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ABSTRACT Global warming is causing industrial development to increase greenhouse gas emissions,
impact power provider economies, and potentially pose a solution through renewable energy. In order to solve
these issues, the research offers a dual strategic auction difficulty for renewable energy market clear prices
(MCPs) to maximize supplier and buyer revenues while mitigating rival unpredictability and renewable
vacillation power supply sources. The study uses scenario reduction techniques, including Beta and Weibull
distribution of probability, forward-reduction technique, and underestimation and overestimation of the
cost function to manage uncertainties in renewable energy. The Gravitation Search algorithm and a hybrid
approach ordered weighted average distance (OWAD) combined, with Topsis operational gravitational
search algorithm TOGSA (OWAD-TOGSA), are used to solve the multi-objective issue. The study evaluates
the performance of IEEE standard 30-bus and 57-bus test systems and an Indian 75-bus operational
system to solve a problem involving wind and sun energy in spite of its volatility. The proposed bidding
approach is feasible and could increase revenue by nearly 10 %, potentially improving efficiency for electric
energy-producing utilities and consumers, and its findings will be beneficial for similar research using
optimization techniques.

INDEX TERMS Electricity trading, renewable energy market, dual side optimum bidding strategy, market
clear prices, probability distributions, solar energy, wind energy.

I. INTRODUCTION
Global deregulation has transformed traditional power utili-
ties into a competitive electricity market, encompassing day-
ahead, real-time, and ancillary services markets. GENCOs
must optimize generation capacity allocation to various mar-
kets to maximize profit in a deregulated environment, with
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bidding strategies being crucial for increasing profits [1], [2],
[3]. Developing an optimal bidding strategy is typically based
on GENCOs, technical constraints, and anticipating competi-
tor and market behavior. The PoolCo model is a common
electricity market characteristics GENCOs develop the opti-
mum bidding strategies comprised of sets of price-making
pairs. Moreover, power providers competitively traded are
bid for their generation cost to affect more than the marginal
price for making a profitable power generation system.When
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power generation systems are participating to take the more
beneficial market and implementation through giving in to
their individual auction saying as charges additional than the
marginal prices such activities of power generation system
are knowable strategic bidding systems of power generation
companies [4]. GENCOs should bid above their marginal
cost to maximize profit in oligopolistic electricity markets,
even offering a price over their marginal revenue to max-
imize profits in a perfectly competitive market. Therefore,
GENCOs’ first priority at the present is to establish the best
possible bidding strategy [5]. The restructuring led to mar-
ket deregulation and changes in competitive, technological,
and regulatory settings, altering the power system’s primary
objective, resulting in unfair strategic pricing for competitors’
profit maximization [6]. Inherently introduce the bidding
strategies issues for power provider utilities and researchers
have done several works for the development of bidding
strategies with a different timeline. The power provider orga-
nization faces a struggle due to the indeterminate embodiment
of energy requests and its rival schedules [7]. Furthermore,
from the standpoint of power suppliers and consumers, strate-
gic bidder faces difficulties, this category of transformation is
also rationalized by the existing condition as such an unpre-
ventable social assistance necessity [8]. Researchers develop
bidding strategies [9] for power provider organizations [10],
facing challenges due to uncertain demand and rival actions,
addressing various timelines [11]. In a perfect electricity mar-
ket, power suppliers bid primarily on marginal cost. Strategic
bids involve producing profits above and beyond marginal
production costs [12]. Whenever a power supplier can suc-
cessfully increase its profits through a strategic bid or any
other method rather than cost reduction, it is said to have
market power [13].

Thus, strategic bidding issues significantly impact the
financial operations of the deregulation of grid electric-
ity auctions. The electricity market intends to remote solar
energy growth due to the assured future of solar energy. The
current system is ineffective in dealing with uncertainty in
renewable energy, and there is no suitable market for renew-
able energy bidding [9], [40]. There is limited research on
solar and wind energy bidding, and more work is required
for electrical utilities for profit maximization. Efficiently
priced forecasting implementation is crucial for examining
the impact of renewable energy on electricity prices. Inte-
grating renewable energy sources, such as solar and wind,
into electric–energy bidding is challenging due to their unpre-
dictable nature, complex dispatching and scheduling, and
underestimation and overestimation of combined generation
system cost [14]. Independent service providers must develop
suitable strategies for single-side bidding, considering their
combined effects. India’s integration of electric power plants
faces competition from various distribution models, includ-
ing collective wind and solar power [15], which affect the
electricity market.

The literature on improving structured markets for renew-
able energy sources (REs) is incomplete. Optimization

techniques, such as PSO (particle swarm optimiza-
tion method), GA (genetic algorithm), BAI (bat-inspired
algorithm), KHA (krill herd algorithm), and GSA (gravita-
tional search algorithm), have limitations in parameter inertia,
learning factors, crossover and mutation problems, poor con-
trol strategies, and exploration capability [16]. GSA, based on
gravitational law and mass exchanges, offers fast, accessible
global optimization solutions but reduces impulsive con-
vergence and searchability. Opposition-based gravitational
search algorithm (OGSA) techniques can overcome GSA
problems by considering estimation and reverse estimation
as approximation and reverse approximation. Integrating
GSAwith OGSA simultaneously improves optimum solution
calculation [17].

The research aims to optimize benefits by combining
renewable energy sources with conventional power supplies
using the ordered weighted average distance (OWAD) com-
bine with Gravitational Search Algorithm (GSA) and renew-
able energy as a probabilistic model to predict uncertainty and
cost features.

The present research uses ordered weighted average
distance (OWAD) as an optimization method for uncer-
tain circumstances, concentrating on nearby places. The
OWAD-TOGSA technique is combined with Beta and
Weibull probability distribution functions to reduce uncer-
tainty problems in electric bidding strategies. The proposed
biddingmodel considers solar and wind power, cost functions
for overestimation and underestimation, and is tested on IEEE
30 and 57 bus systems. The OWAD-TOGSA technique is
applicable and suitable due to its practicality.

The arrangements for the article’s content are given in the
following sections. Section II contains information about the
market policy. Section III presents a mathematical model for
a specific market clear price (MCP), and details the pro-
posed algorithm and the optimization framework. Section IV
discusses the uncertainty surrounding solar irradiation, wind
fluctuation, loads, and demand costs. Section V focuses
solely on the case study in which the supplier trades power
within the electricity market trading mechanism using the
provided algorithms at various demand and generation times.
Section, VI is given proposed algorithms that result in dis-
cussions in the competitive power market. Conferring the
section VII conclusion is specified.

II. RESTRUCTURING OF THE ELECTRICITY MARKET
The restructuring phase began with the unbundling of the
system, which was initially vertical integration. These even-
tually result in the separation of their main activities during
an integrated electrical system resulting in the development
of operational partitions within them. Unbundling the energy
industry involves distancing transmission interactions from
generation activities. Furthermore, this could differentiate
distribution and transmission. Economic activities on this
restructuring sector with power eventually occur also on
wholesale energy markets, typically consist of even a con-
sisting power exchange (PX) and a few trading firms. System
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FIGURE 1. Competitive restructured electricity market.

FIGURE 2. Typical independent service operator (ISO) framework.

Operator (SO) is the organization that is responsible for
improving the accuracy and safety of the entire structure. It is
an independent institution that is not engaged in trading in
the energy market. Usually, it does not own the generation of
energy, except the reserve capacity in certain situations.

The existing renewable energy auction method is unsuc-
cessful owing to uncertainty and a lack of a sufficient market.
Profit maximization requires little study about solar and
wind energy bidding. Efficiently priced forecasting is crit-
ical for investigating the influence of renewable energy on
power pricing. Integrating renewable energy sources into
electric-energy bidding is difficult owing to its unpredictabil-
ity, complicated dispatching, and underestimating of inte-
grated generation system cost. Independent service providers
must design strategies for single-sided bidding in India’s
electric power market, taking into account competition from
diverse distribution types. Optimization approaches such as
PSO, GA, BAI, KHA, and GSA provide quick global solu-
tions, but the Typsis Opposition-based gravitational search
algorithm (TOGSA) can increase optimal solution computa-
tion. To preserve system reliability and stability a range of
services, like the provision of effective reserves or reactive

FIGURE 3. Renewable Electric Energies Market Model prices impact of PV
and EV on grid stability.

power, are promoted from several other components of a
system. Exchange rates and the availability of generator
electricity determine the cost of DA and contingency. DAM
bidding takes ten to twelve hours per day, and by seventeen
hours, results have already been released with a clear vol-
ume and price [19]. Framework of the strategic restructured
electrical power system shown in Figure 1.

FIGURE 1. shows the framework of the strategic level of
the restructured electrical power system.

The framework of an independent service operator (ISO)
throughout the event that a system operator (SO) is unbiased
in every other operation as shown in Figure 2.

A. RENEWABLE ELECTRIC ENERGIES MARKET MODEL IN
THE INDIAN CONTEXT
India’s growing energy demand necessitates grid-interactive
solar and wind energy applications. A new state-level dis-
patch center could offer flexible power trading for consumers
and providers, matching renewable and nonrenewable energy
bids. The balance responsible party (BRP) submits bids
through renewable energy management centers, acquiring
electricity from the Public Utility Company (PX) when pro-
duction falls short of projections. The center could also bid to
sell power to PX if surplus levels exist.

Solar and wind power facilities submit bids through the
balance responsible party (BRP), which is financially respon-
sible for imbalances in portfolio grid allocation points. BRP
receives forecasts from renewable energy management cen-
ters (REMC) for solar and wind energy. BRP completes
power generation by acquiring electricity from the Public
Utility Company (PX) when production falls short of pro-
jections. BRP may also bid to sell power to PX if there is
a surplus level dispatch center could offer flexible power
trading for consumers and providers, matching renewable and
nonrenewable energy bids. Solar and wind power facilities
submit bids through the balance responsible party (BRP),
which is financially responsible for imbalances in portfolio
grid allocation points. BRP receives forecasts from renew-
able energy management centers (REMC) for solar and
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FIGURE 4. EV integration in the Indian power market.

wind energy. BRP completes power generation by acquiring
electricity from the Public Utility Company (PX) when pro-
duction falls short of projections. This might lead to cheaper
tariffs and less complicated consumer interactions [20], while
distribution-level congestion might still happen. Solar energy
providers are attempting to meet the demand for the upcom-
ing day’s electric auction on the electrical grid by bidding on
photovoltaic energy 24 hours in advance [26]. The 15-minute
power market can be used to bid on ancillary services in
the solar energy grid, with the state typically managing
DISCOMs under a fixed daily electricity price. Bilateral con-
tracts offer another communication for energy trading [22].
As a consequence, the beta distribution technique is used

in this research to demonstrate uncertain solar and wind
generation. [22], [23]. The statistics on solar generation
across time and under various circumstances. The appropriate
electricity market model for renewable energy trading estab-
lishes competition among generators to provide competitive
electric power features at a competitive cost to consumers,
as illustrated in Figure 3.
Modern power distribution techniques like conventional

energy air storage (CEAS) and solar-wind hybrid systems can
develop reliable systems when solar and wind energy out-
put is zero. However, integrating renewable energy sources
into electricity profits remains a challenging task. The
most important issues distressing the bidding strategies for
REs power producers are REs generation, time perspective,
demand, the capacity of the plant, and rival bids. The REs
power producers have to bids optimally to increase revenue
in such a scenario to avoid penalties in addition to dispatching
dedicated power to the load center. Due to the enormous
capability added to the production of electric energy from
REs sources, the permeation proportion addicted to gird.
The grid is the irregular situation of solar as well as wind
participating in the bidding process and maximizing their
individual electric energy price initiative be marginally low
for precise time phases for REs connected grid.

B. ELECTRIC VEHICLES (EVS) IN ELECTRIC ENERGY
TRADING USING RENEWABLE ENERGIES
Grid integration for electric vehicles (EVs) and solar photo-
voltaic (PV) systems has increased recently, essentially as a

FIGURE 5. Schematic for deep reinforcement learning.

result of two objectives: reducing emissions and energy price.
Numerous studies have looked into the individual effects of
integrating PV and EV grids. Studies examine the effects of
grid integration of PVs and electric EVs separately, and the
combined in Figure 3. The unpredictable nature of renewable
energies compromises security systems by reducing the sup-
ply and demand gap. According to a review of the literature,
individual PV and EVs use can be harmful to the environ-
ment. Figure 4. Represents a market model for integrating
micro-grids with public charging stations in Indian power
market.

C. ADVANCED REINFORCEMENT LEARNING
Deep reinforcement learning can be used to build a frame-
work for transaction regulations and policies, as well as
an external environment for algorithmic strategies, similar
to the electricity market [11]. The transactional actions of
e-commerce sellers or customers, as well as the price of their
electricity purchases, can be described as the agent’s action
and reward functions. A small amount of market information
and actual physical states are also included in the state space.

Figure 5, Shows a schematic representation of the spe-
cific deep reinforcement training technique. Deep rein-
forcement learning improves Markov decision information
transparency, solving computationally intensive problems by
building deep neural networks, and providing insights into
optimizing group behavior in power markets.

D. ADVANCED FORECASTING
Forecasting is substantial to accept for innovative estimating
to change the anticipated demand to pay compensation for
the uncertainty in power production generation companies
from solar along with the wind. To ensure grid stability, the
system designer employs a novel approach in which gener-
ation estimates are made every 5 minutes rather than every
15 minutes. Advanced machine learning techniques can be
used on historical data to predict energy to match the load
and demand [15].

E. BIDDING STRATEGIES FOR THE RENEWABLE ENERGY
MARKET
Renewable energy production from wind and solar power is
uncertain due to their large capacity. To maximize bid and
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participation opportunities, grid-connected renewable energy
(REs) will be slightly reduced for certain time periods when
favorable criteria are met. Individual modification decep-
tion in RES electricity auctions is caused by productivity
inequality, leading consumers to believe in price increases.
Wind-photovoltaic synchronized activity is recommended
for grid reliability and cost-effectiveness, eliminating output
discrepancies and economic penalties. [18]. For the hybrid
REs scheme in Belgium, alliance bidding was employed to
maximize return while addressing inconsistent and penal-
ized conduct [19]. Modern power distribution techniques
like conventional air storage (CEAS) and solar-wind hybrid
systems can develop reliable systems when solar and wind
energy output is zero. However, integrating renewable energy
sources into electricity profits remains a challenging task. The
most important issues distressing the bidding strategies for
REs power producers are REs generation, time perspective,
demand, the capacity of the plant, and rival bids. The REs
power producers have to bids optimally to increase revenue
in such a scenario to avoid penalties in addition to dispatching
dedicated power to the load center. Due to the enormous
capability added to the production of electric energy from
REs sources, the permeation proportion addicted to gird. The
grid is the irregular environment of solar as well as wind.
Participating in the bidding process and maximizing their
individual electric energy price initiative be marginally low
for precise time phases for REs connected grid. The concep-
tion of REs auction is not novel for certain nations but the
literature accessibility in this expanse is very fewer. Intended
for mitigating the inconsistency in productivity in addition to
economic penalties problems the wind-photovoltaic synchro-
nized action is recommended for reliable and cost-effective
action of the grid [18]. Towards maximizing the payoff
and coping with inconsistency and penalty alliance bidding
engaged on Belgium power transmission records for hybrid
REs scheme [19]. The term of power dispatch with trodden air
energy storage device, hybrid of the solar-wind organization
can be beneficial to create a system reliable [20]. For a spe-
cific interval when productivity from solar and wind sources
is zero at that point power from CEAS can be applied to offer
correspondingly enhancing to come across the demand. The
most important anxiety in penetration for REs into the elec-
tric profits is a challenging task. The most important issues
distressing the bidding strategies for REs power producers
are REs generation, time perspective, demand, the capacity
of the plant, and rival bids. The REs power producers have
to bids optimally to increase revenue in such a scenario to
avoid penalties in addition to dispatching dedicated power to
the load center to rid of recurrent concerns like a penalty in
addition to price imbalance issues.

III. MODELLING AND BIDDING STRATEGIES
ARRANGEMENT OF RENEWABLE POWER
Electrical power production and percentages of wind and
solar energy plants will become more important power
generators as their interconnected capabilities improve

rapidly [22]. These have been considered on relatively new
dimensions incorporating established wind and solar tech-
nologies and are now determining the best auction approach
to electric power generation. To account for uncertainty and
the accuracy of their predictions, wind, and solar energy are
the pricing function’s underestimation, and overestimation
is recycled in a probabilistic manner. The model of solar
radiation and wind speed is currently being improved. The
irradiation of solar energy is represented by the Beta Proba-
bilities Distribution Function (BPDF) and the wind velocity
is to be modeled with the Weibull Probabilities Distribution
Function (WPDF) [21]. Additional simulations are performed
using the electric power probability distributions derived
from the models.

A. MODELING ASSESSMENT OF SOLAR POWER
Strategic bidding is critical when dealingwith solar electricity
since it is still essential to switch the uncertainty accompany-
ing solar irradiation [21]. Adaptation of solar irradiations is
typically reliant on technical characteristics of modified solar
PV modules, solar cell temperature, and solar intensity [22].
Solar irradiance and temperature, represented as [23] and
[24], can be used to investigate the generation of solar elec-
tricity that may be stated as Strategic bidding is essential
for solar electricity adaptation, and managing uncertainty in
irradiation [25]. Adaptation depends on modified PV mod-
ules, cell temperature, and intensity [26]. Solar irradiance
and temperature can be used to investigate solar electricity
generation.

TCells,t = Ta, + Si,t

(
TNot − 20

0.8

)
(1)

where TCells,t is cell temperature at a time intermission t
in (

◦
◦C, degree centigrade), Ta, is the ambient temperature

in
◦
◦C

It = Si,t
[
ISc + Itk

(
TCells,t − 25

)]
(2)

It is described as current at a time of intermission t
Si,t , Solar irradiance at time interval t,TCells is nominal cell

temperature in
◦
◦C

ISc Short circuit current of PV cell (Amp.) and Itk is current
temp coefficient (mA/

◦
◦C)

Vt, = VOc − Vtk × TCells,t (3)

Vt, is described as the voltage at time intermission t.

SPO,t
(
SI ,t

)
= n× It × Vt × FF (4)

Here Fill Factor (FF) is defined as

FF =
IMpp × VMpp
ISc × VOc

whereas IMpp and VMpp is the maximum obtained current and
voltage, ISc and VOc are short circuit current and open circuit
voltage.
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B. MODELING ASSESSMENT OF WIND POWER
In order to build the best strategic bid for the development
of wind generation, it is necessary to control the uncertainty
related to wind speeds. A WPDF is followed by information
about the wind speed at the selected location. The WPDF is
given by [27].

WPDF =
k
c

(v
c

)(k−1)
(
exp

(
−
v
c

)k)
(5)

where k and c are described as shape and scale factor accord-
ingly v, taken as wind speed in m/s.
Wind velocity parameters are influenced by topology and

geography, and calculations can be performed using the
objective region’s rational wind velocity patterns. Weibull
constraint evaluation approaches are applied in compiled
works [28]. The graphical methodology for calculating k and
c using the mean of historical wind (ws) also the standard
deviations (σStd ) and (µhws) mean are listed below.

k =

(
σStd

µhws

)(−1.086)

(6)

c =

 µhws

0
(
1 +

(
1
k

))
 (7)

Wind velocity results are generated using historical wind
speed data from anemometers placed at different turbine alti-
tudes. WPDF generates 1000 random possibilities, which are
translated into interest-driven power scenarios based on hub
height. This technique is crucial due to the variability in tur-
bine hub heights and measurements [29], and this technique
is discussed as

v (hEst) = v (hRkh)
(
hg
hkah

)(γ )

(8)

The hub transforms into a power situation by generating an
electric ounce for the constrained model of wind turbine
generation conditions at the appropriate height. The power
estimate can be described as follows:

W(a) (v) =



0 v ≤ vin(
1
2
ηρ (v) ρAsv(3)

)
vin ≤ v ≤ vr

Wr vr ≤ v ≤ vo
0 vr ≥ v0

(9)

Using the equation, where, ηρ (v)),Wr and W(a) (v) are effi-
ciencies, rated output power, and available power at a given
wind velocity of wind producers, respectively; ρ is the air
density (kg/m3 );

Additionally, vin, v and vr are the cut-in, rated, and cut-out
wind speed limit. A discrete and arbitrary set of wind
energy-dependent variables can be generated (9). The defi-
nition of the probability of the correct part [36] in the amount
of wind energy produced is

fW (vin ≤ v ≤ vr ) =

(
kZ vin
CWr

)
{
1 + Z

(
Wa
Wr

)}
C



×

−


(
1 + Z

(
Wa
Wr

)
vin
)

C

K (10)

Here Z is defined as Z =

(
vr−vin
vin

)
The probable of null wind power production [27] is

characterized as

fW [(vr ≤ vin) and (v ≥ vo)] = 1 − exp
[
−

(vin
C

)k]
+ exp

[
−

(vo
C

)k]
(11)

The probable of extreme (rated) wind power production [27]
is distinct as

fW (vr ≤ v ≤ vO) = exp
[
−

(vr
C

)k]
+ exp

[
−

(vo
C

)k]
(12)

The irradiance of solar power exhibits restricted certainty
because of sun positioning and constrained hours of avail-
ability. It is experimental that these records follow a BPDF
which can be articulated as

BPDF
(
Si,t
)

=


1

SMaxi,
×

0(At+Bt )
0(At )0(Bt )

(
(Si,t)
SMaxi,t

)(At−1)

(
1 −

(S,t)
SMaxi,t

)(Bt−1)


0 ≤

(
Si,t
)

SMaxi,t

≤ 1,At > 0,Bt > 0 (13)

BPDF assemblies (At , Bt ) are evaluated using the mean (µSi)
and standard deviations (σSi) of historical solar irradiance
records as tracks.

At = µ2
Si

(
(
1 − µSi

σSi
) − (

1
µSi

)
)

(14)

Bt = At

(
1

µSi
− 1

)
(15)

Different BPDF fabrication methods have been developed for
intermission range (0, 1), considering solar radiation nominal
values and 1000 beta distributed scenarios, adjusting for PV
section power scenarios [32]

BPDF
(
SPV ,t

)
=


(1)
SMaxPV

×
0(At+Bt )
0(At )0(Bt )

(
(SPV ,t)
SMaxPV ,t

)(At−1)

(
1 −

(SPV ,t)
SMaxPV ,t

)(Bt−1)


0 ≤

(
SPV ,t

)
SMaxPV ,t

≤ 1,At> 0,Bt> 0 (16)

C. LIMITATION OF WIND AND SOLAR ENERGY SYSTEM
The development reduction technique uses the Kantorovich
Distance Matrix (KDM) [27], The KDM procedure estimates
and correlates scenarios after 1000 wind and solar energy
effects, considering the probability gap between different
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development strategies. It creates a KDM with ideal sce-
narios and comparison spaces. The probability gap between
any two different development strategies that result in a
similar stochastic process is known as K D. In the K D
procedure, the succeeding stages are used for situations in
tradable. Every grouping of scenarios is given consideration
by the KD [28] which creates the KDM that contains ideal
scenarios and comparison spaces between them. The eval-
uation of the distance between two situations, vi and vj, is
provided by

KD
(
vi, vj

)
=

(∑ηl

i=1

(
vi − vj

)2)1/2

(17)

Discover an unlike adjoining scenario for each scenario vj

namely the scenario vj, j ̸= 1 of the least possible KD to
asses consequenceMin KD

(
vi, vj

)
.

Min
{
KD

(
vi, vj

)}
× P

{
vi
}

(18)

According to this tradition, the development of the
disconnected entity is determined by the following
conditions

• Proportional imminence to diverse scenarios
too.

• Small possibility of the existence.
• Eliminate one consequence and build a new KDM.
Consequently, the prospect of an unconcerned situation
is additional to the possibility of the setup which is
nearby it.

• Repeat previous Stages to eliminate one scenario in
every single iteration until then bring to a standstill
condition reached.

D. EVALUATION OF THE WIND AND SOLAR ENERGY
AGGREGATE STRATEGY FOR BIDDING MODELING
The organized wind (Wgp) and solar (Sgp) power is
acquired using KDM, and the corresponding probabilities are
computed as follows

Sgp =

vi∑
i=1

Sai × PRobi (19)

Wgp =

vi∑
i=1

Wai × PRobi (20)

E. WIND AND SOLAR ELECTRIC POWER ESTIMATION
The unbalanced price tag for wind and solar energy is affected
by the difference between expected and real power, which is
the total amount of underestimation as well as overestimation
of service charges as follows

IMC (WGn) = Oc (WGn) + Uc (WGn) (21)

IMC (WSGn) = Oc (SGn) + Uc (SGn) (22)

where IMC (WGn) imbalance cost of wind, IMC (SGn) for
solar Oc (WGn) ,Uc (WGn) ,Oc (SGn) ,Uc (SGn) are overesti-
mation and underestimation cost are significant issues in

wind power, with solar power, overestimation being more
destructive than underestimation.

F. EVALUATION OF OVERESTIMATION ALONG WITH
UNDERESTIMATION FOR THE AVAILABLE SOLAR AND
WIND ENRGY PRODUCTION
Electric power difference significantly impacts overestimat-
ing solar and wind energy providers, as organized solar and
wind energy scenario is framed as follows

Oc (SGn) = Ko ×

(∫ SGn

0
(SGn − Sa) × f Sa (Sa) ×dSa

)
(23)

Oc(WGn) =Ko×
(∫ WGn

0
(WGn−Wa) × f SW a (SW a)×dWa

)
(24)

The cost of underestimating solar andwind energy production
will be determined by these factors. This is excessive, espe-
cially given the possibility of excess electricity. As a result,
this organizes without specifying exact price tag relatively it
characterizes penalty duration for the depletion of available
generation resources

Uc (SGn) = Ku ×

(∫ SMax

SGn
(Sa − SGn) × f Sa (Sa) × dSa

)
(25)

Uc (WGn)=Ku ×

(∫ WMax

WGn

(Wa−WGn) × fWa (Wa) × dWa

)
(26)

G. ELECTRICITY BIDDING ESTIMATION INCORPORATE
INCLUDING RENEWABLE POWER TRADERS
Improved electric power duration and scale constraints, MCP,
and objective utilities are characterized as

Electric power set of scale constraints
(a) Single Side, Generator∑CPS,t

M=1′t=1′
PGM ,t +

∑RPS,t

x=1′,t=1′
RGx,t = D

(
Rs,t

)
(27)

(b) Double Side Combine Generator and Customer∑CPS,t

M=1′,t=1′
PGM ,t +

∑RPS,t

x=1′,t=1′
RGx,t = D

(
Rs,t

)
+

∑LB,t

n=1′,t=1′
CDn,t (28)

H. CALCULATION OF MARKET CPS
Single Side, Generator

RS,t =

DC,t −
∑RPS,t

x=1,t=1 RGx,t +
∑CPS,t

M=1,t=1
∝M ,t
βM ,t

K +
∑CPS,t

M=1,t=1
1

βM ,t


(29)

Double Side Combine Generator and Customer
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I. PROBLEM ORIGINATION AS IN DUAL-SIDED POOL
ELECTRIC ENERGY TRADE BY COMBINING RENEWABLE
ENERGIES
According to the use of clean renewable power generation,
the objective assessment of market participants’ profit devel-
opment on single-side electric energy markets are reforming
as opportunities fade.

FD
(
∝M ,t βM ,t

)
=
(
RD,t×PGDM ,t

)
+
(
RD,t × RGx,t

)
− PCDM ,t

(
PGSDM ,t

)
− IMCx,t

(
RGx,t

)
(31)

FD
(
φN ,tϕM ,t

)
= PCDN ,t

(
CDN ,t

)
− RD,t×

(
CDN ,t

)
(32)

SUBJECTTO:Electric power balance constraints as in given
(28) Power and demand inequality constraints and renewable
power constraints as given in equations

PGMin,S,M ,t ≤ PGS,M ,t ≤ PGMax,S,M ,t (33)

PGMin,D,M ,t ≤ PG,D,M ,t ≤ PGMax,,D,M ,t (34)

CDMin,N ,t ≤ CDN ,t ≤ CDMax,N ,t (35)

PSs attempt to predict other suppliers’ bid methods and
behavior, but face challenges in predicting rivals’ behavior
due to the interrelation of bid parameters. To solve this,
they use the joint probability distribution function (pdf) in
equation
This PDF can be displaying as in compact nature

(πn, ϕn) ∼M


[

µ
(π)
n

µ
(ϕ)
n

]
,


(
σ

(π)
n

)2
ρnσ

(π)
n σ

(ϕ)
n

ρnσ
(π)
n σ

(ϕ)
n

(
σ

(ϕ)
n

)2


(37)

Here, the collective distribution considerations areµ
(π)
n , σ (ϕ)

n ,
σ

(π)
n and σ

(ϕ)
n , the coefficient of correlation between πn and

ϕn is ρn. µ
(π)
n and µ

(ϕ)
n are the mean, σ

(π)
n and µ

(ϕ)
n are the

standard deviations of the πn and ϕn, respectively.

IV. INTRODUCTION ALGORITHM OF OPPOSITION
GRAVITATIONAL SEARCH FRAMEWORK (OGSA)
Algorithm for Searching Gravitational Sectors (GS
Algorithm) usage electrical system problems and keep striv-
ing for optimum results., since this algorithm has the most
flexible constraints. Its abnormally large item modifies the
gravitational constant that is used to enhance the accuracy of
the search. Variability is used to organize the population’s ini-
tializing in the GSA approach, and planned unpredictability
is utilized to ascertain the inactivity of specific parame-
ters. Whereas if randomized estimation is close to the ideal

outcome, convergence can occur quickly. Moreover, the ran-
domly selected estimation may deviate significantly from
the ideal case. In the worst-case scenario, this undesirable
situation may result in an inadequate possible answer.

A. POPULATIONS INITIATION PROCESS
Consider the case in which there are N agents (aggregates)
and the yth agent’s status is expressed as:

λy =

(
λ1y,. . . . . . . . . . . . .λ

D
y, . . . . . . . . . .λ

M
y,

)
(38)

where λDy. ∈

{
λDy,U

D
y

}
the agent position in the dimension and

M is the extent of search space and higher bounds of agents in
the aspect. is indeed the position of a agents in Dth dimension,
M is just the size of the search process, and λDy,U

D
y are indeed

the lower and upper boundaries for the yth agents in the Dth

perspective.

B. ESTIMATE OF FITNESS AND AGENT ACCELERATION OF
OPPOSITION PHENOMENON IN GSA
The most appropriate outcome of equation (31) is expected
as a fitness function fitZ in this position.
The fitness evaluation is adapted for the calculation of the

weight of each agent in the GSA, the calculation of the mass
as follows

My (i) =
My (i)∑N
j=1Mj (i)

(39)

Here, My (i) =
fity(i)−Worst(i)
best(i)−Worst(i) where, My (i) is the normaliza-

tion of mass of yth agent at ith iteration alsoWorst(i), best (i)
be able to perform at both the lowest and highest fitness levels
agents at ith iteration.
Gravitational constant G(i) is denoted by

G (i) = G×

(
1 −

iteration
Total iteration

)
(40)

Here, G = CMax
D∈(1,2,3........M)

(
| λdu − λdl |

)
where c is a value

for the searching interval.
The acceleration aDi (i) interim on yth agent on ith iteration

is estimated as follows:

aDy (i)=
∑

j ∈ Gbest,
j ̸= y

rand jG (i)
My (i)

Ryj (i)+E

{
λdu (i) − λdj (i)

}
(41)

where, the initial setting of 2% of the agents is determined
Gbest using best value of fitness and calculation for greatest
mass rand j is needed the constant random variable in the
Interval (0,1).

RD,t =

DC,t −
∑RPS,t

x=1,t=1 RGx,t +
∑CPS,t

M=1,t=1
∝M ,t
βM ,t

+
∑LB,t

N=1,t=1
∅N ,t
ϕN ,t

K +
∑CPS,t

M=1′,t=1′
1

βM ,t
+
∑LB,t

N=1′,t=1′
1

ϕN ,t

 (30)
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FIGURE 6. Solution techniques WOAD-TOGSA for optimal bidding.

Structure a consistent selection matrix to transmute
all dimensional functions convert into non-dimensional
functions. The factors of matrix might be characterized by

Fab =
Oab√∑N1
a=1O

2
ab

∀aϵN1, bϵN2 (42)

where, N1 remains the number of elements and Oab is the
value of ath element of bth objective.

C. ORDER WEIGHTED AVERAGE DISTANCE TECHNIQUES
(OWAD)
The term ‘‘OWAD operator’’ is a combination of ‘‘OWA
operator’’ and ‘‘distance measure’’ to describe the decision-
making attitude [30].

By combining the two different distance aggregation
methodologies, the authors provide novel multiple-criteria
decision-making processes. Combining the Order of Pref-
erence by Similarity (TOPSIS) method with the ordered
weighted average distance (OWAD) operator to optimize
solutions based on similarities to the best one. The TOPSIS

technique computes the distance between alternatives to the
positive ideal solution and the negative ideal solution and then
chooses the best solution based on the degree of closeness.
However, the decision-attitude producer’s is not considered.

An OWA optimization techniques operator of dimensions
n is a mapping [31] given by OWA : Rm−→ R It is
accompanied by a corresponding weighting vector W of size
m, so

∑m
J=1WJ = 1 andWJ ∈ {0 | 1} then

OWA
(
a1,a2,. . . . . . .am,

)
=

∑m

J=1
WJbJ (43)

where bJ is given as J th largest ai also R given as set of real
number.

D. THE STEPS TO COMBINE THE OWAD OPERATOR WITH
THE TOPSIS APPROACH
In this section, the algorithm for the proposed model is
explained. Two stages of external and internal fusion schemes
are presented, where external fusion scheme deals with the
aggregation of majority opinion of experts and internal fusion

Pdf (πn, ϕn) =
1

2πσ
(π)
n σ

(ϕ)
n
√
1 − ρ2

n

× exp

 1

2
(
1 − ρ2

n
) ×

(πn − µ
(π)
n

σ
(π)
n

)2

+

(
ϕn − 9

ϕ
n

σ
(ϕ)
n

)
× −

2ρn
(
πn − µ

ϕ
n
) (

ϕn − µ
(ϕ)
n

)
σ

(π)
n σ

(ϕ)
n

 (36)
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FIGURE 7. Compare of various optimization techniques and proposed technique.

scheme deals with the implementation of decision strategies,
the proportion of criteria to consider.

It is necessary to compute the normalized decision-matrix.
The normalized value of bjl, j = 1, 2,. . . , m, l = 1, 2,. . . , n is
calculated as follows:

bjl =
aj,l∑m
l=1 aj,l

(44)

Calculate the weighted and normalized decision-matrix. The
weight normalization values Cj,l is calculated according as

Cj,l = Wj ∗ bj,l, j = 1, 2, 3, . . .m, l = 1, 2, 3 . . . .n (45)

whereWl is theweight of the jth criterionGj and
∑m

j=1Wj = 1
Then choose the most appropriate response, both positive

and negative as:

C+
= C+

1 ,C+

2,C
+

3 . . . . . . . . . . . . . . .C+
m

= {(MaxCjl (l∈I ) (MinCjl(j ∈ J )} (46)

C−
= C−

1 ,C−

2,C
−

3 . . . . . . . . . . . . . . .C−
n

= {(MinCjl (l ∈ I ) (MaxCjl(j ∈ J )} (47)

where I is associated with the cost criteria and J is associated
with the benefit criteria.

E. POSITION AND VELOCITY UPDATING OF THE AGENTS
The location and velocity of the agents are determined by
Equation (34) in the next (i + 1) iteration.{

vDk (i+ 1) = randk × vDk (i) + aDk (i)
λDk (i+ 1) = λDk (i) + vDk (i+ 1)

}
(48)

TABLE 1. Values of log probability, mean, and variances for numerous
historical distributions of solar irradiance.

where randk is given as a random number concerning space
[0, 1]; vDk (i) is the velocity of k th agent at Dth trait during the
ith iteration; λDk (i) is the location of k th agent at the Dth trait
during the ith iteration.

V. SOLUTION POCEDURE
In the problem’s specified search space, established popu-
lation dimensions (N) and a randomly generated primary
population develop input data for the measured test arrange-
ment intended for the double side bidding strategy and
the proposed WOAD-TOGSA regulation. Power providers’
bidding coefficients are based on established population
dimensions (N) and a randomly generated main population
(M,t). Determined the market clearing price in accordance
with (30), as shown at the bottom of page 8, the dispatch
of each generator in accordance with (15), and the demand
of each major client in accordance with (16). Consider the
following: power generation constraints (33), demand lim-
its (34), and arrangement load balance (35). (30) Estimate
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TABLE 2. Values for various distributions’ log Likelihood, mean, and variance for wind power.

TABLE 3. Complete KDM for a reduced ten-scenario set with wind energy outputs and probabilities.

FIGURE 8. Historic solar irradiance information from Barnstable city,
Massachusetts, USA, for a period of one hour (1300–1400 hrs.) Fitted with
distribution.

the profit of each electricity supplier at (31) and the profit
of each consumer at (36), as shown at the bottom of page 9.
Addition of the solution of (31) and (36) for entirely ran-
dom (λ) in addition opposite (Oλ) population respectively
as 0.5 ∗ [(31) + (36)]. Estimate the solution of (31) in
addition (36) for all random (λ) and opposite (Oλ) population
compute the answer to (31) plus (36). Calculate the optimal
number of fittest agents beginningwith the current population
(λ) and proceeding to the opposing population (Oλ) based on

FIGURE 9. Historically, single-hour (1300-1400 hours) wind velocity data
for Barnstable, Massachusetts, USA.

the current population (λ). Make a decision matrix as follows:
(42) Describe the OWAD-TOPSIS strategy for selecting the
best solution from (31) and (36) with the highest RCI value
in accordance with (14) as the fitness function and consistent
fittest agents.

A. OPTIMIZATION TECHNIQUES FLOW CHART
The flow chart which verifies the optimal solution is shown in
Figure 6, and calculate the optimal solution for proposed opti-
mization techniques through follow step by step calculation
procedure.
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TABLE 4. Final KDM with solar power outputs and their probabilities for reduced ten numbers of scenarios.

FIGURE 10. Normalize beta One-hour (1300-1400 Hr) wind velocity,
as well as beta probability population density.

B. COMPARISON OF VARIOUS OPTIMIZATION
TECHNIQUES AND PROPOSED TECHNIQUE
Figure 7 shows various optimization techniques and find
proposed optimization algorithm which is more appropriate
in calculation of Market clear prices (MCPs) and beneficial
for power providers and consumers.

VI. RESULT AND DISCUSSION PROCEDURE
This section investigates in order to maximize profit for
diverse market organizations, this part looked into dual-sided
bidding processes employing renewable energy sources.
To solve bidding strategies, OGSA, an adapted heuristic
method, and OWAD-TOPSIS, a double-sided acquisition
method, are used. The study aims to increase the profit of
the nth PSs and consumers in the presence of renewable PSs

FIGURE 11. Weibull and normalized densities probability function.

using the IEEE 30-bus, IEEE 57 -bus and Indian -75 bus test
system. The model is updated to fit single solar and single
wind energy producers to the impact of renewable sources.
The proposed terminology is settled by The proposed bidding
model is solved by proposed OWAD –TOGSA, OGSA, GSA,
PSO and GA on a 3.20 GHz, i5 processor, 4GBRAMPC, and
MATLAB R2014.
CASE –I:
IEEE 30-BUS FOR COMBINING WINDS AND SOLAR

ENERGY:
In this case the IEEE standard 30-bus is considered for

a single solar energy data that estimates solar power [33]
and solar power converted from solar irradiations taken
from [36] on sun irradiation for one year data sun irra-
diance information from Barnstable city, Massachusetts,
USA as shown in Figure 8. Table 1 shows the different
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TABLE 5. Results of optimal bidding for IEEE 30-bus using a combination of wind and photovoltaic energy.

probability density functions of mean and variance of solar
irradiance.

Wind power is calculated using the historical single-hour
(13:00-14:00) average of wind speed data collected for var-
ious distributions’ log Likelihood, mean, and variance for
wind power [37] as shown in Figure 9. It should be noted
that the log-likelihood value of Beta distribution is better than
others, indicating best fitting of the curve fitting for different
distributions. fitted using curves based on various distribution
Anemometer in Barnstable, Massachusetts, USA in august
2005 at a height of 39 m [38]. Table 2 shows the different
probability density functions of mean and variance of wind
power.

The enormous variety of scenarios predicts the uncertainty
of both solar and wind energy. Despite this, only a few exam-
ples support this conclusion. The KDM framework is used
to eliminate such situations and keep improving wind power
modeling. TABLE 3, and TABLE 4, present 10 scenarios
taken for the calculation of KDM.

Figure 10. Shows Weibull displays Beta and normalized
distributions for power-produced circumstances, with Beta
having higher log-likelihood values, indicating the data best
fit the distribution. The probabilistic Weibull and normalized
densities function is displayed in Figure 11.

TOGSA technique was found to be more effective
than GSA and MC for the optimal dual-sided strategi-
cally bidding models. As a results, in this situation, the
redesigned test structure is used with wind energy only, solar
energy only, and wind-solar collectively, and the problem is
solved using WOAD-TOGSA in the updated system, sev-
eral renewable-based power sources are successively taken
into account to assess their impact. System operatives are
able to adjust prevailing demand, which is defined as def-
inite demand apart from generation from wind energy for
strategically wind energy bidding on the growing energy
market. When the demand has changed, adjusting the bidding
coefficients the new MCP is calculated Furthermore, it is
assumed that the reserve coefficients and penalty coefficients
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FIGURE 12. IEEE 57 -bus for combining winds and solar energy.

TABLE 6. Results of optimum bidding on the IEEE 57-bus for combining winds and solar energy.

associated with underestimations and overestimations,
respectively, are each one 50% of MCP also equal to MCP.
Table 5. Shows the results of the best double-sided strategic

bidding using OWAD-TOGSA for the redesigned test sys-
tem’s wind-only, solar-only, and combination wind-solar
energy.
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TABLE 7. Results of optimal bidding for the Indian 75-bus operational system using a combination of wind and photovoltaic energy.

TABLE 5 shows the incorporating wind power into CPS
reduces MCP to 15.59 $/MW, decreases total generation to
471.51 MW, increases demand of large consumers and total
traded power to 298.2 MW and 498.59 MW, and reduces
CPS net profit to $2863.10. However large consumers’ net
profit increases significantly due to lower MCP value and
higher demand. Wind power net profit, overestimation, and
underestimation costs are $289.71, $61.64, and $471.20,
respectively. The second case focuses on solar power with
CPS, with net profit value, overestimation, and underesti-
mation costs at $651.37, $149.56, and $331.21, respectively.
Solar power output is significant, resulting in a MCP value
of 15.48 $/MW. CPS generation is 463.37 MW, lower than
conventional and wind power, with increased demand and
traded power. The study show that when considering combine
wind and solar power with CPS, the MCP 15.11 $/MW is
the lowest among all previous cases. This lower MCP value
attracts more customers, increasing total power trade and
satisfying purchase bids. The integration of solar and wind
power suppliers reduces the need for CPS supply. Addi-
tionally, the involvement of KDM reduces overestimation of
uncertainty in both generation, encouraging suppliers to bid
more in real-time markets if underestimation is positive.
CASE –II:
IEEE 57-BUS FOR COMBINING WINDS AND SOLAR

ENERGY:
Figure 12. Shows the IEEE 57-bus system including one

solar and one wind power generation system.

In TABLE 6, Shows the results of optimum bidding on
the IEEE 57-bus on consider with wind solar and combine
both according to the analysis, adding wind power into CPS
lowers MCP to $10.95/MW, decreases total generation to
541.50 MW, increases demand for large consumers and total
traded power to 191.54 MW and 498.59 MW, and reduces
CPS net profit to $2713..67. However, large consumers’ net
profit increases due to lowerMCP value and higher demand s.
‘‘Overestimation, underestimation, and wind power net profit
in the second scenario,$61.6453, $291.543 and $541.50,
respectively. Solar power output with CPS is significant,
resulting in a MCP value of 10.57 $/MW, net profit over-
estimation and underestimation are $651.37, $149.56 and
$171.21 respectively. CPS generation is 463.37 MW, lower
than conventional and wind power, with increased demand
and traded power. The results show that when consider-
ing combine wind and solar power with CPS, the MCP
08.95 $/MW is the lowest among all previous cases. It does,
however, increase the profits of large buyers to $ 3394.73.
Due to the fact that lower MCP will satisfy all purchase
offers, the impact of renewable sources on MCP and overall
generating dispatch is significant, increasing total bidding
power.
CASE-III:
INDIAN 75-BUS OPERATIONAL SYSTEM:
A practical 75-bus system in India is made up of util-

ities. The input data for this useful system is derived
from ref. [40]. A practical 75-bus system in India is made
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up of utilities. The bidding strategy is designed for this
instance using double-sided bidding, where large purchasers
and generating utilities participate in the energy market
for bidding purposes. First, the bidding model is solved
using OWAD-TOPSIS and compared with without combin-
ing wind and solar energy. In this scenario, OWAD-TOGSA
is then used to analyze the impact of combined wind-solar
energy.

In according to TABLE 7 shows the results of optimum
bidding on the Indian 75-bus on consider with wind solar and
combine both according to the analysis, adding wind power
into CPS lowers MCP to 10.95 $/MW, decreases total gener-
ation to 191.547 MW, increases demand for large consumers
and total traded power to 191.547 MW and 498.59 MW,
and reduces CPS net profit to $2713..67. However, large
consumers’ net profit increases due to lower MCP value
and higher demand s. Overestimation, underestimation, and
wind power net profit in scenario, $61.6453, $291.543 and
$541.50, respectively. Solar power output with CPS is signifi-
cant, resulting in aMCP value of 10.57 $/MW, net profit over-
estimation and underestimation are $651.37, $149.56 and
$171.21 respectively. CPS generation is 463.37 MW, lower
than conventional and wind power, with increased demand
and traded power. The results show that when consider-
ing combine wind and solar power with CPS, the MCP
08.95 $/MW is the lowest among all previous cases. It does,
however, increase the profits of large buyers to $ 3394.73.
Due to the fact that lower MCP will satisfy all purchase
offers, the impact of renewable sources on MCP and overall
generating dispatch is significant, increasing total bidding
power.

VII. CONCLUSION
This research analyzes double-sided auction processes for
improving profit in solar and wind electric energy resources.
The OWAD-TOGSA heuristic procedure is used to solve
the double-sided bidding strategy, while Weibull and Beta
probability distributions are used to organize and distort
uncertainty. The KDM method is also used to control solar
and wind energy models. Both overestimation and under-
estimation stages impact the unpredictability of intermittent
electric generation. The OGSA and OWAD-TOPSIS tech-
niques are functional and capable of identifying and solving
most problems. A wind and solar power combination inhibits
bidding, restricting CPS generation power and offering a
lower MCP valuation. Underestimating the combined trade
of solar and wind energy is more common than overes-
timating in action due to the importance of KDM. Solar
and wind energy production companies are more willing
to offer additional power bids due to ongoing economic
uncertainty. Results for the IEEE standard 30-bus, IEEE
standard 57-bus, and Indian 75-bus operational augmented
six vendors with two stakeholders strategic bidding issues.
The proposed approach measures rival behavior using the
normal PDF to mitigate power market dynamics. Results
show that renewable source deployment impacts the offer

by decreasing CPS output and providing lowered MCP,
attracting consumers and encouraging producers to reduce
carbon emissions. Handling uncertainty helps RESs decide
their output for bidding and saves penalties, resulting in
acceptable outcomes for the uncertainty model of renewable
sources.
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