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ABSTRACT The growth of the tourism industry has greatly boosted the Point-of-Interest (POI) recom-
mendation tasks using Location-based Social Networks (LBSNs). The ever-evolving nature of user
preferences poses a major problem. To address this, we propose a Long-Term Preference Mining (LTPM)
approach that utilizes the Temporal Recency (TR) measure in the visits along with the location-aware
recommendation based onSpatialProximity (SP) to the user’s location. The temporal dynamics and changing
preferences are exploited based on the modified Long Short-term Memory (LSTM) that utilizes the time
decay. The spatial considerations are modeled in two aspects: geographical proximity based on enhanced
representation learning using orthogonal mapping. Second, the Region-of-Interest (ROI) is based on spatial
griding and metric learning to capture the spatial relationships between POIs to enhance the metric space
representation. The final recommendations are based on a multi-head attention mechanism that allocates the
weights to different features. The combination of three models, called, LTPM-TRSP approach captures the
user-POI, POI-POI, and POI-time relationships by focusing on the informative representation of sequential
and spatial data. The category-aware final recommendations based on comprehensive historical behavior
and geographical context are quite efficacious. The experimentation on three real-world datasets, Gowalla,
Foursquare, and Weeplaces, also suggests the potency compared to other state-of-the-art approaches.

INDEX TERMS Attentionmechanism,metric learning, orthogonalmapping, point of interest, representation
learning.

I. INTRODUCTION
The growth of faster communication paradigms and the emer-
gence of theGlobal Positioning System (GPS) have expedited
the growth of Location-based Social Networks (LBSNs) such
as Foursquare, Gowalla, Yelp, and Geolife. As per sources,1

Yelp has 33 million unique devices (average monthly)
registered, with 40% of users above 55 as of June 2023.
These platforms have provided immense opportunities for
users to share their experiences that can be explored for
varied applications, especially for personalized Point-of-
Interest (POI) recommendations. Figure 1 depicts the expanse

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .
1https://www.yelp-press.com/company/fast-facts

of the Foursquare dataset. The density of check-in points is
concentrated near the areas of the United States (US).

Further city-wise analysis shows that the maximum
check-ins recorded are from California (CA), and the
lowest is from Georgia (GA). It suggests that there are
ample potential POIs that have been visited. The results
from the POI recommendation find utility in the travel
and tourism industry, smart city development, and location
prediction. The social media content of LBSN harnesses six
dependencies among the locations and the users: user-user,
user-location, location-location, user-media, media-media,
and location media dependencies. The major stakeholders
in POI recommendation are the potential POIs, the users
themselves, the chronological order that maintains the
sequential user trajectory, the peer group of the target user,
and the word-of-mouth opinions of the users in the form
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FIGURE 1. Foursquare Dataset analyses. a) Dataset distribution. b) Dataset distribution over the US.

FIGURE 2. Generalized framework of POI recommendation.

of tips, tags, reviews, blogs, comments, etc. The framework
of POI recommendation is illustrated in Figure 2. For each
user, the respective check-ins are illustrated by the arrows
headed to different POIs. The dotted arrows in different colors
between the POIs refer to the sequential visit pattern of
particular users. The curved arrows denote the peer group of
the users.

Spatial influence is of paramount importance in POI
recommendation. It has two dimensions: the geographical
proximity of the POIs to the user’s current location and the
other geographical popularity of the POIs that depends on the
propensity of POIs in the spatial region and the POIs nearby.
Strictly spatial-constrained POI recommendation methods
proposed in [1], [2], and [3] rely on spatial/geographical
content in the entirety. Temporal content also holds criti-
cal weightage in recommendation tasks, representing both
periodicity and asymmetry in check-in trajectory. Owing to
the temporal aspect, the recency in the historical check-ins
has also been exploited in [4] and [5]. Semantic content has
also been explored in combination with spatiotemporal data
for user preference mining in several approaches. It includes
textual content like tips and user reviews. Works on social

neighborhood-based preference extraction have also been
undertaken to excavate the influence of social peers on
the user’s preference of visit [6], [7]. POI recommendation
is a complex task as, unlike conventional recommendation
models, it requires the user’s check-in location, location
information, the user’s description of the locations, and the
user’s continuous trajectory information that encapsulates the
spatial and temporal aspects. The dearth of explicit ratings
and limited physical accessibility aggravates the issue of data
sparsity. The sparse check-in matrix aggravates the cold-start
problem [8]. POI recommendation must cater to the needs of
the cold-start users, and the recommended POIs must involve
the POIs that are new or have limited rating data, termed as
cold-start POIs.

Further, the heterogeneity in the data and the dynamic
nature of the user’s preference are two sought-after features.
User’s historical check-in information has been utilized
in many traditional recommendation paradigms like col-
laborative filtering (CF). Still, these techniques overutilize
the rating and check-in content for similarity calculations
and neglect the geographical aspect of the POIs and user-
POI relations. Hence, the static nature of CF-based POI
recommendation methods is inefficacious in addressing data
sparsity and dynamic preference modeling. To alleviate
such issues, auxiliary information such as social, cate-
gorical, semantic, and other contextual factors have been
utilized along with spatiotemporal data to provide efficacious
results [9], [10], [11].
POI recommendation requires long-term preference min-

ing that in turn requires investigating users’ predilections over
an extended period. But many impediments linger over. First,
preference modeling from isolated user check-in sequences
is not static. It dynamically depends on external factors
like time, region, weather, etc. Integration of these factors
is quite tricky. Second, the user check-in matrix is quite
sparse; thus, long-term preference mining is tedious. Third,
historical check-in data is infected by noise or outliers like
accidental halts, stay points, etc. Hence, data analysis and
pre-processing is critical. Fourth, intention disentangling is
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an important issue in long-term preference mining, as users’
historical check-ins are ambiguous.

The POI recommendation has become the researcher’s
hotspot in the past decade as its outputs can be utilized
in various fields. The tourism industry provides a generic
application as the tourists can visit the local hangouts and
the traditional tourist hotspots. Urban planners can utilize
the results of POI recommendations to make decisions for
resource allocation, infrastructure planning, etc. The user’s
mobility analysis has also sprung up as a promising field
that requires the POI recommendation results to analyze
and predict traffic and manage routes. Based on customer
mobility patterns, POI recommendations can also help
optimize sales and business proliferation.

In this paper, we attempt to solve the problems in long-term
preference mining by incorporating temporal recency and
data sparsity. The novel approach, Long-Term Preference
Mining with Temporal Recency estimation and Spatial
Proximity fusion (LTPM-TRSP), utilizes category statistics
for static preference modeling, modified LSTM for recency
inclusion, and the Region-of-Interest (ROI) based griding
in conjunction with the contrastive learning for vicinity
estimation for enhanced POI recommendation.

• In the long run, the user preferences are captured by the
LSTM that utilizes the information about the popular
POIs sorted based on the number of POIs checked in the
different categories.

• Tomodel the temporal period, the popularity of different
POI categories is accounted for and sent as a vector to
the LSTM unit. The LSTM network is further modified
to incorporate the time decay factor so that the user-
check-ins are allocated more weightage earlier than the
reference point. The recent visits denote the current
preference of the user, exploit the POI-time dependency,
and capture the temporal asymmetry.

• The POIs near the users’ current location are more
likely to be visited by the users than far-off places.
Further, the areas with more user check-ins represent the
actual Region-of-Interest (ROI). The spatial data with
the categorical information is fed to the Multi-Layer
Perceptron(MLP) to capture the user-POI dependency.

• Orthogonal mapping based on triplet loss enhances
representation learning. It boosts the models efficiency
and thus the POIs with similar classification (as
previously visited) are kept more closer than others. It
also captures the POI-POI dependency.

• Using the Geohash for geospatial hashing, the entire
region is divided into spatial grids, and using the grid
area and the number of embeddings in the region,
we find the grid priority. The embeddings in the
high-priority regions provide more gravitas in LMNN-
based metric learning.

• The LTPM-TRSP exploits user-POI, POI-POI, and
POI-time dependencies. The approach has been experi-
mented on three real-world datasets and the results have
been juxtaposed to several baselines.

The rest of this paper is summarised as follows: Section II
presents the literature works prominent in the field of POI
recommendation. Section III elucidates the framework of
LTPM-TRSP framework. Section IV illustrates the results
of experimentation and the discussion on parameters tunned.
Section V concludes the research work.

II. RELATED WORK
POI recommendation methods proposed in the past few
years exploit several factors using different techniques.
Yu et al. [12] proposed the CPAM model that com-
bines a skip gram-based POI embedding model (SG-PEM)
to learn the contextual influence of POIs and Logistic
Matrix Factorization (LMF) for personalized POI modeling.
Ren and Gan [13] proposed anMPGI framework for the Next
POI recommendation to capture the distance and correlations
between the POI pairs and position-aware attention units
to monitor check-in trajectories. Wang et al. [14] proffered
a reinforcement learning framework to capture nuances of
the geo-human trajectories for enhanced geospatial context
modeling for POI recommendation. Wang et al. [2] explored
the geographical, categorical, and sequential influence to
proffer a new POI recommendation paradigm based on CF
and Kernal Density Estimation (KDE). Chen et al. [15]
investigated the temporal, spatial, and propensity information
for the TeSP-TMF framework that combined grey relational
analysis and matrix factorization to alleviate data sparsity.

Rahmani et al. [16] proposed the LGLMF model that
combined the Local Geographical (LG) information based
on activity regions with LMF to explore the geographical
influence on POI recommendation. Safavi and Jalali [17]
proffered the DeepPOF framework that utilized deep learning
and the CNN model to excavate friendship relationships
based on spatial and temporal aspects. The user’s similarity
is detected using mean-shift clustering. The predictions were
made based on the proximity analysis of the prospective POIs.
Han et al. [18] proposed an AUC-MF-based framework with
a new lambda for AUC optimization using MF and lambda
methods. The method considered local and global similarity
to emphasize geographical information in two folds. The
region-based sampling method and linear combination pro-
posed in this method successfully incorporated contextual
factors along with temporal-spatial similarity calculation.

After proving their mantle in other fields, deep learning
models like LSTM, CNN, attention network, and GRU
have also been deployed in POI recommendations over
the past years. Hossain et al. [4] addressed the issue of
non-consecutiveness and non-adjacent visits in user behavior
in their proposed framework CARAN that utilized an
attention network to cater to the recency in the visits
along with the weather conditions influence. The non-
adjacent check-ins and spatial distance consideration were
monitored using spatiotemporal matrices, liner interpolation
method, and positional encoding of check-in sequence.
CARAN achieved 7-14% enhanced results. Li et al. [9]
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exploited spatial and temporal features for users by using
Voronoi diagram construction for spatial regions and virtual
trajectory construction for context-aware similarity mining.
The efficacious POI recommendations were made using
similar users mined on spatial-temporal fronts and reference
time and location sought from the target user. Yu et al. [3]
investigated categorical information in addition to user
preferences and time series data. The CatDM model utilized
LSTM-based two-deep encoders to process different parts.
The attention mechanism was personalized to exploit the
temporal patterns effectively. It modeled user-POI, user-
category, POI-time, and POI-user dependencies to mine
user preferences. Liu and Wu [19] deployed a Bi-LSTM
attention mechanism to analyze long-and short-term pref-
erences. In conjunction with the Bi-LSTM, the encoder
and decoder sequence further analyze the POI sequence
data to recommend the top-N POIs. The last step involves
negative sampling and Bayesian personalized ranking loss
calculation for better optimization. SSANet method proposed
by Yue et al. [20] deployed the Gaussian Kernel technique
for geographical method, attention mechanism to capture the
interaction modules, and Node2vec for harnessing the social
information. DANSNR proposed in [21] has two parallel
channels for modeling long and short-term user preferences
and social influence. The multi-head self-attention unit,
in combination with the Vanilla attention unit, was used in
both channels. Privacy is also one of the major concerns
in recommendation tasks. Acharya et al. [22] proposed the
DPSND-Rec method that protected privacy using Laplacian
noise and exploited the spatiotemporal neighbors for social
linkage mining. The social links were mined based on
spatio-temporal similarity using similarity indices.

Kim et al. [23] proposed a local differential privacy (LDP)
model called SPIREL that uses transition patterns and visit
counts of POIs as input to factorization. This model captures
user-POI and POI-POI dependencies simultaneously. The
LDP integrated with ALS and SGD utilized sampling and
perturbation methods for successive POI recommendations.
Dai et al. [24] proffered the PPRmethod based on graphs. The
approach combined the socio and spatial-temporal features
obtained from the user’s check-in data. The method modeled
sequential patterns in four perspectives: POI-user, POI-time,
user-user, and user-POI dependencies. Xu et al. [25]
proposed an NHRM model that exploited spatiotemporal
attributes and is a combination of three different mod-
els: the first model captured the user’s perspective, the
second harnessed the location-user dependencies, and the
last model utilized categorical information to substantiate
the POI recommendation. Li et al. [26] proposed an
attention-based spatial-temporal gated graph neural network
(ATST-GGNN) where user-check-ins were modeled using a
graph, and dynamic node updation relied on spatiotemporal
context information. The long and short preference was an
exploited-based attentionmechanism. It also uses the window
pooling method to enhance local embedding representation,

and the attention mechanism enhances global embedding
representation. Lu and Huang [27] proposed a successive
POI recommendations model based on graph-based latent
representation (GLR) to investigate temporal successive
transition influence and user preference combined with the
geographical influence of POIs, the GLR_GT model.
Further, the GLR_GT_LSTM version employed LSTM to

extract the complex transition behavior. Zhang et al. [28]
proposed an STMLA model that utilizes an LSTM and
attention network variant for the next POI recommendation.
It investigates the user’s check-in sequences with selective
consideration of non-consecutive factors and explicitly
integrates the spatial and temporal information for user
preference mining.

III. FRAMEWORK OF LTPM-TRSP
A. BACKGROUND
The following section defines the preliminary terms and the
identified problems. Table 1 summarizes the symbols used in
this paper.
Definition 1 (Point-of-Interest(POI)): POI is any real-

world location, say, v, such that L = {v1, v2, . . . vn} where
L denotes the set of n available POIs. Each vi ϵ L is identified
with a triplet (vid , lati, lngi) where vid refers to a unique POI
id alloted to each POI, and lati and lngi denotes the latitude
and longitude of the POIs respectively.
Definition 2 (Check-In): The user’s visitation at a POI is

termed check-in and is characterized by the user’s unique
user-id, POI’s unique ID, its coordinates, the user’s time of
visitation, and the category of the POI.
Definition 3 (Region-of-Interest(ROI)): Users’ check-in

activity is often restricted within geographical bounds,
termed ROIs. They are critical to the preference mining
process as they represent the regions from which we can
extract the potential categories in which the users might be
interested. Further, these regions also represent the POIs that
the users have visited, and thus, newer POIs closer to them
also have a higher chance of visitation, a human instinct
influenced by the first law of geography.
Definition 4 (Data Sparsity): The number of POIs that the

user visits in the real world is much less than the total
number of POIs available. Thus, the user-POI check-inmatrix
is quite sparse. Moreover, for each user, the check-ins are
confined within the activity zone, further aggravating the
sparsity issue. Data sparsity leads to overfitting of the model,
thereby degrading its performance for cold-start users and
POIs. It also enhances the long-tail distribution within the
data distribution, and this imbalance makes it difficult to
capture the pattern for cold-start POIs.
Definition 5 (Dynamic Preference Mining): Dynamic

preference mining is critical in POI recommendation as
the predilection of the users is ever-evolving. Newer visits
hold a higher precedence than older interactions. Recent and
closer visits can be investigated from the historical check-in
records to provide relevant and preferred POIs. However,
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TABLE 1. Summary of the symbols used.

these preferences remain unchanged and are subject to time
and space. For example, coffee shops are popular in the
morning, but bars are common in the evening. Similarly,
a closer POI is preferable to the far-off.

B. LONG-TERM PREFERENCE MINING
To address the impending issue of vanishing gradient
problem, Hochreiter and Schmidhuber proposed LSTM in
1997 [29], a variant of Recurrent Neural Network (RNN) used
to capture long-term dependencies. It consists of three gates:
a forget gate, an input gate, an output gate, and amemory cell.
It is a traditional feedforward neural network layer consisting
of a hidden layer and current state cells. Equations (1)-(6)
depict the mathematical process behind the gates.

it = σi(xtWxi + ht−1Whi + ct−1

⊙
wci + bi) (1)

ft = σf

(
xtWxf + ht−1Whf + ct−1

⊙
wcf + bf

)
(2)

ćt = xtWxc + ht−1Whc + bc (3)

ct = ft
⊙

ct−1 + it
⊙

σc (ćt) (4)

ot = σo(xtWxo + ht−1Who + ct
⊙

wco + bo) (5)

ht = ot
⊙

σh (ct) (6)

In this approach, we imbibe the recency-aware mechanism in
LSTM to capture the temporal aspect.
To capture the user’s long-term preferences, we consider the
propensity of the category of POIs for that user, i.e., which
category is more visited by the user. For this, the POI
category information is one-hot encoded and transformed into
a vector Vc and the preference vector for POI category vcui is
then computed as in Equation (7). The dimensions of vcui is
same as the total number of categories.

vcui =

∑n
j=1 uji∑m

k=1
∑n

j=1 uji
(7)

where uji has a value between 1 or 0 and indicates where the
POI of j-th check-in of the user u lies in the category i. The
inner product of vcui and Vc depicts the historical check-in
frequency of the user in the similar category as the POI and
is mathematically denoted by Svc = vcui . Vc.
Using the embedding layer, we transform the user-id,

vid and the encoded category information into continuous
vectors, uut , vut and vcui respectively. Then, to learn the
non-linear dependencies in user-POI and category data,
we feed the embedding layers to LSTM as in Eq (8). The
hidden vector hut is the representation for user u at step t and
captures the POI category preferences of the user over the
long term. Figure 3 represents the LTPM architecture.

hut = LSTM (Wuuut + Wvvut + Wtvcui ,h
u
(t−1)) (8)

whereWu,Wv andWu∈Rd×d are the transition matrices.

C. CAPTURING TEMPORAL FEATURES
The user’s check-in history has a timestamp imbibed into it.
We rely on timestamps for temporal preference mining.
This phase has two components. To compute the preferred
POIs based on temporal periodicity, we divide the user’s
trajectory into temporal sequences such that the consecutive
POIs are visited more than τ times units apart. We choose
τ = 8h and travel sequences Sv1, Sv2, . . . Sv+1, are ordered
chronologically. Using the sequences estimated for each user,
we compute the average periodicity score Vt of visits as in
Equation (9)-(10).

Vt =
1
n

∑
uϵU

∑
p1,p2ϵ Sv

(p1 − p2)ρ (v) , ∀ vϵ L (9)

ρ (v) =

{
1 if the user has visted the POI
0 otherwise

(10)

where n is the number of POIs visited, p1 and p1 represents
the POIs of same sequences for the user, and ρ (v) denotes
whether the user has visited the POI or not.

The periodicity score is then used to find the category
popular at that time by computing the category interest C t

v
as in Equation (11)-(12).

C t
v =

∑
Vt γ (cv) , ∀ c ϵ C (11)

γ (cv) =

{
1 if category c is visited
0 otherwise

(12)

The inner product ofC t
v and the respective category vectorVc,

(xt = Cv
t . Vc), represents the periodic popularity of the

POIs. This component successfully captures the temporal
periodicity.

To capture the temporal asymmetry, we modify the tradi-
tional LSTMmodel.We utilize an exponential decay function
that emphasizes the diminishing effect of older interactions
and incorporates the temporal features in the dynamic prefer-
ence modeling. For this, we measure the difference between
successive instances concerning the reference time allotted
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FIGURE 3. LTPM framework for POI recommendation.

by the user. We utilize a decay function to assign higher
weights to user check-ins that are more recent to the current
reference time specified by the user, as the older interactions
have lower importance in preference mining. The exponential
decay function calculates the time decay for every check-in.
We measure the distance between the temporal instances t
to find the difference between the successive user check-in
timestamp st . Then, using the exponential decay function,
a rate adjustment vector αt is formed, and the input
sequence xt of LSTM is multiplied by this vector to form a
dynamic weight update mechanism that encapsulates the user
preferences over time. To provide more emphasis on recency,
we apply exponential smoothing. The sigmoid activation
function (σ ) is used for training LSTM. Equation (13)-(15)
depicts the modified LSTM gates.

it = σ (Wii ∗ xt +Whiht−1 +Wsist ∗ αt + bi) (13)

ft = σ (Wif ∗ xt +Whf ∗ ht−1 +Wsf st ∗ αt + bf ) (14)

ct = ft
⊙

ct−1 + it
⊙

gt (15)

where it , ft and ct denote the input gate, forget gate, and
output gate, respectively. W and b represent the weight
matrices and bias terms.

D. CAPTURING THE SPATIAL FEATURES
The historical user check-in can be used to find the region of
interest based on the area of maximum activity and proximity
to the current location. For this, we follow a parallel input
stream to process the spatial and sequential data parallelly.
Spatial data is passed through theMLP that captures the latent
features intertwined in user-POI check-ins. We feed user,
POI, and rating vectors to the MLP layer, which forms the
three embeddings that capture the latent representations and
learn the non-linear relationships in user-POI information.
The resultant embeddings are passed to orthogonal mapping
that deploys triplet loss to enhance the discriminative power
of the embeddings. In triplet loss, the triplet of the sample
comprising an anchor sample, a positive sample, and a

negative sample is used to minimize the distance between
the anchor and positive sample and marginally maximize the
distance between the anchor and negative sample. It also
enforces the orthogonality constraints among the learned
embeddings and better captures their inherent relationships.
To imbibe the spatial proximity in this method, we modify
the triplet loss function Tl by adding the spatial proximity
term Ps. Ps denotes the spatial proximity between the anchor
and positive samples using the Haversine distance [30] as
depicted in Equation (16), as shown at the bottom of the
next page.

The final loss is then computed combining the triplet loss
and spatial proximity as in Equation (17), as shown at the
bottom of the next page, where λ1 is the hyperparameter to
adapt the required trade-off. where R is the radius of the earth,
(lat1, lon1) and (lat2, lon2) depict the coordinates of different
POIs.

The region of maximum user activity, i.e., the ratio of
maximum check-ins to the area of the grid, is referred to
as ROI Zr . The entire spatial region is divided into spatial
grids using the Geohash library in Python.2 We analyze each
grid cell for user check-ins to measure the spatial density
of check-in distribution. From Zr , we prioritize the grids of
high check-in density and allocate them to higher weights.
The embeddings of the high-priority grids are given more
weightage than the others in the next step, which involves
Large Margin Nearest Neighbour (LMNN) metric learning.
LMNN takes the embeddings along with the category labels
to minimize the distance metric between the POIs of the same
category.

E. FINAL RECOMMENDATION
The outcomes of LMNN and LSTM are concatenated to
provide the final recommendation. The final recommendation
involves the multi-head attention mechanism wherein each

2https://www.restack.io/docs/superset-knowledge-superset-python-
geohash-integration
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attention head will emphasize different aspects like temporal,
spatial, and categorical content. The attention scores of
different heads are concatenated to compute the weighted
sum and apply the averaging technique. The output is
combined to provide the final recommendation. Figure 4
depicts the framework of the LTPM-TRSP.

IV. EXPERIMENT AND RESULTS
In this section, we explain the experimental setup, hyper-
parameter settings and the results obtained. We also compare
our model with state-of-art approaches, and results surface
our claims.

A. EXPERIMENTAL SETUP
The experimentation was carried out on an Intel(R) Core
(TM) i7-6700 CPU @3.41 GHz processor with 64-bit Win-
dows operating system installed and one NVIDIA GeForce
RTX 2070, 8GB Graphics Card. The memory capacity is
16 gigabytes. The programmingwas done in Python 3.7 using
the Jupyter Notebook environment. We utilized different
libraries like numpy for computing operations, pandas
for data manipulation and visualization, and scikit-learn
for model analysis and computing performance. We also
deployed the deep learning framework TensorFlow 6 1.2.0.

B. HYPER-PARAMETER SETTINGS
We fix the embedding size to 64, and embedding parameters
are initialized with the Xavier method [31]. LTPM-TRSP
and its variants LTPM-TR and LTPM-SP are optimized with
Adam optimizer, and we use the default learning rate of
0.0001 and batch size of 1024. L2 regularization coefficient
is searched in the range of (1e−6, 1e−5, . . . .., 1e−2) and the
optimal value found is 1e−4. The number of epochs was
searched between 100 and 300, but after 250 epochs, the
results showed fluctuations and performance degradation.
Thus, optimal epochs were set to 250. The value for R for
the Haversine distance is 6,371 kilometers.

C. DATA SOURCE AND DESCRIPTION
Three publicly accessible real-world LBSN datasets-
Foursquare NYC,3 Gowalla, and Weeplaces4 were used in
the experiment. Gowalla was recorded from February 2009 to
October 2010. The Foursquare NYC data used in this study
ranges from April 2012 to December 2013. The Weeplaces
databases cover the time from November 2003 to June 2011.
Records are defined by quantifying the number of users of

3https://sites.google.com/site/yangdingqi/home/foursquare-dataset
4https://www.yongliu.org/datasets

TABLE 2. Datasets characteristics.

TABLE 3. Datasets category-wise characteristics.

a particular service, the number of POIs available, and the
number of times users have checked in.

A check-in is a single entry in the dataset containing the
user’s user ID, the POI-ID, the POI’s latitude and longitude,
the timestamp showing the check-in time, and other infor-
mation as depicted in Table 2. Table 3 shows the dataset’s
statistical analysis. For recommendation, we remove the users
with less than 10 check-ins as such users might behave as
noise, impacting the accuracy of predictions and mitigating
the effects of the spatial clustering phenomena [32]. Further,
the removal also addresses the problem of stay points and
accidental check-ins. Similarly, we remove the POIs with less
than 10 check-ins because these POIs also act as outliers.
The top five most popular categories and the total number
of check-ins for each are shown in Table 3 for the Gowalla
and Weeplaces dataset. We use one hot-encoding for the
category information to facilitate the investigation of POIs
propensity category-wise. We convert the timestamp infor-
mation to time intervals of weeks, months, days, and hours
to better analyze the temporal periodicity and asymmetry.
The datasets were split into training and testing halves in an
80:20 ratio.

The analysis of user check-ins in the US extracted from
the Weeplaces dataset is depicted in Figure 5, and March
recorded the highest check-ins. Further, the city-wise analysis
depicts that New York has the highest check-in count, and
the Los Angeles dataset has the lowest check-in count. This
analysis is done on a sample of 20000 user check-ins.

Ps = 2Rarcsin(

√
sin2(

lat1 − lat2
2

) + cos (lat1) ∗ cos (lat2) ∗ sin2(
lon1 − lon2

2
) (16)

Loss = λ1 (Tl) + (1 − λ1)Ps (17)
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FIGURE 4. LTPM-TRSP framework for POI recommendation.

FIGURE 5. Check-in data analysis of Weeplaces. a) Month-wise. b) city wise.

D. EVALUATION METRICS
The proposed approach is evaluated on two metrics defined
as follows:
Precision@k: It is the ratio of recovered POIs to the

number of recommended POIs, depicted mathematically in
Equation (18).

Precision@k =
1
n

n∑
u=1

∣∣I recom ∩ I test |

k
(18)

Irecom is the top-k recommended POI list of target users,
Itest is the visited POI list of the target user in the test set, and
k is set to 5, 10, 15, and 20.
Recall@k: It is defined as the ratio of recovered POIs to the

number of POIs predicted, as represented in Equation (19).

Recall@k =
1
n

n∑
u=1

|I recom ∩ I test |
|I test |

(19)

Irecom is the top-k recommended POI list of target users,
Itest is the visited POI list of the target users in the test set,
and k is 5, 10, 15, and 20.

Acc@k: It is computed as the ratio of correct recommen-
dations obtained to the total records in the test set |Dtest |.
Equation (20) depicts the formula used. Here, k is varied
to 5 and 10 only.

Acc@k =
#hits@k
|Dtest |

(20)

E. BASELINE METHODS
1) CatDM [3]: This is a deep encoder-based LSTMused in

this model to capture user preferences based on spatial,
temporal, and categorical aspects.

2) ST-RNN [33]: It uses spatial-temporal context with
recurrent neural networks.

3) Spatial Binning [1]: The spatial griding-based method
that utilizes LSTM to model ROIs.

4) HST-LSTM [34]: It is a hierarchical extension
of spatial-temporal LSTM to enhance prediction
performance.

5) LSTM [29]: Standard model for deep learning-based
recommendation tasks.
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6) SDAE-Bi-LSTM [35]: A combination of stacked
autoencoders (SDAE) and Bi-LSTM.

7) DeepPOF [17]: It exploits the social links in addition
to spatial and temporal content with a deep neural
network.

8) RecPOID [36]: It can be defined as a friendship-aware
spatial-temporal context-mining approach.

9) Bi-LSTM + Attention [19]: Spatial-temporal context
processed through encoder-decoder-based Bi-LSTM
model.

10) GT-HAN [37]: This framework models geographical-
temporal aspects using an attention network and caters
to POI-POI dependencies.

11) DeepMove [38]: It is an attention-recurrent network for
mobility prediction in user-check-in trajectory.

12) STAN [39]: A spatio-temporal network uses a
self-attention network to harness the interactions
between the non-consecutive check-ins.

13) MGCOCO [40]: It exploits the multi-granularity
context, correlations, and spatial-temporal aspects to
capture the local and global mobility patterns.

14) APRA-SA [41]: It is a POI recommendation method
that investigates the activity and spatial features using
activity regions, temporal propensity, and distance
features.

15) Trust and Spatial-Temporal [42]: It uses direct and
implicit trust modeling in combination with spatial and
temporal factors.

16) DeNavi [43]: It uses subspace decomposition, dis-
tance awareness, and lightweight learning for POI
recommendation.

The results have also been compared with LTPM-TR,
LTPM-SP, and LTPM-TRSP to confirm our claims.

F. RESULTS
1) PRECISION AND RECALL
The precision@k and recall@k for NYC and Gowalla
datasets are depicted in Table 4. Among the NYC dataset’s
baselines, HST-LSTM has the lowest precision, followed
by a minor spike in LSTM, the basic standard model for
deep learning. The spatial binning approach of [1] showed
better performance than the other two owing to the spatial
griding of the geographical region for POI recommendation.
CatDM outperforms the baselines and shows the highest per-
formance. However, it is further surpassed by LTPM-TR, the
variant of our approach that uses only temporal recency-based
modified LSTM. LTPM-TR outperforms LTPM-SP, which
utilizes the metric learning-based spatial proximity estima-
tion. Both versions are further subdued by the complete
LTPM-TRSP, combining spatial proximity and recency as
two distinct units. A similar trend is visible in recall@k for
the NYC dataset.

The experiment on the Gowalla dataset also presents some
interesting facts. The SDAE-Bi-LSTMmodel shows the low-
est performance, followed by the Bi-LSTM-Attnetion model.

The standard LSTM shows better results than these. The
RecPOID technique substantially enhances results but is
outperformed by the DeepPOF model. ST-RNN model per-
formed equally well to DeepPOF with the slightest increase
in the results. Our proposed method and its variants subdued
the baselines with a similar trend. LTPM-TR performs better
than other baselines but least within the versions of LTPM.
LTPM-SP performs better but is lower than the LTPM-TRSP.
The results of the NYC datasets are slightly less than those
of the Gowalla dataset, owing to the implicit disparity in data
distribution. A similar trend is also visible for the Weeplaces
dataset.

2) ACCURACY
Applying the LTPM-TRSP algorithm on the Gowalla plat-
form yielded an accuracy rate of 34.8%. Similarly, the
Weeplaces platform achieved an accuracy rate of 35.13%,
while the Foursquare platform reported an accuracy rate
of 31.82%. As elucidated earlier, the observed discrepancy
can be attributed to the intrinsic variations in geographical
distribution. We have compared the baselines with the
complete model LTPM-TRSP.

Figure 6 depicts the variations in acc@5 and acc@10 for
the Gowalla andWeeplaces datasets. Our model surpasses all
other baseline models and presents a competitive technique
for POI recommendation. The results presented were calcu-
lated at epochs 250 for better comparisons. The accuracy also
varies with epochs, as depicted in Figure 7, which presents
the accuracy results over epochs 100, 150, 200, 250, and
300 for Gowalla and Weeplaces. After 300, we observed a
stabilization in accuracy. Also, at epoch 280, we observed
a decline in the accuracy, and the optimal epoch selected
was 250. The accuracy variation with the training and testing
ratio is depicted in Table 5.

3) ABLATION STUDY
To assess the efficacy of our suggested methodology,
we examine different versions of the LTPM-TRSP frame-
work. Each employs a different component in its entirety.
Figure 7 presents epochs vs. accuracy variations for different
versions of Weeplaces and Gowalla datasets. As the epochs
increased, the accuracy increased. After 250 epochs, the
accuracy statistics decreased till 280 epochs and then
increased to 35.74% for Gowalla and 38.16% forWeeplaces.
After 300 epochs, stabilization was achieved. According to
the Gowalla dataset, the LTPM-SP method showed higher
accuracy than the LTPM-TR method; thus, geographical
considerations significantly influence the choice of check-in
at a POI. Users prefer visiting a POI close to a previously
visited POI near their location, suggesting a tendency
for connectedness between nearby locations. LTPM-SP in
Weeplaces was slightly lower than in Gowalla due to the
geographical distribution patterns in the check-in records.
LTPM-TR accuracy for Weeplaces also shows similar
behavior. LTPM-TRSP outperforms other approaches; thus,
confined geographical regions within proximity and temporal
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TABLE 4. Comparison of precision and recall for NYC and Gowalla.

FIGURE 6. Accuracy comparison for a) Weeplaces and b) Gowalla @5 and @10.

FIGURE 7. Accuracy vs Epochs a) Gowalla dataset b) Weeplaces dataset.

recency provide a higher opportunity for user preference
mining. Accuracy also showed fluctuations with the train and
test data ratio variations, as described in Table 5.

4) COMPLEXITY ANALYSIS
The complexity of LTPM-TRSP depends on the individual
complexity of four different steps. The temporal feature
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TABLE 5. Accuracy variations with train-test ratios.

incorporation in LSTM has the O(t × n2) where t is the
sequence length, and n is the number of units. Spatial Feature
analysis using MLP, Geohash, and LMNN is O(n2). For
orthogonal mapping, the complexity is O(d2 × n2) that
depends on d is embedding space, and the complexity of
triplet loss is O(d) per triplet. For multi-head Attention,
layer complexity is O(H × L × d2) where H is the
number of attention heads, L is the input length, and d
is the dimensions of input vectors. The final concatenation
of results and recommendations is O(n). This is less than
our previous approach to spatial binning proposed in [1].
LTPM-TRSP takes an overall 741.41024752 s of training
time at 250 epochs.

5) DISCUSSION
LTPM-TRSP uses an exponential decay function for which
the decay rate is a significant factor as it decides the
dominance of newer interactions over the older ones. The
learning rate for LSTM is set to 0.001, the batch size
is 64, and the optimal number of epochs is set to 250. The
number of hidden layers in MLP is 4, with 16, 8, 4 and
2 neurons in each layer, respectively. MLP has a learning
rate of 0.0001. The embedding dimension is set to 32 for
orthogonal mapping to avoid overlapping the dimensions
and provide a suitable trade-off. The λ1 value fluctuates
between 0 to 1. The suitable value obtained by hit-and-trial
is 0.64; at this value, the RMSE obtained was 0.2 to 0.4,
which was substantially acceptable. Further, with this value,
the radial distance accepted is neither very small nor very
large; hence, the radial distance is suitable.
Using the time decay, the older interactions are neglected,
and newer ones are assigned higher weights. The temporal
features are searched for both temporal periodicity and
temporal asymmetry. The popularity of the category and the
time past from the last check-ins are crucial components as
revealed by the timestamps. Using these, we integrate the
recency in the model. The spatial sensitivity and relevancy
based on MLP capture the categorical propensity of POIs.
We ensure the discriminative power in the system using
orthogonal mapping and capture the user-POI interactions.
LMNN reduces the distance between the POIs of similar cat-
egories, hence groups the potential POIs in recommendation.
The concatenation of both units ensures balanced dynamic
preferences based on the current location and the reference
time. The final recommendations are obtained by combining
the long-term preferencesmined from the historical check-ins

using category-aware LSTM. Through this model, we infuse
the temporal and spatial units as the measure of recency
and proximity into the static long-term predilections of
the users.

V. CONCLUSION
In this paper, we attempt to solve the issue of data sparsity and
long-term preference based on recency in the user’s historical
check-ins and the proximity of the POIs to the user’s
current location. The approach deploys modified LSTM
to incorporate the time decay in mining the propensity of
POIs. Concomitantly, the geographical distance and ROI are
mined to boost the representation learning using combined
orthogonal mapping and metric learning units. This approach
exploits the user-POI, POI-POI, and POI-time relationships
latent within the check-in data to substantiate the user’s
preference mining approach. The objective of the approach
is to provide increased priority to recent information and less
priority to older data, as this reduces performance and might
produce outdated recommendations. LTPM-TR captures the
temporal periodicity and temporal asymmetry in the user
check-ins. The frequency of check-ins represents the long-
term preference of categories of POI. The recommendation
considers personalized preferences based on periodic visits,
and the difference between reference time and the previous
check-ins measures the asymmetry. Thus, recent visits would
depict the currently popular POIs. LTPM-SP uses contrastive
learning in combination with spatial proximity that optimizes
the triplet loss through geographical vicinity score. The final
loss provides the trade-off between the two and captures the
sequential, categorical, and spatial behavior embedded in the
user check-ins. The spatial gridding with higher priority to
grids with POIs of high check-in frequency further enhances
the location trajectory mining. LMNN-based metric learning
aggregates the categorical effect in the POI recommendation
process. Thus, the discriminative power of the embeddings
learned enables a large margin in POIs of different categories
and vice-versa. The final recommendation is made by
attention-augmented units using the outputs of LTPM,
temporal and spatial sections. The results evaluated on three
real-world datasets are quite affirmative. The complexity
analysis of the model infers that the process is a bit
complicated and requires a significant amount of time in the
training process.

VI. FUTURE WORKS
The proposed model relies on the recency in the visitation
pattern and uses a decay mechanism. In the future, we wish
to explore the methods for dynamic weighing mechanisms
to capture user mobility behavior based on Deep Q Net-
work (DQN), ensemble methods, or regularization strategies.
The model caters to only temporal and spatial information
but neglects contextual parameters like social contexts, tips,
reviews, etc. Hence, in the future, we aim to investigate
the importance of the auxiliary information too. The data
extracted from the historical check-in puts the confidentiality

11594 VOLUME 12, 2024



M. Acharya et al.: LTPM With Temporal and Spatial Fusion for POI Recommendation

of the user at stake. Including different learning paradigms
like federated learning and adversarial learning can be
envisaged.

REFERENCES
[1] M. Acharya, S. Yadav, and K. K. Mohbey, ‘‘How can we create a

recommender system for tourism? A location centric spatial binning-based
methodology using social networks,’’ Int. J. Inf. Manage. Data Insights,
vol. 3, no. 1, Apr. 2023, Art. no. 100161.

[2] X. Wang, Y. Liu, X. Zhou, X. Wang, and Z. Leng, ‘‘A point-of-interest
recommendation method exploiting sequential, category and geographical
influence,’’ ISPRS Int. J. Geo-Inf., vol. 11, no. 2, p. 80, Jan. 2022, doi:
10.3390/ijgi11020080.

[3] F. Yu, L. Cui, W. Guo, X. Lu, Q. Li, and H. Lu, ‘‘A category-aware
deep model for successive POI recommendation on sparse check-in
data,’’ in Proc. Web Conf., 2020, pp. 1264–1274, doi: 10.1145/3366423.
3380202.

[4] M. B. Hossain, M. S. Arefin, I. H. Sarker, M. Kowsher, P. K. Dhar,
and T. Koshiba, ‘‘CARAN: A context-aware recency-based attention
network for point-of-interest recommendation,’’ IEEE Access, vol. 10,
pp. 36299–36310, 2022.

[5] P. Nitu, J. Coelho, and P. Madiraju, ‘‘Improvising personalized travel
recommendation system with recency effects,’’ Big Data Mining Anal.,
vol. 4, no. 3, pp. 139–154, Sep. 2021.

[6] K. Seyedhoseinzadeh, H. A. Rahmani, M. Afsharchi, and M. Aliannejadi,
‘‘Leveraging social influence based on users activity centers for point-of-
interest recommendation,’’ Inf. Process.Manage., vol. 59, no. 2,Mar. 2022,
Art. no. 102858.

[7] M. Acharya and K. K. Mohbey, ‘‘Trust-aware spatial–temporal
feature estimation for next POI recommendation in location-based
social networks,’’ Social Netw. Anal. Mining, vol. 13, no. 1, p. 102,
Aug. 2023.

[8] A. Panteli and B. Boutsinas, ‘‘Addressing the cold-start problem in
recommender systems based on frequent patterns,’’ Algorithms, vol. 16,
no. 4, p. 182, Mar. 2023.

[9] M. Li,W. Zheng, Y. Xiao, K. Zhu, andW. Huang, ‘‘Exploring temporal and
spatial features for next POI recommendation in LBSNs,’’ IEEE Access,
vol. 9, pp. 35997–36007, 2021.

[10] J. Zeng, H. Tang, Y. Zhao, M. Gao, and J. Wen, ‘‘PR-RCUC: A POI recom-
mendation model using region-based collaborative filtering and user-based
mobile context,’’ Mobile Netw. Appl., vol. 26, no. 6, pp. 2434–2444,
Dec. 2021.

[11] X. Jiao, Y. Xiao, W. Zheng, L. Xu, and H. Wu, ‘‘Exploring spatial and
mobility pattern’s effects for collaborative point-of-interest recommenda-
tion,’’ IEEE Access, vol. 7, pp. 158917–158930, 2019.

[12] D. Yu, W. Wanyan, and D. Wang, ‘‘Leveraging contextual influence and
user preferences for point-of-interest recommendation,’’Multimedia Tools
Appl., vol. 80, no. 1, pp. 1487–1501, Jan. 2021.

[13] J. Ren and M. Gan, ‘‘Mining dynamic preferences from geographical and
interactive correlations for next POI recommendation,’’ Knowl. Inf. Syst.,
vol. 65, no. 1, pp. 183–206, Jan. 2023.

[14] D. Wang, K. Liu, H. Xiong, and Y. Fu, ‘‘Online POI recommendation:
Learning dynamic geo-human interactions in streams,’’ IEEE Trans. Big
Data, pp. 1–13, 2022.

[15] J. Chen and W. Zhang, ‘‘TeSP-TMF: A temporal-aware personalized
POI recommendation approach based on potential preferences and grey
relational analysis,’’ Electron. Commerce Res. Appl., vol. 58, Mar. 2023,
Art. no. 101243.

[16] H. A. Rahmani, M. Aliannejadi, S. Ahmadian, M. Baratchi, M. Afsharchi,
and F. Crestani, ‘‘LGLMF: Local geographical based logistic matrix
factorization model for POI recommendation,’’ in Proc. 15th Asia
Inf. Retr. Societies Conf., vol. 15. Cham, Switzerland: Springer, 2020,
pp. 66–78.

[17] S. Safavi and M. Jalali, ‘‘DeePOF: A hybrid approach of deep
convolutional neural network and friendship to point-of-interest (POI)
recommendation system in location-based social networks,’’ Concurrency
Comput., Pract. Exper., vol. 34, no. 15, pp. 1–11, Jul. 2022.

[18] P. Han, S. Shang, A. Sun, P. Zhao, K. Zheng, and X. Zhang,
‘‘Point-of-interest recommendation with global and local context,’’
IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5484–5495,
Nov. 2022.

[19] Y. Liu and A.-B. Wu, ‘‘POI recommendation method using deep learning
in location-based social networks,’’ Wireless Commun. Mobile Comput.,
vol. 2021, pp. 1–11, Jul. 2021.

[20] C. Yue, J. Zhu, S. Zhang, and X. Ma, ‘‘POI recommendations using self-
attention based on side information,’’ in Proc. 6th Int. Conf. Pioneering
Comput. Scientists, Eng. Educators. Singapore: Springer Sep. 2020,
pp. 62–76.

[21] L. Huang, Y. Ma, Y. Liu, and K. He, ‘‘DAN-SNR: A deep attentive
network for social-aware next point-of-interest recommendation,’’ ACM
Trans. Internet Technol., vol. 21, no. 1, pp. 1–27, Feb. 2021.

[22] M. Acharya and K. K. Mohbey, ‘‘Differential privacy-based social
network detection over spatio-temporal proximity for secure POI
recommendation,’’ Social Netw. Comput. Sci., vol. 4, no. 3, p. 252,
Mar. 2023.

[23] J. S. Kim, J. W. Kim, and Y. D. Chung, ‘‘Successive point-of-interest
recommendation with local differential privacy,’’ IEEE Access, vol. 9,
pp. 66371–66386, 2021.

[24] S. Dai, Y. Yu, H. Fan, and J. Dong, ‘‘Spatio-temporal representation
learning with social tie for personalized POI recommendation,’’ Data Sci.
Eng., vol. 7, no. 1, pp. 44–56, Mar. 2022.

[25] C. Xu, D. Liu, and X. Mei, ‘‘Exploring an efficient POI recommendation
model based on user characteristics and spatial–temporal factors,’’
Mathematics, vol. 9, no. 21, p. 2673, Oct. 2021.

[26] Q. Li, X. Xu, X. Liu, and Q. Chen, ‘‘An attention-based spatiotem-
poral GGNN for next POI recommendation,’’ IEEE Access, vol. 10,
pp. 26471–26480, 2022.

[27] Y.-S. Lu and J.-L. Huang, ‘‘GLR: A graph-based latent representation
model for successive POI recommendation,’’ Future Gener. Comput. Syst.,
vol. 102, pp. 230–244, Jan. 2020.

[28] Y. Zhang, P. Lan, Y. Wang, and H. Xiang, ‘‘Spatio-temporal mogrifier
LSTM and attention network for next POI recommendation,’’
in Proc. IEEE Int. Conf. Web Services (ICWS), Jul. 2022,
pp. 17–26.

[29] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] E. Maria, E. Budiman, and M. Taruk, ‘‘Measure distance locating nearest
public facilities using haversine and Euclidean methods,’’ J. Phys., Conf.
Ser., vol. 1450, no. 1, Feb. 2020, Art. no. 012080.

[31] X. Glorot and X. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 30th Int. Conf. Artif. Intell. Statist.,
Mar. 2010, pp. 249–256.

[32] E. Cho, S. A. Myers, and J. Leskovec, ‘‘Friendship and mobility:
User movement in location-based social networks,’’ in Proc. 17th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, San Diego, CA, USA,
Aug. 2011, pp. 1082–1090.

[33] Q. Liu, S. Wu, L. Wang, and T. Tan, ‘‘Predicting the next location:
A recurrent model with spatial and temporal contexts,’’ inProc. AAAI Conf.
Artif. Intell., 2016, pp. 194–200.

[34] D. Kong and F. Wu, ‘‘HST-LSTM: A hierarchical spatial–temporal long-
short term memory network for location prediction,’’ in Proc. 27th Int.
Joint Conf. Artif. Intell., Jul. 2018, pp. 2341–2347.

[35] T. Dai, L. Zhu, Y. Wang, and K. M. Carley, ‘‘Attentive stacked
denoising autoencoder with bi-LSTM for personalized context-aware
citation recommendation,’’ IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 28, pp. 553–568, 2020.

[36] S. Safavi and M. Jalali, ‘‘RecPOID: POI recommendation with friend-
ship aware and deep CNN,’’ Future Internet, vol. 13, no. 3, p. 79,
Mar. 2021.

[37] T. Liu, J. Liao, Z. Wu, Y. Wang, and J. Wang, ‘‘Exploiting geographical-
temporal awareness attention for next point-of-interest recommendation,’’
Neurocomputing, vol. 400, pp. 227–237, Aug. 2020.

[38] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin,
‘‘DeepMove: Predicting human mobility with attentional recurrent net-
works,’’ in Proc. World Wide Web Conf. World Wide Web - WWW, 2018,
pp. 1459–1468.

[39] Y. Luo, Q. Liu, and Z. Liu, ‘‘STAN: Spatio-temporal attention network
for next location recommendation,’’ in Proc. Web Conf., Apr. 2021,
pp. 2177–2185.

[40] X. Li, R. Hu, and Z. Wang, ‘‘Beyond fixed time and space: Next
POI recommendation via multi-grained context and correlation,’’ Neural
Comput. Appl., vol. 35, no. 1, pp. 907–920, Jan. 2023.

VOLUME 12, 2024 11595

http://dx.doi.org/10.3390/ijgi11020080
http://dx.doi.org/10.1145/3366423.3380202
http://dx.doi.org/10.1145/3366423.3380202


M. Acharya et al.: LTPM With Temporal and Spatial Fusion for POI Recommendation

[41] Y. Si, F. Zhang, and W. Liu, ‘‘An adaptive point-of-interest recom-
mendation method for location-based social networks based on user
activity and spatial features,’’ Knowl.-Based Syst., vol. 163, pp. 267–282,
Jan. 2019.

[42] C. Xu, A. S. Ding, and K. Zhao, ‘‘A novel POI recommendation
method based on trust relationship and spatial–temporal factors,’’Electron.
Commerce Res. Appl., vol. 48, Jul. 2021, Art. no. 101060.

[43] Y.-C. Chen, T. Thaipisutikul, and T. K. Shih, ‘‘A learning-based POI
recommendation with spatiotemporal context awareness,’’ IEEE Trans.
Cybern., vol. 52, no. 4, pp. 2453–2466, Apr. 2022.

MALIKA ACHARYA received the Bachelor of
Technology (B.Tech.) degree from Amity Univer-
sity, Noida, in 2019, and the Master of Technol-
ogy (M.Tech.) degree from Rajasthan Technical
University, Kota, in 2021. She is currently a
Research Scholar with the Central University of
Rajasthan, India. She has published one text book
and five research articles in various journals and
conferences of international reputes. Her research
interests include big data analysis, data mining,

machine learning, social networking, and recommendation systems.

KRISHNA KUMAR MOHBEY received the
bachelor’s degree in computer application from
MCRPV Bhopal, in 2006, the master’s degree in
computer application from Rajiv Gandhi Tech-
nological University, Bhopal, in 2009, and the
Ph.D. degree from the Department of Mathematics
and Computer Applications, National Institute of
Technology Bhopal, India, in 2015. He is currently
an Assistant Professor in computer science with
the Central University of Rajasthan, India. He has

published one edited book, three text books, and more than 50 research
articles in various journals and conferences of international reputes. His
research interests include data mining, mobile web services, big data
analysis, and user behavior analysis.

DHARMENDRA SINGH RAJPUT received the
Ph.D. degree from NIT, Bhopal, India, in 2014.
He has been a Professor with the Department
of Software and Systems Engineering, SCORE,
VIT, Vellore, since June 2014. He has published
more than 35 reputed journal articles, five edited
books published under reputed publishers, and
17 papers presented in the reputed international
conferences. His research interests include data
mining, machine learning, and big data. He is also

a guest editor of various reputed journals. He has received various awards
from the Indian Government, such as DST-SERB, CSIR Travel Grant, and
MPCST Young Scientist Fellowship. He is doing the funded project of
80 lakhs, which is received from Erasmus + Program of the European
Union with the partner the University of Nottingham, U.K. He has visited
various countries U.K., France, Singapore, United Arab Emirates, China, and
Malaysia, for academic purposes.

11596 VOLUME 12, 2024


