for Cir-PyFSs as

follows, as shown in the equation at the bottom of the
page 13.

Cir_PyFHATN
(
C1F , C2F

)
= U1

TNC
1
F⊕TNU2

TNC
2
F =






(
1+(∅sc−1)

(
T1
CF

)2)U1
TN

−

(
1−
(
T1
CF

)2)U1
TN

(
1+(∅sc−1)

(
T1
CF

)2)U1
TN

+(∅sc−1)

(
1−
(
T1
CF

)2)U1
TN


1
2

,

(∅sc)
1
2 ∗

(
F1
CF

)U1
TN

(1+(∅sc−1)

(
1−
(
F1
CF

)2))U1
TN

+(∅sc−1)

((
F1
CF

)2)U1
TN


1
2
,


(
1+(∅sc−1)

(
R1
CF

)2)U1
TN

−

(
1−
(
R1
CF

)2)U1
TN

(
1+(∅sc−1)

(
R1
CF

)2)U1
TN

+(∅sc−1)

(
1−
(
R1
CF

)2)U1
TN


1
2



⊕TN




(
1+(∅sc−1)

(
T2
CF

)2)U2
TN

−

(
1−
(
T2
CF

)2)U2
TN

(
1+(∅sc−1)

(
T2
CF

)2)U2
TN

+(∅sc−1)

(
1−
(
T2
CF

)2)U2
TN


1
2

,

(∅sc)
1/2

∗

(
F2
CF

)U2
TN

(1+(∅sc−1)

(
1−
(
F2
CF

)2))U1
TN

+(∅sc−1)

((
F2
CF

)2)U2
TN


1
2
,


(
1+(∅sc−1)

(
R2
CF

)2)U2
TN

−

(
1−
(
R2
CF

)2)U2
TN

(
1+(∅sc−1)

(
R2
CF

)2)U2
TN

+(∅sc−1)

(
1−
(
R2
CF

)2)U2
TN


1
2





=




∏2
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏2
j=1

(
1−
(
TjCF

)2)U jTN
∏2
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏2
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏2
j=1

(
FjCF

)U jTN
∏2

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏2
j=1

((
FjCF

)2)U jTN
1
2
,


∏2
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏2
j=1

(
1−
(
Rj
CF

)2)U jTN
∏2
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏2
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2



.
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Proof: The proof is similar as those of Theorem 1.□
Further, we simplify the basic properties of the above

procedures.
Property 4: When CjF = CF =

(
TCF , FCF , RCF

)
, j =

1, 2, . . . , z, thus, Cir_PyFHOATN
(
C1F , C2F , . . . , CzF

)
= CF

and Cir_PyFHOATCN
(
C1F , C2F , . . . , CzF

)
= CF .

Proof: The proof is similar as those of Property 1.□
Property 5: When CjF =

(
Tj
CF , FjCF , Rj

CF

)
≤Cj# =(

Tj
C# , FjC# , Rj

C#

)
, thus,

Cir_PyFHOATN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHOATN

(
C1# , C

2
# , . . . , C

z
#

)
and

Cir_PyFHOATCN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHOATCN

(
C1# , C

2
# , . . . , C

z
#

)
.

Proof: The proof is similar as those of Property 2.□
Property 6: When C−

FTN =

(
minj T

j
CF ,maxj F

j
CF ,

minj R
j
CF

)
, C−

FTCN =

(
minj T

j
CF ,maxj F

j
CF ,maxj R

j
CF

)
and C+

FTN =

(
maxj T

j
CF ,minj F

j
CF ,maxj R

j
CF

)
, C+

FTCN =(
maxj T

j
CF ,minj F

j
CF ,minj R

j
CF

)
, thus,

C−

FTN≤Cir_PyFHOATN
(
C1F , C2F , . . . , CzF

)
≤C+

FTN and

C−

FTCN≤Cir_PyFHOATCN
(
C1F , C2F , . . . , CzF

)
≤C+

FTCN .

Proof: The proof is similar as those of Property 3.□
Definition 8: The Cir-PyFHG operators are defined as

follows:

Cir_PyFHGTN
(
C1F , C2F , . . . , CzF

)
=

(
C1F
)U1

TN
⊗TN

(
C2F
)U2

TN
⊗TN . . . ⊗TN

(
CzF
)U zTN

= ⊗TN
z
j=1

(
CjF
)U jTN

Cir_PyFHGTCN
(
C1F , C2F , . . . , CzF

)
=

(
C1F
)U1

TCN
⊗TN

(
C2F
)U2

TCN
⊗TN . . . ⊗TN

(
CzF
)U zTCN

= ⊗TCN
z
j=1

(
CjF
)U jTCN

.

Further for more simplification, we consider the weight
vector U jTN∈ [0, 1] with

∑z
j=1 U

j
TN = 1.

Theorem 3: For evaluating the operators defined in
Definition 8, we obtain Cir_PyFHGTN

(
C1F , C2F , . . . , CzF

)
and Cir_PyFHGTCN

(
C1F , C2F , . . . , CzF

)
for Cir-PyFSs as

follows, as shown in the equation at the bottom of
the page 14.

Proof: The proof is similar as those of Theorem 1.□
Further, we simplify the basic properties of the above

procedures.
Property 7: When CjF = CF =

(
TCF , FCF , RCF

)
,

j = 1, 2, . . . , z, thus,

Cir_PyFHGTN
(
C1F , C2F , . . . , CzF

)
= CF

and

Cir_PyFHGTCN
(
C1F , C2F , . . . , CzF

)
= CF .

Proof: The proof is similar as those of Property 1.□
Property 8: When CjF =

(
Tj
CF , FjCF , Rj

CF

)
≤Cj# =(

Tj
C# , FjC# , Rj

C#

)
, thus,

Cir_PyFHGTN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHGTN

(
C1# , C

2
# , . . . , C

z
#

)
and

Cir_PyFHGTCN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHGTCN

(
C1# , C

2
# , . . . , C

z
#

)
.

Cir_PyFHATN
(
C1F , C2F , . . . , CqF

)
= U1

TNC
1
F⊕TNU2

TNC
2
F⊕TN . . . ⊕TNUqTNC

q
F=

⊕TN
q
j=1

(
U jTNC

j
F

)
=




∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏q
j=1

(
1−
(
TjCF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏q
j=1

(
FjCF

)U jTN
∏q

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏q
j=1

((
FjCF

)2)U jTN
1
2
,


∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏q
j=1

(
1−
(
Rj
CF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2
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Cir_PyFHATN
(
C1F , C2F , . . . , Cq+1

F

)
= U1

TNC
1
F⊕TNU2

TNC
2
F⊕TN . . . ⊕TNUqTNC

q
F⊕TNUq+1

TN Cq+1
F

= ⊕TN
q
j=1

(
U jTNC

j
F

)
⊕TNUq+1

TN Cq+1
F

=




∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏q
j=1

(
1−
(
TjCF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏q
j=1

(
FjCF

)U jTN
∏q

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏q
j=1

((
FjCF

)2)U jTN
1
2
,


∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏q
j=1

(
1−
(
Rj
CF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2



⊕TNUq+1
TN Cq+1

F =






∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏q
j=1

(
1−
(
TjCF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1
2 ∗
∏q
j=1

(
FjCF

)U jTN
∏q

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏q
j=1

((
F1
CF

)2)U jTN
1
2
,


∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏q
j=1

(
1−
(
Rj
CF

)2)U jTN
∏q
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏q
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2



⊕TN




(
1+(∅sc−1)

(
Tq+1
CF

)2)Uq+1
TN

−

(
1−
(
Tq+1
CF

)2)Uq+1
TN

(
1+(∅sc−1)

(
Tq+1
CF

)2)Uq+1
TN

+(∅sc−1)

(
1−
(
Tq+1
CF

)2)Uq+1
TN


1
2

,

(∅sc)
1
2 ∗

(
Fq+1
CF

)Uq+1
TN

(1+(∅sc−1)

(
1−
(
Fq+1
CF

)2))Uq+1
TN

+(∅sc−1)

((
Fq+1
CF

)2)Uq+1
TN


1
2
,


(
1+(∅sc−1)

(
Rq+1
CF

)2)Uq+1
TN

−

(
1−
(
Rq+1
CF

)2)Uq+1
TN

(
1+(∅sc−1)

(
Rq+1
CF

)2)Uq+1
TN

+(∅sc−1)

(
1−
(
Rq+1
CF

)2)Uq+1
TN


1
2





=




∏q+1
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
−
∏q+1
j=1

(
1−
(
TjCF

)2)U jTN
∏q+1
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTN
+(∅sc−1)

∏q+1
j=1

(
1−
(
TjCF

)2)U jTN


1
2

,

(∅sc)
1
2 ∗
∏q+1
j=1

(
FjCF

)U jTN
∏q+1

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTN
+(∅sc−1)

∏q+1
j=1

((
FjCF

)2)U jTN
1
2
,


∏q+1
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
−
∏q+1
j=1

(
1−
(
Rj
CF

)2)U jTN
∏q+1
j=1

(
1+(∅sc−1)

(
Rj
CF

)2)U jTN
+(∅sc−1)

∏q+1
j=1

(
1−
(
Rj
CF

)2)U jTN


1
2



.
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Proof: The proof is similar as those of Property 2.□
Property 9: When C−

FTN =

(
minj T

j
CF ,maxj F

j
CF ,

minj R
j
CF

)
, C−

FTCN =

(
minj T

j
CF ,maxj F

j
CF ,maxj R

j
CF

)
and

C+

FTN =

(
maxj T

j
CF ,minj F

j
CF ,maxj R

j
CF

)
,

C+

FTCN =

(
maxj T

j
CF ,minj F

j
CF ,minj R

j
CF

)
,

C−

FTN≤Cir_PyFHGTN
(
C1F , C2F , . . . , CzF

)
≤C+

FTN and

C−

FTCN≤Cir_PyFHGTCN
(
C1F , C2F , . . . , CzF

)
≤C+

FTCN .

Proof: The proof is similar as those of Property 3.□
Definition 9: The Cir-PyFHOG operators are defined as

follows:

CirPyFHOGTN
(
C1F ,C2F ,...,CzF

)
=

(
Co(1)F

)U1
TN

⊗TN

(
Co(2)F

)U2
TN

⊗TN . . . ⊗TN

(
Co(z)F

)U zTN
= ⊗TN

z
j=1

(
Co(j)F

)U jTN
and

Cir_PyFHOGTCN
(
C1F , C2F , . . . , CzF

)
=

(
Co(1)F

)U1
TCN

⊗TN

(
Co(2)F

)U2
TCN

⊗TN . . . ⊗TN

(
Co(z)F

)U zTCN
= ⊗TCN

z
j=1

(
Co(j)F

)U jTCN
.

Further for more simplification, we consider the weight
vector U jTN∈ [0, 1] with

∑z
j=1 U

j
TN = 1, where o(j)≤o(j− 1).

Theorem 4: For evaluating the operators defined in Def-
inition 9, we obtain Cir_PyFHOGTN

(
C1F , C2F , . . . , CzF

)
and Cir_PyFHOGTCN

(
C1F , C2F , . . . , CzF

)
for Cir-PyFSs as

follows, as shown in the equation at the bottom of the page 15.

Proof: The proof is similar as those of Theorem 1.□
Further, we simplify the basic properties of the above

procedures.
Property 10: When CjF = CF =

(
TCF , FCF , RCF

)
,

j = 1, 2, . . . , z,then Cir_PyFHOGTN
(
C1F , C2F , . . . , CzF

)
=

CF and Cir_PyFHOGTCN
(
C1F , C2F , . . . , CzF

)
= CF .

Proof: The proof is similar as those of Property 1.□
Property 11: When CjF =

(
Tj
CF , FjCF , Rj

CF

)
≤Cj# =(

Tj
C# , FjC# , Rj

C#

)
, then

Cir_PyFHOGTN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHOGTN

(
C1# , C

2
# , . . . , C

z
#

)

and

Cir_PyFHOGTCN
(
C1F , C2F , . . . , CzF

)
≤Cir_PyFHOGTCN

(
C1# , C

2
# , . . . , C

z
#

)
.

Proof: The proof is similar as those of Property 2.□
Property 12:When C−

FTN =

(
minj T

j
CF ,maxj F

j
CF ,minj R

j
CF

)
,

C−

FTCN =

(
minj T

j
CF ,maxj F

j
CF ,maxj R

j
CF

)
and C+

FTN =(
maxj T

j
CF ,minj F

j
CF ,maxj R

j
CF

)
, C+

FTCN =

(
maxj T

j
CF ,

minj F
j
CF ,minj R

j
CF

)
,then C−

FTN≤Cir_PyFHOGTN
(
C1F , C2F ,

. . . , CzF
)
≤C+

FTN and C−

FTCN≤Cir_PyFHOGTCN (C1F , C2F , . . . ,

CzF )≤C
+

FTCN .
Proof: The proof is similar as those of Property 3.□

Various existing operators such as algebraic operator and
Einstein operator are the special cases of the proposed
operators. Further, these proposed operators are very reliable
and dominant in coping with vague and rational information.

Cir_PyFHATCN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTCN
−
∏z
j=1

(
1−
(
TjCF

)2)U jTCN
∏z
j=1

(
1+(∅sc−1)

(
TjCF

)2)U jTCN
+(∅sc−1)

∏z
j=1

(
1−
(
TjCF

)2)U jTCN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
FjCF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
FjCF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
FjCF

)2)U jTCN
1
2
,

(∅sc)
1/2

∗
∏z
j=1

(
Rj
CF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Rj
CF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
Rj
CF

)2)U jTCN
1
2



.
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IV. MADM TECHNIQUE USING THE PROPOSED
OPERATORS WITH APPLICATION IN THE
ASSESSMENT OF GOLDMINES
In this section, we calculate the system of MADM technique
based on the proposed operators for Cir-PyFSs, such

as Cir_PyFHATN ,Cir_PyFHATCN ,Cir_PyFHGTN and
Cir_PyFHGTCN operators for evaluating the
most preferable optimal among the collection of
decisions and then applied it in the assessment of
goldmines.

Cir_PyFHATN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
TCF

)2)U jTN
−
∏z
j=1

(
1−
(
TCF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
TCF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
TCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
FCF

)U jTN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
FCF

)2))U jTN
+(∅sc−1)

∏z
j=1

((
FCF

)2)U jTN
1
2
,


∏z
j=1

(
1+(∅sc−1)

(
RCF

)2)U jTN
−
∏z
j=1

(
1−
(
RCF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
RCF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
RCF

)2)U jTN


1
2



=




(
1+(∅sc−1)

(
TCF

)2)∑z
j=1 U

j
TN

−

(
1−
(
TCF

)2)∑z
j=1 U

j
TN

(
1+(∅sc−1)

(
TCF

)2)∑z
j=1 U

j
TN

+(∅sc−1)

(
1−
(
TCF

)2)∑z
j=1 U

j
TN


1
2

,

(∅sc)
1/2

∗

(
FCF

)∑z
j=1 U

j
TN

(1+(∅sc−1)

(
1−
(
FCF

)2))∑z
j=1 U

j
TN

+(∅sc−1)

((
FCF

)2)∑z
j=1 U

j
TN


1
2
,


(
1+(∅sc−1)

(
RCF

)2)∑z
j=1 U

j
TN

−

(
1−
(
RCF

)2)∑z
j=1 U

j
TN

(
1+(∅sc−1)

(
RCF

)2)∑z
j=1 U

j
TN

+(∅sc−1)

(
1−
(
RCF

)2)∑z
j=1 U

j
TN


1
2



=



 1+(∅sc−1)
(
TCF

)2
−1+

(
TCF

)2
1+(∅sc−1)

(
TCF

)2
+(∅sc−1)

(
1−
(
TCF

)2)


1
2

,

(∅sc)
1/2

∗

(
FCF

)
(
1+(∅sc−1)

(
1−
(
FCF

)2)
+(∅sc−1)

(
FCF

)2) 1
2
,

 1+(∅sc−1)
(
RCF

)2
−1+

(
RCF

)2
1+(∅sc−1)

(
RCF

)2
+(∅sc−1)

(
1−
(
RCF

)2)


1
2



=



(
∅
s
c

(
TCF

)2
−

(
TCF

)2
+

(
TCF

)2
1+∅sc

(
TCF

)2
−

(
TCF

)2
+∅sc−∅sc

(
TCF

)2
−1+

(
TCF

)2
) 1

2

,

(∅sc)
1/2

∗

(
FCF

)
(
1+∅sc−∅sc

(
FCF

)2
−1+

(
FCF

)2
+∅sc

(
FCF

)2
−

(
FCF

)2) 1
2
,

(
∅
s
c

(
RCF

)2
−

(
RCF

)2
+

(
RCF

)2
1+∅sc

(
RCF

)2
−

(
RCF

)2
+∅sc−∅sc

(
RCF

)2
−1+

(
RCF

)2
) 1

2


=



(
∅
s
c

(
TCF

)2
∅sc

) 1
2

,

(∅sc)
1/2

∗

(
FCF

)
(∅sc)

1
2

,(
∅
s
c

(
RCF

)2
∅sc

) 1
2


=
(
TCF , FCF , RCF

)
= CF .
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A. THE MADM PROCEDURES USING THE PROPOSED
OPERATORS
Let a finite number of alternatives be {C1F , C2F , . . . , CzF }

with their attributes of
{
C1AT , C2AT , . . . , CyAT

}
in which these

attributes are obtained for each alternative with weights
U jTCN∈ [0, 1] and

∑z
j=1 U

j
TCN = 1. Furthermore, we compute

the matrix by including Cir-PyFSs with the characteristic
of Cir-PyFSs being 0≤T2

CF ( ) + F2
CF ( ) ≤1, where the

Tj
CF≤Tj

C# ⇒

(
1 −

(
Tj
CF

)2)
≥

(
1 −

(
Tj
C#

)2)
⇒

∏z

j=1

(
1 −

(
Tj
CF

)2)U jTN
≥

∏z

j=1

(
1 −

(
Tj
C#

)2)U jTN
⇒

∏z

j=1

(
1 +

(
∅
s
c − 1

) (
Tj
CF

)2)U jTN
−

∏z

j=1

(
1 −

(
Tj
CF

)2)U jTN
≤

∏z

j=1

(
1 +

(
∅
s
c − 1

) (
Tj
C#

)2)U jTN

−

∏z

j=1

(
1 −

(
Tj
C#

)2)U jTN
⇒

∏z
j=1

(
1+

(
∅
s
c−1

) (
Tj
CF

)2)U jTN
−
∏z

j=1

(
1−

(
Tj
CF

)2)U jTN
∏z

j=1

(
1+

(
∅sc−1

) (
Tj
CF

)2)U jTN
+
(
∅sc−1

)∏z
j=1

(
1−

(
Tj
CF

)2)U jTN

≤

∏z
j=1

(
1+

(
∅
s
c−1

) (
Tj
C#

)2)U jTN
−
∏z

j=1

(
1−

(
Tj
C#

)2)U jTN
∏z

j=1

(
1+
(
∅sc−1

) (
Tj
C#

)2)U jTN
+
(
∅sc−1

)∏z
j=1

(
1−

(
Tj
C#

)2)U jTN .

FjCF≥FjC# ⇒

∏z

j=1

(
FjCF

)U jTN
≥

∏z

j=1

(
FjC#

)U jTN
⇒
(
∅
s
c
) 1
2 ∗

∏z

j=1

(
FjCF

)U jTN
≥
(
∅
s
c
) 1
2 ∗

∏z

j=1

(
FjC#

)U jTN
⇒

(
∅
s
c
) 1
2 ∗

∏z
j=1

(
FjCF

)U jTN
∏z

j=1

(
1 +

(
∅sc − 1

) (
1 −

(
FjCF

)2))U jTN
+
(
∅sc − 1

)∏z
j=1

((
FjCF

)2)U jTN
1
2

≥

(
∅
s
c
) 1
2 ∗

∏z
j=1

(
FjC#

)U jTN
∏z

j=1

(
1 +

(
∅sc − 1

) (
1 −

(
FjC#

)2))U jTN
+
(
∅sc − 1

)∏z
j=1

((
FjC#

)2)U jTN
1
2

.

Rj
CF≤Rj

C# ⇒

(
1 −

(
Rj
CF

)2)
≥

(
1 −

(
Rj
C#

)2)
⇒

∏z

j=1

(
1 −

(
Rj
CF

)2)U jTN
≥

∏z

j=1

(
1 −

(
Rj
C#

)2)U jTN
⇒

∏z

j=1

(
1 +

(
∅
s
c − 1

) (
Rj
CF

)2)U jTN
−

∏z

j=1

(
1 −

(
Rj
CF

)2)U jTN
≤

∏z

j=1

(
1 +

(
∅
s
c − 1

) (
Rj
C#

)2)U jTN
−

∏z

j=1

(
1 −

(
Rj
C#

)2)U jTN

⇒

∏z
j=1

(
1 +

(
∅
s
c − 1

) (
Rj
CF

)2)U jTN
−
∏z

j=1

(
1 −

(
Rj
CF

)2)U jTN
∏z

j=1

(
1 +

(
∅sc − 1

) (
Rj
CF

)2)U jTN
+
(
∅sc − 1

)∏z
j=1

(
1 −

(
Rj
CF

)2)U jTN

≤

∏z
j=1

(
1 +

(
∅
s
c − 1

) (
Rj
C#

)2)U jTN
−
∏z

j=1

(
1 −

(
Rj
C#

)2)U jTN
∏z

j=1

(
1 +

(
∅sc − 1

) (
Rj
C#

)2)U jTN
+
(
∅sc − 1

)∏z
j=1

(
1 −

(
Rj
C#

)2)U jTN .
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term TCF ( ) represents the truth grade, FCF ( ) repre-
sents the falsity grade, and RCF ( ) states the radius
around the circle of each element. Thus, we have the

refusal grade with P =

(
1 −

(
T2
CF ( ) + F2

CF ( )
)) 1

2
and

also express the simple structure of Cir-PyFN with CjF =(
Tj
CF , FjCF , Rj

CF

)
, j = 1, 2, . . . , z. We now organize a

procedure for addressing the major steps of the MADM
technique for Cir-PyFNs based on the proposed operators as
follows:

Step 1: Compute the matrix by including the Cir-PyFNs.
Step 2: Normalize the matrix, if the matrix has cast type of

criteria, such as

Z =


(
Tj
CF , FjCF , Rj

CF

)
benefit(

FjCF , Tj
CF , Rj

CF

)
cost.

But, if the matrix has benefit types of criteria, then we do not
need to normalize the matrix.

Step 3: Aggregate the data in the matrix with the help of the
proposed operators, such asCir_PyFHATN ,Cir_PyFHATCN ,

Cir_PyFHGTN and Cir_PyFHGTCN operators created in
Theorem 1 and Theorem 3 of Section III.

Step 4: Expose the score data of every alternative.

Step 5: Rank all the alternatives according to their score
data and discover the best one.

With the help of the above procedure, we next apply it for
evaluating the analysis of goldmines to enhance the capability
and rationality of the proposed method.

B. THE ASSESSMENT OF GOLDMINES
The major theme of this application is to find the key
component of assessing goldmines under the consideration
of the evaluated operators. For this, we consider the problem
of assessment of goldmines, which involves many features
of a gold mining operation to evaluate its safety, environ-
mental impact, potential for profitable gold extraction, and
economic viability. In this application, we select the five
best kinds of key components as alternatives which are
listed below:

1) Geological Survey ‘‘C1F ’’.
2) Resource Estimation ‘‘C2F ’’.
3) Mining Method Selection ‘‘C3F ’’.
4) Gold Recovery Procedure ‘‘C4F ’’.
5) Safety Assessments ‘‘C5F ’’.
The above five alternatives are very reliable and have

major features or key components, but our main theme is to
select the best one among the best five. For this, we select
five criteria, such as ‘‘C1AT ’’ (growth analysis), ‘‘C2AT ’’
(Political impact), ‘‘C3AT ’’ (environmental impact), ‘‘C4AT ’’

Cir_PyFHOATN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
To(j)CF

)2)U jTN
−
∏z
j=1

(
1−
(
To(j)CF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
To(j)CF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
To(j)CF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
Fo(j)CF

)U jTN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Fo(j)CF

)2))U jTN
+(∅sc−1)

∏z
j=1

((
Fo(j)CF

)2)U jTN
1
2
,


∏z
j=1

(
1+(∅sc−1)

(
Ro(j)
CF

)2)U jTN
−
∏z
j=1

(
1−
(
Ro(j)
CF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
Ro(j)
CF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
Ro(j)
CF

)2)U jTN


1
2



;

Cir_PyFHOATCN
(
C1F , C2F , . . . , CzF

)
=




∏z
j=1

(
1+(∅sc−1)

(
To(j)CF

)2)U jTCN
−
∏z
j=1

(
1−
(
To(j)CF

)2)U jTCN
∏z
j=1

(
1+(∅sc−1)

(
To(j)CF

)2)U jTCN
+(∅sc−1)

∏z
j=1

(
1−
(
To(j)CF

)2)U jTCN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
Fo(j)CF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Fo(j)CF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
Fo(j)CF

)2)U jTCN
1
2
,

(∅sc)
1/2

∗
∏z
j=1

(
Ro(j)
CF

)U jTCN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Ro(j)
CF

)2))U jTCN
+(∅sc−1)

∏z
j=1

((
Ro(j)
CF

)2)U jTCN
1
2



.
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TABLE 1. Cir-PyF decision matrix.

(safety analysis), ‘‘C5AT ’’ (other factors). Based on the above
criteria, we select the best one under the consideration of
the following weight vector, such as (0.1, 0.4, 0.2, 0.1, 0.2)T .
Therefore, we organize a procedure for addressing the above
problem. The major steps of the procedure of MADM
technique are listed as follows:

Step 1: Compute the matrix by including the Cir-PyFNs,
as shown in Table 1.

Step 2: Normalize the matrix, if the matrix has cast type of
criteria, such as

Z =


(
Tj
CF , FjCF , Rj

CF

)
benefit(

FjCF , Tj
CF , Rj

CF

)
cost.

But, if the matrix has benefit types of criteria, then we do not
need to normalize the matrix. Anyhow, the data in Table 1 do
not need to be normalized.

Step 3: Aggregate the data in matrix with the help of our
proposedoperators, as shown in Table 2.

Step 4: Expose the score data of each alternative, as shown
in Table 3.
Step 5: Rank all the alternatives according to their score

data and discover the best one, as shown in Table 4.
To consider the theory ofCir_PyFHATN ,Cir_PyFHATCN ,

Cir_PyFHGTN and Cir_PyFHGTCN , we expose the best
optimal C1F which represents the geological survey. Further,
we simplify the operators under the presence of the Cir-IF
set theory to expand the assets of the assessed operators. The
Cir-IF data is listed in Table 5. Thus, to use the four types of
operators, the score values of the aggregated values are stated

Cir_PyFHGTN
(
C1F , C2F , . . . , CzF

)
=



(∅sc)
1/2

∗
∏z
j=1

(
TjCF

)U jTN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
TjCF

)2))U jTN
+(∅sc−1)

∏z
j=1

((
TjCF

)2)U jTN
1
2
,


∏z
j=1

(
1+(∅sc−1)

(
FjCF

)2)U jTN
−
∏z
j=1

(
1−
(
FjCF

)2)U jTN
∏z
j=1

(
1+(∅sc−1)

(
FjCF

)2)U jTN
+(∅sc−1)

∏z
j=1

(
1−
(
FjCF

)2)U jTN


1
2

,

(∅sc)
1/2

∗
∏z
j=1

(
Rj
CF

)U jTN
∏z

j=1

(
1+(∅sc−1)

(
1−
(
Rj
CF

)2))U jTN
+(∅sc−1)

∏z
j=1

((
Rj
CF

)2)U jTN
1
2



;

Cir_PyFHGTCN
(
C1F , C2F , . . . , CzF

)
=



(∅sc)
1/2

∗
∏z
j=1

(
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TABLE 2. Cir-PyF aggregated results based on the proposed operators.

TABLE 3. Representation of the score values.

in Table 6. Finally, we rank all the alternatives according to
their score data and discover the best one, as shown in Table 7.

We next compare the proposed operators with these
existing methods.

V. COMPARATIVE ANALYSIS
In this section, we make some comparisons of the proposed
operators with some existing techniques based on the data
shown in Table 1 and Table 5. For comparisons, we select
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TABLE 4. Ranking results of the score values.

TABLE 5. Cir-IF decision matrix.

TABLE 6. Representation of the score values (for Table 5).

TABLE 7. Ranking results of the score values.

TABLE 8. Comparison matrix (using Table 1).

the following existing methods: the AOs and geometric
AOs for IFSs proposed by Xu [26], simple AOs for PyFSs
evaluated by Peng and Yuan [27], the AOs for PyFSs based
on confidence levels exposed by Grag [28], AOs based

on Hamacher norms for IFSs proposed by Huang [21],
the Hamacher AOs for IFSs using the entropy measures
derived by Garg [22], and the Hamacher AOs for PyFSs
addressed by Wu and Wei [23]. Thus, based on the
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TABLE 9. Comparison matrix (using Table 5).

data shown in Table 1, the comparative analysis is listed
in Table 8.

To consider Cir_PyFHATN ,Cir_PyFHATCN ,

Cir_PyFHGTN and Cir_PyFHGTCN , we expose the best
optimal C1F which represents the geological survey. Further,
to show the supremacy and effectiveness of the derived
theory, we select the data in Table 5, the comparative analysis
is listed in Table 9.

To consider Cir_PyFHATN ,Cir_PyFHATCN ,

Cir_PyFHGTN and Cir_PyFHGTCN , we expose the best
optimal C4F which represents the geological survey. But we
notice that the prevailing techniques have failed, because
these operators are computed based on FSs, IFSs, PyFSs, and
Cir-IFSs which are the subpart of the Cir-PyFSs. The existing
operators have limitation due to this reason, we are not able
to evaluate the data in Table 1 and Table 5 because of the
above problem. Hence, the proposed operators are reliable
and dominant technique to cope with uncertain and unreliable
information in decision-making problems.

VI. CONCLUSION
Cir-PyFS is a good way for depicting vague and unreliable
information in genuine life problems. These FSs, IFSs,
PyFSs, and Cir-IFSs are the subpart of Cir-PyFSs. Since
Cir-PyFS was defined by Bozyigit et al. [19] in 2023,
there were still less researchers to work on it. In this
paper, we continue working on Cir-PyFSs by firstly giving
the Hamacher operational laws for any two Cir-PyFSs,
and then derive the Cir-PyFHA, Cir-PyFHOA, Cir-PyFHG,
and Cir-PyFHOG operators. We make advanced discussion
the properties of these proposed operators on Cir-PyFSs.
Based on the proposed operators, we construct a MADM
method and then apply it to select the best and simplest
procedure for evaluating the source of gold in mines.
We also demonstrate some examples for comparing the
proposed operators with some existing operators to expand
the attraction of these evaluated operators. In the future,
we will concentrate on evaluating the Hamacher and Dombi
aggregation operators [29] and three-way decisions [25], [30]
based on circular q-rung orthopair fuzzy sets with extensions
and then try to implement them in more real-life applications,

for instance, pattern recognition, machine learning, data
mining, and data analysis to enhance the worth of the
presented operators.
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