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ABSTRACT Even with a plenty amount of normal samples, anomaly detection has been considered as a
challenging machine learning task due to its one-class nature, i.e., the lack of anomalous samples in training
time. It is only recently that a few-shot regime of anomaly detection became feasible in this regard, e.g., with
a help from large vision-language pre-trained models such as CLIP, despite its wide applicability. In this
paper, we explore the potential of large text-to-image generative models in performing few-shot industrial
anomaly detection. Specifically, recent text-to-image models have shown unprecedented ability to generalize
from few images to extract their common and unique concepts, and even encode them into a textual token
to ‘‘personalize’’ the model: so-called textual inversion. Here, we question whether this personalization is
specific enough to discriminate the given images from their potential anomalies, which are often, e.g., open-
ended, local, and hard-to-detect. We observe that standard textual inversion exhibits a weaker understanding
in localized details within objects, which is not enough for detecting industrial anomalies accurately. Thus,
we explore the utilization of model personalization to address anomaly detection and propose Anomaly
Detection via Personalization (ADP). ADP enables extracting fine-grained local details shared in the images
with simple-yet an effective regularization scheme from the zero-shot transferability of CLIP. We also propose
a self-tuning scheme to further optimize the performance of our detection pipeline, leveraging synthetic data
generated from the personalized generative model. Our experiments show that the proposed inversion scheme
could achieve state-of-the-art results on two industrial anomaly benchmarks, MVTec-AD and VisA, in the
regime of few normal samples.

INDEX TERMS Industrial anomaly detection, model personalization, text-to-image diffusion model, vision-
language model.

I. INTRODUCTION
The ability to identify unusual patterns in images is a natural
capability of human cognition. Even when provided with only
a small number of normal examples, humans can adapt to
discriminate abnormality from the examples, whereas this
remains a challenging task in the field of computer vision.
Anomaly detection (AD), where the task is formulated, faces
fundamental challenges due to several reasons. Firstly, objects
and their defects can vary widely in terms of color, texture,
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and size across numerous industrial domains: e.g., aerospace,
automobiles, pharmaceuticals, and electronics. Besides, some
types of anomaly can be fine-grained which has only little
differences between normal and anomalous data while other
can be coarse-grained. Secondly, obtaining and specifying the
expected variations in defects is limited and costly in real-
world situations.

Upon these fundamental challenges, significant efforts
have been made to approach AD: especially in one-class,
semi-supervised setting [1], [2], [3], [4], [5], [6], [7], or in
self-supervised setting [8], to name a few. Intuitively, the
major technical bottleneck here is to learn features expressive

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 11035

https://orcid.org/0000-0001-9145-5876
https://orcid.org/0000-0002-4058-5774
https://orcid.org/0009-0004-5959-9908
https://orcid.org/0009-0007-6053-6332
https://orcid.org/0000-0002-3394-3422
https://orcid.org/0000-0003-4313-4669
https://orcid.org/0000-0001-9643-1099


S. Kwak et al.: Few-Shot Anomaly Detection via Personalization

FIGURE 1. Overview of Anomaly Detection via Personalization (ADP). In Step 1, normal concepts are converted into c∗
n by guiding the normal prompt

incorporating cn to be closer to the given images (Section IV-A). In Step 2, anomalous concepts are converted into c∗
a by additionally distancing

pseudo-anomalies to the normal prompt incorporating ca (Section IV-B). In Step 3, by utilizing CLIP, the use of c∗
n and c∗

a are further tuned with synthesized
pseudo-anomalies (Section IV-C).

enough to encode inter-class variability without knowing
anomalous data, while maintaining intra-class variability
induced from normal data. To overcome this, there have been
two representative approaches: (a) feature-based approaches
[2], [3], [6], [9], [10], [11], [12] leverage an external, pre-
trained feature extractor, e.g., on ImageNet, to retrieve its
richer features in modeling AD; and (b) reconstruction-based
approaches [5], [7], [13], [14], [15] instead model a generative
model to extract faithful features in the normal data available,
in an attempt to improve the sensitivity of features. With
hundreds to thousands of normal images, such approaches
have shown effectiveness to achieve high-enough detection
performances, e.g., on existing industrial anomaly detection
benchmarks [16], [17].
Anomaly detection with limited data, e.g., with only few

normal images, has been still challenging even until recently.
The cost-efficiency of a language-driven prior has emerged
as an effective way to mitigate the challenge, particularly
since CLIP [18], a recent large vision-language model. For
example, Jeong et al. [19] have demonstrated state-of-the-art
performances in few-shot AD by incorporating a ‘‘zero-shot’’,
language-driven AD pipeline from CLIP, e.g., by additionally
comparing similarities to words ‘‘normal’’ vs. ‘‘damaged’’ for
a given image: a similar exploration has been made in the
context of novelty detection (or so-called out-of-distribution
detection) by Ming et al. [20]. Although it is evident that
language can be a useful prior for AD, e.g., to clarify the
vague concepts of abnormality by supplying label words
(e.g., bottle, capsule, etc.), the current interface of ‘‘hand-
crafting’’ language prompts becomes a limiting bottleneck as
the given AD task gets more specific to the (few-shot) data:
and accordingly as it gets ‘‘harder-to-describe’’. In turn, it is
observed that the performance of current language-based AD
is highly dependent by the prompt design, which is heuristic in

nature and requires a careful tuning by humans. For example,
Jeong et al. [19] indeed assumed the knowledge of class labels
as text words in performing their zero-/few-shot AD.
Contribution: In this paper, we propose a new design of

language-based AD, coined Anomaly Detection via Personal-
ization (ADP), which leverages model personalization [21],
[22], [23] that is recently enabled by large-scale text-to-image
generative models [24], [25]. Specifically, recent text-to-image
generative models have shown capabilities to extract detailed
concepts shared across a few given images, and encode them
as a textual token to compose natural language sentences
associated with the generative model: it can ‘‘personalize’’
the model to generate images containing the concepts. Here,
we focus on exploring whether this new ability of textual
inversion could replace the current brittleness in crafting few-
shot, language-based AD in practice. We first observe that
the current objective for textual inversion (in the context of
generative modeling) may not be specific enough to perform
accurate few-shot AD. Motivated by this, we propose a novel
textual inversion scheme to improve its specificity, based on a
richer guidance induced by CLIP [18]. We develop a two-step
inversion scheme designed for general AD: the former to
personalize from normal samples, and the latter to refine itself
based on the personalized model, particularly leveraging the
‘‘synthetic’’ anomaly samples that the model can generate.
In this way, the inversion can better capture fine-grained visual
semantics which is demanded to perform an accurate AD.
We also propose to re-utilize the anomaly synthesis scheme
for a self-tuning of our AD model, which is a unique ability
to our framework.

With the proposed method, we tackle few-normal-shot AD,
viz., 2 to 16, an under-explored setup due to its difficulty [8],
[26], [27]. We summarize our main contributions in what
follows:
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• We introduce a novel method to capture unique concepts
of anomalies into the token, which improves few-shot
AD.

• Using the anomaly-aware token, we show that we can
effectively synthesize pseudo-anomalies with pre-trained
text-to-image diffusion model.

• We propose a simple yet effective self-tuning method
to utilize the tokens in the pre-trained vision-language
model for AD.

• Through an extensive evaluation on MVTec-AD and
VisA, we report new state-of-the-art results on few-shot
AD, e.g., 97.1% on MVTec-AD and 89.7% on VisA
in AUROC in 16-shot AD, notably even without text
descriptions on the object labels as assumed in prior
art [19].

II. RELATED WORK
A. ANOMALY DETECTION
In the field of anomaly detection, the focus has been on
one-class methods that utilize a large amount of normal
images [2], [3], [4], [7], [10], [28]. Specifically, in industrial
anomaly detection, which requires to learn unique nominal
features, recent works suggest utilizing pre-trained models
with external image dataset [2], [3]. However, these existing
approaches encounter limitations when applied to specific
applications due to the challenges posed by the full-normal-
shot setup in MVTec-AD benchmark [16]. Recent studies [8],
[26] have investigated few-shot setups by employing augmen-
tation techniques to expand the small support set, leading
to enhanced modeling of normality. Another approach,
RegAD [27], introduces the concept of model re-using which
pre-trains an object-agnostic registration network with diverse
images to establish normality for unseen objects. Additionally,
utilizing pre-trained vision-language model to extract the
prior knowledge has shown remarkable improvement in few-
normal-shot anomaly detection [19]. The few-shot setups in
anomaly detection is still under-explored and has room for
improvement.

B. TEXT-TO-IMAGE DIFFUSION MODELS
At a high level, diffusion models [29], [30], class of
generative models, learn the target distribution pdata(x) by
learning a gradual denoising process from Gaussian prior
distribution to reach pdata(x). The field of diffusion models
has seen a wide range of applications, including text-to-
image generation. Text-to-image diffusion models are able
to generate images conditioned by text prompts [24], [25],
[31], which show promising result in image synthesis.
Among them, one notable approach is Stable Diffusion [24],
which is a popular variant of latent diffusion models
(LDMs) [24]. This is trained on extremely large-scale
data, have demonstrated remarkable generalization ability.
To utilize the strong generalizability in synthesizing images,
we incorporate Stable Diffusion to address anomaly detection
task.

C. PERSONALIZATION OF TEXT-TO-IMAGE MODELS
With the outstanding scalability of pre-trained text-to-image
diffusion models, recent works make great efforts to generate
specific instances like personal animals or rare categories.
To inject the new concept to the pre-trained models while
preserving the previous knowledge, recent works suggest
several approaches. This includes fine-tuning only subset of
the parameters [23], fine-tuning with the method to preserve
prior knowledge [22] and introducing and optimizing a word
vector for the new concept [21]. In this way, models excel
at integrating new information into their domain without
forgetting the prior or overfitting to a small subset of
training images. Motivated from this, we suggest utilizing
model personalization in identifying anomalies, which enables
addressing few-shot setting in anomaly detection task.

III. PRELIMINARIES
A. PROBLEM SETUP
Anomaly detection (AD) aims to determine the presence of
‘‘abnormality’’ given an image x ∈ X . We formulate AD
as a binary classification problem X → {0, 1}, where ‘‘1’’
indicates the presence of abnormality. Due to the lack of
anomalous samples in practice, AD is often assumed to be
one-class, i.e., its training data D := {(xi, 0)}Ki=1 consists of
only normal (or negative) samples. In this work, we follow this
one-class protocol, particularly focusing on extreme few-shot
scenarios where the training data only consists of K = 2 to
16 normal images. It is also a practice to cast AD as a
problem of assigning anomaly score rather than a direct
classification, again due to the high-imbalance in data: the
actual classification in practice is done by thresholding the
score.
To solve this extreme few-shot AD task, we utilize vision-

language foundation models, a contrastive encoder (e.g.,
CLIP [18]) and a diffusion model (e.g., LDMs [24]), pre-
trained on external datasets. Our approach is widely applicable
as the foundation models have shown to be generalizable
across various downstream tasks and they are publicly
available. We will describe the vision-language contrastive
encoder and diffusionmodel in Section III-B and Section III-C,
respectively.

B. CONTRASTIVE LANGUAGE IMAGE PRE-TRAINING
Contrastive language image pre-training (CLIP) [18] is a large-
scale pre-training method that offers a joint vision-language
representation by training an image encoder f (·) and a text
encoder g(·) using contrastive learning [32], [33] with the
million-scale image-text pairs from the web. One attractive
ability of CLIP is zero-shot transfer, especially for image
classification. To be specific, given a set of labels C =

{c1, . . . , cN }, an image x can be classified by the following
probability:

PCLIP(ci|x, C, T ) :=
exp (sim (f (x),G(ci)) /τ)∑N
j=1 exp

(
sim

(
f (x),G(cj)

)
/τ

) ,

(1)
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where G(ci) =
1

|T |

∑
T∈T g(T (ci)), sim(·, ·) is the cosine

similarity, τ > 0 is the temperature hyperparameter, and
T ∈ T is a prompt template attached to a label c such as ‘‘a
photo of a [c]’’. Note that usingmultiple templates, i.e.,
template ensemble, can improve the zero-shot classification
accuracy [18].

C. TEXTUAL INVERSION
Textual inversion [21] aims to learn the concept c, i.e., a
new pseudo-word describing the common appearance of few
images, by directly optimizing the corresponding embedding
vector in LDM [24]’s text embedding space which we denote
by v. Then, the concept can be composed into new sentences
like any other word for a personalized generation, i.e.,
to sample from the distribution p(x|c). To this end, we use a pre-
trained text-to-image latent diffusion model [24], pt2i(x|s),
where s is a conditioning text. Given a set of images {xi}Ki=1,
the textual inversion finds their common concept c∗ by solving
the following optimization problem:

v∗ := argmax
v

K∑
i=1

∑
T∈T

log pt2i(xi|T (c)), (2)

where T is a set of prompt templates. After textual inversion,
one can generate a new image of the concept c∗ with a template
T ∈ T , i.e., x ∼ pt2i(·|T (c∗)). Gal et al. [21] found that
the concept is well-optimized with only a few images, e.g.,
K = 4. In addition, one can use the text embedding vector of
concept on the CLIP representation space by utilizing CLIP
text encoder g.

IV. ANOMALY DETECTION VIA PERSONALIZATION
In this section, we introduce Anomaly Detection via Person-
alization (ADP), a novel framework for few-shot anomaly
detection utilizing the ground knowledge in vision-language
foundation models. To be specific, ADP finds the concept
word that can (i) generate both normal and abnormal images
via textual inversion and also (ii) detect the abnormality via
CLIP zero-shot classification. In detecting abnormality, ADP
combines the complementary prediction by incorporating both
concept word and multi-level image features.
To perform anomaly detection (i.e., 2-way classification)

without label information, we utilize normal and anomalous
state templates, Sn and Sa, respectively, for a concept word c,
following Jeong et al. [19]:

Sn(c) := ‘‘flawless [c]’’, Sa(c) := ‘‘damaged [c]’’.

To condition the generation and utilize CLIP zero-shot
transferability as regularization scheme, we randomly select
neutral context texts following Gal et al. [21]. These contain
prompts of the form ‘‘a photo of a c’’, ‘‘a rendering of a c’’,
etc, by attaching c to the selected prompt template T ∈ T .
The full list of templates is provided in the Appendix A.

Given a set of a few normal images {xi}Ki=1, the state
templates Sn and Sa, and a set of prompt templates T , ADP
follows the following procedure:

Step 1. Find the normal-aware concept c∗n by guiding normal
images to be close to the normal state prompts
(Section IV-A).

Step 2. Find the anomaly-aware concept c∗
a by guiding

pseudo-anomalous images to put distance to the
normal state prompts (Section IV-B).

Step 3. Perform anomaly detection using the concepts, c∗
n

and c∗
a (Section IV-C).

A. NORMAL-AWARE CONCEPT LEARNING
In normal-aware concept learning, we aim to capture the
visual normal concept c∗

n from the normal images {xi}Ki=1.
To this end, in addition to textual inversion, we make
embeddings of the given normal images similar with that
of the normal state prompt T (Sn(c)), while dissimilar with
that of the anomalous state prompt T (Sa(c)). Normal state
prompt T (Sn(c)) and anomalous state prompt T (Sa(c))
can be obtained with attaching concept c to each state
template following randomly selected prompt template,
respectively. One example for T (Sn(c)) and T (Sa(c)) are ‘‘a
photo of a flawless [c]’’ and ‘‘a photo of a
damaged [c]’’. Here, we directly optimize the embedding
of concept as described in Section III-C. Formally, the
normal-aware concept c∗

n can be obtained by solving the
following optimization problem:

v∗n = argmax
v
Jn(c; {xi}Ki=1)

:= argmax
v

K∑
i=1

∑
T∈T

log pt2i(xi|T (Sn(c)))

+ αPCLIP(Sn(c)|xi, C(c), T ), (3)

where C(c) = {Sn(c), Sa(c)} is the set of normal and anomalous
state prompts of the concept c and α is a hyperparameter.
We initialize the embedding of concept c as that of the word
‘‘object’’ which is applicable to regardless of the domain
and dataset.

B. ANOMALY-AWARE CONCEPT LEARNING
We here aim to further capture the ‘‘anomalous’’ concept c∗

a
by integrating synthetic anomalous images. To be specific,
we further make embeddings of synthetic anomalous images
dissimilar with that of the normal state prompt T (Sn(c)),
while maintaining the visual normal concept of the normal
images {xi}Ki=1. To this end, we first synthesize pseudo-
anomalous images via text-guided image manipulation [34]
using the text-to-image diffusion model pt2i(x|s). We here
use a normal image xi as a reference image and ‘‘a photo
with damage’’ or ‘‘a photo of an object with
damage’’ as a conditioning text s. To give more diver-
sity, the manipulated images are further augmented with
random resizing and cropping. We denote {x̃j}Lj=1 as syn-
thesized pseudo-anomalous images (i.e., pseudo-anomalies).
The examples of pseudo-anomalies are illustrated in the
Fig. 3.
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In addition to normal-aware concept learning, we put
distance between the pseudo-anomalous images {x̃j}Lj=1
and the normal state prompt T (Sn(c)). Formally, the
anomaly-aware concept c∗

a can be obtained by solving the
following optimization problem:

v∗a = argmax
v
Ja(c; {xi}, {x̃j})

:= argmax
v
Jn(c; {xi})

− α

L∑
j=1

(
PCLIP(Sn(c)|x̃j, C(c), T ) − γ

)+
, (4)

where (·)+ := max(·, 0), C(c) = {Sn(c), Sa(c)}, α and γ are
hyperparameters. We initialize the embedding of concept c as
that of the normal-aware concept c∗n described in Section IV-A.
Since c∗n captures high-level visual features of normal images,
initializing the concept with the normal-aware helps learning
fine-grained anomalous features.

C. ANOMALY DETECTION WITH LEARNED CONCEPTS
We now introduce a simple yet effective detection scheme
using the learned concepts. At a high-level, our scheme
first extracts CLIP text embeddings of all available prompt
state templates with the learned concepts and then mix them
to construct 2-way classification prototypes via self-tuning.
Given a test image, we detect whether it is in-distribution or
not using its CLIP image embedding.

1) SELF-TUNING
To utilize both concepts, wemix the concepts using importance
weights obtained by a pseudo-validation set, which consists of
the normal images {xi}Ki=1 and new pseudo-anomalous images
{x̃j}L

′

j=1 synthesized by conditioning texts, ‘‘a photo of
a damaged [c∗

a]’’ and ‘‘a photo of a [c∗
a] with

damage’’, as described in Section IV-B. The importance
weight w(c) of each concept c can be computed by evaluating
CLIP zero-shot classification as follows:

w(c) :=
1
K

K∑
i=1

PCLIP(Sn(c)|xi, C(c), T )

+
1
L ′

L ′∑
j=1

PCLIP(Sa(c)|x̃j, C(c), T ). (5)

Computing importance weight w(c) involves determining
the optimal ratio for combining the concepts in performing
anomaly detection based on CLIP similarity between images
and prompts containing each concept. We then compute the
weighted average of the CLIP text embeddings to construct the
classification prototype vectors using the CLIP text encoder g
as follows:

ps :=
1

|T |

∑
T∈T

w(c∗
n) · g(T (Ss(c∗

n))) + w(c∗
a) · g(T (Ss(c∗

a)))
w(c∗

n) + w(c∗
a)

.

(6)

2) ANOMALY DETECTION
Given a test image x, our detection score ADP(x) is formally
defined by

ADP(x) :=
exp

(
sim(f (x),pn)/τ

)
exp

(
sim(f (x),pn)/τ

)
+exp

(
sim(f (x),pa)/τ

) .

(7)

To further improve detection performance, we utilize
visual features (i.e., feature maps) using the CLIP image
encoder to perform complementary prediction from both
language-guided and visual based approaches following
Jeong et al. [19]. Specifically, we consider reference
association module, which enables the storage and retrieval
of memory features R computed from a given set of normal
images {xi}Ki=1. We further define the feature similarity score
by the cosine-similarity to the nearest features in R. For a
given dense feature F ∈ Rh×w×d obtained from a test image,
the score is defined as follows:

Mij := min
r∈R

1
2
(1 − ⟨Fij, r⟩). (8)

We incorporate three different features are incorporated:
small-scale feature FWs, mid-scale feature FWm, and penulti-
mate featureFP. By applying the reference associationmodule,
we obtain three reference memories: RW

s, R
W
m, and RP. Then

we compute the average of multi-scale prediction (8), and it
is given as:

MW
:=

1
3
(MP

+ MW
s + MW

m). (9)

Subsequently, the maximum value of MW is integrated into
the ADP anomaly detection score (7). This score captures
complementary information derived from the spatial features
of the few-shot references. The complete form of ADP
anomaly detection (ADPad ) is as follows:

ADP(x)ad :=
1
2

(
ADP(x) + max

ij
MW

ij

)
. (10)

Remark: (1) Our work differs from (and is complementary
to) textual inversion by enabling AD with learned concepts
rather than generating personalized images. We show that
guidance induced from CLIP plays a unique role in converting
image features to the concept which leverages aligning
anomalous features into language — improving the separa-
bility between normal and anomalous data. (2) Moreover,
ADP is different from WinCLIP [19] in how to incorporate
few-shot images into text prompt templates. ADP fully utilizes
the few-shot images to extract a shared (language) concept
through the personalization technique which allows us to
construct meaningful text prompts ‘‘without ground-truth
labels’’.

V. EXPERIMENTS
We conduct an extensive evaluation on the proposed method,
ADP, on MVTec-AD [16] and VisA [17] benchmarks, two
popular datasets in AD capturing real-world scenarios of
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TABLE 1. Anomaly detection (AD) performance on MVTec-AD and VisA benchmarks for 2-shot. We report the mean AUROC (%) and standard deviation over
three random seeds for each measurement. The results of SPADE, PaDiM and PatchCore are from those reported by Jeong et al. [19].

TABLE 2. Class-wise comparison of anomaly detection (AD) performance on MVTec-AD benchmark on 4-, 8-, and 16- shots. We report the mean AUROC (%)
and standard deviation over three random seeds for each measurement, which highest AUROC (%) for each class is marked as bold.

industrial anomaly detection. In particular, we mainly evaluate
under few-shot regimes, i.e., by assuming K -shot of normal
images for each task. The detailed experimental setups,
e.g., hyperparameters, preprocessing, are provided in the
Appendix A.

A. DATASETS
MVTec-AD comprises 15 sub-datasets with a total of 5,354
images, where 1,725 of which are in the test set. 15 sub-
datasets are further divided into 10 object categories and
5 texture categories. VisA consists of 12 sub-datasets with
10,821 images in total. Anomalous images in VisA contain
a variety of imperfections, including surface defects and
structural defects. We follow the index given by Zou et al.
[17] for splitting the VisA dataset into train and test sets.

B. IMPLEMENTATION DETAILS
Throughout our experiments, we use Stable Diffusion
v2-11 as the backbone text-to-image model, which uses the
CLIP text encoder for conditioning: so that compatible with
our framework which utilizes CLIP as well. We use the
OpenCLIP implementation2 of CLIP ViT-H/14 model trained
on the LAION-2B English subset of LAION-5B, following
the choice of the Stable Diffusion v2-1 model we are based
on. We use our re-implementation of WinCLIP [19] for our

1https://github.com/Stability-AI/stablediffusion
2https://github.com/openai/CLIP

experiments, which we have confirmed the reproducibility of
the results.

C. RESULTS
We consider a variety of existing methods as baselines
for our comparison: specifically, we consider SPADE [2],
PaDiM [3], PatchCore [6], and the current state-of-the-
art of WinCLIP+ [19] in few-shot AD setups. For each
setup, we report two versions of our method: (a) ADP,
the default version introduced in (7) that does not relying
on specific label texts (e.g., ‘‘transistor’’) as considered
in WinCLIP+ [19]; in addition, we also report (b) ADPℓ

which also incorporate the knowledge of label texts. To be
specific, ADPℓ utilizes the class label ℓ alongside the two
learned concepts at computing importance weight (5) and
constructing classification prototype vectors (6). We use Area
Under Receiver Operator Characteristic-curve (AUROC) as
the major evaluation metric. We compare the class-average
AUROC on both MVTec-AD and VisA, as well as the average
AUROC across the classes. We report our results with standard
deviation across 3 different random seeds.
In Table 1, we report the overall performances of our

methods, ‘‘ADP’’ and ‘‘ADPℓ’’, for 2-shot AD compared to
baselines on MVTec-AD and VisA:3 ADP and ADPℓ signifi-
cantly outperform all the baselines considered, including the
state-of-the-art results of WinCLIP+ [19] on both datasets.
Specifically, ADPℓ outperforms PatchCore by a margin of

3We report the detailed results of Table 1 in the Appendix B.
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TABLE 3. Class-wise comparison of anomaly detection (AD) performance on VisA benchmark on 4-, 8-, and 16- shots. We report the mean AUROC (%) and
standard deviation over three random seeds for each measurement, which highest AUROC (%) for each class is marked as bold.

FIGURE 2. Comparison of AUROC (%) on MVTec-AD benchmark. The results
of SPADE, PaDiM and PatchCore are from those reported by Roth et al. [6],
viz., on 2-,5-,10- and 16- shots.

9.1% on MVTec-AD and 5.3% on VisA in AUROC, which
has been the state-of-the-art in full-shot anomaly detection
and that was a state-of-the-art approach even in few-shot AD
before WinCLIP+.
Table 2 and 3 further compare the methods in 4-, 8-, and

16-shot setups of MVTec-AD and VisA, respectively, and
Fig. 2 compares the performance trends in plots. Here, in the
tables we report class-wise AUROC across all the object
classes of the benchmarks.4 Along a similar trend with
the 2-shot results, ADP and ADPℓ could still significantly
and consistently outperform the state-of-the-art results of
WinCLIP+ in all the setups considered. On both MVTec-AD
and VisA, we observe that our approach of ADP exhibits
a wider performance gap over WinCLIP+ as more shots
are given: specifically, on the 4-shot MVTec-AD, ADP
outperforms WinCLIP+ by 1.7% in AUROC, while it does
by 2.3% on the 16-shot scenario. Similarly, in the case of
VisA, ADP improves over WinCLIP+ by 3.1% in AUROC on
4-shot, while it does by 4.7% on the 16-shot setup. Regarding

4We report the detailed results of Table 2 and Table 3 in the Appendix B.

TABLE 4. Comparison of AUROC (%) with naïve textual inversion on 4-shot.
Naïve textual inversion is denoted as ‘‘TI’’.

TABLE 5. Comparison of AUROC (%) across the use of learned concepts
and labels for 2- and 8-shot.

the performance of ADPℓ over ADP: although the knowledge
of label texts in ADPℓ does helpful to improve our results on
low-shot setups, e.g., 4-shot, we observe that ADP gradually
matches the performance with ADPℓ having with more shots:
in the 16-shot scenario of MVTec-AD, ADP even shows a
consistently better performances over ADPℓ when viewed in
class-wise, achieving 97.1% in AUROC.

D. ABLATION STUDY
1) COMPARISON WITH TEXTUAL INVERSION
In Table 4, we compare our proposed ADP with the standard
textual inversion [21] in the context of AD. Specifically,
we compare our results on 4-shot MVTec-AD and VisA with
an ablation that the steps for concept optimization are replaced
by the standard version of textual inversion (as reported by
‘‘TI’’ in Table 4). Overall, we observe that converting only
via textual inversion, e.g., encoding tokens simply through the
reconstruction loss, falls short specifically in few-shot AD. For
example, on the VisA dataset we observe that ADP improves
upon the original textual inversion by 9.2% in AUROC. These
results highlight the suitability of ADP to effectively capture
the concepts related to abnormality into tokens through an
additional guidance via CLIP.
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FIGURE 3. Visualization of (a) normal, (b) anomaly and (c-d) pseudo anomalies synthesized via text-guided image manipulation [34]. (c) is conditioned
with simple text prompt, e.g., ‘‘a photo with damage’’, and (d) is conditioned with prompt incorporating concept c∗

a, e.g., ‘‘a photo of a c∗
a with damage’’.

(d) shows that incorporating c∗
a in the conditioning prompt leads to produce fine-grained anomalies closely resemble real anomalies, while (c) shows

collapse through the entire image.

2) EFFECT OF CONCEPT LEARNING
We also conduct a detailed ablation study to further assess
the effectiveness of our learned concepts, specifically, those
from (a) the normal state learning (Section IV-A) and
(b) the anomaly state aware learning (Section IV-B) schemes.
Specifically, we evaluate on MVTec-AD with the 2- and
8-shot setups, to compare the behaviors on both lower- and
higher-shot regimes in applying our method. The results are
summarized in Table 5. In the first and the second rows of
the table, we examine the results obtained by incorporating
only cn and ca in the text prompts for AD. The results on
the third and last row indicate ours, viz., which correspond
to ADP and ADPℓ, respectively. Overall, the results shows
that mixing cn and ca via ADP (Section IV-C) leads to a
better performance, confirming the effectiveness of our self-
tuning scheme. We observe that the performance itself of
ca as an individual concept may not be significantly better
compared to cn. A clear performance gain could be obtained
by combining the two concepts, however, confirming that cn
and ca complement each other. With extremely low shots of
samples, e.g., K = 2, utilizing the label texts could further
improves performance. In the case of K = 8, however, such
a gain diminishes and using only the two learned tokens, cn
and ca, could already yield comparable performances. This
observation supports our initial hypothesis on the limitation
of naïve language-based approaches for larger-shot AD, and
the effectiveness of our method upon this.

3) SYNTHETIC PSEUDO-ANOMALIES
Prior studies have proposed synthesizing anomalous images by
adding visually irregular appearances into normal images [4],
[7], [35]. In this paper, we take a different approach which
generates pseudo-anomalies using a pre-trained text-to-image
diffusion model [34]. Specifically, this is achieved by adding
noise to a given reference image and conditioning the

reconstruction process on text prompts. To evaluate the
efficacy of synthetic pseudo-anomalies, we conduct an
ablation study integrating real anomaly images into the process
of learning the anomaly-aware concept, c∗

a. The results are
presented in Table 6. As expected, the use of real anomaly
images further enhance performance, while pseudo-anomalies
bring similar effects to obtaining the anomaly-aware concept,
resulting in a 0.6% improvement compared to solely utilizing
normal images.
Furthermore, to qualitatively assess the usage of

anomaly-aware concept c∗
a in generating pseudo-anomalies,

we investigate two types of prompts: (1) simple text prompts,
such as ‘‘a photo with damage’’, (2) prompts incorporating
the anomaly-aware concept c∗

a, such as ‘‘a photo of a c∗
a with

damage’’. The results presented in Fig. 3 demonstrate that
the use of anomaly-aware concept c∗

a leads to the generation
of fine-grained anomalies, compared to simple text prompts.
For example, anomalous ‘‘hazelnut’’ generated with prompts
containing ca, exhibit small scars or holes while generated
images with simple text prompt exhibits coarse-grained
transformation in images. Furthermore, generated anomalies
from the simple text prompts exhibit unexpected defects not
only in the object but also in the background, while the use
of ca guides the model to produce anomalies that closely
resemble real anomalies, focusing primarily on defects within
objects.

4) PROMPT TEMPLATE SELECTION
We primarily use the same prompt templates proposed in
prior works, viz., Textual Inversion [21]. To further verify
the robustness of ADP regarding to the selection of prompt
templates, we conduct an ablation study with different set
of prompt templates. Specifically, we randomly choose a
different number of templates from the entire set (detailed in
Appendix A) and also conduct an additional experiment only
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TABLE 6. Comparison of AUROC (%) across the usage of generated
pseudo-anomalies and real anomaly images for obtaining anomaly-aware
concept c∗

a on 2-shot.

TABLE 7. Comparison of AUROC (%) across the selection of prompt
templates on 4-shot. ADP-T incorporates T number of templates where
ADP-27 is the default setting for our main experiment.

using a single prompt template (‘‘a photo of a {}’’). The results
are reported in Table 7, which confirms that the choice of
prompt templates brings marginal effects for the performance
of ADP.

VI. CONCLUSION
In this paper, we propose Anomaly Detection via Personal-
ization (ADP), a novel approach to address the challenging
problem of few-shot industrial anomaly detection based on
recent text-to-image diffusion models. We show that aligning
state prompts with image features effectively guides the model
to learn concepts related to normal and anomalous instances.
Additionally, we introduce synthesizing pseudo-anomalies
using a personalized generative model based on the learned
concepts. By incorporating these pseudo-anomalies, ADP
further optimizes the use of concepts with simple self-tuning
scheme. ADP could outperform state-of-the-arts in recent
few-shot benchmarks. Moreover, ADP can be applied in
scenarios where text labels are scarce, without experiencing a
significant drop compared to using the label. We believe our
work could shed a light in exploring model personalization
for downstream tasks beyond generative modeling.
Limitation: Despite its strong performances in few-shot

AD, we expect the effectiveness of current ADP may saturate
earlier as more normal samples become available: the current
technique of textual inversion is known to fall short with many
samples, e.g., more than 4-5 in practice [21]. Making textual
inversion to extract better concepts from many samples would
be an interesting future work itself, not only in the context of
AD but also in the context of generative modeling.

APPENDIX A
IMPLEMENTATION DETAILS
A. CONCEPT LEARNING
Unless specified otherwise, we maintain the original hyper-
parameter choices from LDM [24]. The batch size is set to 4,
the base learning rate is set to 5.0 × 10−4 and all results are
obtained after 3,000 optimization steps. Both MVTec-AD [16]
and VisA [17] datasets are resized to a resolution of 512×512.

For concept learning, hyperparmeters α and γ are consistent
through the entire experiment. For normal-aware concept

TABLE 8. Model size and mean inference time per image on MVTec-AD. For
WinCLIP and ADP, experiments are conducted under 4-shot setting.

learning, α, regularization hyperparameter for aligning state
prompts with images, is set to 0.003, which shows similar
scale to reconstruction loss. We find that applying large α

value results over-fitting to normal state prompt, e.g., ‘‘a photo
of a flawless c∗

n’’, with the given image. For anomaly-aware
concept learning, we first synthesize pseudo-anomalies via
pre-trained text-to-image diffusion model [34]. Specifically,
with the given reference images, we set the strength parameter,
i.e., the amount of noise initially added to the given image,
as 0.5. The guidance scale and number of inference steps are
set to 7.5 and 30 respectively. We explore diverse amount of
noise, and set which is distinguishable with normal samples
while maintaining the high-level features of the images.
In Fig. 5 and Fig. 7, pseudo-anomalies with different strength
is shown. Hyperparameter α is set to 0.002 and γ , which serves
as margin of the CLIP-based repel loss, is set and 0.8.

B. ANOMALY DETECTION WITH LEARNED CONCEPTS
For self-tuning, we generate 20 pseudo-anomalies for pseudo-
validation set. We set strength parameter, i.e., the amount
of noise initially added to the given image, as 0.5. The
guidance scale and number of inference steps are set to
7.5 and 30 respectively. We also explore the impact of
the size of pseudo-validation set, i.e., number of generated
pseudo-anomalies in the pseudo-validation set.5 ADP demon-
strates consistent performance regardless of the number of
generated pseudo-anomalies in the pseudo-validation set.
We employ the data pre-processing pipeline from

OpenCLIP [36] for both MVTec-AD and VisA datasets.
This pipeline includes channel-wise standardization using
the pre-computed mean [0.48145466, 0.4578275,
0.40821073] and standard deviation [0.26862954,
0.26130258, 0.27577711] after normalizing each
RGB image to the range of [0, 1]. Additionally, we set the
input resolution to be 224 by default, regardless of the original
size of the input image. When reproducing the results for
WinCLIP+ [19], we follow the same pre-processing pipeline
to ensure compatibility in our experiments.

C. COMPUTATION
1) TRAINING
We use 64 CPU cores (Intel Xeon CPU @ 2.90GHz)
and 1 GPU (NVIDIA GeForce RTX 3090 24GB GPU) for
performing concept learning. The training for 3,000 opti-
mization steps takes approximately 1.5 hours for each class.
We need two times of concept learning i.e., normal-aware

5ADP consistently achieves 96.0% in AUROC under varying number of
psuedo-anomlies (n = 5, 10, 20 and 40) on MVTec-AD 4-shot setting.
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TABLE 9. Comparison of anomaly detection (AD) in terms of class-wise AUROC (%) on MVTec-AD for 2- and 4-shot.

TABLE 10. Comparison of anomaly detection (AD) in terms of class-wise AUROC (%) on VisA for 2- and 4-shot.

TABLE 11. Comparison with existing many-shot AD methods in terms of AUROC (%) on MVTec-AD.

concept learning and anomaly-aware concept learning, which
takes similar time for each concept learning. For self-
tuning, the computation of a single image takes around
0.7 seconds, with each class containing 20 pseudo-anomalies
and 2 to 16 normal images, depending on the experimental
setting.

2) INFERENCE
We report the inference time of ADP, an essential part
in industrial application. The results are presented in
Table 8 comparing the re-implementations of PaDiM [3],
PatchCore [6] using WideResNet50 and WinCLIP [19] using
CLIP ViT-H/14. ADP utilizes CLIP ViT-H/14 model for
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TABLE 12. Comparison with existing many-shot AD methods in terms of
AUROC (%) on MVTec-AD.

TABLE 13. Comparison of anomaly detection (AD) in terms of class-wise
AUROC (%) with naïve textual inversion and across the use of learned
concepts in MVTec-AD for 4-shot. Naïve textual inversion is denoted as ‘‘TI’’.

TABLE 14. Comparison of anomaly detection (AD) in terms of class-wise
AUROC (%) with naïve textual inversion and across the use of learned
concepts in VisA for 4-shot. Naïve textual inversion is denoted as ‘‘TI’’.

anomaly detection, which is same as the one used byWinCLIP.
As can be seen, inference time of ADP does not require
significant overhead considering the model size compared
to other AD methods.

FIGURE 4. Comparison of AUROC(%) on MVTec-AD benchmark with
existing few-shot AD methods.

D. PROMPT TEMPLATES
Below we provide the list of text templates used when
learning the state-aware concept and detecting anomaly where
S ∈ {Sn, Sc} are state templates and c ∈ {c∗

n, c
∗
a} are

concepts:
• ‘‘a photo of a S(c)’’,
• ‘‘a rendering of a S(c).’’,
• ‘‘a cropped photo of the S(c).’’,
• ‘‘the photo of a S(c).’’,
• ‘‘a photo of a clean S(c).’’,
• ‘‘a photo of a dirty S(c).’’,
• ‘‘a dark photo of the S(c).’’,
• ‘‘a photo of my S(c).’’,
• ‘‘a photo of the cool S(c).’’,
• ‘‘a close-up photo of a S(c).’’,
• ‘‘a bright photo of the S(c).’’,
• ‘‘a cropped photo of a S(c).’’,
• ‘‘a photo of the S(c).’’,
• ‘‘a good photo of the S(c).’’,
• ‘‘a photo of one S(c).’’,
• ‘‘a close-up photo of the S(c).’’,
• ‘‘a rendition of the S(c).’’,
• ‘‘a photo of the clean S(c).’’,
• ‘‘a rendition of a S(c).’’,
• ‘‘a photo of a nice S(c).’’,
• ‘‘a good photo of a S(c).’’,
• ‘‘a photo of the nice S(c).’’,
• ‘‘a photo of the small S(c).’’,
• ‘‘a photo of the weird S(c).’’,
• ‘‘a photo of the large S(c).’’,
• ‘‘a photo of a cool S(c).’’,
• ‘‘a photo of a small S(c).’’,

APPENDIX B ADDITIONAL RESULTS
A. QUANTITATIVE RESULTS
1) CLASS-WISE COMPARISON
We provide a detailed anomaly detection (AD) performance,
specifically in terms of class-wise AUROC (%). For the
2-shot and 4-shot scenarios, we report the mean and standard
deviation over three random seeds for WinCLIP+ [19], ADP
and ADPℓ, while other baselines (SPADE [2], PaDiM [3] and
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FIGURE 5. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model with different
noise level (S) in VisA. Pseudo-anomalies are generated with simple prompt text such as ‘‘a photo with damage’’.

PatchCore [6]) are from those reported by Jeong et al. [19].
The class-wise AUROC (%) results for theMVTec-AD dataset
are presented in Table 9 for the 2-shot and 4-shot settings.
Similarly, the class-wise AUROC results for the VisA dataset
can be found in Table 10 for the 2-shot and 4-shot settings.
Additionally, we compare our 8-shot AD results with other
8-shot AD methods on MVTec-AD dataset in Table 11. The
results for TDG+ [8], DiffNet+ [26] and RegAD [27] are
from the work of Huang et al. [27].

2) ADDITIONAL COMPARISON WITH EXISTING AD METHODS
Fig. 4 presents the additional comparison including recent
few-shot AD methods [8], [27], [37], [38]. As can be seen,
ADPℓ consistently exhibits superior performance, particularly
in extreme few-shot regime, such as the 2-shot setting.
Table 12 provides a extensive comparison including the
full-shot results of various prior works on the MVTec-AD
dataset. In the 4-shot scenario, ADP surpasses the performance
of CutPaste [4], a recent full-shot method for AD and is
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FIGURE 6. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image diffusion model with different
noise level (S) in VisA. Pseudo-anomalies are generated with prompts incorporating c∗

a, such as ‘‘a photo of a c∗
a with damage’’.

competitive with Metaformer [39]. Furthermore, our 4-shot
ADP achieves superior performance compared to recent
few-shot AD methods incorporating 16 shots such as TDG+,
DiffNet+, and RegAD.

3) COMPARISON WITH TEXTUAL INVERSION
Table 13 and 14 present a class-wise comparison between
standard textual inversion (referred to as ‘‘TI’’ in Table 13
and 14) and the utilization of learned concepts. The evaluation
is conducted on 4-shot anomaly detection tasks in MVTec-AD
and VisA datasets, respectively. The results are represented

by c∗
n and c∗

a, which indicate the outcomes obtained by
incorporating only c∗n and c

∗
a in the text prompts. Furthermore,

c∗n + c∗a represents the combination of both concepts via ADP
(Section IV-C). In general, the inclusion of concepts leads
to a notable improvement in anomaly detection performance.
While the utilization of only c∗

a does not yield significant
enhancements, combining c∗

n and c∗
a proves to be mutually

beneficial. Specifically, the incorporation of learned concepts
proves effective in identifying fine-grained anomalies, such as
the ‘‘Capsule’’ class in the MVTec-AD dataset or the ‘‘PCB’’
classes in the VisA dataset.
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FIGURE 7. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image
diffusion model with different noise level (S) in MVTec-AD. Pseudo-anomalies are generated with simple prompt text such
as ‘‘a photo with damage’’.
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FIGURE 8. Visualization of (a) normal, (b) anomaly and (c) pseudo-anomalies synthesized via pre-trained text-to-image
diffusion model with different noise level (S) in MVTec-AD. Pseudo-anomalies are generated with prompts
incorporating c∗

a, such as ‘‘a photo of a c∗
a with damage’’.
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B. QUALITATIVE RESULTS
In Fig. 5-8, we present additional qualitative results of
pseudo-anomalies synthesized using the pre-trained text-
to-image diffusion model [34] for both VisA [17] and
MVTec-AD [16] datasets. We adjust the level of noise added
to the reference image, denoted as S. We explore four different
noise level, 0.1, 0.3, 0.5 and 0.7. Fig. 5 and Fig. 7 showcase
the pseudo-anomalies conditioned with a simple text prompt,
as described in Section IV-B, for the VisA and MVTec-AD
datasets, respectively. On the other hand, Fig. 6 and Fig. 8
demonstrate the pseudo-anomalies conditioned with a prompt
incorporating c∗

a, as described in Section IV-C, for the VisA
and MVTec-AD datasets, respectively. Overall, incorporating
c∗
a in the conditioning prompt generates more fine-grained
anomalies compared to the simple text prompt.
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