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ABSTRACT Image deblurring is one of the fundamental tasks in image processing tasks, which can provide
the necessary support for advanced tasks such as image recognition. In this paper, we propose a new
deblurring model, named Efftformer model, which is specialized in the blurring elimination of motion blur.
The model focuses on the recovery of detail information and edge information to provide more effective
image information and better basic support for the realization of advanced tasks. In Efftformer model,
firstly, we introduce a frequency domain based ReLU residual stream, which allows network to learn blur
kernel level information for better restoration of original image. Secondly, we propose a cross-connection
channel attention module (CCAM) to explore an effective fusion approach in multiple scales adaptively,
which helps decoders to restore original image well by aggregating the semantic information in different
scales. Considering the effectiveness of edge information in image recognition tasks, we enhanced the edge
information in recovered image by performing a Sobel filter as well as an auxiliary edge loss function.
We conducted experiments on different motion blur datasets and compared them with state-of-the-art
algorithms. The experimental results show that Efftformer model proposed in this paper achieves comparable
even superior performance to the state-of-the-art algorithms.

INDEX TERMS Edge enhancement, fast Fourier transform, image restoration, single image deblurring.

I. INTRODUCTION
Image blurring is a phenomenon in which an image becomes
blurred due to the loss of features such as clarity, sharpness,
and detail in the process of acquisition, transmission, and
display. Common types of image blurring include motion
blur, bokeh blur, and Gaussian blur. As one of them, motion
blur is the blurring caused by the movement of camera or
object, such as dragging or stretching of the image when
photographing a fast-moving object. In advanced vision tasks
such as target detection, motion blur can affect the perfor-
mance and accuracy of detection greatly. Therefore, image
deblurring can be used as a preprocessing task for some
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advanced tasks to improve the accuracy and robustness of
their models.

In recent years, with the proliferation of various network
architectures for deep learning, many network architectures
have been applied to image deblurring tasks. GAN (Genera-
tive adversarial network) is often applied to image deblurring
tasks [1], [2], [4], GAN learns the distribution of an image
by introducing two neural networks, generator and discrim-
inator, and generates an image similar to real image. The
generator is responsible for converting low-quality blurred
images into high-quality clear images, and the discriminator
is responsible for determining whether the image generated
by the generator is similar to the real image. By training
the generator and the discriminator iteratively, GAN can
generate high-quality clear images. However, GAN needs to
train two networks, a generator and a discriminator, which
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makes the training process more complicated, and the dif-
ferent degrees of blurring can also lead to the instability
of GAN network training with poor qualities of generated
images. RNN (Recurrent Neural Networks) is a neural net-
work structure for sequential data processing that can also be
used for image deblurring tasks. RNN can process sequential
data by introducing a time step, which allows pixel-by-pixel
processing of images [5], [6]. However, the property of RNN
passing information from front to back leads to its inability to
handle bi-directional dependencies well, and it is ineffective
in capturing and retaining important information in the input
sequence. Cascade networks [7], [8] can improve the quality
of an image throughmulti-stage processing progressively and
are therefore also applied to deblurring tasks. In an image
deblurring task, a typical cascade network includes two or
more sub-networks. A first sub-network is used to perform
preliminary processing on the blurred image, such as remov-
ing noise or generating a candidate clear image. The second
sub-network then uses the output of the first sub-network
for more refined processing. However, the cascade network
contains multiple sub-networks, each of which needs to be
trained and optimized, which is relatively intensive in compu-
tation. So longer training and inference times, even overfitting
problems can be caused. Recently, several deep learning-
based methods [9], [13], [14], [22], [24], [31] have achieved
SOTA results on deblurring tasks, and most of them can be
regarded as variants of the classical U-Net. The self-encoder
structure of U-Net consists of an encoder and a decoder,
where the encoder is responsible for compressing the input
image into a low dimensional feature vector and the decoder
and the decoder reduces the low dimensional feature vector
to the output image. Recently, several deep learning-based
methods [9], [13], [14], [22], [24], [31] have achieved SOTA
results on deblurring tasks, and most of them can be regarded
as variants of the classical U-Net. The self-encoder structure
of U-Net consists of an encoder and a decoder, where the
encoder is responsible for compressing the input image into
a low dimensional feature vector and the decoder reduces
the low dimensional feature vector to the output image. U-
Net also uses residual connections to cascade feature maps
of the corresponding levels between encoder and decoder,
which improves the feature representation and information
reconstruction capability of the network. Our approach also
uses the U-Net based encoder decoder network architecture.

In this paper, we pay special attention to the contribu-
tions that motion deblurring network models can bring to
subsequent advanced tasks of target detection. Edge infor-
mation and high frequency information are very important
for target detection. Edge information is the information
about the boundary of an object in an image, which contains
information such as the shape and contour of the object.
In target detection, edge information can be used to distin-
guish foreground and background of a target, thus helping
the tracking algorithm to locate the target’s position more
accurately. High-frequency information can help algorithm to
better distinguish target and other objects in the background,

thus improving the accuracy of tracking. If the target is a
vehicle, detailed information about the vehicle, such as details
of the front and rear of the vehicle, can help the tracking
algorithm to locate the vehicle well. Therefore, our model
focuses on enhancing features from edge information and
high frequency information.

With a self-attention mechanism to capture the depen-
dencies in sequences of images, Transformer model can
understand and reconstruct blurred images well. How-
ever, Transformer model has high computational complexity
caused by a large number of parameters. In addition, Trans-
former model is prone to information loss and information
distortion in the process of converting images into sequence
data. Kong et al. [9] proposed frequency domain based
self-attention solver (FSAS), which converts the use of Trans-
former in the spatial domain to the use of Transformer in
the frequency domain. The detailed and structural informa-
tion in the image is better preserved, and the computational
complexity can be reduced greatly by the element-by-element
product in the frequency domain instead of the matrix mul-
tiplication in the spatial domain to estimate the correlation
in the elements of the sequence. FSAS introduces a gated
mechanism based on the Joint Photographic Experts Group

(JPEG) compression algorithm in feed-forward networks
to determine which features of low and high frequency
information should be retained for better deblurring. But
we find that this is not enough to focus on the high fre-
quency information. In view of this, we add ReLU residual
stream in feedforward network, which helps the model to
learn the blur kernel information and pay more attention to
the recovery of high-frequency information in the frequency
domain. ReLU operation in the frequency domain also
makes feedforward network have the new ability to learn the
global information comparing with the general feedforward
network.

In addition, we find that the hopping connection between
the encoder and decoder plays an important role in propa-
gating the information lost in downsampling for U-shaped
networks to recover the complete fine information. However,
the simple jump connection ignores the long-term depen-
dence of different scale features and the problem of the spatial
feature misalignment when the high-resolution encoder fea-
tures are aggregated with the low-resolution decoder features.
So, the cross-connection channel attention module(CCAM)
is proposed in this paper to replace the original simple jump
connection. As mentioned earlier, our deblur focuses more on
edge information, and Sobel filter is introduced to enhance
the edge information in encoder. The traditional deep learn-
ing based deblurring methods measure the greyscale map
of the image simply in terms of pixels with mean square
error (MSE) loss function, which does not satisfy our need
to recover the high-frequency components of model. Then
we introduced the auxiliary edge loss function to help the
network to get closer to the true image of the target image
in terms of the detailed information in the high-frequency
part.
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In summary, the main contribution of this work is fourfold.
1) A new feedforward network is proposed based on FSAS,

which focuses more on the high-frequency components of the
deblurring process and does not ignore the learning of global
information.

2) CCAM (the cross-connection channel attention mod-
ule) is proposed to replace the hopping connection between
the encoder and decoder in the original U-Net network as
the information exchange component at the encoder-decoder
architectural level, which improves the network model to
sense multi-scale information and improves the model per-
formance.

3) A Sobel filter and the auxiliary edge loss function are
introduced, with the former helping the model to enhance
the edge information for better distinguishing foreground and
background, and the latter directing the network to focus on
recovering the high-frequency components in the deblurred
image.

4) Efftformer encoder-decoder network model is proposed,
and this deblurring model focuses more on high-frequency
information and edge information to complete the advanced
visual tasks. Efftformer model achieves better experimen-
tal results than the current deblurring model in quantitative
experiments.

II. RELATED WORK
A. DEEP CNN-BASED IMAGE DEBLURRING METHODS
Originally, the blur kernel estimation method was commonly
used for image deblurring tasks, and its main idea is to esti-
mate the blur kernel of an image with a known blurred image
and some a priori assumptions, and restore the blurred image
to a clear image by processes such as inverse convolution.
Sun et al. [10] proposed spatially varying kernels of motion
blur by CNN. However, the blur kernel estimation method is
not practical in real scenarios due to the complexity of blur
features. Later, Mao et al. [11] proposed deblurring neural
networks with multi-scale convolution instead of estimating
blur kernels, which were trained on multiple scales and used
Gaussian pyramids as inputs. Thus the detail information
can be preserved, and the coarse even intermediate infor-
mation can be utilized. Zamir et al. [12] proposed MPRNet
architecture with three stages. In order to mine features fully
at different stages, the first two stages learn the contextual
information with an encoder-decoder network, and a super-
vised attention module is used to improve the quality of the
feature images for the previous stage. The last stage acts
directly on the original input image without downsampling
to preserve the desired detail information. To address the
problem of high computational cost in traditional image pro-
cessing methods due to the multi-scale input images and
stacking of sub-networks, Cho et al. [13] design a new
Multiple-Input Multiple-Output U-shape network (MIMO-
UNet). The encoder can acquire multi-scale input images,
and the decoder can output multi-scale deblurred images.
MIMO-UNet can realize the deblurring from coarse to fine

with low computation cost. Chen et al. [14] designed a simple
and effective baseline model by analyzing intra-block com-
plexity and inter-block complexity in the image processing.
In order to simplify the baseline model, it was revealed that
the nonlinear activation function is not necessary for network.
A network with nonlinear activation was further derived from
the baseline model, and the proposed model has higher speed
and accuracy than the previous network.

B. TRANSFORMER-BASED IMAGE DEBLURRING
METHODS
Due to the excellent long sequence modeling capability,
Transformer model has shown excellent performances in var-
ious advanced vision tasks such as image classification [15],
target detection [16], [17], image style transfer [39] and
semantic segmentation [18], [19]. Currently, Transformer
model is also used to address challenges in image super-
resolution [20], [25], image deblurring [21], [22], and image
denoising [23], [24]. Multi-head self-attention mechanism in
Transformer is complex with its global correlation between
each pixel and each head, which leads the space and time
complexity to be increased in a square order of magnitude
with the increase of resolution. Nowaday, many scholars have
proposed effective methods to solve the Transformer com-
plexity problem due to Multi-head self-attention mechanism.
Zamir et al. [22] proposed a multi-head transposed attention
module that applies self-attention in a cross-channel fashion,
linking cross-covariance relationships between cross-channel
feature channels with interactions between each pixel, ensur-
ing that global relationships between pixels are shown
implicitly in the attention weight map. Tsai et al. [21]
proposed a Stripformer architecture to reduce the high com-
putational cost in the original self-attention mechanism,
which was designed to achieve region-specific image deblur-
ring by exploiting a priori knowledge in motion blurring
with intra-strip and inter-strip attention mechanisms. Strip-
former reduces the computational effort by using fewer
tokens and parameters than the original Transformer, and
requires less memory and computation cost. Wang et al. [24]
proposed a UNet-based Transformer that introduces a new
locally-enhanced window (LeWin) Transformer block, which
performs non-overlapping self-attention based on windows
instead of global self-attention. The computational complex-
ity of high-resolution feature maps is significantly reduced
while acquiring local context.

In addition to the image deblurring task, many mod-
els have shown greatly contributing impact in the video
deblurring task. Zhang et al. [35] proposed a DeBLuRring
Network (DBLRNet) for spatio-temporal learning.DBLRNet
applies 3D convolution to the spatial and temporal domains
to improve the video deblurring performance by jointly
capturing the spatial and temporal information encoded
in neighbouring frames. Li et al. [36] propose a novel
implicit method to learn spatial correspondences between
fuzzy frames in feature space. And to consider distant pixel
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FIGURE 1. The architecture of Efftformer. Efftformer is constructed based on Unet, which is a common enconder-decoder
structure. CCAM is the information exchange component between encoder and decoder. Each transformer block consists
of multiple FFDN and FDSA.

displacements, they match pixel pairs in all spatial ranges
between the reference frame and neighbouring frames.This
confirm the benefit of modeling all-range spatial correspon-
dence for video deblurring.

Our work uses a frequency domain -based self-attention
mechanism in the encoder-decoder stage. The time and space
complexity of matrix multiplication in the spatial domain is
proportional to the square of the number of input sequences,
i.e., it has quadratic complexity. So it means that the computa-
tion complexity will be very high when the input sequence is
very large. The computation cost in the model can be reduced
greatly by using the product of elements in frequency domain
to replace the original matrix multiplication in spatial domain
to achieve attention.

III. PROPOSED METHOD
Our objective is to present a deblurring model that focuses
on details and refined edges to acquire deblurred images
of superior quality. To better improve the features extracted
by Transformer in the frequency-domain, we designed a
new feedforward network. The new feedforward network
not only takes into account the low-frequency information
and the high-frequency information for recovering a clear
image, but also incorporates the blur kernel information
by applying ReLU operation and Fast Fourier transform in
frequency-domain of the blurred image, in order to provide
more effective deblurring detail information. In addition,
in order to better aggregate the information between the
encoder and the decoder, CCAM (cross-connection channel
attention module) is designed as an adaptive information
fusion component, which combines each scale feature from
one encoder with other two scale features from other encoders

to decrease previous semantic gaps. The fused features are
subsequently added to the corresponding decoder. More-
over, the learnable Sobel-Feldman filter is integrated into
the encoder part in our model to enhance the edge informa-
tion in image and the auxiliary edge loss function Ledge is
introduced to make the output image closer to the ground
truth in the high-frequency detail. The model proposed in this
paper is Efftformer model shown in Fig.1, where the Trans-
former Block consists of FFDN(feedforward network) and
FDSA(frequency-domain self-attention mechanism) shown
at the bottom.

Given a blurred image I, the input is first converted from
an RGB image to low-level features F0,F0 ∈ RH×W×C

with 3 × 3 deep convolution, where H × W is the spa-
tial dimension and C is the number of channels. Next, the
low-level features F0 is passed through a three-level sym-
metric encoder-decoder to obtain the final deep features,
where the three-level encoder hierarchically reduces the size
of the space while expanding the capacity of the channel with
transforming F0 into multi-scale features F1,F2,F3,F1 ∈

RH×W×C , F2 ∈ R
H
2 ×

W
2 ×2C , and F3 ∈ R

H
4 ×

W
4 ×4C .

In order to enhance the edge information, the blurred image
I is passed through a Sobel filter to produce edge feature
maps followed by a GeLU activation. After downsampling
operations, the edge features with multi-scale are concate-
nated with F0,F1 and F2 respectively. F1,F2 and F3 are
transformed to CCAM, which adaptively fuses the features
at three different scales to obtain X1 ∈ RH×W×C ,X2 ∈

R
H
2 ×

W
2 ×2C

and X3 ∈ R
H
4 ×

W
4 ×4C . X3 is the input features to

the first level decoder. The sum of X2 and the output features
of the first level decoder is used as the input of the second
level decoder. And the sum of X1 and the output features of
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the second level decoder is used as the input of the third level
decoder. Finally the output features of the third level decoder
are processed by 3 × 3 convolution, which adding with the
blurred image I yields the final clear image Î .

A. THE FREQUENCY-DOMAIN SELF-ATTENTION
MECHANISM
According to the convolution theorem, the convolution of two
signals in the spatial domain is equivalent to an element-wise
product of them in the frequency domain. Therefore, lit-
erature [9] considers the efficient estimation of the scaled
dot-product attention by element-wise product in the fre-
quency domain without the need to compute the matrix in the
spatial domain to reduce the complexity of the model com-
putation. Referring to [9] the FDSA (the frequency-domain
self-attention mechanism) is introduced in our Transformer
block shown in Fig. 2.

FIGURE 2. In FDSA, scaled dot-product attention is estimated by an
elemental-wise product operations rather than matrix multiplication.

Assuming that given input features F ∈ RĤ×Ŵ×Ĉ , the
normalization tensor YF ∈ RĤ×Ŵ×Ĉ is obtained after layer
normalization, then the query feature Fq, the key feature Fk
and the value feature Fv can be obtained after a 1 × 1 point-
wise convolution and 3 × 3 depth-wise convolution.

Fq = WQ
d W

Q
p YF (1)

Fk = WK
d W

K
p YF (2)

Fv = WV
d W

V
p YF (3)

where W (·)
d is a 1 × 1 point-wise convolution and W (·)

p is a
3×3 depth-wise convolution. Then calculating the correlation
between Fq and Fk in the frequency domain with Fast Fourier
Transform using the following equation

A = F−1 (
F

(
Fq

)
F (Fk)

)
(4)

where F (·) denotes the Fast Fourier Transform, F−1 (·)

denotes the Inverse Fast Fourier Transform, andF (·) denotes
the conjugate transpose operation. Next, Attention is obtained
with the following equation

Attention = L (A) ⊙ Fv (5)

where L (·) is layer normalizing and ⊙ denotes the element-
wise product. Finally, the output of FDSA as F̂ , F̂ ∈

RĤ×Ŵ×Ĉ can be gotten with equation (6):

F̂ = F + Conv1×1 (Attention) (6)

B. THE FEEDFORWARD NETWORK
Inspired by literature [11], the inverse Fourier transform on
frequency selection (e.g., ReLU on the frequency domain)
of a blurry image can act as the kernel learning pattern for
the blurry image, which indicating the blur direction and
blur level. In this way, the network can learn kernel-level
information to perform the task of image deblurring better.
As shown in Fig.3, the kernel-level information is fused with
pixel-level features. The ReLU residual stream is added on
the left in the feedforward network of the literature [9], and
the overall structure of FFDN(the feedforward network) in
the Transformer block is shown in Fig.3.

FIGURE 3. In the FFDN module, the RELU residual stream on the left are
added, so that the feedforward network can fuse kernel level
information, and the global context learning ability of the network can be
improved by introducing nonlinear ReLU in the frequency domain.

Suppose Z , Z ∈ RĤ×Ŵ×Ĉ is an input feature, where Ĥ ,
Ŵ , Ĉ denote the height, width and number of channels of
the feature. The process of the residual stream with ReLU on
the left-hand side is as follows: first, layer normalization is
applied to Z , followed by applying Fast Fourier transform on
the resulting tensor YZ . Then, two 1× 1 convolutional layers
are used, with one ReLU layer between them. With applying
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FIGURE 4. CCAM is composed of the multihead channel self-attention mechanism and feedforward network, which improves
the perception ability of multi-scale information.

ReLU on frequency selection in the frequency domain and
then performing an inverse Fast Fourier transform, it is pos-
sible to learn the blur kernel-level features from the blurry
image directly.

Z̃Left = ReLU (F (YZ ) ⊗W (1)
1×1) ⊗W (2)

1×1 (7)

where F (·) denotes Fast Fourier transform, ⊗ denotes the
convolution operation, W (1)

1×1 and W (2)
1×1 denote 1 × 1 con-

volution matrices consisting of parameters represented as
complex values. Then, the inverse Fast Fourier transform is
performed to obtain the output features ẐLeft in the spatial
domain.

ẐLeft = F−1
(
Z̃Left

)
(8)

where F−1 (·) denotes the inverse Fast Fourier transform.
Literature [9] argues that not all high and low-frequency
information contributes to the recovery of a clear image,
so a learnable quantization matrix M is introduced in the
middle stream of the FFDN and it is learned by the inverse
of the JPEG (Joint Photographic Experts Group) compres-
sion algorithm to determine which frequency information
should be retained in the channel. In the training process,
we first predefine a learnable quantisation matrix M . After
obtaining a recovered simple sharp image, the error between

the clear image and the original image is computed and the
weight parameters in M are updated by the backpropagation
algorithm. The M makes it possible to determine which
high-frequency or low-frequency information is for the recov-
ery of images with retaining the most important frequency
components effectively. The middle stream of FFDN can be
represented by the following equation

Z̃1
Mid = F (P (Conv1×1 (YZ ))) (9)

Z̃2
Mid = F−1

(
M ⊙ Z̃1

Mid

)
(10)

ẐMid = GEGLU
(
P−1

(
Z̃2
Mid

))
(11)

where L (·) denotes the layer normalization operation, P (·)

andP−1 (·) denote the patch unfolding and folding operations
in the JPEG compression method.

Finally, the ultimate output of FFDN can be obtained by
utilizing the subsequent equation.

Ẑ = ẐMid + ẐLeft + Z (12)

C. THE CROSS-CONNECTION CHANNEL ATTENTION
To bridge the gap between features at different scales,
inspired by the literature [22], we propose the CCAM
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(the cross-connection channel attention). CCAM bridges the
semantic and resolution gap between the encoder different
scale feature outputs and further adds the processed fea-
tures of different scales to the decoders, which improves the
network models ability to perceive multi-scale information
and solves the problem of spatial feature mismatch between
the high-resolution encoder features and the low-resolution
decoder features. As shown in Fig.4, CCAM consists of
two parts: the channel self-attention mechanism and the
cross-connection feedforward network. After obtaining the
encoder output features F3, the three levels of encoder fea-
tures are inputted into CCAM.

Given three different scales of encoder features Fi(i =

1, 2, 3), we first perform an upsampling operation to map the
features of different resolutions to the same resolution. Then,
the tensors Yi after layer normalization operation is obtained
as Y6 = Concat(Y1;Y2;Y3) by concatenation operation.
Similar to the transformer block, we can obtain the projection
of the query feature Q, the key feature K, and the value
feature V using a 1 × 1 convolution used to aggregate the
cross-channel context at the pixel level and a 3 × 3 deep
convolution operation used to emphasize the spatial context
at the channel level, with the following formula.

Qi = ẆQi
d ẆQi

p Yi, i ∈ {1, 2, 3} (13)

K = ẆK
d Ẇ

K
p Y6 (14)

V = ẆV
d Ẇ

V
p Y6 (15)

where Ẇ (·)
d is a 1 × 1 point-wise convolution and Ẇ (·)

p is a 3
× 3 depth-wise convolution. We reshape the projections of
the query Qi and key K and interact with the dot product to
generate the transposed attention map Ai, and our attention
mechanism is represented by the following equation:

Attention (Qi,K ,V ) = Softmax
(
ReLU (Q̂i · K̂/α)

)
· V̂ ,

i ∈ {1, 2, 3} (16)

headij = Attention(QjiW
Q
j ,K jWK

j ,V jWV
j )

(17)

MultiHead (Qi,K ,V ) = Concat(headi1, · · · , headij)W
h

(18)

where Q̂i ∈ RHW×C , K̂ ∈ RC×HW , V̂ ∈ RC×HW are
obtained by reshaping Qi, K and V , and α is a learnable
scaling parameter used to control the size of the dot product
of Q̂ and K̂ , making it easier for the softmax function to
produce smaller weight values. headij denotes the j-th head of

attention,WQ
j ,WK

j ,WV
j andW h are projection matrices. The

channel self-attention mechanism applies the self-attention
mechanism in the feature dimension rather than in the spatial
dimension, and it obtains the attention map from the input
features by computing the cross-covariance across the feature
channels. We divide the different attention channels into dif-
ferent ‘‘heads’’ and learn different attentionmaps, the number
of heads in our model is defaulted to 2.

Finally, the output of the channel self-attention mechanism
is obtained after skip connection.

F̃i = WpMultiHead(Qi,K ,V ) + Fi (19)

where Wp is a 1 × 1 convolution. We get the out-
puts F̃1, F̃2, F̃3. Next, we feed the obtained outputs
into the cross-connection feedforward network. For the
cross-connection feedforward network, The input feature F̃1
is normalized through layer normalization to obtain tensors
Ỹi, i ∈ {1, 2, 3}. We use two 1 × 1 convolutions and a
nonlinear Gelu activation function as the gating unit.

X̃i = Conv1×1

(
GELU

(
Conv1×1

(
Ỹi

)))
+ F̃i, i ∈ {1, 2, 3}

(20)

Then, X̃1 serves as the direct output X1 of the CCAM,
while X̃2 and X̃3 are downsampled to generate X2 and X3,
respectively, as outputs of the CCAM module.

The lowest resolution output featureX3, is used as the input
to the first level of the decoder, and X1 and X2 are the two
remaining outputs, which are summedwith the corresponding
decoder output features, respectively, and used as the input to
the next level of decoder.

D. THE SOBEL FILTER
Inspired by the literature [3], to enhance the edge information
of the model, we use learnable Sobel filters as our edge
enhancement block. Sobel filters are often used in edge detec-
tion algorithms due to the fact that it helps to enhance the
edges.

As shown in Fig.5, different from the traditional
fixed-value Sobel operator, a learnable parameter α’ is
defined, which is called Sobel factor. The value of α’ can
be adaptively adjusted to extract edge information of different
intensity during the optimization of training process. Besides,
we define four types of filters as a group to extract edge infor-
mation of different directions including vertical, horizontal,
main diagonal and secondary diagonal directions.

FIGURE 5. We use four different Sobel filters including: vertical (a),
horizontal (b), and diagonals (c,d). α′ is a learnable paramerer.

The Sobel filter is added in the model. The input image
undergoes Sobel convolution for edge feature extraction. The
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extracted features are then activated using the GeLU function.
The input feature of the 1th-level encoder directly concats
with edge features, while this of the 2th-level encoder concats
with the edge features after primary downsampling. Lastly,
the input feature of the 3th-level encoder concat with the edge
features after secondary downsampling.

E. THE AUXILIARY EDGE LOSS FUNCTION
The auxiliary edge loss function helps the network to get
closer to the target image in the high frequency part. On the
same network model, it shows better de-coarsening per-
formance than the traditional MSE loss function, and our
auxiliary edge loss function uses the Sobel operator to
improve the performance of the model. The Sobel operator
consists of horizontal and vertical Sobel kernels. Each Sobel
kernel can be decomposed as the products of an averaging
and a differentiation kernel. The horizontal and vertical Sobel
kernels Gx , Gy can be written as

Gx =
[
1 2 1

]T
∗

[
+1 0 −1

]
(21)

Gy =
[
+1 0 −1

]T
∗

[
1 2 1

]
(22)

Sobel operation detects clear and emphasizing edge maps,
since the differential kernel

[
+1 0 −1

]
obtains the gradient

magnitude of the image and the averaging kernel
[
1 2 1

]
reduces unnecessary noise in the image. The high-frequency
components of the image which are acquired by Sobel oper-
ation as follows:

fsobel (I ) =

√
(Gx ∗ I )2 +

(
Gy ∗ I

)2 (23)

Typically, the Sobel edge mapping of a sharpened image
contains sharpened edges, while the blurred image contains
no sharpened edges. Since the goal of deblurring is to restore
the sharp image, we directly minimize the distance between
the resultant output image and the true value image in the
Sobel edge space. Therefore, the proposed auxiliary edge loss
function can be expressed as follows:

Ledge =
1
N

∥∥∥fsobel(Î ) − fsobel(Itruth)
∥∥∥
1

(24)

where Î and Itruth denote the resultant output image and
ground truth image, the loss values are normalized by the total
number of pixel elements N . The loss values are averaged
over each pixel to compare the magnitude of the loss values
for images of different resolutions.

IV. EXPERIMENTS
A. DATASETS
We evaluate three commonly used motion blur datasets,
including the GoPro dataset [26], the HIDE dataset [27],
the RealBlur dataset [28], the MC-Blur dataset [29] and
the RWBI dataset [30]. We follow the protocol of existing
methods for fair comparison.

B. LOSS FUNCTION
As with other multiscale deblurring networks, we use a mul-
tiscale content loss function, and the coarse-to-fine approach
essentially requires that each intermediate output become a
clear image of the corresponding scale. Therefore, we train
our network so that the intermediate outputs should form a
pyramid of clear images. The L1 loss is applied to each level
of the pyramid. Thus, the content loss function is defined as
follows.

Lcont =

K∑
k=1

1
tk

∥∥∥Ŝk − Sk
∥∥∥
1

(25)

where K represents the number of levels. Ŝk , Sk denote the
model output and ground truth image at scale level k, respec-
tively. The loss at each scale is normalized by the number of
elements tk .

In a recent study [13], auxiliary loss functions other than
the content loss have also been proposed to improve the
performance, since the aim of deblurring is to recover the lost
high frequency components, it is crucial to reduce the differ-
ence in the frequency space, so we introduce the Multi-scale
Frequency Reconstruction (MSFR) loss function, which is
defined as follows:

LMSFR =

K∑
k=1

1
tk

∥∥∥F(Ŝk ) − F (Sk)
∥∥∥
1

(26)

whereF stands for the Fast Fourier transform that transforms
the image signal into a frequency domain signal.

the auxiliary edge loss function as

Ledge =
1
N

∥∥∥fsobel(Î ) − fsobel(Itarget)
∥∥∥
1

(24)

The final loss function for training our network is defined
as follows:

Ltotal = Lcont + λ1LMSFR + λ2Ledge (27)

where the weights of the auxiliary loss components, were set
to 0.1 and 0.05 in this experiment, respectively.

C. PARAMAETER SETTINGS
Our model uses a three-level encoder-decoder structure with
[6,6,12] transformer blocks and [48,96,192] channels from
level 1 to level 3. We set the initial learning rate to 10−3

and update it after 6 × 106 iterations with a cosine annealing
strategy [37], which steadily decreases the learning rate to
10−7. During training, we use horizontal and vertical flip-
ping to increase the data. The default patch size is set to
256 × 256 pixels and the batch size is set to 16. In addition,
the quantization matrix M of the feedforward network and
the patch size of the self-attention mechanism in the Trans-
former block are both set to 8 × 8. During training, we use
the Adam optimizer [38] as our stochastic gradient descent
algorithm, and the quantization matrix M is minimized by
jointly learning it along with other parameters to minimize
the loss function.
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TABLE 1. Performance comparisons in GoPro dataset.

D. EVALUATION INDICATORS
We compare the present method with existing methods and
evaluate the quality of the recovered images using PSNR and
SSIM, PSNR (Peak Signal-to-Noise Ratio) denotes the peak
signal-to-noise ratio, which is a common measure of image
reconstruction quality. It calculates the logarithmic inverse
of the mean square error (MSE) between the original and
reconstructed images to measure the relative difference in
image quality. The higher the value of PSNR, the lower the
difference between the reconstructed image and the original
image, and the higher the quality of the reconstructed image.
SSIM (Structural Similarity Index) is another commonly used
image quality evaluation index, which not only considers
the mean square error of the image, but also the structural
similarity of the image. SSIM evaluates the image quality by
calculating the similarity in three aspects: brightness, contrast
and structure. The value of SSIM ranges from 0 to 1, and the
smaller the difference from 1, indicates that the more similar
the structure and content of the two images, the higher the
quality of the reconstructed image.

E. EVALUATION ON DATASETS
1) EVALUATED ON GOPRO DATASET
Firstly our method is evaluated on GoPro dataset [26]. For
fair comparison, we follow the protocol of this GoPro dataset,
and the quantitative evaluation results are shown in Table 1.
Our method generates the results with the highest PSNR and
SSIM values. Compared to NAFNet in the CNN method,
PSNR in our method is improved by 0.55dB.

Fig.6 illustrates the comparisons on GoPro dataset for
vision. As previously stated, our method places greater
emphasis on details and edges. The results show that our
approach performs better than other methods in recovering
license plate and chair details obviously.

Fig.6 illustrates the comparisons on GoPro dataset for
vision. As previously stated, our method places greater
emphasis on details and edges. The results show that our
approach performs better than other methods in recovering
license plate and chair details obviously.

2) EVALUATED ON HIDE DATASET
To demonstrate the impressive generalization capability of
our technique, we assessed our model on the motion-blur

TABLE 2. Performance comparisons in HIDE dataset.

TABLE 3. Performance comparisons in RealBlur dataset.

HIDE dataset [27], which primarily features humans. Com-
pared to NAFNet in the CNN method, PSNR in our method
is improved by 0.34dB.

Fig.7 presents visual comparisons on HIDE dataset. Our
method outperforms the others in recovering zippers and
clothing on the picture characters and produces clearer
images of the characters’ feet compared to the other methods.
This visually demonstrates the effectiveness of our method in
focusing on detailed information.

3) EVALUATED ON REALBLUR DATASET
In addition, we evaluated our method on RealBlur
dataset [28], which consists of RealBlur-R and RealBlur-
J test sets, both comprising image blur samples from real
scenes. Table 3 shows that our method achieves higher PSNR
values than other deblurring methods. Compared with the
latest deblurring method DeepRFT+ [11], our approach
achieves PSNR is 0.19 dB higher on Realblur-R testset. Fig. 8
illustrates a visual comparison of various deblurringmethods,
indicating that our approach restores blurred number plates in
low-light settings satisfactorily.

4) EVALUATED ON OTHER DATASETS
To further demonstrate the generalisation performance of our
model, we evaluated our model on the MC-Blur dataset [29].
The MC-Blur dataset contains four subsets which are RHM,
UHDM, LSD and RMBQ. Specifically, RHM subset pro-
vides motion blurred images synthesised in variable fps video
frames. UHDM subset is an Ultra-High-Definition (UHD)
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FIGURE 6. Visual comparisons of GoPro dataset [26], our method has better deblurring effect for detail
information of the objects.

FIGURE 7. Visual comparisons of HIDE dataset [27], our method has better deblurring effect for detail information of the
characters.

image deblurring dataset, which blurring kernels of various
sizes are used to convolve with clear images to obtain blurred

images. LSD subset is a defocus blurry dataset. RMBQ subset
provides large-scale, real blurry images.
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FIGURE 8. Visual comparisons of RealBlur dataset [28], our method has better deblurring effect for detail information in low light environment.

FIGURE 9. Visual comparisons of MC-Blur dataset [29]. MC-Blur dataset consists of four sub-datasets engineered with different reasons for blurring
UHDM, LSD, RHM and RMBQ respectively. In the image pairs of UHDM, LSD and RHM, the upper images are the blurry images and the lower images are
the recovery images.In the image pairs of RMBQ, the left images are the blurry images and the right images are the recovery images.

FIGURE 10. Visual comparisons of RWBI dataset [30]. In the image pairs, the upper images are the blurry images and the lower images are the
recovery images.

Shown in Fig.9, Efftformer can not get good deblur-
ring results for defocus blurry in LSD subset due

to the different causes and features of out-of-focus
blur and motion blur. However, Efftformer can observe
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FIGURE 11. Visual comparisons of blurry licence plate images. In the image pairs, the left images are the blurry images and the right images
are the recovery images.

obvious deblurring results in the real blurring RMBQ
subset.

In addition, evaluation experiments are made in RWBI
dataset [30] with a Real-World Blurry Images cap-
tured with different hand-held devices. Efftformer has an
excellent recovery effect for real world blurry images
shown in Fig.10.

5) POTENTIAL REAL-WORLD APPLICATIONS
In this section we try to explore the practical applications
of Efftformer.Efftformer can be applied in many real world
applications as an image deblurring model. In photography
and image processing, Efftformer can be used to repair blurry
images to improve the quality and clarity of photos caused
by camera shaking, object motion, or inaccurate focusing.
In blurry document processing, Efftformer can restore doc-
ument images with clarity and readability.

We discuss the specific application of Efftformer in remov-
ing blur of car licence plate. Licence plate is a unique and
accurate identification of a car, but blurry licence plate images

are not conducive to licence plate information recognition,
segmentation and re-identification of the same licence plate.
CCPD dataset [40] is selected to restore the clarity of the
blurred licence plate information using Efftformer in th real
world. Shown in Fig.11, Efftformer has an excellent recovery
effect for deblurring licence plate information. This can be an
effective contribution to traffic management.

F. ABLATION STUDY
Our ablation studies are designed to prove the effectiveness of
our added components. Specifically, we trained our method
and all the baselines on GoPro dataset.

1) First, we prove the validity of ReLU residual stream in
the FFDN. We compared different FFDN with and without
residual stream, as shown in Fig. 12 respectively. a is feed-
forward network without ReLU residual stream, b is ReLU
residual stream only, and c is our method that feedforward
network with ReLU residual stream.

The ReLU residual stream only approach results in a degra-
dation of model performance, with a 1.51 dB reduction in
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FIGURE 12. Ablation experiments of ReLU residual stream in FFDN. a is
without ReLU residual stream, b is ReLUc stream only, and c is our
proposed method.

TABLE 4. Ablation study results.

PSNR values (34.26 vs. 32.75). It shows that ReLU residual
stream need to be trained in conjunction with pixel-level
methods, or it does not result in effective recovery because
of focusing on kernel-level information only. PSNR of our
method is improved by 0.19 dB (34.26 vs. 34.07) compared to
the method without ReLU residual stream shown in Table 4.

2) In order to demonstrate the effectiveness of CCAM,
we replaced CCAM with a general skip connection (i.e.,
without CCAM) and compared the performance gap. Our
method improved PSNR by 0.13 dB compared to the general
skip connection (34.26 vs. 34.13) and it only increases the
number of parameters by 0.6M. shown in Table 4. Compared
to other components, CCAM achieves a significant perfor-
mance improvement with less memory.

3) In order to test the efficiency of the scaled dot-product
attention across three-level encoder-decoder in the frequency
domain, our method is compared with the baseline method in
the spatial domain (SD for short). Specifically, Swin attention
in Swin Transformer [15] is choose to replace the frequency
domain attention in our three-level encoder-decoder. The
quantitative evaluation in GoPro dataset shown in Table 4
is that the application of scaled dot-product attention in SD
reduces PSNR by 0.28 dB (34.26 vs. 33.98).

4) With the visual comparison in Fig.13, the Sobel filter
as well as the edge loss function for edge enhancement are

FIGURE 13. Visual comparison of edge enhancement with the Sobel filter
and the auxiliary edge loss function.

compared. By visual comparison, it can be observed that with
the addition of the Sobel filter and the edge loss function,
a much clearer edge structure of the car can be obtained to
recover the image closer to the target image in some extent.

V. CONCLUSION
In this paper, we propose a new motion deblurring frame-
work, Efftformer, which pays more attention to the detailed
information and edge information of blurred images. ReLU
residual stream are introduced in the encoder-decoder section
to enable the model to learn kernel-level information, and
by focusing on the kernel-level information versus the pixel-
level information, better de-blurred images are obtained.
In addition, CCAM adaptively blends the semantic and res-
olution gaps between different scales, more fully utilizing
both low and high level information to obtain clear images
with better results. In order to handle the edge information,
the Sobel filter is introduced at the decoder stage for edge
enhancement, where the edge loss function utilizes the high
frequency components in the image to make the blurred
image closer to the target image. Extensive experiments have
shown that Efftformer achieves state-of-the-art performance
with high validity and generalizability in six public motion
blur datasets. In addition, Efftformer has less paramaters
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under the same performance compaired with other deblur-
ring models. In the current work, Efftformer is specifically
designed for motion-blurred images, and in the next work,
we will further explore the potential of our model for other
blur types and other image restoration tasks, such as improv-
ing performance in Efftformer for defocus blur in doucument
images.
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