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ABSTRACT Graph neural network (GNN) is a formidable deep learning framework that enables the analysis
and modeling of intricate relationships present in data structured as graphs. In recent years, a burgeoning
interest has arisen in exploiting the latent capabilities of GNN for healthcare-based applications, capitalizing
on their aptitude for modeling complex relationships and unearthing profound insights from graph-structured
data. However, to the best of our knowledge, no study has systemically reviewed the GNN studies conducted
in the healthcare domain. This study has furnished an all-encompassing and erudite overview of the prevailing
cutting-edge research on GNN in healthcare. Through analysis and assimilation of studies, current research
trends, recurrent challenges, and promising future opportunities in GNN for healthcare applications have
been identified. China emerged as the leading country to conduct GNN-based studies in the healthcare
domain, followed by the USA, UK, and Turkey. Among various aspects of healthcare, disease prediction and
drug discovery emerge as the most prominent areas of focus for GNN application, indicating the potential of
GNN for advancing diagnostic and therapeutic approaches. This study proposed research questions regarding
diverse aspects of GNN in the healthcare domain and addressed them through an in-depth analysis. This
study can provide practitioners and researchers with profound insights into the current landscape of GNN
applications in healthcare and can guide healthcare institutes, researchers, and governments by demonstrating
the ways in which GNN can contribute to the development of effective and efficient healthcare systems.

INDEX TERMS Graph neural network, deep learning, graph neural network review, graph representation
learning, healthcare application.

I. INTRODUCTION
Graphs, as fundamental mathematical structures, have proven
to represent and analyze complex relationships in various
domains, including medical healthcare. A graph intercon-
nected by edges consists of nodes or vertices, which capture
the connections or associations betweenmedical entities such
as patients, diseases, medications, and healthcare providers.

In recent years, the application of graph theory in the
context of ML and data analysis has extended to the
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medical healthcare field [1]. GNN has emerged as a spe-
cialized class of machine learning (ML) models tailored
to operate on graph-structured data within the healthcare
domain [2], [3], [4]. GNN offers a transformative approach
to extracting valuable insights from interconnected medi-
cal entities, enabling accurate predictions, and performing
various tasks crucial for healthcare applications [5]. With
medical graphs’ inherent structure, GNN offers an efficient
and effective approach to making predictions at the edge,
node, and graph levels, unlocking valuable insights into
healthcare data [6], [7]. By iteratively updating the hid-
den representations of nodes, GNN captures and integrates
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FIGURE 1. Types of graph neural network.

relevant information from neighboring nodes, incorporating
the attributes of medical entities (e.g., patient demograph-
ics, clinical data) and the structural characteristics of the
healthcare graph. This integration enables GNN to learn
rich representations that capture the complex relationships
and dependencies within the medical data, paving the way
for enhanced decision-making and improved patient out-
comes [8], [9]. GNN can be categorized into three main
types, each playing a crucial role in addressing healthcare
challenges and improving patient outcomes (see Fig. 1) [10].

Recurrent GNN (R-GNN) finds significant applications in
medical healthcare, extending the concept of recurrent neural
networks (RNNs) to analyze graph-structured medical data.
R-GNN can adapt to the changing topology and temporal
dependencies within the medical graph by updating node rep-
resentations based on their previous states and neighboring
nodes. This capability allows R-GNN to track the progression
of medical conditions, monitor treatment effectiveness, and
provide personalized patient care based on dynamic graph
data [10], [11].

Spatial convolutional networks (S-GNN) have proven to
be a valuable framework within medical healthcare by adapt-
ing the convolutional operation from traditional image-based
convolutional neural networks to graph-structured medical
data [1]. S-GNN leverage the spatial locality and patterns
within medical graphs to capture local relationships and
extract meaningful features. By performing spatial convolu-
tions iteratively across multiple layers, S-GNN can capture
hierarchical relationships and learn increasingly abstract fea-
tures from different regions of the medical graph, which aid
in uncovering spatially-dependent patterns and dependencies
essential for various medical applications [10].
Spectral convolutional networks (Spectral-GNN) have

emerged as a valuable tool within medical healthcare by
leveraging the spectral domain to analyze and process
graph-structured medical data. Spectral-GNN can extract
both local and global structural information by considering

FIGURE 2. Functional overview of GNN.

the influence of different spectral components at various
scales. However, the spectral decomposition process can be
computationally expensive, particularly for large medical
graphs. Spectral-GNNmay encounter difficulties in handling
dynamic or evolving medical graphs since the spectral com-
ponents are based on the fixed structure of the graph [10].
From Fig. 2 in the medical field, GNN can be categorized
into three main categories based on their functionalities and
applications.

Node classification is one of the fundamental tasks that
GNN excels at performing in the context of medical health-
care. In node classification, the objective is to assign a
specific label or class to each node in a medical graph based
on its features and the information obtained from its neigh-
boring nodes. GNN can generalize and accurately predict the
class labels of unlabeled nodes, aiding in various medical
classification tasks. By effectively integrating information
from neighboring nodes, GNN can uncover insightful pat-
terns and dependencies that might not be apparent at the
individual node level.

Link prediction is another crucial function that aims to
forecast the presence or likelihood of connections between
nodes. GNN leverages the medical graph’s structural prop-
erties and connectivity patterns to infer missing or potential
links, empowering them to anticipate future interactions or
relationships. By assimilating information from the graph’s
topology and node features, GNN can effectively capture the
intricate dependencies and latent knowledge that contribute to
the formation of links. The ability to anticipate and infer links
within the medical graph enables healthcare professionals
and researchers to gain insights into disease mechanisms,
identify novel therapeutic targets, and facilitate personalized
treatment strategies.

Graph classification is a crucial function that involves
entire graph labeling based on its structural properties, node
attributes, and connectivity patterns. GNN is particularly
well-suited for this task due to its ability to capture hierar-
chical relationships and dependencies within the graph. GNN
can learn to extract informative representations that effec-
tively capture the discriminative features of the entire medical
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graph. By leveraging the power of DL, GNN can effec-
tively model and learn the complex structural characteristics
and patterns inherent in graph-structured medical data [4],
[12]. This, in turn, facilitates the development of intelligent
decision support systems, patient risk stratification, disease
prognosis, and treatment recommendation systems, thereby
enhancing the quality of healthcare delivery and patient out-
comes [10], [11].

GNN is a powerful tool which has emerged as for ana-
lyzing graph-structured data in medical healthcare, capable
of extracting meaningful insights, accurate predictions, and
improved decision-making [13]. The integration of GNN
in medical healthcare has the potential to revolutionize the
industry, enhance clinical decision-making, and contribute
to the development of innovative healthcare solutions [14],
[15]. GNN has found numerous applications in the health-
care sector, ranging from disease diagnosis and prognosis
to drug discovery and predicting patient outcomes. By inte-
grating GNN into drug-drug interaction (DDI) prediction
through DDI-GCN, researchers achieve superior accuracy
and mechanistic insights, enhancing drug safety and patient
well-being [16]. Leveraging medical knowledge graphs,
a knowledge-grounded conversation generation model is
enriched to create contextually accurate and engaging medi-
cal dialog systems, improving healthcare accessibility, qual-
ity, and cost-effectiveness [17]. Operationalizing secondary
medical knowledge via GNN-based graph rewriting aug-
ments clinical practice guidelines, enabling comprehensive
decision support for multimorbid patients while mitigating
adverse interactions, thereby advancing patient care [18].

Through connected graph data and learning methods like
apriori, personalized health assistance systems are developed,
exemplified by a graph-based dynamic context model for
medication assistance and heart rate monitoring, enhancing
healthcare delivery amidst digitalization and demographic
shifts [19]. GNN can enhance protein-ligand binding affinity
prediction in drug design, implement unsupervised clustering
of single-cell RNA sequencing data for cellular subpopu-
lation identification, and improve brain-computer interface
systems [20], [21], [22]. Further innovation emerges in
evidence-based medicine through GNN. An approach using
a domain knowledge graph and statistical inference meth-
ods extracts structured knowledge from pre-clinical stud-
ies, aiding complex domain understanding like spinal cord
injuries [23]. LIGHTED, an integrated DL model combining
LSTM and GNN, enhances opioid overdose risk prediction
by leveraging electronic health records, empowering clinical
decision support and addressing the opioid crisis [24]. A two-
stage framework with a novel 3D contextual transformer
enhances CT airway segmentation, overcoming challenges
in bronchoscopy planning and COPD assessment [25]. GNN
revolutionize patient care management by clustering sim-
ilar patients through electronic health records, enabling
personalized recommendations and optimizing healthcare
delivery [26]. Phenomenal strides are made in multi-modal

applications. AER-GCN augments multi-label lesion annota-
tion through knowledge graphs, enhancing chest X-ray image
classification for improved diagnostics [27]. Cutting-edge
variational graph autoencoders predict drug-protein inter-
actions in the context of Covid-19, contributing to novel
therapeutic options [28]. Moreover, GNN enables the devel-
opment of predictive models for drug-target interactions [29],
the segmentation of Covid-19-infected regions [30], and
compressed sensing MRI reconstruction [31]. Gene selec-
tion based on social network analysis‘ bolsters microarray
data classification, optimizing accuracy and efficiency [32].
CheXGAT, a hybrid model merging convolutional and GNN,
advances multilabel chest X-ray classification with improved
accuracy [33]. Genetic programming optimizes CNN struc-
tures for Covid-19 diagnosis from X-ray images [34]. Causal
inference techniques unveil a framework for estimating inter-
ventions’ impact in clinical settings [35]. MultiCoFusion
transforms cancer diagnosis by integrating histopathological
images and genomic data for survival analysis and grade clas-
sification [36]. Graph embedding and phenotypic frequency
integration enhance phenotypic representation from the
human phenotype ontology, advancing patient analysis and
risk prediction [37]. Attribute-aware interpretation learning
refines thyroid nodule diagnosis, promoting human-computer
collaboration and accuracy [38]. LiNGAM, causal analysis
identifies disease progression factors from medical checkup
data, contributing to novel insights [39].

It’s worth noting that GNN also facilitates accurate pre-
diction of disease-related candidate lncRNAs [40], influenza
outbreak forecasting [41], and drug response prediction with
graph convolution operations [42]. Through these innova-
tions, GNN revolutionized healthcare, addressing diverse
challenges and redefining medical practice for improved
patient outcomes.

To acquire a comprehensive understanding of the current
research on GNN in healthcare-based applications, it is cru-
cial to conduct a systematic review. This review study aims to
provide a thorough and critical analysis of studies conducted
on GNN in healthcare-based applications and identify current
research trends, challenges, and future research directions in
this field. The major contributions of this review study can be
summarized as follows:

I. The systematic review provides a comprehensive
overview of the utilization of GNN in various
healthcare-based applications, highlighting its poten-
tial impact.

II. The review study emphasizes how GNN leverages the
inherent structure of medical graphs to analyze intri-
cate dependencies and relationships within healthcare
data, enabling comprehensive analysis and improved
decision-making.

III. This study defines and addresses state-of-the-art
research questions, offering insightful solutions and
valuable findings into the current state of knowledge
in healthcare-based GNN applications.
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IV. This review study provides a comprehensive explo-
ration of the current research trends, challenges, and
future research directions, offering valuable insights for
researchers and further advancements.

The study organization follows a logical and systematic
flow, facilitating a comprehensive exploration of various
aspects of GNN. In Section II, the review contextualizes the
study by discussing related literature, outlines the methodol-
ogy employed in the review process, and defines the research
questions. The distribution analysis of the selected studies
and current trends have been analyzed in Section III. Fur-
thermore, in Section III, after an in-depth analysis, research
questions have been addressed, providing insightful anal-
ysis and findings that fulfill the objectives of the study.
The challenges encountered by researchers in implementing
GNN and potential future research directions are discussed
in Section IV. Finally, in Section V, the study concludes
by summarizing the key findings and outlining the study’s
implications for future advancements in GNN.

II. REVIEW METHODOLOGY
The following sections provide an overview of the relevant
research and outline the methodology employed for this sys-
tematic review.

A. RELATED WORK
In recent years, there has been a proliferation of review
studies focusing on GNN. Those studies have examined and
analyzed various aspects of GNN across diverse domains,
those are analyzed here to explore and identify the current
research gap.

Zhou et al. [43] conducted an extensive literature review on
GNN, emphasizing their importance in various learning tasks
involving graph data. In the study a comprehensive design
pipeline for GNN models has been proposed, organizing dif-
ferent variants based on graph types, computation modules,
and training types. They provide an overview of frameworks
and theoretical analyses and categorize applications across
structural, non-structural, and other scenarios. The review
showcases the remarkable advancements of GNN, attributed
to enhanced model flexibility, expressive power, and training
algorithms. Moreover, the authors identify key challenges
such as interpretability, robustness, pretraining, and complex
structure modeling that require further attention in GNN
research.

In another review, Wieder et al. [44] delve into the expand-
ing application and importance of GNN in the realm of drug
discovery. To effectively organize this rapidly evolving field,
the study compiles and categorizes 80 GNN architectures
from 63 publications, demonstrating their use in predict-
ing over 20 molecular properties across 48 datasets. The
study discusses the growing interest among pharmaceuti-
cal companies in integrating GNN methods into proprietary
frameworks, with a specific emphasis on predicting molecu-
lar properties.

Zhou et al. [45] present an extensive review study that
comprehensively examines GNN, focusing on taxonomy,
advancements, and emerging trends. The study covers four
essential dimensions: architectures, extensions and appli-
cations, benchmarks, and evaluation pitfalls. The authors
provide detailed insights into various GNN architectures and
explore diverse extensions of GNN. The review also puts
forth four prospective areas for future research, encompassing
highly scalable GNN, robust GNN, GNN beyond theWL test,
and interpretable GNN.

Gao et al. [46] present an extensive examination of recom-
mender systems based on GNN, highlighting their historical
progression. Existing recommender systems are categorized
based on stage, scenario, objective, and application, while
GNN techniques are classified into spectral and spatial mod-
els. The survey delves into the motivations behind employing
GNN in recommender systems, focusing on factors such as
high-order connectivity, structural characteristics of data, and
enhanced supervision signals. Furthermore, the study thor-
oughly analyzes the challenges associated with embedding
propagation/aggregation, graph construction, model opti-
mization, and computational efficiency.

Chen et al. [47] comprehensively appraise GNN-based
fault diagnosis (FD). The study underscores the merits of
leveraging graphs to represent data across diverse applica-
tion domains. The review commences by scrutinizing FD
techniques grounded in NNs, categorized by data representa-
tions encompassing time series, images, and graphs. Through
meticulous experimentation on benchmark datasets, the study
corroborates the efficacy of GNN-based FD methodologies,
substantiating their supremacy in FD. Finally, the review
engenders discourse concerning prospective challenges and
offers insights for forthcoming research endeavors, aiming to
facilitate a seamless transition from traditional NN-based FD
to graph-structured data approaches while proffering guid-
ance for future inquiries.

Wu et al. [48] present a comprehensive survey on applying
GNN in data mining and ML fields. In the study, a new
taxonomy is proposed, categorizing GNN into recurrent,
convolutional, autoencoders, and spatial-temporal architec-
tures. The survey covers applications of various GNN across
domains and detailed insights into codewhich is open-source,
datasets of benchmark, and evaluation of model. Further-
more, the study presents potential avenues for future research
in this rapidly advancing field.

Ye et al. [49] present a comprehensive survey on utilizing
GNN for multi-relational knowledge graphs (KGs), which
represent factual information among diverse entities. The
study highlights the challenges and research topics asso-
ciated with KGs and the significant advancements made
possible by GNN in recent years. The review focuses on
four key KG tasks: knowledge graph alignment, link pre-
diction, graph reasoning knowledge, and node classification.
It provides an in-depth analysis of GNN-based approaches
for each task, discussing their models, benefits, and
contributions.
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TABLE 1. Applied keywords.

Wu et al. [50] thoroughly examine recommender sys-
tems based on GNN, focusing on the effective learning of
user/item representations from interactions and side infor-
mation. The study introduces a comprehensive classification
framework for GNN-based recommendation models, cate-
gorizing them according to information used type and task
of recommendation. The authors systematically assess the
challenges associated with applying GNN to diverse data
types and discuss the strategies employed in existing studies
to overcome these challenges. Furthermore, the study puts
forward novel perspectives for the future advancement of this
field.

Munikoti et al. [51] present a thorough examination of
the integration of deep reinforcement learning (DRL) and
GNN within graph-structured environments. The analysis
explores the advantages of combining DRL and GNN, such
as enhanced adaptability and decreased computational com-
plexity. Furthermore, the review identifies the main obstacles
encountered when integrating DRL and GNN and proposes
potential avenues for future research.

He et al. [52] provide a comprehensive survey on utilizing
GNN in wireless networks, harnessing the computational
capabilities of DL techniques. The study emphasizes the
effective exploitation of graph-structured data and contextual
information to optimize wireless networks using GNN. The
classical paradigms of GNN are subsequently introduced,
followed by exploring their applications in wireless networks,
particularly in resource allocation and emerging fields. The
survey underscores that the application of GNN in wire-
less networks is still at an early stage, necessitating further
advancements to address existing challenges.

The preceding discourse reveals that numerous studies
have been undertaken to examine diverse aspects of GNN
within multiple domains. Nevertheless, there has been a
scarcity of review research conducted to examine the utiliza-
tion of GNNwithin healthcare-based applications. This study
presented here fills a critical gap in the existing literature by
offering a comprehensive review of GNN applications specif-
ically within the healthcare domain. Unlike previous reviews,
our study stands out in its systematic analysis of GNN stud-
ies, shedding light on current trends, persistent challenges,
and future prospects in healthcare applications. Notably, this
study goes beyond a mere survey, posing and addressing
research questions to provide a deeper understanding of
GNN’s role in healthcare. Our study underscores the signifi-
cant potential of GNN to advance diagnostic and therapeutic
methodologies, offering valuable insights for practitioners,

researchers, and policymakers aiming to enhance healthcare
systems.

B. SEARCH STRATEGY
The systematic review process for identifying relevant stud-
ies on GNN in healthcare-based applications requires a
structured and comprehensive search strategy. To facilitate
the search for relevant studies, various search engines and
databases have been utilized, and various keywords have been
carefully selected and utilized with an amalgam of keywords
to ensure that most of the relevant studies are included (see
Table 1).

C. INCLUSION AND EXCLUSION CRITERIA
The established inclusion and exclusion criteria for this study
are purposefully constructed to guarantee the incorporation
of only pertinent studies. Any studies that fail to fulfill these
criteria are excluded.

Inclusion criteria:
I. Studies that apply GNN for healthcare-based applica-

tions.
II. Studies that involve the use of medical data.
III. Studies that provide a comprehensive description of the

GNN model and its parameters.
IV. Studies that evaluate the performance of the GNN

model using appropriate metrics.
V. Studies that discuss the potential of GNN in improving

healthcare outcomes.
VI. Studies that provide insights into the interpretability of

GNN models.
Exclusion criteria:
I. Studies that only use GNN for non-healthcare applica-

tions.
II. Studies that are not relevant to the healthcare domain.
III. Studies that are not written in English.
IV. Studies with insufficient reporting of the GNN model

architecture, training process, or evaluation metrics are
used in the healthcare context.

V. Studies that are not relevant or do not contribute to
the overall understanding of GNN in healthcare-based
applications.

D. SELECTION OF THE STUDY
The meticulous selection of studies plays a pivotal role in
ensuring the utmost quality of a systematic review. This
research endeavor undertakes a systematic approach to iden-
tify and evaluate existing studies focusing on GNN. Through
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FIGURE 3. Workflow of the study section procedure.

the comprehensive search of various databases, a total of
494 studies have been yielded, as depicted in Fig. 3. In the
initial step, 64 studies were excluded based on duplicated
studies, not being in English, and other reasons. Subse-
quently, these studies underwent meticulous screening based
on their titles, abstracts, inclusion and exclusion criteria, etc.,
resulting in a refined set of 194 studies. Further, a thorough
assessment of the full-text versions of these studies was con-
ducted to ensure the studies’ methodological quality, leading
to the exclusion of 108 studies based on the proper outcome,
quality, sufficient analysis, etc.

Finally, the stringent application of the selection procedure
resulted in a final selection of 86 studies that met the rigorous
standards for inclusion in this systematic review.

E. EXTRACTION OF THE DATA
To ensure accurate analysis, meaningful interpretation, and
reliable results, a methodical and well-organized approach is
implemented throughout the extraction process. In this step,
predefined attributes are utilized to structure the gathered
data, which include references and years, purpose, dataset,
data characteristics, data instances, models, and contributions
and findings. The selection of those attributes allows for a
thorough exploration of GNN applications across healthcare
area, leading to valuable insights into GNN potential and
implications.

F. RESEARCH QUESTIONS
In order to delve into the applications and implications
of GNN in healthcare, facilitating a deeper understanding
of their capabilities and potential impact and address the

complex challenges and explore the potential of GNN in
healthcare, this research aims to investigate the following
research questions:

• RQ1. What are the main applications of GNN in health-
care, and how have they been utilized to address specific
healthcare challenges?

• RQ2. How do the specific structural characteristics of
complex healthcare graphs and the diverse types of
healthcare data integrated with GNN impact the effec-
tiveness and practicality of GNN in extracting crucial
insights and identifying meaningful patterns in health-
care data?

• RQ3. What is the comparative effectiveness of GNN
versus traditional ML methods in healthcare-based
applications, and what evidence supports the potential
of GNN in improving decision-making and patient out-
comes in healthcare?

• RQ4. What are the key determinants influencing the
performance of GNN, and what are the limitations of
the current GNN application?

• RQ5. How can GNN be utilized for the discovery and
identification of rare disease subtypes or novel disease
clusters while enabling interpretability and explain abil-
ity, which allows healthcare professionals to understand
and trust the predictions and insights provided by these
models?

III. ANALYSIS AND FINDING
In this section, selected studies, various distributions, trend
analysis, and summaries of the studies have been conducted.
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FIGURE 4. Geographical country-wise distribution of GNN studies.

Additionally, each of the proposed study questions has been
addressed after careful, in-depth analysis and interpretation.

A. STUDIES DISTRIBUTION ANALYSIS
From Fig. 4, find out that China emerged as the most promi-
nent contributor, with 48 studies dedicated to utilizing GNN
in healthcare-based applications. Nine studies have been con-
ducted, prompting other countries (such as the Netherlands,
Finland, Singapore, Australia, etc.) to emulate the research.
Following China, the United States exhibited a strong
research presence with 8 studies, while the United Kingdom
and Turkey closely followed with 6 and 4 studies, respec-
tively. Moreover, within the chosen studies, 85% are sourced
from several academic publications, while the remaining por-
tion originates from conference proceedings.

Fig. 5 showcases a word cloud depicting the most fre-
quently used keywords in the selected studies. In the figure
the word ‘‘graph’’ stands out prominently, indicating the
central role of graph theory in studies. Additionally, the terms
‘‘neural’’ and ‘‘network’’ appear prominently, reflecting the
widespread utilization of neural network architectures in the
domain of interest. Furthermore, the presence of keywords
such as ‘‘prediction,’’ ‘‘attention,’’ and ‘‘deep learning’’
suggests a strong focus on predictive modeling and ML
techniques. The terms ‘‘drug’’ and ‘‘disease’’ indicate the
relevance of GNN in pharmaceutical and medical research,
particularly in drug discovery and disease prediction.

In Fig. 6, an analysis of the top 20 most cited stud-
ies in the healthcare field related to GNN is presented.
Among these notable works, Jiang et al. [53] focused on
drug–target affinity prediction, Wee et al. [54] examined ad
and mci diagnosis and transfer learning across populations,
and Jin et al. [67] delved into antibody sequence-structure
co-design. These studies, being highly cited, signify the sig-
nificant interest researchers have shown in exploring GNN
applications within the healthcare domain [55], [56], [57].

From Fig. 7, among the total included studies, one study
was published in 2015, demonstrating an early interest
in GNN for healthcare-based applications. The number of

FIGURE 5. Keyword word cloud of selected studies in GNN.

FIGURE 6. Top 20 studies in terms of citation.

FIGURE 7. Year-wise distribution of studies.

studies increased steadily over the years, with three studies
in 2019, thirteen studies in 2020, and a significant rise to
twenty-six studies in 2021, indicating a growing focus on
GNN research. The year 2022 witnessed the highest num-
ber of studies, with thirty-two publications, suggesting a
peak in research activity. The increasing number of studies
during these years highlights the significance of GNN as a
cutting-edge research area.

B. TRENDS ANALYSIS
The field of healthcare is experiencing a paradigm shift with
the emergence of GNN. As healthcare data are inherently
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interconnected and structured as graphs, GNN offers a
promising approach to extracting valuable insights and
improving diagnostics, personalized treatments, and health-
care management by analyzing and modeling the intricate
dependencies and patterns in healthcare data. A compre-
hensive summary of the included studies is presented in
Table 2, and it is evident that GNN is utilized in a wide array
of healthcare-based applications. The applications include
clinical decision support, disease prediction, drug discovery,
patient monitoring, and healthcare network analysis. Among
these, disease prediction and drug discovery emerge as the
most prominent areas of focus, indicating the potential of
GNN for advancing diagnostic and therapeutic approaches.

The diverse landscape of methodologies in GNN studies
presents a challenge for straightforward categorization. Pre-
dominantly, studies demonstrate a versatile approach, with
researchers often opting to integrate mixed methodologies
or combine them with various techniques [61], [90]. This
tendency toward versatility serves to facilitate enhanced cus-
tomization, feature extraction, and comprehensive analysis,
making it challenging to confine these studies to rigid classi-
fication boundaries. The combination method showcased the
potential for broader applications, emphasizing the effective-
ness of integrating diverse GNN architectures for enhanced
medical imaging tasks. Certain studies focus on recurrent
GNN (R-GNN) [67], [68], [71], [79], [108], highlighting
their utility in dynamically tracking medical conditions and
providing personalized care by adapting to changing graph
structures. This adaptability positions R-GNN as a valu-
able tool for patient-centric healthcare applications. On the
other hand, studies delving into spectral convolutional net-
works (Spectral-GNN) [64], [88], [93], [103], [136] harness
spectral domain analysis to extract crucial structural informa-
tion. Despite facing computational challenges and limitations
in handling dynamic graphs, Spectral-GNN contributes to
insightful structural analysis. A notable trend emerges with
the widespread utilization of spatial convolutional networks
(S-GNN) [59], [60], [63], [69], [72], [74], [75], [78], [101],
[102], [123], [124], [125], [126], [127], [128], underscoring
their prominence and effectiveness in various medical graph
applications, showcasing their adaptability to diverse health-
care research scenarios.

Regarding model focus and architecture, it can be observed
that customization of the GNN model and the explo-
ration of different architectures have been employed to
tackle healthcare-related challenges. By leveraging these
custom-designed architectures, researchers can enhance the
performance and efficacy of GNN in healthcare, thereby
enabling more accurate and insightful analyses, predictions,
and decision-making processes.

This comprehensive analysis of GNN applications in
healthcare classification tasks provides valuable insights into
the diverse strategies employed by researchers. However,
categorizing into classification methods proves challenging
due to the prevalent use of versatile approaches and hybrid
combination in the field of healthcare-based applications.

In the study on medical triage chatbot diagnosis improve-
ment [77], a hybrid combination approach is employed.
This comprehensive mix of methodologies synergistically
enhances the performance of the medical triage chatbot.
Similarly, in the representation for predicting molecular asso-
ciations [85], a hybrid combination involving LDA, MDA,
PPI, and DDI is utilized within the LR-GNN framework.
This approach effectively leverages the strengths of different
techniques, demonstrating LR-GNN’s efficacy in predict-
ing molecular associations. The advantages of such hybrid
combinations lie in their ability to capture diverse aspects
of complex systems, providing a more comprehensive and
accurate representation for improved diagnostic outcomes.
Certain studies focus on specific classifications, reflecting
a targeted approach in healthcare-based applications. Node
classification proves to be a versatile tool in various health-
care applications. In the context of medical insurance fraud
detection [60], node classification is employed to catego-
rize 10,000 patients, contributing to anomaly detection and
aiding in the identification of fraudulent activities. In the
domain of medical knowledge graph reasoning [121], node
classification plays a crucial role in personalized disease
diagnosis by categorizing nodes within graph-structured
datasets such as cora and citeseer. For predicting drug-target
interactions [128], node classification helps categorize nodes
representing different entities, facilitating the identification of
potential associations between drugs and targets. Addition-
ally, in the prediction of soft tissue deformation in image-
guided neurosurgery [137], node classification is utilized to
categorize nodes representing healthy and tumor tissues, con-
tributing to accurate predictions of soft tissue deformations.
Link classification plays a crucial role in various healthcare
applications, as evident from the diverse studies presented.
For instance, in the context of synthetic lethality prediction
in human cancers [56], link classification with the proposed
KG4SL model achieved exceptional performance, demon-
strating its effectiveness in identifying gene pairs associated
with synthetic lethality. In cancer survival prediction [76],
link classification using the proposedMGNNmodel achieved
an impressive accuracy, showcasing its capability to predict
survival outcomes based on multimodal data and clinical
profiles. Additionally, link classification in predicting dereg-
ulation types of miRNA-disease associations [84] with the
SGNNMD model demonstrated good inductive capability
and generalization to unseen miRNAs/diseases during train-
ing. In drug side effects prediction [92], the idse-HE model
utilized link classification to reconstruct the original matrix
and predict drug side effects based on drug chemical struc-
ture and network topology information. Furthermore, in lung
cancer knowledge classification [108], the combination of the
proposed PMI_2 + link method and GCNConv exhibited the
best performance, highlighting the significance of link clas-
sification in categorizing documents related to lung cancer
knowledge. Graph classification emerges as a pivotal
approach across diverse healthcare studies, showcasing its
versatility and impact on various tasks. In the context of
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drug similarity and binding strength analysis [58], graph
classification, implemented through GNN, contributes to
identifying kinase inhibitors with potential applications in
treating Covid-19. In drug over-prescribing risk assess-
ment [59], RxNet, employing graph classification techniques,
outperforms baselines, enhancing precision-recall metrics.
For radiotherapy target contouring [61], the GGP uti-
lizes graph classification to achieve superior sensitivity in
comparison to baseline models. In clinically interpretable
pathway-level biomarkers discovery [62], MLA-GNN lever-
ages graph classification for state-of-the-art performance in
survival prediction, histological grading, and Covid-19 diag-
nosis. Chronic kidney disease prediction [63] involves graph
classification using DeepLab V3+ and DGCNN, achieving
high sensitivity and specificity for predicting eGFR lev-
els. The prediction of Covid-19 cases [64] utilizes various
graph-based models, including GNN, demonstrating their
effectiveness in forecasting. These studies underscore the
essential role of graph classification in advancing healthcare
applications, from drug discovery to disease diagnosis and
prognosis.

In the examination of training-testing data distribution
across diverse studies in the systematic review on GNN
in healthcare-based applications, distinct patterns emerge.
Among the analyzed studies, a substantial portion (14)
exhibits a prevalent preference for an 80% split, signifying
a collective inclination towards constructing robust train-
ing datasets. Concurrently, another significant portion (10)
opts for a 70% partition, showcasing a commonly employed
and balanced percentage for training purposes. Addition-
ally, a noteworthy number of studies (6) distinctly choose a
90% allocation, underscoring a deliberate emphasis on larger
training sets to foster enhanced model learning. In contrast,
a smaller yet notable portion (5) favors a 60% split, reflecting
a tendency towards a comparatively more compact training
dataset. Notably, insights into the test split also reveal diverse
practices, with a majority of studies (17) prioritizing a 20%
split for testing, demonstrating a common preference for a
substantial test dataset. Many studies have prevalent 70%
training data, where 10% used for validation dataset which
explain the increased number of 20% test data split studies.
Additionally, 14 studies opt for a 10% partition, while 5 stud-
ies choose a 30% split for testing, highlighting variations
in test data allocation among the analyzed literature. The
insights gleaned underscore the variability in the selection
of training, and testing percentages across different studies,
revealing nuanced preferences and considerations in model
development.

The analysis of the GNN also reveals trends in terms of
data coverage. It highlights the inclusion of diverse data
types, such as electronic health records (EHRs), imaging
data, genetic data, and healthcare network data. This indi-
cates the potential of GNN to leverage different data sources
for comprehensive healthcare analysis and decision-making.
The trend analysis reveals that a larger number of studies
focused on drug-target interactions, drug repurposing, protein

structure prediction, and molecular property prediction. This
reflects the growing interest in leveraging GNN for drug
discovery and optimization in healthcare. The large number
of utilized data instances highlights the capability of GNN
to handle large-scale healthcare data, enabling more accurate
and precise predictions.

C. ANALYSIS AND INTERPRETATION OF PROPOSED
RESEARCH QUESTIONS

• RQ1. What are the main applications of GNN in health-
care and how have they been utilized to address specific
healthcare challenges?

GNN has become increasingly popular in healthcare due to
its ability to capture complex dependencies and relationships
in healthcare data. One of the aims of this review study is
to explore the main applications of GNN in healthcare and
how they have been utilized to address specific healthcare
challenges.

GNN has been widely used in recent years to discover
biomarkers associated with various diseases and conditions
and to analyze healthcare data [62]. One of the most promis-
ing applications of GNN in healthcare is clinically inter-
pretable pathway-level biomarker discovery. This approach
involves using GNN to analyze complex biological pathways
and identify key biomarkers associated with specific diseases
or conditions [62]. In the case of chronic kidney disease, GNN
has been used to identify potential biomarkers that can help
predict the progression of the disease and improve patient out-
comes [117]. GNN can leverage dynamic graph convolutional
networks with feature selection to extract high-quality omic-
specific embedding information, aiding biomarker discovery
in drug development [139], [140]. By analyzing large-scale
patient data sets, GNN can identify patterns and relationships
that can be missed by traditional statistical methods and pro-
vide a more comprehensive understanding of the underlying
biology of the disease. GNN has also been used for Covid-
19 drug discovery, enabling the identification of potential
drug targets and the development of new treatments [86].
By analyzing molecular and clinical data, GNN can identify
promising drug candidates, predict their effectiveness, and
accelerate the development of new treatments, ultimately
improving outcomes for patients affected by the Covid-19
pandemic [64], [133], [138].
GNN has emerged as a promising approach that is

well-suited to analyzing brain network data because it can
capture complex relationships between brain regions and
identify subtle patterns that may be difficult for humans
to detect [81]. By training GNN on large brain scans and
clinical data datasets, researchers have developed models
that can accurately predict the likelihood of an individual
developing Alzheimer’s disease [116]. GNN has also been
used to identify biomarkers associated with the disease and
used in drug repurposing for Alzheimer’s disease, show-
ing great promise in improving both the diagnosis and
treatment of Alzheimer’s disease [65] [100] [119].
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TABLE 2. Summary of healthcare-related studies in GNN.
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TABLE 2. (Continued.) Summary of healthcare-related studies in GNN.
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TABLE 2. (Continued.) Summary of healthcare-related studies in GNN.
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TABLE 2. (Continued.) Summary of healthcare-related studies in GNN.
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TABLE 2. (Continued.) Summary of healthcare-related studies in GNN.
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TABLE 2. (Continued.) Summary of healthcare-related studies in GNN.

Furthermore, GNN contributes to multi-site autism spectrum
disorder identification [141], interpretable Parkinson’s dis-
ease classification [142], and the integration of geometric
features for cancer prognosis [143]. Additionally, GNN plays
a crucial role in creating a multi-model fusion framework for
Alzheimer’s disease prediction [144], effectively aggregating
information from different populations and achieving supe-
rior predictive performance.

Antibodies are essential to the human immune system,
and the co-design of antibody sequence structure involves
identifying amino acid sequences and their corresponding

three-dimensional structures that can effectively target and
bind to specific antigens [83]. This process has significant
potential for developing new treatments for various diseases,
including cancer and infectious diseases. GNN has been
utilized for antibody sequence-structure co-design, allowing
for more efficient and effective identification of optimal
sequences and structures. One significant advantage of using
GNN for antibody sequence-structure co-design is that it can
incorporate a wide range of data types, including genetic,
biophysical, and clinical data. This can help researchers
identify the most promising antibody candidates for further
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development and testing. GNN can also be used to optimize
existing antibodies, improving their efficacy and reducing
side effects [67].

GNN has demonstrated great potential in various aspects
of cancer research. GNN-based approaches can identify
potential cancer genes and their associated biological path-
ways [85]. Another area of cancer research is where,
by analyzing gene expression data, GNN can identify patterns
of gene expression that are associated with specific cancer
subtypes and classify molecular subtypes of cancer. GNN
has also been utilized in predicting the deregulation types of
miRNA-disease associations and providing insights into the
molecular mechanisms underlying disease development [99],
[101]. Moreover, GNN has been applied to predict potential
molecular interactions and identify new drug targets for vari-
ous diseases, which can help accelerate drug discovery and
lead to the development of more effective treatments [73],
[74], [75], [76], [77].

In addition to the applications of GNN mentioned earlier,
there are several other applications of GNN in healthcare.
GNN can be used to analyze medical images such as X-rays,
CT scans, and MRI scans to identify potential abnormalities
or diseases [124]. Another application of GNN in healthcare
is structure and position awareness for airway labeling [69].
GNN can also be used for context-aware self-supervised
learning for medical images. This involves usingGNN to ana-
lyze medical images and learn from the context of the images
without the need for explicit labeling or supervision [70].
GNN can be used to improve the temporal resolution of fMRI
data and help better understand brain function [71]. GNN
can be used to analyze brain networks and identify potential
biomarkers for psychiatric disorders [72], [102]. Overall, the
main applications of GNN in healthcare involve analyzing
healthcare data to identify patterns and relationships that can
improve diagnosis and treatment, address specific healthcare
challenges, and improve patient outcomes.

• RQ2. How do the specific structural characteristics of
complex healthcare graphs and the diverse types of
healthcare data integrated with GNN impact the effec-
tiveness and practicality of GNN in extracting crucial
insights and identifying meaningful patterns in health-
care data?

The integration of GNN with healthcare graphs that con-
tain diverse types of data has the potential to improve the
effectiveness and practicality of GNN in extracting crucial
insights and identifying meaningful patterns in healthcare
data.

The effectiveness and practicality of GNN in healthcare
data analysis depend on the structural characteristics of the
healthcare graphs used as input. Healthcare graphs can be
highly complex, containing thousands of nodes and edges,
and may be heterogeneous in nature, with different types
of nodes and edges representing different healthcare con-
cepts [83]. Moreover, healthcare graphs can be dynamic,
with the relationships between nodes and edges changing
over time. To address these challenges, GNN enables the

propagation of information through the graph, capturing
the relationships between nodes and edges and generating
representations that capture the underlying structure of the
healthcare data [83], [128].
Healthcare graphs may contain missing or incomplete

data and contain noise or outliers, which can impact the
ability of GNN to identify meaningful patterns and impact
accuracy and generalizability. To address these challenges,
several techniques have been proposed, such as imputation
methods for missing data and outlier detection methods for
noisy data. Chen et al. introduce the learnable graph convolu-
tional network and feature fusion (LGCN-FF), addressing the
limited exploration of discriminative node relationships and
graph information in multi-view data. Their proposed frame-
work, validated through superior performance in multi-view
semi-supervised classification, integrates feature fusion and
a learnable graph convolutional network. Chen et al.’s work
highlights the importance of simultaneous consideration of
both feature and graph fusion for enhanced learning accu-
racy [145]. Chen et al. [146] tackle the over-smoothing issue
in graph convolutional networks by presenting an alternating
graph-regularized neural network (AGNN). Thismodel lever-
ages a graph embedding layer derived from graph-regularized
optimization to alleviate over-smoothing problems, and an
Adaboost strategy is employed to aggregate outputs from dis-
tinct layers, demonstrating superior performance compared to
existing models [146]. Li et al. [147] focus on the challenging
problem of incompletemulti-view clustering (MVC), propos-
ing graph structure refining for incompleteMVC (GSRIMC).
GSRIMC avoids feature recovery steps and effectively han-
dles biased error separation using tensor nuclear norm,
achieving superior clustering results without accumulating
mistakes during optimization [147]. Finally, Wu et al. [148]
address the vulnerability of GNN to noise and adversarial
attacks. Their proposed robust tensor graph convolutional
network (RT-GCN) utilizes multi-view augmentation and a
tensor GCN framework to enhance robustness, showcasing
superiority over state-of-the-art models in resisting diverse
adversarial attacks on graphs [148].

Healthcare data is incredibly diverse and includes various
types of data, each with unique characteristics and com-
plexities that require specialized methods for processing and
analysis. Integrating these different data types is also essen-
tial for a comprehensive view of a patient’s health status.
Many methods are designed to integrate different types of
healthcare data and capture their relationships, generating
representations that capture the underlying structure of the
data. Imaging data can be combined with clinical data to
predict the likelihood of a particular disease. The capa-
bility of GNN to handle multiple modalities of healthcare
data has been demonstrated in various applications, includ-
ing patient outcome prediction, disease classification, and
drug discovery. For instance, in patient outcome prediction,
MMGNN can integrate clinical, imaging, and genomic data
to develop models that accurately predict patients’ health
outcomes.
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However, integrating diverse types of healthcare data can
also impact the effectiveness and practicality of GNN. The
integration of high-dimensional imaging data with clinical
data can increase the computational complexity of GNN,
making it less practical for real-world applications. Addition-
ally, integrating diverse data types may require specialized
preprocessing techniques, such as feature extraction meth-
ods, to ensure that the data is compatible with GNN.
To address described challenges, various techniques have
been proposed, such as dimensionality reduction methods
for high-dimensional data and data augmentation methods
for data compatibility. These include imputation methods for
missing data, regularization techniques to prevent overfitting,
and attention mechanisms to handle the heterogeneous nature
of healthcare data. To address the overfitting issue, regu-
larization techniques such as L1 and L2 regularization can
be used to penalize complex models and encourage simpler
ones [135]. Attention mechanisms are used to handle the
heterogeneous nature of healthcare data, which can include
various types of data such as images, text, and numerical data.

• RQ3. What is the comparative effectiveness of GNN
versus traditional ML methods in healthcare-based
applications, and what evidence supports the potential
of GNN in improving decision-making and patient out-
comes in healthcare?

GNN in healthcare-based applications has the ability to han-
dle complex data structures. GNN has garnered substantial
interest and demonstrated prowess in healthcare applica-
tions, particularly in disease prediction and drug discovery.
Compared to traditional ML methods, GNN offers several
key advantages. However, the dynamic landscape of data
analytics in healthcare introduces a spectrum of method-
ologies beyond GNN. Other tools, algorithms, and hybrid
approaches exist that can also effectively extract complex
healthcare data dependencies and relationships. It is essential
to convey that the highlighted GNN applications showcase
promising avenues, yet the field remains open to contin-
ued exploration and innovation. Recognizing the diversity of
available tools ensures a comprehensive understanding of the
broader possibilities for unraveling intricate healthcare data,
thereby fostering a holistic approach to advancing diagnostic
and therapeutic strategies. Traditional ML methods usually
rely on tabular data structures, where data is organized in
rows and columns [149]. However, healthcare data is often
complex and heterogeneous, comprising different data types
such as images, time series, text, and graphs. GNN, on the
other hand, can handle these complex data structures effec-
tively [150]. GNN can process graph-structured data, which
is well-suited to representing complex relationships between
entities in healthcare data. GNN can also be used for image
and text-based healthcare data, where it can capture spatial
and semantic relationships between different parts of the
data [149].
Another advantage of using GNN in healthcare-based

applications is its ability to handle incomplete data.

Traditional ML methods struggle to deal with such data
and often require complete data to make accurate predic-
tions [149]. However, GNN can handle incomplete data and
still make accurate predictions, as it can learn from the avail-
able information and fill in the gaps to create a complete
picture of the data. GNN can also handle noisy data by iden-
tifying and filtering out irrelevant or erroneous data points.
GNN can help fill the gaps and provide more accurate pre-
dictions and insights, ultimately improving decision-making
and patient outcomes [151].

Furthermore, GNN has the ability to learn from multiple
modalities, which is one of the key advantages of using GNN
in healthcare-based applications compared to traditional ML
methods [152]. GNN can integrate information from differ-
ent modalities by constructing a graph that captures their
relationships. In medical imaging, GNN can learn from the
spatial and temporal relationships between different regions
of interest within an image. In clinical notes, GNN can learn
from the semantic relationships between medical concepts
and conditions mentioned in the notes. In genomics, GNN
can learn from the relationships between different genes and
their expression levels, enabling better decision-making and
improved patient outcomes [153].

GNN has the ability to capture temporal dependencies,
which allows GNN to learn patterns of change and relation-
ships over time that are difficult for traditionalMLmethods to
capture. Temporal dependencies here refer to the relationship
between events that occur over time. In predicting patient out-
comes, GNN can capture how the patient’s condition changes
over time and how these changes relate to other variables
to make accurate predictions about the patient’s future out-
comes [154]. Although GNN can effectively capture complex
relationships and patterns within data, understanding how
these models arrive at their predictions can be challenging.
This lack of interpretability can be problematic in health-
care, where decisions made based on AI models must be
explainable to healthcare providers and patients. While some
methods for interpreting GNN exist, they can be complex and
computationally intensive, which may limit their practical
usefulness.

GNN can capture complex relationships between vari-
ous factors, such as clinical variables, genetic information,
and lifestyle factors, which can help healthcare profession-
als make more accurate and personalized predictions about
patient outcomes. GNN can also be used to improve treat-
ment outcomes by identifying optimal treatment plans and
predicting treatment responses. GNN can extract features
from images and use them to identify patterns and anoma-
lies that are not easily visible to the human eye. This can
help radiologists and other medical professionals make more
accurate and timely diagnoses, leading to improved patient
outcomes [43], [48], [155]. Overall, the evidence supports the
effectiveness of GNN in healthcare-based applications, and
GNN is likely to play an increasingly important role in the
future of healthcare [156], [157].
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• RQ4. What are the key determinants influencing the
performance of GNN, and what are the limitations of
the current GNN application?

GNN has emerged as a powerful framework for analyzing
and modeling complex relationships within graph-structured
data. However, the performance of GNN is influenced by
several factors that impact its effectiveness and accuracy.

One of the key determinants of GNN performance is archi-
tectural design [74], [82], [88]. The design choices made
in constructing the GNN, such as the node and edge rep-
resentations, aggregation mechanisms, and message-passing
strategies, can significantly affect its performance [60], [85],
[121]. Different design configurations may have varying
abilities to capture and propagate information through the
graph, resulting in variations in performance. Understanding
the impact of architectural design choices is essential for
optimizing GNN models and improving their performance.

Another determinant that influences GNN performance
is the selection and tuning of hyperparameters. Hyperpa-
rameters, such as the learning rate, number of layers, and
regularization techniques, play a crucial role in determining
the behavior and performance of GNN. These parameters
need to be carefully selected and fine-tuned to ensure opti-
mal performance [117]. The choice of hyperparameters can
impact the model’s ability to generalize, avoid overfitting,
and converge to a suitable solution.

The quality and characteristics of the input graph data
also significantly affect GNN performance. Factors such as
the size of the graph, its sparsity, noise level, and structural
properties can all influence how well the GNN can capture
and utilize the underlying patterns and dependencies in the
data [121]. Understanding the impact of data characteris-
tics on GNN performance is essential for preprocessing and
preparing the input data, ensuring that the GNN can effec-
tively learn from the available information.

The nature of the specific application or domain plays
a significant role in influencing the performance of GNN
in the healthcare domain. Healthcare data is characterized
by its complexity, diversity, and interconnectedness, which
necessitates careful consideration when applying GNN to
healthcare-related tasks. In clinical decision support systems,
GNN can be employed to analyze patient data. However,
the nature of clinical data, including its high dimensionality,
heterogeneity, and temporal dependencies, poses challenges
for GNN. The nature of disease data also impacts the perfor-
mance of GNN in disease prediction tasks [73]. The nature of
molecular data, including its structural complexity, chemical
interactions, and vast search space, poses unique challenges
for GNN [58], [92]. Developing GNN architectures that can
effectively capture molecular features, learn from chemical
graphs, and facilitate efficient exploration of the chemical
space is crucial for improving the success rate and efficiency
of drug discovery processes.

GNN in healthcare-based applications has the limitation of
interpretability. While GNN can effectively capture complex
relationships and patterns within data, understanding how

these models arrive at their predictions can be challenging.
Furthermore, GNN in healthcare-based applications has lim-
ited scalability. As the size of the graph increases, the number
of edges between nodes increases exponentially, which can
result in significant computational challenges. To address
this limitation, researchers have explored techniques such
as transfer learning, feature extraction, dimension reduction,
ensemble methods, etc.

• RQ5. How can GNN be utilized for the discovery and
identification of rare disease subtypes or novel disease
clusters while enabling interpretability and explain abil-
ity, which allows healthcare professionals to understand
and trust the predictions and insights provided by these
models?

GNN has shown great potential for discovering and identi-
fying rare disease subtypes or novel disease clusters. Rare
diseases can be challenging to diagnose due to their diverse
symptoms and a lack of understanding of the underlying
genetic mutations that cause them [75]. GNN can analyze
large and complex datasets of patient records, genetic data,
and other clinical information to identify patterns and rela-
tionships of rare disease subtypes or novel diseases that may
not be immediately evident to human researchers. In addition
to identifying rare disease subtypes, GNN can also help iden-
tify novel disease clusters by analyzing various types of data.
For instance, healthcare professionals can use GNN to ana-
lyze EHR to identify clusters of patients with similar disease
patterns, such as comorbidities, symptoms, or lab results [77].
GNN can also be used to identify environmental or social
factors that contribute to the emergence of specific disease
clusters. GNN can also analyze large-scale genomic data to
identify novel genetic mutations and biomarkers associated
with specific disease clusters. This can facilitate the develop-
ment of targeted therapies that are tailored to specific patient
groups, improving treatment outcomes and reducing health-
care costs. GNN can also be used to predict the progression
of certain diseases and assess the effectiveness of treatment
interventions [96]. By analyzing patient data over time, GNN
can identify patterns and relationships that can inform the
development of personalized treatment plans and help health-
care professionals make better-informed decisions [97].
In addition to identifying rare disease subtypes and clus-

ters, GNN can also help healthcare professionals identify the
geographic locations of these diseases. GNN can identify
areas with higher prevalence rates of certain rare diseases
by analyzing patient data and demographic information.
This can help healthcare professionals pinpoint the specific
regions where the disease is most prevalent and identify
potential environmental or genetic factors that may be con-
tributing to the disease’s incidence. Furthermore, GNN can
also aid in the development of new drugs for those dis-
eases [74], [128]. By analyzing large genetic and chemical
data datasets, GNN can identify patterns and relationships
between disease subtypes and potential drug targets. This can
lead to the development of targeted drugs for rare disease
subtypes, improving patient treatment options. GNN can also
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be used to predict the efficacy of different drugs and drug
combinations, reducing the time and cost required to bring
new drugs to market.

GNN can provide interpretability by using attention mech-
anisms, which allow the model to identify which parts of
the input data are most relevant to its predictions. By iden-
tifying the most relevant data, GNN can provide healthcare
professionals with a clearer understanding of how the model
is making its predictions and allow them to make more
informed decisions about patient care. GNN can use graph
visualization techniques to show the relationships between
different data points and how they contribute to the model’s
predictions, which can help healthcare professionals under-
stand the reasoning behind the model’s predictions [97].
By enabling healthcare professionals to understand how the
model works and the reasoning behind its predictions, GNN
can help bridge the gap between data-driven decision-making
and clinical expertise. Additionally, GNN can be used to
predict patient outcomes and identify potential interven-
tions, such as drug therapies or surgical procedures, allowing
healthcare professionals to make more informed decisions
about patient care. Several studies in the domain of GNN
architectures have embraced open-source practices by pro-
viding their code for public access. Notable examples include
studies such as [53], [57], [69], [73], [82], [83], [85], [86],
[87], [88], [92], [94], [95], [99], [100], [101], [102], [103],
[104], [113], [116], [122], [125], and [134]. The decision to
share code openly offers significant advantages in promoting
transparency, collaboration, and reproducibility in scientific
research. Open-source code allows fellow researchers and
practitioners to scrutinize, validate, and build upon the pro-
posed architectures, fostering a culture of trust and credibility
within the scientific community. Additionally, it facilitates
the dissemination of knowledge, enabling a wider audience
to benefit from and contribute to advancements in GNN
research for healthcare applications. Open-source practices
also promote the rapid development of the field by encour-
aging the adoption of proven methodologies and fostering a
collaborative environment for innovation and improvement.

IV. CHALLENGES AND FUTURE RESEARCH
OPPORTUNITIES
This section outlines the current challenges that researchers
encounter when implementing GNN in various healthcare-
related applications. In addition, the prospective research
opportunities and directions for researchers conducting
healthcare-related research on the GNN are highlighted.

A. CHALLENGES
1. Heterogeneous data integration:Heterogeneous data

integration in GNN involves combining diverse data
types, formats, and sources, posing challenges in seam-
lessly merging and representing such data in a unified
graph structure. Researchers sometimes face difficul-
ties in handling varying data modalities, addressing
data sparsity, and dealing with semantic differences

between heterogeneous data elements, leading to sub-
optimal model performance.

2. Interpreting GNN predictions: Interpreting GNN
predictions challenges involves determining the feature
importance, attributing predictions to specific nodes or
edges in the graph, and explaining GNN’s behavior
in complex graph-structured data. The nature of GNN
can make it difficult to gain insights into the reasoning
behind model’s predictions, which may hinder GNN
adoption in critical applications.

3. Scalability for healthcare graphs: Scalability for
healthcare graphs refers to efficiently handling and
processing large-scale, complex graph-structured data,
such as electronic health records and patient net-
works. Researchers may encounter challenges in deal-
ing with the complexity of healthcare graphs, leading
to increased computational demands, storage require-
ments, and slower processing times, which can hinder
real-time analysis and decision-making.

4. Limited labeled data: Limited labeled data refers to
situations where there is a scarcity of annotated sam-
ples available for training GNN. Researchers often
encounter challenges in achieving robust and accurate
model performance due to insufficient training data,
leading to overfitting and reduced generalization.

5. Generalization of GNN: Generalization across vari-
ous healthcare-based applications of GNNs refers to
the ability of GNN models to perform well on new,
unseen data from different healthcare-subject than the
one they were trained on. Researchers often encounter
challenges in adapting GNNmodels to diverse subjects
with varying data distributions, as the model may fail
to generalize and yield suboptimal performance on new
data.

6. Ethical GNN applications: Ethical GNN applications
refer to responsibly deploying GNN while ensuring
fairness, transparency, and avoiding biased outcomes.
Researchers may encounter challenges in unintention-
ally perpetuating biases present in the data, leading
to unfair or discriminatory predictions, and the lack
of interpretability of GNN models may raise ethi-
cal concerns regarding their decision-making process.
Addressing this challenge involves adopting fairness-
aware methods, auditing, and mitigating bias in the
data.

7. Handling missing data: Researchers often encounter
challenges in effectively imputingmissing values while
preserving the graph structure and relationships, and
improper handling of missing data may result in
suboptimal model performance and skewed insights.
Addressing this challenge may involves employing
appropriate imputation techniques, to fill in missing
values and retain the integrity and representativeness of
the data for meaningful analyses and decision-making.

8. Bias in GNN predictions: Bias in GNN predictions
can cause systematic errors or favoritism towards
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specific groups or attributes in the data, leading to
unfair and discriminatory outcomes. Researchers may
fall into this problem when the training data is unrepre-
sentative or contains biased information, and the GNN
model learns and amplifies these biases during training,
which may result in skewed predictions.

B. FUTURE RESEARCH OPPORTUNITIES
1. Transfer learning in healthcare: Researchers can

explore novel GNN architectures, domain adapta-
tion techniques, and transfer learning strategies that
effectively adapt pre-trained models to new medi-
cal domains while preserving data privacy and eth-
ical considerations. By collaborating with healthcare
institutions and adopting multi-modal patient data,
researchers can pave the way for more efficient and
accurate GNN-based transfer learning approaches in a
variety of healthcare applications.

2. Personalized medicine applications: Personalized
medicine applications involve tailoring medical treat-
ments and interventions to individual patients based on
their unique characteristics and needs. Researchers can
explore innovative GNN architectures that efficiently
integrate multi-modal patient data, such as genomics,
imaging, and clinical records, to create personalized
predictive models for disease diagnosis, treatment
response prediction, and patient risk stratification.

3. Federated learning for privacy: Federated learn-
ing for privacy involves training GNN models
across decentralized data sources without sharing raw
patient data, preserving data privacy and security.
Researchers can explore advanced encryption and
secure aggregation techniques tailored for GNN, ensur-
ing privacy-preserving collaborative model training
while maintaining model accuracy.

4. Real-time clinical decision support: Future research
should focus on developing advanced AI and cus-
tomized GNN algorithms and data stream processing
techniques to enable real-time analysis of patient data
from various sources, empowering healthcare profes-
sionals with actionable information at the point of care.

5. Explainable GNN models: Explainable GNN models
involve developing techniques to provide interpretable
and transparent insights into GNN predictions and
decision-making processes. Future research should
focus on exploring attention mechanisms, feature
attribution methods, and visualization techniques to
improve the interpretability of GNN models.

6. Class imbalance in medical datasets: Class imbal-
ance in medical datasets refers to the unequal distribu-
tion of different classes in the data, leading to biased
and inaccurate model performance. Researchers should
focus on developing innovative techniques, to mitigate
the impact of class imbalance and improve the general-
ization and fairness of models in medical applications.

7. GNN for drug discovery and clinical trials:GNN for
drug discovery and clinical trials involves GNN archi-
tectures, graph representation learning techniques, and
large-scale molecular graph datasets to enhance GNNs’
accuracy and efficiency in drug discovery and to predict
molecular properties, optimize drug candidates, and
accelerate the drug development process.

8. Disease progression modeling: Future research
should focus on developing innovative GNN archi-
tectures, incorporating longitudinal patient data and
spatiotemporal graph structures, to enhance disease
progression predictions and enable early detection and
personalized treatment strategies.

9. Graph-based patient clustering: GNN for graph-
based patient clustering involves grouping patients
based on shared medical features and treatment
responses. In this area, researchers should focus on
developing novel GNN-based clustering algorithms,
incorporating multi-modal patient data, and leveraging
graph structures to enhance clustering accuracy and
interpretability.

10. GNN for rare diseases: GNN for rare diseases
involves using it to aid in early diagnosis, phenotype
prediction, and therapeutic target identification for rare
and underrepresented medical conditions. Researchers
should focus on building comprehensive rare disease
datasets, developing specialized GNN architectures,
and exploring transfer learning and multi-task learning
approaches to optimize model performance for limited
and imbalanced data.

11. Human activity monitoring: Human activity moni-
toring involves utilizing GNN to analyze data from
wearable sensors and IoT devices, tracking and inter-
preting human movements and behavior. Researchers
should focus on developing GNN-based models that
efficiently process and interpret sensor data, enabling
real-time activity recognition and continuous patient
monitoring.

12. GNN for clinical decision-making: GNN for clin-
ical decision-making involves integrating into deci-
sion support systems to assist healthcare profession-
als in making evidence-based and timely clinical
decisions. Researchers should focus on developing
interpretable GNN architectures, incorporating hetero-
geneous patient data and medical knowledge graphs,
to enhance the accuracy and transparency of GNN-
based predictions.

V. CONCLUSION
This systematic review provides a comprehensive analysis
of GNN in healthcare-based applications. The methodolog-
ical procedure involved a systematic search and selection
process, which resulted in a robust set of studies represent-
ing diverse healthcare-based GNN applications. The review
encompasses a total of 86 studies that met rigorous inclusion
criteria, ensuring a reliable body of evidence for analysis.
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The review covers a wide range of applications, including
clinical decision support, disease prediction, drug discovery,
patient monitoring, and healthcare network analysis. This
breadth of coverage demonstrates the versatility and potential
of GNN in addressing various healthcare challenges. China,
the United States, and Turkey emerged as prominent contrib-
utors to the field, showcasing their commitment to advancing
GNN research in healthcare. The continuously increasing
number of studies from 2015 to 2022 highlights the signif-
icance of GNN as a cutting-edge research area. The research
questions posed in this study, which explores the applica-
tion of GNN in healthcare-based applications, are effectively
addressed through the systematic review and analysis of
the included studies. By examining the healthcare domains
and their specific applications of GNN, this study provides
valuable insights into the potential of GNN in improving clin-
ical decision-making, enhancing disease prediction accuracy,
facilitating drug discovery, enabling patient monitoring, and
optimizing healthcare network analysis. The systemic analy-
sis provides valuable insights into the architectures, models,
and purposes of the included studies. Furthermore, numer-
ous obstacles have been identified that impede researchers
in the healthcare domain when studying GNN, such as
the interpretability of GNN models in healthcare applica-
tions, which remains a challenge due to their complex and
opaque nature. Moreover, the limited availability of bench-
mark datasets and standardized evaluation metrics for GNN
in healthcare poses challenges in assessing and comparing the
performance of different models. Despite the comprehensive
nature of this study, there are certain limitations that should
be acknowledged. The inclusion of studies was restricted
to those published in English, potentially excluding rele-
vant research in other languages. Furthermore, it is possible
that there are studies that have not been identified using
the search keyword employed. Additionally, during the data
extraction process, we may have overlooked some pertinent
information.

Looking ahead, future research directions might focus
on analyzing and summarizing the GNN architectures for
specific healthcare tasks, enhancing the interpretability and
explain ability of GNN models, addressing privacy and
security concerns, and exploring the potential of federated
learning approaches in healthcare. In addition, analyzing
GNN research can help identify factors that influence the
performance of GNN in the healthcare domain, which can
revolutionize healthcare delivery, enhance patient outcomes,
and promote innovation.

ABBREVIATIONS
Short form Full form
GGP Gated graph propagator.
FMRI Functional magnetic resonance

imaging.
HIV Human immunodeficiency virus

infection.
BP Bipolar disorder.

SABDAB Structural antibody database.
CDR Complementarity-determining

region.
ABIDE Autism brain imaging data

exchange.
EMGNN Explainable multilayer graph neu-

ral network.
BRCA Breast invasive carcinoma.
MGNN Multimodal graph neural network.
MHDP Multi-relational hyperbolic diagno-

sis predictor.
MA-ARMA Multi-activations autoregressive

moving average.
GNEA Graph neural network with elm

aggregator.
HN Heterogeneous network.
CREATDA Credibility-encoding graph neural

network for tda prediction.
SGNNMD Signed graph neural network

method.
MP-GNN Multi-physical graph neural net-

work.
TOPOGAN Topology-aware graph gan archi-

tecture.
GNDP Graph neural network-based diag-

nosis prediction.
EEG Electroencephalograph.
AMGNN Auto-metric graph neural network.
CDR Chemical-disease relation.
CHR Chemical reactions.
RGNN Hybrid method of rnn and gnn.
CVD Cardiovascular disease.
CPD Chronic pulmonary disease.
CRC Colorectal cancer.
EXTENDED CRC Extended colorectal cancer.
HAT-NET Hierarchical transformer graph

neural network.
CONSEP Colorectal nuclear segmentation,

and phenotyps.
AMGNN Auto-metric gnn.
GNN-DQL Graph neural network-based deep q

learning.
GTGAT Gated tree-based graph attention

network.
CONKGNN Contrastive knowledge integrated

graph neural networks.
RW Random walk.
GNN Graph neural network.
GIGN Geometric interaction graph neural

network.
LG-GNN Local-to-global graph neural net-

work.
M-STGNN Mask-guided spatial-temporal

graph neural network.
DTI-HN Drug-target interaction heteroge-

neous network.
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LAGPROG Local augmented graph convolutional net-
work.

NHIRD National health insurance research
database.

ADNI Alzheimer’s disease neuroimaging initia-
tive.

HLGNN Heuristic learning based on graph neural
networks.

MDA Microrna–disease associations.
HSGNN Heterogeneous similarity graph neural net-

work.
EGCN Event-involved gcn.
HSSIGNN Hybrid similarity side information pow-

ered graph neural network.
MLP Multilayer perceptron.
NAGNN Neighboring aware graph neural network.
ICU Intensive care unit.
KDGN Knowledge-enhanced dual graph neural

network.
PHYSGNN Physics–driven graph neural network.
SAGNN Structural attention graph neural network.
RF Random forest.
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