IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 26 December 2023, accepted 9 January 2024, date of publication 16 January 2024, date of current version 24 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3354775

== RESEARCH ARTICLE

Joint Motion Affinity Maps (JMAM) and Their
Impact on Deep Learning Models for 3D
Sign Language Recognition

P. V. V. KISHORE ", (Senior Member, IEEE), D. ANIL KUMAR?, (Member, IEEE),
RAMA CHAITHANYA TANGUTURI3, (Senior Member, IEEE), K. SRINIVASARAO 4,
P. PRAVEEN KUMARS3, AND D. SRIHARIS, (Member, IEEE)

! Department of Electronics and Communication Engineering, Biomechanics and Vision Computing Research Center, Koneru Lakshmaiah Education Foundation
(Deemed-to—be—University), Guntur 522502, India

2Department of Electronics and Communication Engineering, PACE Institute of Technology and Sciences, Ongole 523272, India

3Department of Computer Science and Engineering, PACE Institute of Technology and Sciences, Ongole 523272, India

“Department of Electronics and Communication Engineering, Dhanekula Institute of Engineering and Technology, Vijayawada, Andhra Pradesh 521139, India
SDepartment of Information Technology, Vignan’s Institute of Information Technology, Duvvada, Visakhapatnam 530049, India

SDepartment of Electronics and Communication Engineering, Sri Venkateswara College of Engineering and Technology, Chittoor 517127, India

Corresponding author: P. V. V. Kishore (pvvkishore @kluniversity.in)

ABSTRACT Previous works on 3D joint based feature representations of the human body as colour coded
images (maps) were developed based on the joint positions, distances and angles or a combination of
them for applications such as human action (sign language) recognition. These 3D joint maps have shown
to singularly characterize both the spatial and temporal relationships between skeletal joints describing
an action (sign). Consequently, the joint position and motion identification problem transformed into an
image classification problem for 3D skeletal sign language (action) recognition. However, the previously
proposed process of transforming 3D skeletal joints to colour coded maps has a negative proportionality
component which resulted in a map with small pixel densities when the joint relationships are high. This
drawback greatly impacts the learning of the classifiers to quantify the joint relationships within the colour
coded maps. We hypothesized that a positive proportionality between joint motions and the corresponding
maps would certainly improve classifiers performance. Hence, joint motion affinity maps(JMAM). These
JMAMs use radial basis kernel on joint distances which assures a positive proportionality constant between
joint motions and pixel densities of colour coded maps. To further improve the classification of 3D sign
language, this work proposes congruent body part joints which results in motion directed JMAMs with
maximally discriminating positive definite spatio temporal features. Finally, JMAMs are trained on the
proposed multi-resolution convolutional neural network with spatial attention (MRCNNSA) architecture
which produces an influencing result for the constructed 3D sign language data, KL3DISL. Consequently,
online 3D datasets and standard deep learning models benchmark the proposed with respect to sign and action
recognition. The results conclude that JMAMs with clustered joints characterize the subtle relationships
which are otherwise difficult to be learned by a classifier.

INDEX TERMS 3D joint data processing, motion affinity maps, radial basis kernel, neural network with
self-attention.

I. INTRODUCTION
Despite 3 decades of research on sign language recogni-
tion (SLR), quantifying subtle finger movements in video
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sequences remains a challenge. While hand gloves [1], [2],
[3] have shown high transformation efficiency for SLR,
their high cost make it difficult to reach open markets,
and their service to hearing-impaired individuals remains
unrealized. Furthermore, visual nature of sign language
cannot be disregarded, which is why a significant portion
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of SLR research has focused on 2D video data. Moreover,
it capitalizes on the core components of vision such as spatial
shapes and semantic movements of hands, fingers, face, head,
and torso of the signer.

Overall, the 2D RGB video data [4], [5] for sign language
(SL) has dominating advantages over its counterparts 1D and
3D such as more information, relatedness and economical.
However, 2D data has always been demanding improved
techniques in the areas of feature engineering [6], data
representation [7] and classifier design [8]. On the contrary,
significant impact has been shown by the application of deep
neutral networks (DNN) to recognize sign language from 2D
video data. Although the inference accuracy of DNNs on
video SL data [9], [10] was found to be significant, their
confidence to discriminate signs with similar movements
and closely matched finger shapes is low. As a result, there
are methods that tried to improve on this through deeper
networks [11], [12], multi-modality training data [13], [14]
and hybrid feature embeddings [15], [16]. More noticeable
difference in accuracies were recorded when the training data
consisted of multiple modalities such as RGB, depth and
skeletal [17], [18]. Impressive results were detected with 3D
skeletal data with sequence modeling deep networks such
as long short-term memory (LSTMs) [19], [20] for both
sign language and human action recognition applications.
In spite of this being the best performing network, it fails to
quantify the spatial joint relations within sign (action). The
consequences of this on skeletal sign language methods were
more than noticeable during testing where the trained network
fails to converge efficiently towards the target labels.

On the other hand, the use of 3D joint-based feature
representations has demonstrated its effectiveness in various
fields of computer vision, including biomechanics, human-
computer interactions and robotics. These representations
capture spatial and temporal aspects of movements in 3D
space that are recorded using motion capture technology.
The challenges such as background variations, lighting
conditions and object occlusions that are part of RGB video
based SLR are rendered ineffective in 3D motion capture
system. However, it is impractical to use motion capture
technology for real-time 3D SLR applications. Therefore,
a more practical approach is to apply 3D pose estimation
to RGB video data and construct a spatiotemporal feature
map of a sign. Then, compare the estimated pose map to
quantify the 3D pose map representations from the motion
capture system for recognition. The major advantage is the
joint information coverage in 3D pose estimations using the
3D motion capture data, which makes it a reliable system
for real time operation. Nevertheless, this real-time system
requires dedicated hardware to avoid latency when detecting
the correct motion-captured pose from the reconstructed
estimated 3D pose from 2D video data.

To accommodate both spatial and temporal characteristics
simultaneously, the 3D data is represented as a colour
coded image. The 3D joint features such as distance and
angles were converted to RGB coded images known as
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FIGURE 1. A comparison of colour coded feature maps from 3D joint
positional data across the frames. The last column shows jg2gMDMs that
represents high pixel density for motion joints when compared to
non-motion joints on the skeleton.

joint distance maps [21], [22] and joint angular maps
respectively [18], [23]. Consequently, the colour maps trained
on convolutional neutral networks (CNN) [24], [25] has
showed better performance across all the sign language
recognition methods. The biggest problem again lies in the
poor representation of signs having more than 60% matched
action content. For example, head, hair, forehead, face and
mother, female, woman, girl. Until now, the colour coding
is directly proportional to the observable joint variations
such as positions, angles and their derivatives. These are
distance, velocity, acceleration, angular velocity, momentum
etc. These color-coded join feature maps show shoddy
relationships between highly interconnected joints of a sign
and vice versa. Consequently, the trained classifiers were
unable to capture highly contributing joint relationships
correctly to identify a particular sign. This is because of the
lowest pixel values that are directly proportional to the highest
joint relativity. The proposed Joint Motion Affinity Maps
(JMAM) are based on an inverse relationship of joint features
with the pixel representations. It has shown to improve the
quality of color-coded features for classification and there by
the recognition accuracy of skeleton based 3D sign language.
Figure.l shows a formal comparison between the colour
coded feature maps from previous works and the proposed
JIMAM.

To improve the performance of SLR, this study proposes
clustering of congruent body part joints. The top row of
Figure.2 shows part-based models for skeleton-based human
action recognition (HAR) models from the literature [26],
[27] which are presented in Figures.2(a)-(e). In the bottom
row of Figure.2, we present the division of joint groups
on our 57 joint SL skeleton. The entire SL skeleton is
divided into 5 parts as shown in 1% sub-figure of 2"¢
row in Figure.2. Subsequently, clustering results in joint
group to group motion directed IMAMs (jg2gMDMs), which
maximize the discriminative positive definite spatiotemporal
features. The resulting jg2gMDMs, trained on any standard
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FIGURE 2. Part based joint clustering with different joint combinations
for HAR. (a) Two parts clustering, (b) Six parts, (c) Five Parts, (d) Six Parts,
(e) Multiple Groups and (f) Five part division of sign language skeleton
and construction joint group to group movement affinity maps
(jg2gMAMs).

deep learning architectures, have reduced false positives and
true negatives that were common in SLR. Additionally, the
proposed color-coding model has been adopted for validat-
ing benchmark action recognition datasets, such as NTU
RGBD [28], KL3DYOGA [23], CMU [29] & HDMOS5 [30].
The results show that JMAMs and jg2gMDMs transform
the subtle joint relationships between closely matched signs
that are otherwise challenging for a classifier to learn. The
classifier is a lightweight convolutional neural network with
spatial and channel-based self-attention architecture across
multi-resolution inputs, producing an influential result for
color-coded 3D joint data.
The following are the major contributions of this paper:

1) A 3D skeletal sign language database comprising
500 signs is created using 10 subjects. Each subject
performs each sign 5 times, resulting in a total of
500x10x5 = 25000 signs.

2) The paper proposes the use of Joint Motion Affinity
Maps (JMAMs) to emphasize the motion relativity
between skeleton joints through color-coded embed-
dings.

3) The joint group to group motion directed JMAMs
(jg2gMDMs) representing grouped motion information
in colour-coded embedding maps.

4) Lightweight multi-resolution feature fusing convolu-
tional neural network with spatial attention mechanism
for classification.

The rest of the paper organizes into a literature review,
methodology, experimentation, and conclusions in sec-
tions II, III, IV, and V respectively.

Il. BACKGROUND

SLR has been studied using various data [4] sources, such
as hand gloves (1D) [1], video cameras (2D) [5] Kinect
or leap motion (3D) [17], and the high-priced motion
capture technology employed in this work [18]. In our
opinion, the best results can be obtained using 3D motion
capture datasets. However, the most used data source is
2D video data. While Microsoft Kinect’s 3D skeletal sign
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language data lacks finger movements, leap motion only
captures hand movements. The 3D motion capture system
provides a rich representation of the human skeleton with
57 joints in space eliminating 2D anomalies such as light-
ing, recording speed, camera angles, motion blurring, and
occultations [31]. Although expensive, the 3D motion capture
signs exhibit a naturalistic resemblance to real-time human
actions with superior representations compared to other
sources.

In comparison to 3D skeletal, the most used source
for SL was 2D RGB video data [32]. A wide variety
of algorithms were proposed in the last few decades for
video preprocessing, feature extraction and recognition [32],
[33]. Most of these algorithms solved some type of spatial,
temporal or paired representation of video object data effec-
tively as features. These features are further classified using
all the traditional machine learning algorithms. The most
popular classifier were, Hidden Markov Models (HMM) and
Artificial Neural Networks (ANN) [34]. With the advent
of deep learning frameworks, the 2D video based SLR
has become powerful with the option of feature learning
rather than feature extraction. A large contingent of them
are available for perusal [35]. The accuracies reported by
these methods are not reproduceable or they simply fail
to generalize on the video quality or the signer. This has
motivated researchers towards higher dimensional data such
as RGB D or 3D skeletal representations. Multi modal video
sequences that are fed into multiple streams of a CNN
are predominantly researched which have shown evidence
of exceptional performances in real time for sign (action)
recognition applications [36]. The recognition accuracies
were better than the single modal datasets. However, the
training requires higher computing powers. At the same
time, working with different modalities such as skeletal and
depth information has shown to enhance the performance of
recognition algorithms in Indian and Russian sign language
models [37], [38]. The use of generative Al models has
improved the performance of the classifiers.

Human skeletal data is more robust than other modalities,
such as RGB video and depth, due to its independence
towards video backgrounds and human subject inconsis-
tencies. This has made the 3D skeletal representation of
human actions and activity as the preferred input modality
for classification. The availability of inexpensive hardware
sensors, such as Microsoft Kinect and Intel RealSense 3D
capture system [39], [40], has further fuelled this trend. More
expensive and accurate capture technology, such as multi-
camera 3D mocap system [ 18], has also revolutionized human
action recognition in the last ten years. While a multitude
of action recognition algorithms has been proposed on these
datasets [28], [29], [30], we will focus on reviewing works
that use deep learning frameworks.

The ideal approach for recognizing actions based on 3D
skeletal data is to combine joint action data with deep
learning. Skeletal data is spatially relational, temporally
compatible, and can form spatio temporal structures, making
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it an ideal input modality for automated skeletal action
recognition [41]. Early machine learning models focused
on learning temporal patterns by extracting joint variations
across frames [42] and characterizing them as time series
representations [43]. However, these models learned tem-
poral variations specific to a dataset and could not transfer
the gained knowledge during testing with a different dataset.
Recurrent ML models were found to perform poorly across
datasets. To develop actionable intelligence across datasets,
deep learning architectures were applied to skeletal action
data. Previous deep learning models used in vision computing
applications [23], [44] have shown impressive performances
in decoding spatial and spatio-temporal patterns.

Deep learning methods such as Recurrent Neural Networks
(RNNs) [45], Long Short Term Memory (LSTM) [46],
Convolutional Neural Networks (CNN) [47], Recurrent CNN
(RCNN) [48] and Graph Convolutional Networks (GCN) [49]
have shown remarkable progress in human action recognition
with skeletal datasets [23], [28], [30], [50]. RNNs [45]
have been successful in characterizing naturally occurring
skeletal joint temporal cues in human actions. The structure of
RNNs enables them to identify joint patterns by establishing
relationships between previous and present joint variations
across action sequences. However, RNNs have limitations
in processing long sequences due to the vanishing gradients
problem [45]. To overcome this issue, memory cells have
been incorporated into the current architecture of RNN,
resulting in upgrades such as LSTM and Gated Recurrent
Units (GRU).

LSTMs have been primarily used for skeletal action
recognition tasks in both unidirectional [51] and bidirectional
modes [52]. Among the LSTM models, bidirectional LSTMs
have shown to achieve higher recognition accuracies [52].
However, LSTMs are computationally intensive and can
suffer from the vanishing gradient problem due to the tanh
function. Independent recurrent neural networks have been
proposed as an improved architecture to address these issues,
allowing for longer and deeper architectures without the
vanishing gradient problem [52]. However, recurrent models
may lack the ability to capture spatial features that define joint
relationships within a skeletal action frame. To address this,
spatial temporal combination networks have been proposed,
using CNNs [53], [54] to learn spatial joint features and
then inputting the flattened features into LSTMs to determine
temporal patterns in the extracted spatial contents. Despite
achieving higher recognition accuracies CNN-LSTM models
require significant computational power during training on
large human action datasets [53], [54].

To overcome these network implications for action
recognition, a rich spatio temporal feature representation is
uncovered in the form of RGB color images. These RGB
color maps characterize a particular skeletal action across a
set of 3D video frames. Consequently, the proposed spatio
temporal images are found to be independent of length of
the video sequences as well as number of joints. These
spatio temporal features express spatial relationships among
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joints within a 3D action frame as well as temporal changes
between frames. The previously proposed spatio temporal
features are Joint Positional Maps (JPM), Joint Distance
Maps (JDM), Joint Angular Maps (JAM), Joint Angular
Displacement Maps( JADM), Joint Velocity Maps (JVM),
Joint Acceleration Maps (JaM), Joint Planar Maps (JpM),
Joint Trajectory Maps (JTM) and Joint Quadrilateral Volume
Maps (JQVM). The above spatio temporal feature maps are
embedded with patterns that can be quantified using a deep
CNN of any architecture. It has been shown that the deep
CNNs had certainly enhanced the performance of the skeletal
action recognition system on Kinect and mocap datasets.

Ill. MAPPING JOINTS TO COLOUR CODED IMAGES
Skeletal 3D sign language has been traditionally captured
using sensors such as Kinect [17] which are unable to
accurately capture overlapping joints. This results in lower
classifier performance due to missing or overlapping joint
features. To address this issue, we used motion capture
technology build our 3D skeletal sign language datasets [18],
[31]. This section describes the methodology for computing
color-coded feature maps from the positional information
of the 3D skeleton sign language actions. The first half of
this section reviews previously used methods for computing
color-coded features, while the second half discuss the
limitations of existing mapping processes and introduces
Joint Motion Affinity Maps (JMAM) as a solution.

A. ENCODING 3D JOINT POSITIONS INTO MAPS

The 3D skeleton joints, shown in Figure.2, are described
with respect to the 3D world origin set during initialization.
Each 3D joint J, is represented as (x;, y;, z;) € R3*P where
i = 1 to p within a video frame f = 0to F € I". In the
past, it has been shown that working directly on JI;s as a
time-series data and exploiting the recurrence phenomenon
has resulted in a test accuracy of around 82%. Additionally,
the recurrent network operated at optimal speeds during
inference. However, for 3D sign language or actions with
overlapping joint positions, the recurrence method has shown
a test accuracy of less than 40%. This is due to the fact that
in 3D SL, the hand joints are more likely to interact with
any of the body parts, as compared to an action sequence
such as walking or running. Moreover, the above time-series
representation of Jl’,s across frames in SL will miss the spatial
information that models the relation of moving hands with
respect to the torso in defining a sign.

The above limitation has been addressed by using JIMAM
which convert the problem into an image classification task
on a convolutional neural network. These maps represent
both spatial and temporal joint movements using color-coded
images. Previous works [18], [23] proposed various maps,
such as JDMs, JAMs, JADMs, JVMs, JaMs and JamMs,
to characterize joint-to-joint relationships. However, these
maps impacted the classifier’s inferencing accuracy to a
certain extent. To compute JDMs on a J joint skeleton with
F video frames consisting of J¢, pairs, we compute the d¢
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FIGURE 3. Spatiotemporal color-coded maps of 3D sign ‘basketball’.
(a) JDMs, (b) JAMs, (c) JADMs, (d) JVMs, (e) JaMs and (f) JamMs.

matrix given as:
d® = Concatld,; dy; d; 1V x,y,2, ¢ (D

where, c is the class representative and d g is the distance
between unique joint pairs. The Euclidean distance function
calculates the norm between i and j™ joints J, in x,y,z
planes separately with

diyy = pi = pill,Y .y 2) )

For 2 (pz_ D each of the unique joint positional pairs within a

fx, y, z) frame in three dimensions, the d;j = [df ., ; df ] €

p(p—
R 23 distance between them is calculated. Finally,

the joint distance matrix F for all frames will have a
dimensionality of 2 (p; D % 3 x F. To construct JDMs from
joint distance matrix, the three dimensions are color coded
with JET colour coding as Red, Green and Blue planes of
an image. Consequently, one JDM image characterizes a
class label in the dataset which represents spatiotemporal
relationships between joints in the entire 3D video sequence.

Similarly, the JAMs quantify the relationships between
joints in a 3D sign video by computing the

@f —1 plk X ij
.. = COS

1]
J;JPZ

The joint angle (Z)’; gives the inclination of positional
vectors j and i with respect to joint k. In order to construct
a RGB color coded map, the above angular information is
mapped in 3D along all F frames into a 2 (pz_ D« F image.
Subsequently, the joint angular displacement maps (JADMs)
are constructed by using

3

dg:dfijxcos(@;)szltoF 4

Contrastingly, the above distance maps were augmented
in spatiotemporal representations by computing the joint
distances and angles between frames to construct veloc-
ity(JVMs), acceleration (JaMs) and angular momentum maps
(JamMs). Figure.3 shows all the maps for our 3D sign
language dataset sign ‘basketball’.

The horizontal axis represents the features and the vertical
axis the frames in a 3D sign or action video sequence. These
maps for all skeletal classes in the dataset are given as
input to the convolutional neural networks with few trainable
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parameters. All these maps performed well with training
accuracies ranging from 85 to 98%. However, the inferencing
on these trained models have shown unsatisfactory results
due to two major issues in the maps. The first one being
the direct proportionality between the extracted features such
as distance, angles or others and the pixel intensities. This
resulted in low intensity pixels on the maps when the joint
distances(angles) are decreasing and vice versa. Figure.3
clearly marks the regions as low pixel intensities with
decreasing joint distances. This disadvantage gets further
magnifies during the training process which gives more
attention to retracting joint features than the contracting ones.
This is the second major problem in the current generation of
3D skeletal sign language recognition models from feature
maps.

Additionally, the models are unable to extract information
in signs that have similar action content. For example, signs
like “woman” and ‘“mother”, “head” and ‘‘hair”’, “food”
and “hungry”, “drink” and ‘“tea’ to name a few. Figure.4
shows the 3D signs and their color-coded maps from the
features extracted previously. To overcome this problem,
we explored the part based [55], [56] color-coding process
where we divide the 3D skeleton into 5 parts. They are
head, face, chest, Right hand and left hand as shown in
Figure.2. To overcome all the above problems, we propose
to instigate a positive proportionality between joint motions
and the corresponding maps that would certainly improve
classifiers performance. Hence, joint motion affinity maps
(JMAM) are being proposed on full body and congruent
body part joints which results in motion directed JMAMs and
jg2gMDMs with maximally discriminating positive definite
spatio temporal features respectively. The jg2gMDMs is
a cluster of joints representing each body part and their
motion characterization using a color-coded map. These
maps has packed more local information between body
joint groups that would facilitate more quick and com-
putationally inexpensive models and training respectively.
Finally, to improve the recognition on the 3D skeletal
joint full and split color-coded features, we propose multi
resolution convolutional neural network with spatial attention
(MRCNNSA) architecture which produces an influencing
result for 3D skeletal sign language data. The following
subsection gives an elaborate discussion on the computation
of joint movement affinity maps (JMAMs).

B. JOINT MOVEMENT AFFINITY MAPS (JMAMS)
The J, 3D joints in the skeleton form M unique pairs.

The Euclidean distance dé{) on these pairs in each frame f
are computed as shown in Equation(1). The (¢) — (x,y, 2).

i le J”(]’z’_l) x1

This results in {d , which capture the

spatial distribution of joints within the frame f. Enumerating

on all the frames in a ?la]ss llabel results in a feature matrix
p(Up—

W = [dy;dy;d.] € R 2 3f = 1 — F. To transform

these Euclidean distance features {\I/f} into a movement
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affinity feature matrix M (e), we compute the following
kernel function given as

W, —
M (o) = exp (—("”25—2'”1))\*@, naf) 6

Solving for Equation(5) with result in three movement
affinity feature matrices in (x,y,z) directions between
F frames. We have M = [Mx),M (y),M ()] €

Jp(Jp—1
R%)X“F ~1. These features represent spatial move-
ments across the frames. Finally, the computed movement
affinity feature matrices in (x, y, z) directions are JET color
coded as Red, Green and Blue planes. The JET color coded M
is called Joint Movement Affinity Map (JMAM). Each class
of 3D joint data is represented by a single spatiotemporal
color-coded JIMAM. Figure.4 shows the IMAM:s for 3D signs
of our dataset. The figure shows key motion frames of 3D sign
language data and their corresponding spatiotemporal maps.
It is a comparison between the previously constructed feature
maps versus the JMAMs from this work. As discussed, the
previously constructed 3D joint features in space and motion,
such as JDMs, JADMs, etc., are in direct proportion to the
color-coded pixel intensities. This implies that the decreasing
joint distances during a signing process are mapped into low
pixel values and similarly, the increasing joint distances are
mapped to the largest pixel values. As a result, the dynamic
range of motion mapped pixels becomes wide enough to
have significant impact on the classifier performance during
training.

In contrast to the above, the JMAM features ensure a
good dynamic range between pixels for decreasing as well
as increasing 3D joint distances. By applying Equation(5),
the pixel values are always oriented in the direction of
increasing gradient. To elaborate, when the 3D joint distances
are decreasing, the pixel values are increasing with a marginal
positive gradient, and for increasing distances the pixel values
will have a high positive gradient. This distinction can be
observed in the most common signs shown in Figure.4.
Even more important are the feature variations in 3D finger
joints that characterize a sign. These intra hand finger
joint feature variations are relatively small compared to the
overall hand motions. This has indeed become a problem
in the previously proposed maps where these small finger
variations are mapped to lower pixel values and large hand
motions into higher ones. This is contrary to the mapping
procedure followed in Equation(5) for JIMAMs. Which is
evident visually through observation of maps in Figure.4.

Moreover, the use of JMAMs is also beneficial in
mitigating the issue of large inter-subject variations by
maintaining an acceptable margin of pixel dynamic range.
We set the value of sigma to 1.25 based on our experience
with the proposed model. Additionally, we augment the 3D
data annotations through rotation and scaling to increase
the number of samples per class for training purposes. The
RBF kernel-based distance mapping presents two distinct
properties that ensure a positive proportionality between the
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mapping and actual joint movements in 3D space. Firstly, the
universal approximation property allows for the estimation
of continuous functions to arbitrary precision, making it
useful for representing the complex relationships within 3D
sign language data. Secondly, the RBF kernel characterizes
local receptive fields, ensuring a positive relational feature
representation between the disjoint 3D joints on the skeleton.

Though the proposed JMAMs are capable in representing
3D skeletal data as a meaningful structure, it fails to
model detailed relationships among groups of joints. Sign
language users exclusively use these joint group relations
to differentiate closely matched signs. Figure.4 shows signs
that have more than 80% matched motion and spatial
content. Hence, the second most identified que in SLR
by humans is the relatedness between body parts. For
example, head and hand fingers, two hands, face and
fingers etc. To make these relationships between body parts
significant, research has been directed towards part-based
classifiers [55], [56], [57]. The results are encouraging
when compared to whole body skeletal joint representations.
In this context, we present an additional investigation to
model these body part relationships using our JMAMs to
validate the whole body JMAMs. The validation is necessary
to understand the capabilities of whole body JMAMs in
modelling joint relationships when compared to part based
JMAMs. Moreover, the part-based models using deep neural
networks require a large set of trainable parameters due to
increased dataset size. The subsection gives the construction
of part based JMAMs on the 3D skeletal sign language data.

C. THE JOINT GROUP TO GROUP MOTION DIRECTED
JMAMS (JG2GMDMS)

The skeleton used in this work consists of 57 joints that
are distributed non-uniformly across the spatial dimensions.
This contrasts with the more evenly distributed skeleton used
in action recognition, as can be observed in Figure.2. The
upper row in Figure.2 shows the byparts skeleton models
used in previous works for human action recognition, while
the lower row shows the byparts of the proposed 3D sign
language skeleton. By comparing the upper and lower rows
in Figure.2, we conclude that the 3D skeleton in this work is
non-uniformly distributed across the spatial dimension.

In the proposed jg2gMDMs model we divided the joint
space into 5 regions as per our knowledge of motion in
sign language data. Based on the findings on SLR, the
communication between 3D joints of these regions mostly
decides the sign label. These five parts are named as Head
(4 — Joints) + Face (12 Joints) + Chest (3 Joints) + Left Hand
(19 Joints) + Right Hand (19 Joints) = Total 3D skeletal Joints
of 57. Except for hand joints, the remaining regions have
non-uniform joint distributions. These regions are named as
{In. Jg. Je, I, v} = J,¥p joints. The suffixes are head, face,
chest, left and right hand. Conventionally, the maps were
constructed within the joint groups or across two joint groups.
This process has resulted in good recognition accuracies
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Key motion frames representing the sign
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FIGURE 4. Joint movement affinity maps and comparisons with other types of feature maps.

for HAR models [21], [22]. However, in case of SLR data,
the head, chest, and face are mostly stationary in all the
singing process. Based on our findings, one hand is also not
used more than 30% of the signs in Indian Sign Language
(ISL). Hence the idea of computing JIMAMs between two
stationary groups such as chest and head will result in a
map that is constant across all signs. More importantly, these
non-varying maps does not add to the features computed
during the training process for label identification.

Therefore, we propose computation of features from one
group to all the remaining joint groups in the SL skeleton.
In our model, the distance features are computed between
a joint group and rest of the groups, or we can call all the
remaining joints of the skeleton. We call our model joint
group 2 group motion directed IMAMs (jg2gMDMs).

Let Jé be the i joint in group g = {[A], [f1. [c], [r], (1]}
and Jé , be the j™ joint in group g’ = {f, ¢, r, [}, the Euclidian
distance metric in a frame f is given as

Vile, g) = [ds d; dZ]GR(Jgang,a)xa
Subsequently, the computed Euclidean distance features
between the joint groups {Wy (g, g’)} are converted into a
group-to-group movement affinity feature matrix Mgy (o)
which can be computed using the following kernel function
given as

Vf=1-F (6)

(Vs (& &) — Yr+1 (g, 8)
Zé-ggz

)V x,y,2,f)
7

Mgy (0) = exp (—
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Solving for Equation(7) with result in three movement
affinity feature matrices in (x,y,z) directions between
one group and rest of the groups prefabricated across
F frames. Finally, this results in G maps given by
{My, My, M., M, ,M;}. The head joint group is repre-
sented by M;, € RUCDS3CHX3X(F-D e have 4C1 x
(12C1 4+ 3C1 4 19C1 + 19C1) features in M}, as there are
4 joints in head group and 53 joints in remaining groups.
The dimension 3 represents (x, y, z) axis. Similarly, we will
have face, chest, right and left hand joint movement affinity
feature representations as My RUZCIXASCLX3X(F=1) pr .
ROCIXSACHX3x(F=1) pr - RUIICIX3ECH3x(F=1) and M, e
RUICTXIBCx3X(F=1) regpectively. The resulting five JET
color-coded JIMAMs are plotted in Figure.5 for three different
signs along with their whole-body JIMAMs.

The signs depicted in Figure.5 were chosen based on
previous experience in [18] and [31] with JADMs trained on a
deep convolutional network, where during inferencing, these
signs resulted in maximum false positives and true negatives.
The failure was attributed to the similarity in hand and finger
movements across the three signs, which is visually evident
in the whole body JMAMs in Figure.5. Similarly, training
the JMAM data on the network architecture in [58] also
resulted in the same problem due to the inability of CNN
automated features to represent dissimilar spatiotemporal
variations across signs.

Initially, this seemed like a joint-to-joint relationship repre-
sentation problem, which was later addressed as a joint group
to group motion directed (jg2gMDMs) approach as shown
in Figure.6. The maps generated with jg2gMDMs exhibit
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more variational patterns, which enable better differentiation
among signs with a high level of matching content. These
patterns are clearly observable in the JMAMS of groups in
Figure.5 below.

D. TRAINING DATA CONSTRUCTION

Figure.1 shows the 3D joint skeleton with 57 joints used in
the construction of sign language. This sign language skeletal
data was developed with 3D motion capture technology
with 8 motion capture camera sensors. The model was
unique to our dataset and extensive research has been
conducted to arrive at the skeleton shown in Figure.l.
This skeleton has the capability to capture all the signs
defined in Indian sign language. We used 10 different
signers to construct the dataset. In each capture instance,
the system captured an average of 550 frames per sign.
The captured data is carefully reconstructed for any missing
joints across all the signs. We named our 3D sign language
dataset as developed at KL University, Biomechanics and
Vision computing research centre as KL3DISL. The dataset
consists of 500 daily used signs from multiple categories.
To summarise, KL3DISL has 500 skeletal sign 3D labels,
spanning over 25000 samples with 10 subjects repeating
each sign 5 times. Additionally, the 3D skeleton can be
oriented in any direction along x,y and z axis to generate
cross view data for training and testing purposes. Similar
data on human action recognition (KL3DHAR) is also
captured with 102 actions by 10 different subjects and is
available at https://www.kluniversity.in/blog/biomechanics-
and-vision-computing-research-centre.html.

This 3D joint data of each sign video is transformed into
one JMAM image per class. Since we have 10 subjects with
5 repetitions per class, it would be 50 JMAM images per
class, of which 70% are used for training. Subsequently,
training a CNN-based classifier with 35 samples per class
would result in overfitting, poor generalization and difficulty
in learning complex patterns in the maps even after data
augmentation. Despite making a more robust feature map
(JMAMs), it has become difficult to use them for generalizing
a training model. In addition to the above training issues,
there is a problem of JMAM image resolution. For example,
a sign class having 420 video frames would result in a JMAM
of size X671 5 (420 — 1) x 3 i.e., 1596x419x3. This
means that the width-to-height ratio in JMAMs is noticeable.
In order to apply JMAM images with the above resolution
requires the precise design of layers in a neural network.
Hence, we scaled down the JMAM image with unstructured
resolution to structured one that is acceptable to standard
networks such as VGG-16 and RESNETS50. However, when
scaling and normalization were applied to the original IMAM
images for training standard deep network models, they failed
to generalize no more than 34% of the class labels.

The above challenge was addressed by developing a new
multi-stream multi-resolution convolutional neural network
architecture with a spatial attention model for both JMAMs
and jg2gMDMs. In order to address the training issues
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in JMAMs and jg2gMDMs, a detailed architecture of the
proposed multi-resolution convolutional neural network with
spatial attention (MRCNNSA) is provided in the following
section.

E. MULTI-RESOLUTION CONVOLUTIONAL NEURAL
NETWORK WITH SPATIAL ATTENTION (MRCNNSA)

This section describes a new deep network architecture that
is suitable for handling JMAMs dataset with unstructured
resolution. The goal of this network design is to classify
3D sign language based on the features of JMAMs at
multiple structured resolutions in place of single unstructured
resolution. Contemplating on the past experiences on the
derived feature dataset, we present multi resolution CNN
with spatial attention (MRCNNSA) as shown in Figure.6.
This network has been designed to overcome the problem
of overfitting and generalization in the previous models
due to scaling and data shortages. The MRCNNSA is
multi stream CNN backbone architecture with distributed
attention across different resolutions of the input JMAMs.
The lower resolution features extracted are more likely
to represent global patterns and low frequency textures in
the image data. The higher resolution features represent
high frequency contours and fine-grained textures. Since
feature data (JMAMs) is of size 1596x419x3, it is difficult
to standardize a fixed scale image for learning all the
patterns in the image. Specifically, the JIMAM feature map
representing 3D joint spatial and temporal distributions of a
skeletal sign is unstructured across its dimensions. Resizing
JMAM to standard resolutions (224 x 224) to suite the
input dimensions of deep network architectures like VGG
or ResNet which subsequently learns only global patterns
and low frequency textures. This resulted in missing the
high frequency and fine-grained texture patterns representing
finger joint movements. For higher resolution JIMAMs the
low frequency and global features representing the hand and
head joint movements were compromised. Simultaneously
learning both the low frequency hand and high frequency
finger joint features in JMAMS is a tough task for stan-
dard networks that train on fixed input image resolution.
Hence, we propose MRCNNSA, which is designed with
5 streams of convolutional layers accepting input at multiple
resolutions. They are 64 x64 x3, 128x 128x3, 256 x256x 3,
512x512x3, and 1024x1024x3. Bi-Cubic interpolation
method was applied on the original 1596 x419x3 to convert
JMAMs of multiple resolutions.

The layer composition in each stream is the same except
for the input receptive field, which changes based on the
input across each stream. All convolution filters in all layers
and streams are of size 3x3 with stride 1 and border
retention. All layers have the activation function ReLu. Some
convolutional layers are followed by 2D maximum pooling
with stride 2, transforming the resolution to half. The primary
objective of this network is to address the non-uniform
resolution in JMAMSs, which has been a difficult proposition
during the training process. The MRCNNSA in Figure.6
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FIGURE 6. Architecture of multi-resolution convolutional neural network with spatial attention (VRCNNSA) for JMAMs.

shows the low-resolution features (64,128)[R{’2,R§2] and
high-resolution features (512,1024) [Riz, Rgz ]are combined
into mid-range resolution of 256 [R§2]. The combination
of [R?2, R, R, Rgz ] and Rgz in Multi Resolution Spatial
Attention Module (MRSAM) will result in A3. This will be
applied to mainstream network as AR%2 as

AR? = ] APR? (8)

Vfeatures

The resulting AR%2 combines the high-resolution features
such as high-level semantic information with the low-
resolution low-level texture information using the MRSAM.
The combination can be across any level in the middle
CNN stream at locations defined by ARg“,ARéG,ARg. The
MRSAM is shown in Figure.7 along with the traditional
channel and spatial attention modules. The objective of
modifying spatial attention in Figure.7(b) into Figure.7(d)
is to reduce dimensionality of features in the intermediate
layers. The output of attention model if Figure.7(d) can be
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formulated as
5{523 _ X§23 ®X{¢1245
XK1 _ g (fw (Xflz)) ® fiv (fw (Xﬁw))
o (5 (1)) ®

Here f,, (e) denotes the features extracted by the 1 X
1 convolution operator which reduces the dimensionality of
the features in the output of the attention network. The w is the
weight operator generated during the training of MRSAM.
The terms XRZI,X§22,X§23 ,X§24 ,szs represent 32 features.
The term Xﬁ represents features of R3, which is the middle
stream in Figure.6. Similarly, terms R1, R2, R4 and R5
represent streams in Figure.6. The outputs after the second
set of 1 x 1 convolutions are

0= (s (1) o5 (49)
= (s () o5 ()

W) en () oo
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FIGURE 7. Spatial attention models. (a) Traditional spatial and channel
attention network, (b) Multi resolution spatial attention network,

(c) Multi - resolution channel attention network, and (d) Proposed multi
- resolution spatial attention network (MRSAM).

where X f 12 are the dimensionally reduced features after
1 x 1 convolution layer and the piecewise multiplier ®.
Similarly, X 51245 gives the attention map generated from the
multi resolution features of dimension 32. Finally, )?523 denote
the attention features that are propagated back into the R3
stream in Figure.6 with dimension 32. Additionally, the 64-,
16- and 8-dimension features in stream R3 of Figure.6 can
also be influenced using the MRSAM network. This can be
done either independently or all at once. We will be showing
the results of this testing in the experimentation section.

Accordingly, the convolution operations in the network in
Figure.6 are formulates as

Op, = arg Ig)llinLo, (®Ra 21y (x) ,y) (11)
where I (x) gives the JMAMs and the model m (®g,)
where ©® is a set of trainable parameters in each of
the resolution R streams denoted by aVl1 to 5. The aim
of each stream in Figure.6 is to extract spatial features
from JMAMs in multiple resolutions as shown in Figure.6.
However, the R3 stream in Figure.8 integrates the global
features from I»s¢ (x) with attention features extracted from
Isa (x), 1128 (x), Is12 (x) , I1024 (x) JMAMSs. Each stream is
trained separately with trainable parameters O Vo =
1t05 by optimizing the loss function L, on the entire
dataset. The Lj, Ly, L3, L4 are the local independent losses
and L3 is the categorical cross entropy loss to classify labels
represented by y.

The trained models m (@RQ) Yo = 1,2,3,4,5 outputs a
set of spatial features {X\}VI — layer index in stream o

representing the IMAMs at /" layer in o stream as

c C

X, =S LGHK (k=D k =)Vl an (12)

i=1 j=1

where K is the kernel size across each of the layers. TheN x
kaense features input the dense layer in R3 for classification.
The convolutional layers in all streams use rectified linear
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unit defined as
R (z) = max (0, 2) (13)

where z is the output of the neuron. Similarly, the dense
layers have tanh and the SoftMax layer has sigmoid activation
defined as

o ()= (14)

i+

The above representation is applied further in the training
of similar network build for the classification of KL3DISL
with jg2¢MDMs.

F. JG2GMDMS CLASSIFIER NETWORK
Specifically, to build a classifier network similar to
the above MRCNNSA on jg2gMDMs, we have to
decrease the input image resolutions as the maps are
of smaller dimension when compared to JMAMs. The
dataset invokes a 3- stream network shown in Fig-
ure.8 for each body part feature map. Specifically, the
MRCNNSA for body part-based system has 15 streams
that are clustered into 5 bundles {by, by, be, by, b}
namely, ‘“Head_to_Other_parts”, “Face_to_Other_Parts”,
“Chest_to_Other_Parts”, “Left Hand_to_Other_Parts” and
“Right_Hand_to_Other_Parts’ given as {Mh, Mg, M, M, Ml}.
A bundle by accepts one body part relational color-coded
map My as input in three different resolutions. Since the
body part relational maps are smaller, the resolutions selected
are 16, 32, and 64. In by the Ry and Rj3 streams are trained
for features in the 1% training instance. The 2™ instance
trains the b}-s R, stream by fusing multi resolution attention
feature A® with inference features [RS, RS] as AR®. Though
the Rj3 stream is trained as a classifier, it is used as a
feature extractor of head features f;, € R'0>**!. Similarly,
for all other body part, we have {ff,fc,fl,fr} e RI1024x1
extracted from the output of last convolution layer. Finally,
the 3™ training instance trains a fully connected dense
layers to estimate the pose from concatenated all body part
features f, = {fh,ff,fc,ﬁ,fr} e R3120x1 Consequently,
each stream in the network of Figure.8 has to be trained
independently for separate body parts and the resulting
features are concatenated for classification. The concatenated
body part features are trained using the model in Figure.9.
The latency in the detection process due to the establish-
ment of IMAMs for the captured 3D pose and translating
that into the motion capture 3D JMAMs is major limitation
for real-time SLR. The trained system takes approximately
6 to 8 seconds to display the recognized sign text on the
inferencing video, which is a significant challenge for real-
time implementation. To reduce this latency to less than
2 seconds, dedicated hardware and intensive training of the
models are required. The penultimate section of the paper
presents experiments conducted on the above datasets with
the proposed methodology to evaluate the performance of the
model.
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FIGURE 8. Architecture of body part-based multi-resolution convolutional neural network with spatial attention (MRCNNSA) for jg2gMDMs.
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FIGURE 9. Last layers in MRCNNSA for Jg2gMDM inputs for body
part-based 3D ISL recognition.

IV. EXPERIMENTATION AND DISCUSSION

This section details the implementation of the proposed
models on the datasets and metrics used for evaluation. Addi-
tionally, comparisons are drawn against multiple standard
CNN architectures as backbone networks using benchmark
datasets and state-of-the-art sign language (action) recogni-
tion models. Furthermore, ablation analysis for the attention
model at multiple feature resolutions in the classifier is
presented.

A. KL3DISL AND BENCHMARK DATASETS

The proposed methods were specifically designed for 3D
skeletal datasets, with KL3DISL [44], [59], being extensively
used throughout the discussion and as input for classification
tasks on the proposed MRCNNSA. To test the generalization
capabilities of the two networks proposed in this work,
we selected four challenging 3D skeletal datasets: NTU
RGBD [28], KL3DYOGA [23], CMU [29] & HDMOS5 [30].
As no 3D sign language data is available from either a 3D
motion capture or a Kinect system, we chose 3D human
action datasets instead. NTURGBD contains 120 classes in
114,480 3D skeleton videos of human actions captured using
a Kinect sensor. KL3DYOGA is our own dataset of 42 yoga
poses in 16,800 3D skeletal videos. CMU and HDMO5 have
23 and 70 action classes distributed across 2,605 and 700 3D
skeletal videos respectively.
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B. EVALUATION METRICS

ITo evaluate the performance of the proposed models on 3D
sign language recognition using color-coded spatiotemporal
features, we employ the following metrics: overall accuracy
(OA), class-specific accuracy (CSA), Cohen’s kappa coeffi-
cient, and top—1% accuracy. These metrics are formulated as:
(15), shown at the bottom of the next page,

True Positives for i’ class
CSA; =

16
Total i class test samples (16)

P, — P,
17
1P, (17)

Cohen'’s Kappa Coefficient k =

where

Sum of diagonal elements in Confusion matrix
P, = - (18)
Total number of instances
P sum of row totals xsum of column totals (19)
T (Total Number of Instances)?

Overall accuracy (OA) defined as the ratio of instances
classified correctly against all the dataset instances gives the
complete performance of the model on the test samples.

C. IMPLEMENTATION OF MRCNNSA FOR WHOLE AND
GROUPED BODY JMAMS

This subsection presents the implementation process of
MRCNNSA for IMAMs and jg2gMDMs on the 5 skeletal
datasets considered in this work. The number of joints in each
dataset could arise dimensionality problems, with KL3DISL
having 57 joints across 400 frames for most signs and
KL3DYOGA being a full body skeleton of 39 joints. The
benchmark datasets NTURGBD, CMU and HDMOS have
25, 41, and 31 joints, respectively. Another challenge is the
number of frames per video sequence, with KL3DISL having
a range of 330 to 450 frames, KL3DYOGA having around
4200 to 5600 frames per sample yoga pose and the rest falling
in the normal category with 430 to 670 frames. The JMAMs
distance metric between joint pairs and color coding of 3D
data across datasets KLL3DISL, KL3DYOGA, NTURGBD,
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CMU and HDMOS5 has resulted in a JMAM of size
1596x419x3, 741 x4331x3,300x521x3, 820x432x3 and
465x523x3 respectively. Applying the JMAMs with their
original resolutions was difficult due to the standardization of
deep learning architectures and specifically it is challenging
to control the layer dimensionalities. Hence, the traditional
approach followed was to resize to the shape acceptable to
the network. This size is 224x224x3 or 256x256x3. The
proven networks are VGG-16, ResNet50, InceptionV4, and
MobileNet. When whole-body JMAMs of KL3DISL were
trained and tested on these standard networks, the top 1%
accuracy (T1%A) was 43.85% and a top 1% error rate of
0.3521 when whole-body JIMAMs of KL3DISL were trained
and tested on them.

As discussed in the literature, attention has been shown
to enhance the overall classification accuracies on various
types of datasets. In this study, we utilize the standard
high-performing attention models listed in Table.2 to train
and evaluate the JMAMs on the considered datasets.

The results in Table.2 demonstrate an improvement over
that of Table.1, indicating that the attention module or
network is effective for analysing the feature rich images
representing spatiotemporal 3D data of KL3DISL and other
datasets. However, the top 1% error rate remains high and
when analyzed on individual classes, the average error rate
was above 40% for KL3DISL. Further analysis revealed that
the above networks and their intermediate layered feature
maps struggle to learn variations that occur in a short frame
count, such as a sign or action that quickly changes over
time and is captured by very few frames. For instance,
in the signs ‘Bed Sheet’ and ‘Bedroom’ shown in Figure.4,
the pattern in pixel variations is almost identical, causing
most of the above networks to misclassify KL3DISL. After
conducting multiple experiments and analyses on attention-
based networks, we developed the MRCNNSA model in
Figure.6 for IMAMs and the jg2gMDMs models in Figure.8.
We adopted a multi-resolution input in multiple streams
of CNNs to capture both local pixel changes and preserve
high-frequency semantic features until the dense layers.

It takes multi-resolution input across independent multiple
streams for capturing both low- and high-level features
that are the basis for generating a spatial attention map.
Subsequently, this spatial attention map is fused at matching
dimensions in the mid-resolution input stream to generate
wholistic features across a sign (action) label. Implementa-
tion details of the networks in Figures 6, and 8 are given in
Table.3.

The comparison in Table.3 demonstrates that our proposed
models have fewer trainable parameters than standard
architectures like VGG16 (138M), ResNet50 (23M) and
InceptionV4 (43M). The allowable inferencing loss is the

prediction loss that can be tolerated during feature extraction
from the trained models. The training process is implemented
in two phases. In the first phase, models in streams 1, 2, 4,
and 5 are trained using the parameters in Table.3 on input
JMAMSs. These trained models are then saved on disk. In the
second phase, the model in stream 3 is trained along with the
attention network and the saved trained networks in streams 1,
2, 4, and 5. These trained networks are then inferenced to
extract features required for generating the attention maps for
the backbone network. At this stage, the network becomes
end-to-end trainable.

In contrast, the total number of parameters in the second
phase of training is higher than standard networks. However,
this does not increase the computation time or memory usage
in our MRCNNSA model for both JIMAMs and jg2gMDMs,
as 80% of the parameters are already trained and only extract
features at multiple resolutions. Although the total number
of parameters in MRCNNSA is 92M, out of which only
I9M are trained. These 19M parameters are in the 256-
resolution middle stream along with the layers in the attention
network. Similarly, the networks in Figure.8 and Figure.9 for
jg2gMDMs are trained separately using the same approach.
Finally, we apply the same procedure to all other benchmark
datasets used in this work.

The trained models on JMAMs and jg2gMDMs are
evaluated on KL3DISL, KL3DYOGA, NTURGBD, CMU,
and HDMOS in the following section.

D. JMAMS VS OTHER COLOR CODED FEATURES

The objective of this section is to identify whether the
hypothesis given in the introduction about the JMAMs is true.
Specifically, this section provides the comparative analytics
of testing JMAMs on trained MRCNNSA for our KL3DISL
and other benchmark datasets. 20% of test data in all datasets
is used to evaluate the MRCNNSA. The metrics used are
OA, CSA, and Top 1% accuracy. The dimension of spatial
attention features in the trained model MRCNNSA is 32 x
32 x 128. This dimension gets reduced due to averaging in
the attention network to 32 x 32 x 1, which is then multiplied
to the 3’ stream or main classification stream as shown
in Figure.8. Undoubtedly the training and the classification
accuracy were better than early or late fusion. The results
of this experiment were organized in Table.4. Obviously, the
scores on NTURGBD should be reasonably lower than all
other datasets as it is a markerless system. However, we found
HDMOS at the lower end of performance due to many missing
joints when compared to NTURGBD. The percentage of
missing joints in KL3DISL and KL3DYOGA is less than
0.1% across all samples. It is customary to reconstruct the
missing joints from two adjacent joints by averaging their
position vectors. Except for the number of output labels for

OA =

Number of correct Predictions across all classes in the dataset

(15)

Total number of predictions
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TABLE 1. JMAMs and jg2gMDMs on standard networks.

Standard Top Rated CNN Top 1% Accuracy o o Top — 1% Accuracy o e
Networks for Image Classification | JMAMs (Whole Body) Top 1% error rates jg2gMDMs Top 1% error rates
Datasets KL3DISL | CMU NTURGBD | KL3DISL | CMU NTURGBD | KL3DISL | CMU NTURGBD | KL3DISL | CMU NTURGBD
VGG-16 37.58% 39.45% | 38.45% 0.4518 0.4204 | 0.4427 38.19% 41.14% | 39.11% 0.4389 0.4161 | 0.4225
VGG-19 39.97% 43.56% | 41.73% 0.4489 0.4095 | 0.4188 40.69% 45.83% | 42.32% 0.4125 0.3948 | 0.4072
ResNet34 48.59% 50.89% | 50.14% 0.4176 0.3845 | 0.3971 50.44% 52.05% | 51.32% 0.3936 0.3735 | 0.3896
ResNet50 52.12% 56.46% | 54.84% 0.3921 0.3521 0.3698 56.52% 59.09% | 57.20% 0.3493 0.3147 | 0.3215
ResNet101 50.24% 55.12% | 51.99% 0.4097 0.3772 | 0.3809 53.72% 56.80% | 54.59% 0.3849 0.3509 | 0.3618
Inception V3 41.67% 44.52% | 43.07% 0.4212 0.4042 | 0.4097 42.96% 46.39% | 44.09% 0.3974 0.3695 | 0.3714
InceptionV4 43.11% 45.09% | 44.46% 0.4111 0.3918 | 0.4015 43.98% 46.73% | 45.38% 0.3859 0.3509 | 0.3601
MobileNetV3Lite 44.45% 47.13% | 46.01% 0.4032 0.3875 | 0.3946 46.02% 49.41% | 47.92% 0.3703 0.3413 | 0.3447
MobileNetV3QAT 43.97% 46.47% | 44.83% 0.4101 0.3711 0.4075 44.47% 48.55% | 46.45% 0.3882 0.3552 | 0.3663
TABLE 2. Top image classifier architectures with attention module from past works that were trained from scratch on the data in this work.
Standard Top Rated CNN Networks for Top 1% Accuracy e Top — 1% Accuracy e
Image Classification TMAMSs (Whole Body) Top 1% error rates j22gMDMs Top 1% error rates
Datasets KL3DISL | CMU | NTURGBD | KL3DISL | CMU | NTURGBD | KL3DISL | CMU | NTURGBD | KL3DISL | CMU | NTURGBD
ViT — Vision Transformers 62.97 65.99 | 64.75 0.3967 0.3652 | 0.3752 66.98 68.04 | 67.45 0.3778 0.3548 | 0.3662
DeiT — Data-efficient Image Transformers 63.91 66.78 | 65.48 0.3892 0.3583 | 0.3618 67.27 69.57 | 68.93 0.3695 0.3368 | 0.3473
SENet — Squeeze-and-Excitation Networks 59.4 61.76 | 62.19 0.3905 03722 | 0.3814 62.52 65.02 | 64.79 0.3743 0.3354 | 0.3424
CBAM - Convolutional Block Attention Module 56.78 58.15 | 58.26 0.3895 0.3525 | 0.3871 59.76 60.58 | 60.07 0.3687 0.3409 | 0.3479
BAM — Bottleneck Attention Module 5825 60.65 | 58.82 0.3834 0.3681 | 0.3748 61.29 6385 | 61.92 0.3554 0.3208 | 0.3274
ECA-Net — Efficient Channel Attention Networks | 56.04 57.06 | 56.78 0.4014 0.3839 | 0.3892 58.98 60.07 | 59.15 0.3815 0.3512 | 0.3528
CoAtNet — Convolutional Attention Networks 67.47 69.4 | 68.13 0.3724 0.3344 | 0.3513 70.33 71.88 | 70.97 0.3318 0.3021 | 0.3086
TABLE 3. Implementation details of the networks in Figure’'s 6 and 8.
. . . Hyperparameter Allowable
Model Input Type Input Size Learning Rate Trainable Parameters yperparam .
Initialization Inferencing Loss
64 0.01 18.1M 0.01
128 0.01 18.23M Gaussian 0.01
MRCNNSA o
(Figure.6) IMAMSs 256 0.001 18.39M Distribution 0.0001
gure. 512 0.001 18.43M with 0.001
1024 0.0001 18.61M mean 0 0.001
16 0.1 1.74M and 0.1
MRCNNSA . .
(Figure.8) jg2gMDMs 32 0.1 1.75M variance 1. 0.001
gure. 64 0.01 .80M 0.01
Same as the learning 1K (4)
. . JMAM Features 32 rate of the Backbone 0.5K(3) - -
Multi-Resolution X .
. . network using JMAM input 0.1K(1)
Spatial attention -
network (MRSAM) Same as the learning 1K (4)
* | Jg2gMDM Features 8 rate of the Backbone 0.5K(3) - -
network using jg2gMDM input. 0.1K(1)

each of the considered datasets, all other hyperparameters
were kept constant.

However, there are cases in our KLL3DISL dataset where
accuracy is very high for simple signs and very low for
complex signs shown in Figure.4. Hence, class specific
accuracy (CSA) has been selected as a metric to evaluate the
proposed classifier. It is the accuracy computed for instances
within a class giving the label wise performance of the model.
In Table.4, the CSA has been computed for individual classes
in the test dataset and was presented as an average value. The
last metric is Top 1% accuracy which measures the best OA
achieved by the model during inferencing on a single sample
data other than the dataset.

At this stage, it would be interesting to interpret why
JMAMs performed better when compared to all other maps.
The reason for this has been interpreted based on the
Equation(6) where there is an inverse relation between joint
distances ¥y and movement affinity features M. Consequently,
this type of expression has been shown to provide excellent
dynamic range in colour coded movement affinity matrix
M. However, true this might look it would be interesting to
explain why the MRCNNSA recorded better OAs than the
standard architectures in Table.1. Subsequently, the attention
mechanisms in Table.2 that were proposed earlier are enough
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for KL3DISL JMAMs without the model in Figure.9.
To explain MRCNNSA learning model performance, we pro-
pose to apply Cohen’s kappa coefficient (). It measures
level of agreement between two classifiers in a classification
task. Here we perform inferencing on test dataset consisting
of 5 samples per class on only KL3DISL dataset. The
ResNet50 model in Table.l are used with our proposed
attention mechanism as has the highest accuracy over other
models. The ResNet50 model architecture in Table.1 follows
that of Figure.8. The middle stream gets an attention map
for fusion into the main feature stream at the 3@ RES block
with a resolution of 32. Table.5 gives the (k) between our
MRCNNSA and the ResNet50SA in Table.1 as backbone.
The results in Table.5 significantly show the quality
of the JMAMs used for the 3D skeletal classification
tasks. In the meantime, (x) for other maps on the above
networks were also computed to ascertain their impact on
the recognition of 3D sign language. The JDM (k = 0.423),
JADM (k = 0.526),JTM (k = 0.481) and JVM(x = 0.532).
The values show that the models are in moderation in
inferencing signs using these feature maps. However, the
JMAMs recorded (k = 0.763) between MRCNNSA and
ResNetS0SA, which means there is a substantial agreement
between the two in discovering 3D signs. This metric shows

VOLUME 12, 2024



P. V. V. Kishore et al.: IMAM and Their Impact on Deep Learning Models

IEEE Access

TABLE 4. Performance of the proposed JMAMs against other types of color-coded features.

Datasets KL3DISL KL3DYOGA CMU HDMO05 NTURGBD
Metrics/Maps | OA CSA Top 1% | OA CSA Top 1% | OA CSA Top 1% | OA CSA Top 1% | OA CSA Top 1%
JDM 7147 | 75.04 | 53.92 72.54 | 76.89 | 54.73 75.04 | 79.24 | 5691 7278 | 77.18 | 55.03 7241 | 76.74 | 54.69
JAM 74.18 | 78.48 | 55.96 75.29 | 80.18 | 56.81 77.88 | 82.22 | 59.06 75.54 | 80.41 | 57.11 75.15 | 80.04 | 56.76
JADM 77.25 | 81.34 | 59.79 78.41 | 83.03 | 60.69 81.11 | 8549 | 63.1 78.67 | 83.33 | 61.02 78.27 | 82.89 | 60.64
JPM 7597 | 79.76 | 59.55 77.11 | 82.15 | 60.44 79.76 | 84.04 | 62.85 77.36 | 82.14 | 60.77 76.96 | 8191 | 60.4
JTM 67.54 | 71.59 | 50.96 68.55 | 73.27 | 51.73 7091 | 75.79 | 53.78 68.78 | 73.52 | 52.01 68.42 | 73.49 | 51.66
JVM 75.69 | 80.31 | 57.84 76.82 | 81.58 | 58.71 79.47 | 84.14 | 61.05 77.08 | 81.86 | 59.03 76.68 | 81.31 | 58.67
QIVM 79.46 | 83.43 | 60.73 80.65 | 86.05 | 61.63 83.43 | 89.81 | 64.09 80.92 | 86.36 | 61.97 80.51 | 85.01 | 61.59
JIMAM 87.34 | 92.58 | 64.19 88.65 | 94.84 | 65.16 90.86 | 97.14 | 67.11 88.13 | 94.27 | 64.94 87.67 | 88.38 | 64.51

TABLE 5. The Cohen'’s kappa coefficient («) for comparing the similarities between the proposed MRCNNSA and the top performing state-of-the-art

ResNet50.
ResNet50SA/ . .
MRCNNSA Bed | Bed Sheet | Bedroom | Bathroom | Drawing room | Ironsheets | Paper Sheets | Head | Hair | Eyes | Eye Brows | Woamn | Mother | Daughter
Bed 130 11 5 4 0 0 0 0 0 0 0 0 0 0
Bed Sheet 2 143 2 2 0 0 0 1 0 0 0 0 0 0
Bedroom 4 5 139 2 0 0 0 0 0 0 0 0 0 0
Bathroom 2 8 4 136 0 0 0 0 0 0 0 0 0 0
Drawing Room 0 0 3 0 143 0 2 0 1 0 1 0 0 0
Iron Sheets 0 0 0 0 0 141 7 1 0 0 0 0 0 1
Paper sheets 0 0 0 0 2 11 136 1 0 0 0 0 0 0
Head 0 0 1 0 0 0 0 135 13 0 1 0 0 0
Hair 0 0 0 0 0 1 0 17 132 0 0 0 0 0
Eyes 0 0 0 0 0 0 0 3 0 127 17 1 2 0
Eyebrows 0 0 0 0 0 0 0 1 0 14 131 1 3 0
Woman 0 0 0 0 0 0 0 0 0 3 1 138 2 6
Mother 0 0 0 0 0 0 0 0 0 2 0 7 137 4
Daughter 0 0 0 0 0 0 0 1 0 1 1 4 12 131

that there is a substantial impact of JMAMs, and the multi
resolution spatial attention module attached to the deep
network, MRCNNSA.

On the contrary, sign language is specifically decoded
using the relationships between the fingers in hands, hands
with each other, and hands with head and torso. Now the
JMAMs proposed have significantly improved the OA by
7.12% over the other maps in practice. However, are the
JMAMs truly exploiting these relationships at a global scale
in a better manner than the others. That is why the joint
group-to-group motion-directed maps (jg2gMDMs) were
constructed.

E. JG2GMDMS VS JMAMS

It is certain and has been proven that 3D joint con-
textual information will enhance the recognition accuracy
of skeletal-based action recognition systems [19], [56].
However, can the JMAMs compete with the body part
relational models in characterizing this information on our
proposed MRCNNSA This challenge is formulated as a
test accuracy comparison problem. The experiment starts by
training the MRCNNSA in Figure.8 with the body part maps
Jg2gMDM. The training and testing procedure is described
in section III-F. The model evaluation results are shown in
Table.6 for all the datasets used in this work along with the
maps.

The overall accuracy is computed on the test dataset. On the
whole the results in Table.6 show that the body part based
relational features characterize the 3D joint information
more effectively when compared to whole body maps. The
difference in OA between the two models is significantly
large for all maps except IMAMs. Explicitly this gap in OA
is found to be around 21%. However, the OA gap for JIMAMs
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and jg2gMDMs is lower than 6%. This meant that JMAMs
have rich feature representation of 3D joint motions which
are close to the relational features jg2gMDMs. Interestingly,
JMAMs take few training instances when compared to
jg2gMDMs. However, the Jg2gMDM based learning model
uses less computational power when compared to JMAMs.
This fact can be verified by the trainable parameter’s column
in Table.3. The next subsection validates the proposed method
against the state-of-the-arts in learning systems for 3D
skeletal sign(action) recognition.

F. OUR PROPOSED METHOD (JMAMS+MRCNNSA) VS
STATE-OF-THE-ARTS

It was indeed difficult to benchmark the proposed method
with publicly available 3D skeletal SLR datasets. However,
availability of similar datasets in the domain of 3D skeletal
action recognition has indeed helped the validation of
the proposed model. The objective is to validate features
and its corresponding colour coded maps simultaneously.
In Table.7, we present the features used by some state-of-
the-art methods on sign(action) recognition methods. Here
3D skeletal sign language methods are incepted from our
previous works [18], [31], [44]. The comparisons were
drawn using OA, the OA projected in Table.7 is obtained
by the following the methods in those works on the dataset
considered. Subsequently, comparison was drawn on the
methods developed using colour coded feature maps and
deep learning methods in Table.7. Though they used other
datasets in their works, we were interested in the results
obtained using NTURGBD, CMU and HDMOS5 for action
recognition. Accordingly, we also used our previous methods
on 3D skeletal sign language with 200 classes for evaluating
the proposed methods. The results in Table.7 show that the
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TABLE 6. JMAMs vs Jg2gMAMs: Result analysis on all the joint feature maps on the proposed MRCNNSA models for whole and part body relational joints

in Figure.6 and Figure.8.

Datasets KL3DISL KL3DYOGA CMU HDMO5 NTURGBD
Metrics/Maps | OA Whole | OA Part Body | Top 1% | OA Whole | OA Part Body | Top 1% | OA Whole | OA Part Body | Top 1% | OA Whole | OA Part Body | Top 1% | OA Whole | OA Part Body | Top 1%
IDM 7147 80.76 55.03 7254 81.97 55.85 75.04 34.04 5778 | 728 81.51 56.04 | 7241 81.09 55.75
TAM 7418 83.08 5711 7529 3432 5796 | 7788 8722 5996 | 75.54 84.61 58.06 | 75.15 84.16 57.86
JADM 7125 8883 6102 | 7841 90.16 6193 I 90.03 6407 | 7867 8732 62.14 | 1827 86.87 61.82
TPM 7597 85.08 60.77 7711 8635 61.68 | 79.76 88.53 6381 77.36 85.87 6189 | 7696 85.43 61.57
JT™M 67.54 75.64 52.01 6855 76.77 5279 | 7091 30.12 546 63.78 7172 5296 | 6842 7731 5267
VM 75.69 84.01 59.03 76.82 8527 59.91 79.47 88.69 6198 | 77.08 86.02 60.12 | 76.68 8558 59.81
QM 79.46 8826 6197 30.65 89.58 6289 | 8343 92.61 65.07 80.92 89.83 63.11 8051 89.36 62.79
IMAM 8734 o171 65.51 88.65 93.08 6649 | 90.86 95.43 68.14 88.13 9256 66.09 87.67 92.08 65.75
TABLE 7. Skeleton based action recognition on various datasets with their respective features.
Method [ Features [ Classifier | NTU-RGB +D | HDM05 [ CMU | KL3DISL
Skeleton based Features
W. Chan., 2020 [60] Joint & Bone GCN 90.4 - - -
Joints, Bone, velocity of Joints and Bone,
1. Dong.. 2020 [49] distance, Acceleration of Joints and Bone GCN 90.5 B B B
J. Zhu., 2019 [61] Node pairs and edge pairs Convolutional relation network 86.2 - - -
W. Ding., 2020 [62] Relations among the disjoint and distant joints GCN 85.8 - - -
H. Wang., 2018 [52] Joints, Edges, Surfaces BiLSTM 79.5 - 86.1 -
X. Chen., 2015 [63] Normalized 3D joint positions ELM - 96.7 - -
L. Wang., 2018 [64] Joints LSTM 80.9 - - -
Y. Xu., 2018 [65] Joints 1D CNN 85.1 - - -
S. Zhang., 2018 [46] 10 Different geometric features LSTM 76.43 - - -
J. Liu., 2018 [66] Tree structure joints LSTM 69.2 - - -
Skeleton feature Maps
C. Li., 2017 [21] Joint Distance Maps CNN 76.2 - - -
E. K. Kumar., 2018 [44] Joint Angular maps CF-ResNet CNN 75.63 81.93 76.23 -
P. Wang., 2018 [47] Joint Trajectory Maps CNN 76.32 - - -
L. Jian., 2019 [67] Joint Location, Velocity Maps Inception-ResNet CNN 81.3 - - -
T. K. K. Maddala., 2019 [23] | Joint Angular Displacement Maps CNN - 89.95 89.56 -
J. Ren., 2018 [68] Displacement of Joints, Angles & Distance Maps | CNN 76.1 - - -
Bo Li., 2017 [69] Translation-Scale Invariant Maps CNN 85.02 - - -
S. Laraba., 2019 [70] Joint coordinates Maps CNN 82.07 - - -
K. V. Prasad., 2019 [71] Transformed Joint Location Maps CNN 82.37 - - -
C. Caetano., 2019 [72] Tree Structure Reference Joints Maps CNN 733 - - -
M. Liu., 2017 [73] Motion Enhancement Maps CNN 80.03 - - -
S. Laraba., 2017 [70] Motion Sequences Maps CNN 74.27 83.33 - -
V.-N. Hoang., 2019 [53] X-Z channel Maps, Velocity Maps CNN-LSTM 76.8 - - -
Our Proposed Radial basis kernel on joint distances MRCNNSA 87.67 88.13 90.86 87.34
Our Proposed ;ﬁﬁtﬁif:nlé:fﬁ]fé;%k&“d on MRCNNSA 92.08 9256 | 95.43 91.71

increasing the dynamic range of pixels in the colour coded
3D joint features would certainly improve the classifiers
performance.

On the other hand, it can further be improved by
attention-based learning systems. Finally, from the below
comparison tables, we value the proposed method at a 6.24%
higher than the current state — of — the — arts with respect
to OA metrics. Now, the ultimate question is regarding the
placement of multi resolution attention network placement.
Till now it mixed at resolution 32 into the mid classification
steam in MECNNSA. Does it get better or worse if its position
gets shifted to 64 or 16. This study is presented as an ablation
study in the final section of this work.

G. ABLATION EXPERIMENTS ON ATTENTION MODULE'’S
LOCATION AND NUMBER

The MRCNNSA is built on a spatial attention at a specific
resolution. Till now it has been projected as 32 which
has been giving good results. Its possible that changing
the location of the multi resolution spatial attention block
forward or backward can impact the overall performance
of the classifier. Moreover, it is interesting to evaluate the
model’s performance with the increasing number of multi
resolution spatial attention blocks in parallel across the
backbone classifier. Consequently, this ablation study focuses
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on estimating the performance of the backbone architecture
based on the requirement of the number of attention blocks
and their position.

1) THE EFFECT OF LOCATION AND RESOLUTION ON
MRCNNSA PERFORMANCE

Ilustrations on the results obtained in the section IV-F
concludes that the proposed multi resolution based spatial
attention provides features that boosts recognition accuracy
of the classifier. It would be interesting to identify the
resolution greater or lesser than 32 at a different location
in the backbone Rj3 stream of MRCNNSA of Figure.8.
Experiments were conducted by selecting various resolutions
in the fusion network of Figure.9 and the reaction results
are captured using OA metric on KL3DISL dataset. All
the mapped features were used for experimentation with
three backbone learning architectures shown in Table.8. The
primary evidence on feature maps shows that JMAMs are
better. Secondly, the resolution other than 32 has shown a
downfall in OA of the backbone even for standard models
like ResNet50 and VGG-16. The smaller resolutions 16 and
8 were unable to capture the full dynamic range of pixels
in the colour coded feature maps. Increasing the image
resolution to 64 and 128 for fusion has improved the receptive
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TABLE 8. Ablation experiments on MRCNNSA with JMAMs for spatial attention location selection strategies.

Features Considered/ | Location of

Backbone Networks SA@Resolution No Attention JDMs JAMs JADMs JVMs JTM JPM JIMAMs | jg2gMDMs
8 0.5987 0.6585 | 0.7696 | 0.6856 | 0.7454 | 0.6736 | 0.7204 0.8461 0.8247
16 0.5567 0.7065 | 0.7218 | 0.6446 | 0.6822 | 0.6264 | 0.6574 0.8234 0.8659
MRCNNSA 32 0.6103 0.7147 | 0.7418 | 0.7725 | 0.7597 | 0.6754 | 0.7569 0.8734 0.9048
64 0.5812 0.6601 | 0.7194 | 0.7358 | 0.5706 | 0.6552 | 0.6625 0.8584 0.8172
128 0.5737 0.6912 | 0.7303 | 0.7114 0.598 0.6327 | 0.7166 0.8168 0.8635
8 0.5109 0.5795 | 0.6654 | 0.7189 | 0.6508 | 0.5749 | 0.5967 0.7822 0.8267
16 0.4795 0.6486 | 0.7031 0.7009 | 0.6954 [ 0.5395 [ 0.7287 0.7531 0.8049
ResNet50 32 0.5564 0.6951 | 0.7204 | 0.7349 | 0.7283 | 0.6128 | 0.7218 0.8481 0.8817
64 0.4781 0.5943 | 0.6719 | 0.7132 | 0.6517 | 0.5236 | 0.7298 0.8451 0.8121
128 0.5214 0.6668 | 0.7041 0.7348 | 0.7061 | 0.5809 | 0.6481 0.8381 0.8023
8 0.3864 0.4719 | 0.4852 | 0.4969 | 0.4854 | 0.4348 | 0.4888 0.6122 0.6952
16 04112 0.4732 | 0.4708 | 0.5238 | 0.4812 | 0.4508 | 0.4918 0.6032 0.6427
VGG-16 32 0.4681 0.5682 | 0.5928 | 0.6018 | 0.5906 | 0.5096 | 0.5976 0.6942 0.7468
64 0.4107 0.4659 | 0.4704 | 0.5364 | 0.4886 | 0.4032 | 0.4344 0.5628 0.6321
128 0.4119 0.4548 | 0.4708 | 0.5132 | 0.5278 | 0.4424 | 0.4888 0.6212 0.6436
TABLE 9. Effective attention fusion strategies for maximizing OA of MRCNNSA on KL3DISL dataset.
. Location of Numbe_r of
Features Considered . Attention JDMs JAMs JADMs JVMs JT™M JPM JMAMs
SA @Resolution
Modules
128-64 2 0.6474 | 0.6719 0.6998 0.6882 0.6118 0.6856 0.7912
128-64-32 3 0.7147 0.7418 0.7725 0.7597 0.6754 | 0.7569 0.8734
128-64-32-16 4 0.7004 | 0.7270 0.7571 0.7445 0.6619 0.7418 0.8559
128-64-32-16-8 5 0.6761 0.7017 0.7308 0.7187 0.6389 0.7160 0.8262
128-64-32-8 4 0.6864 | 0.7124 0.7419 0.7296 0.6687 0.7269 0.8388
128-64-16-8 4 0.6707 0.6961 0.7249 0.7129 0.6338 0.7103 0.8196
MRCNNSA 64-32-16-8 4 0.6633 0.6885 0.7170 0.7051 0.6268 0.7025 0.8106
128-64-32-8 4 0.6829 0.7138 0.7381 0.7259 0.6453 0.7232 0.8345
32-16-8 3 0.6394 | 0.6637 0.6911 0.6797 0.6043 0.6772 0.7814
64-32-16 3 0.6494 | 0.6740 0.7019 0.6903 0.6137 0.6877 0.7936
16-8 2 0.5078 0.5270 0.5489 0.5398 0.4799 0.5378 0.6205
32-8 2 0.5485 0.5693 0.5929 0.5830 | 0.5183 0.5809 0.6703
64-8 2 0.5879 0.6102 0.6355 0.6250 | 0.5556 | 0.6227 0.7185
128-8 2 0.6196 | 0.6431 0.6697 0.6586 0.5855 0.6562 0.7572

fields of the layers, but this has penalized the OA due
to poor encapsulation of local pixel patterns in the maps.
However, most of the maps and backbones have recorded
highest possible OA at a fusion resolution of 32 by punishing
the maximum similarity classes and thus improving their
discriminating abilities. At this resolution, both the low-
and high-resolution patterns are preserved during fusion
process. Obviously, the results show a dip in OA of around
18% in any of the backbone networks when the there is
no attention. Attention networks were extensively compared
in Table.2 and the metrics show that multi resolution
attention maps enhance OA of the moderately designed
classifiers.

2) THE IMPACT OF NUMBER OF MULTI RESOLUTION
ATTENTION NETWORKS ON CLASSIFIER OA

Undoubtedly, the mutli resolution fusion maps at 32 have
improved the OA of the 3D sign language recognition.
The improvement is around 7 to 8% from the previous
methods. It would be interesting to verify the multi resolution
fusions at more than one location. In the previous study,
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we selected only one location and resolution for fusion in
the backbone networks. Here, we select multiple locations
and resolutions for fusion. For example, resolution 64 after
the 2 convolutional layer along with the regular fusion
across 3™ layer and a resolution of 16 across the 4 in the
backbone network. Accordingly, all possible combinations
were selected during training and testing of the backbone
classifiers. The results are presented in Table.9. The listed
values in the Table.9 concludes that the early fusions
strategies across the first two or middle three convolutional
layers has greater impact on the overall performance of the
classifier when compared to other combinations. This is due
to remarkable structural integrity in pixel patterns that is
prominent at higher and middle image resolutions. Mid-level
feature fusion at multiple locations has certainly increased the
OA of the classifier but has also increased the computation
time and complexity. Arguably, the OA increase is not highly
significant when compared to the increase in complexity of
the classifier. The experiments were executed on NVIDIA
8GB GTX1070 graphics processor with 16GB DDR4 RAM.
The results show the effectiveness of using the proposed joint
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movement affinity maps (JMAMs) and a spatial resolution
based attention model for 3D skeletal sign (action) language
recognition tasks.

V. CONCLUSION

The current generation of spatiotemporal 3D Joint fea-
tures for action or sign language recognition were flaged
ineffective due to inconsistent motion pixel distributions.
Interestingly this work discovers JMAMs for mapping 3D
joint motions to color coded features trained on MRCNNSA
network. The JMAMs guarantees a positive proportionality
mapping of 3D motion information into color coded images
which have non uniform hight to width ratios. Traditional
single resolution transformations on color coded maps failed
to classify highly correlated features between labels. The
MRCNNSA develops consistent features for classification
across multiple resolutions that represent both local and
global pixel variations efficiently. The joint group to group
motion directed JIMAMs (jg2gMDMs) were also trained and
tested for SLR on MRCNNSA model. The KL3DSL trained
MRCNNSA classifies 3D signs with an OA of 87.34% on
JMAMs and 91.71% jg2gMDMs, which is 5% higher
than previous works respectively. The results on 3D human
action datasets have proved that the JMAMs have high 3D
motion consistency for transferring them in to color codings.
Moreover, the MRCNNSA cohesiveness with JMAMSs has
improved the impact of 3D sign language recognition system.
In future, the proposed IMAMs computed from estimated
pose can be correlated with our 3D model poses, which are
then inferenced on trained MRCNNSA for real time sign
language translator.
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