
Received 15 December 2023, accepted 6 January 2024, date of publication 16 January 2024, date of current version 11 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3354976

A Deeper Look Into Remote Sensing Scene
Image Misclassification by CNNs
ANAS TUKUR BALARABE AND IVAN JORDANOV
School of Computing, University of Portsmouth, PO12 UP Portsmouth, U.K.

Corresponding author: Anas Tukur Balarabe (anas.tukur-balarabe@port.ac.uk)

This work was part of a Ph.D research supported by the Petroleum Technology Development Fund (PTDF)-Nigeria.

ABSTRACT As deeper and lighter variations of convolutional neural networks (CNNs) continue to break
accuracy and efficiency records, their applications for solving domain-specific challenges continue to
widen, particularly in computer vision and pattern recognition. The feat achieved by these end-to-end
learning models can be attributed to their ability to extract local and global discriminative features for
effective classification. However, in land use and land cover classification (LULC), inner-class variability and
outer-class similarity could cause a classifier to confuse one image’s discriminative features with another’s,
leading to inefficiency and poor classification. In this work, we deviate from the conventional approach
of classifying high-resolution remote sensing images (HRRS) by proposing a framework for comparing
and combining images of different simple classes into superclasses based on spatial, textural, and colour
similarities. To achieve this, we implement the Bhattacharyya metric for colour-based similarity analysis,
a combination of LBPs (Local Binary Pattern), the Earth Mover’s Distance, and Euclidean Distance for
the texture and spatial similarity analysis in addition to the structural similarity index (SSIM). A pre-
trained CNN model (Xception) is then fine-tuned to classify the superclasses and the original classes of
the Aerial Image (AID), the UC Merced, the Optical Image Analysis and Learning (OPTIMAL-31), and
NWPU-RESIS45 datasets. Results show that methodically combining overlapping classes into superclasses
reduces the possibility of misclassifications and increases the efficiency of CNNs. The model evaluation
further indicates that this approach can boost classifiers’ robustness and significantly reduce the impact of
inner-class variability and outer-class similarity on their performance.

INDEX TERMS Image similarity metrics, Euclidean distance, local binary pattern, transfer learning, scene
classification.

I. INTRODUCTION
Satellite sensors acquire remote sensing images under vary-
ing altitudes and constantly changing atmospheric conditions.
Because of the height at which the acquisition is made, each
image usually covers a large area and land type, resulting
in dataset inner-class variability and outer-class image sim-
ilarity [1], [2], [3], [4], [5]. For the inner-class variability,
images within the same class or category tend to vary due to
factors such as the atmospheric conditions during acquisition,
the angle at which an image is acquired, and the number of
noninformative features that might appear in different parts of
the images. These challenges make repurposing pre-trained
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deep learning models for classifying images challenging,
especially in earth observation tasks [2]. Several techniques
that attempt to improve the overall efficiency of deep learning
classifiers have been developed over the years to address the
issue [1], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].
Despite the record-breaking performance of the proposed
models, creating an efficient scene image classifier that is
robust against misclassification due to inner-class variability
and outer-class similarity remains elusive [2]. Recently, deep
learning [14], [15], and transfer learning models [18] have
shown dramatic improvements in classification accuracy and
efficiency. Some of the most prominent deep learning mod-
els that have been widely used in machine vision include
AlexNet [19], VGGNet [20], Xception [21], GoogleNet [22],
MobileNet [23], EfficientNet [24], DenseNet [25] and
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FIGURE 1. HRRS scene classification images: (a) a river and (b) a forest.

ShuffleNet [26]. The success of the transfer learning archi-
tectures in scene classification is connected to their ability
to work with a small amount of training data and extract
class-specific features that contain the discriminative infor-
mation necessary for the accurate classification of scene
images [12], [16], [22]. However, despite the efficacy demon-
strated by these models, they can still be confused by
inner-class variability and outer-class similarity in scene clas-
sification datasets. Fundamentally, satellite images usually
contain aspects of other objects besides their salient fea-
tures [2]. The additional objects are often the main features
that characterise another scene. For example, in Fig.1, a sig-
nificant part of image 1(a) of a river is covered by vegetation,
which, on the other hand, represents the class forest as in
image 1(b).

Such intricate similarities could mislead a classifier to
assign the same label to the two distinct images. The mis-
classifications due to inner-class variability or outer-class
similarity could affect the quality of decision-making where
the outcome of a classifier forms an integral part of the
decision-making process. Generally, LULC is done using
the multiclass approach, where each category is assigned
a label depending on the classes in a dataset [20], [21],
[22], [23], [24], [25]. The drawback is that standard CNNs
and fine-tuned transfer learning models could confuse one
category with another due to the complex similarities and
subtle differences among some classes [1]. On the one hand,
the standard CNNs use the output of the last fully connected
layer to predict the label of each image. However, this causes
the images’ local discriminative features to be discarded,
leading to inaccurate classifications [2], [32]. On the other
hand, the transfer learningmodels, which use a feature extrac-
tion strategy, are often modified to combine the local and
global discriminative characteristics as an improvement to
the traditional CNNs [1], [2], [14]. While there is room for
improvement in the classification of HRRS scene images,
other researchers are exploring new frontiers for applying
images obtained in one city to classify land-use and land-
cover scenes in another [33]. More application domains are
evolving in smart cities, such as land-use management, urban
planning, building counting, change detection, road extrac-
tion, and damage assessment. In damage assessment, for
example, the goal is not to differentiate between the types

of buildings that survived a natural disaster but to ascertain
the number of still-standing buildings. Likewise, in road
extraction, the primary aim is to extract a road infrastructure
regardless of its make or type. As a result, the spatial com-
plexities of the images and the scenes they represent could
be leveraged to merge some classes into superclasses. For
some tasks of land-use management, such as change detec-
tion [34], [35], [36], [37], building detection/extraction [38],
[39], [40], [41], [42], [43], [44], vegetation detection [45],
[46], [47], road detection/extraction [25], [48], [49], roof
type classification [50], [51], a particular area of interest
could contain several scenes considered as a single entity in
scene classification datasets. In all these tasks, the general
assumption is that the otherwise independent scenes repre-
sent a single entity; hence, they are assigned a single label
regardless of the colour, textural or spatial differences. What
we set out to do in this paper is to design a framework
for comparing and combining images based on their spatial,
textural, and colour similarities. To investigate the viability of
this approach, selected scene classification dataset classes are
incorporated into several superclasses using the scores given
by the algorithmwe developed. A fine-tuned transfer learning
model is then used to classify the superclasses and the original
classes; the results are critically analysed and compared.

In summary, the contributions of this paper are as follows:

1. A framework for comparing images based on their spatial,
textural, and colour properties is proposed. This frame-
work can also be applied for content-based image retrieval
on natural images.

2. A transfer learning strategy is developed using the
Xception model, which is not widely used despite its
lightweight nature and efficient use of training parameters.

3. A new HRRS scene image classification technique that
could be used in land-use management, early warning sys-
tems, disaster management, building counting, vegetation
analysis, etc., is proposed and presented.

A. CONVOLUTIONAL NEURAL NETWORKS
The most critical components of a CNN model are its layers,
which are the building blocks of any CNNs architecture and
define most of its parameters [16], [51], [52], [53]. The
arrangement of the layers to form a viable CNN depends
on the problem at hand, the domain’s expertise, and techni-
cal knowledge [55]. Generally, each layer of a CNN (apart
from the last one or two fully connected layers) consti-
tutes three significant operations: convolution, activation,
and pooling [19]. The convolutional layers generate feature
maps by convolving 2D filters (kernels, or a collection of
kernels in the 3D case) over an image. The feature maps
are passed through a non-linearity of an activation function,
such as ReLU, Sigmoidal, or others, to determine the output
of a neuron. The ReLU activation function is commonly
used based on its lower susceptibility to saturation, leading
to faster training and learning compared to other activation
functions [16], [52], [56], [57]. The role of pooling is to
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merge semantically similar features into a single segment and
to achieve spatial invariance by reducing the resolution of
the feature maps (downsampling). As images pass through
a CNN architecture, blobs, edges, and other primitives are
detected and combined locally to formmotifs. These detected
features are arranged to shape distinctive parts assembled
to configure objects. The final (classification) layer, which
usually consists of the Softmax transfer function, takes in the
output of the previous (fully connected) layer and produces
classification probabilities depending on the number of out-
put classes.

B. TRANSFER LEARNING
Despite the notable popularity of machine learning, most of
its models work on the principle that the training and the test
data share the same feature space and distribution; therefore,
any change to the feature space and the distribution of the
training data affects the overall model prediction ability [58].
Similarly, trainingmodels from scratch requires a humungous
amount of training data, which could be unavailable or pro-
hibitively expensive to collect [59]. The transfer learning
approach aims to solve this problem by transferring features
learned from a ‘source’ to a ‘target’ domain [59], [60], [61].
Thus, the need to acquire extensive training data is addressed,
and the model training time is reduced significantly [60].

C. TRANSFER LEARNING NOTATIONS AND
TERMINOLOGIES
To better understand the mathematical representation of dif-
ferent aspects of transfer learning, some basic notations and
definitions are briefly explained here.
Definition 1 (Domain [58]): A domain D is denoted by
D={χ, P (X) } is defined by two components:
i. A feature space:χ;

ii. Marginal probability distribution P (X), such that
X= {x1, . . . ,xn} ∈ χ .

Definition 2 (Task [58]): A Task is given by T= {Y, f(·)}
comprises of two parts:
i. A label space Y = {y1, . . . ,ym};
ii. An objective predictive function f (·) that has not been

observed or learned.
A corresponding label f (xi) of an unlearned instance, xi,
can be predicted using the function f(·). The function f (xi)
can also be presented as P

(
yi|xi

)
when considered from a

probabilistic angle [58], [60].
Definition 3 (Transfer Learning [60]): Formally defined,

transfer learning is such that given a source domain Ds,
a learning task Ts and a target domain Dt , its goal is to make
some improvement on the learning of a predictive function
f(·) in the target domain Dt , by leveraging the knowledge
acquired from Ds and Ts, where Ds ̸= Dt and Ts ̸= Tt [58].

II. RELATED WORK
The main idea behind remote sensing is to acquire vital
information about objects or scenes within an area of

interest. It is a means of acquiring local, regional and global
earth observation information [62]. Thus, its application in
many areas, including land-use and land cover classification
(LULC) [63], [64], [65]. As one of the most crucial subfields
of remote sensing, LULC is widely applied in understanding
the socio-economic land usage, interpreting the physical land
features on earth, monitoring natural and artificial changes to
land, and predicting how these changes can affect the envi-
ronment and the socio-economic life of its inhabitants [66],
[67], [68]. Research in scene image classification and its
potential applications has recently gained traction, paving the
way for more innovations in processing and utilising HRRS
images [1], [68]. Previously, scene classification techniques
were primarily based on handcrafted feature extraction meth-
ods [1], [2]. Some of the traditional approaches are based
on colour extraction [69], texture motifs extraction [70], tex-
ture descriptors [71], object structure [72], shape and other
properties [73]. However, these low-level and middle-level
image feature extraction techniques have many constraints
that limit their applicability to remote sensing scene image
classification. Therefore, to fill the gap created by the tra-
ditional feature extraction models’ weaknesses [2], attention
was shifted to deep learning (DL)models for their remarkable
improvements in classification accuracy, faster convergence
speed and computational efficiency. One of the advantages
of their layered architecture is that it allows the extraction of
discriminative information and compression of data without
throwing away the essential features of an image [74], [75].
Among the DL approaches, the transfer learning models are
more efficient than the traditional CNNs models. Architec-
tures such as AlexNet [19], Xception [21], MobileNet [23],
and ResNet [76] have been widely repurposed and used for
tasks of scene classification. As mentioned above, one of the
main motivations for using the transfer learning models is the
lack of enough training data [60].

Notwithstanding, using the transfer learning models
trained on ImageNet might not always yield the desired
accuracy level on remote sensing images because of
the differences in resolution, spatial features, and texture
between satellite and natural images. Therefore, architec-
tural improvements are always necessary in order to use
a pre-trained model for scene classification [77]. More so,
scene classification images have two properties that con-
fuse deep learning classifiers: inner-class variability and
outer-class similarity [2]. As shown in Fig. 1, the classes
exhibiting these peculiarities share some textural or spatial
features. Since multiclass classification requires each cate-
gory to be assigned a label and reorganising the categories
with high-level similarity into clusters could not be carried
out subjectively, we proposed using image similarity tech-
niques to recombine the images into superclasses based on
the colour spatial and textural similarities to establish whether
a logical clustering of the basic classes of scene classifi-
cation datasets into superclasses can reduce training time,
improve classification accuracy and reduce computational
complexity.
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III. IMAGE SIMILARITY METRICS
A. IMAGE HISTOGRAM SIMILARITY METRICS
As the field of image processing evolves, the applica-
tion of image similarity and recognition also continues to
develop [78]. One of the most effective ways of assessing
image similarities is through image histogram compari-
son [79]. A histogram Hx of a digital image x is a graphical
representation of the frequency of occurrence of each grey
level in the image x [75], or Hy can be easily represented as a
one-dimensional vector with domain {0,. . . , K-1}, where K is
the maximum pixel value of 256. The Distance between the
image histograms is valuable for feature extraction, content-
based image retrieval (CBIR), image pattern recognition, and
feature clustering [74].

1) Bhattacharyya
is a bin-to-bin metric of histogram similarity, focusing on the
probability distributions between two histograms. The image
similarity value of this metric ranges from 0 to 1, where
0 indicates an accurate matching and 1 shows otherwise (the
lower the value, the higher the similarity between the images)
[79], [80].

DH =

√
1 −

1√
H̄1H̄2N 2

∑
I

√
H1 (I ) · H2 (I ) (1)

whereH represents a histogramwithN bins and I is the colour
intensity.

B. IMAGE TEXTURE SIMILARITY
In machine vision and image processing, a texture is defined
as a function of an image’s local spatial patterns and
grey-level pixel intensities [82], [83]. It also refers to the
shape of the contents of an image [84]. There are several tex-
ture similarity analysis metrics; however, local binary pattern
(LBP) has been selected for this research due to its efficiency
and superior performance.

1) LOCAL BINARY PATTERN (LBP)
According to Huang et al. [85], the primary aim of the LBP
operator is to give an efficient summary of the structure of an
image. Texture analysis is used in machine vision for various
applications such as pattern recognition, object detection,
medical image analysis, etc. [83]. Image texture analysis
techniques have been classified into four categories: model-
based, structural, transformed-based, and statistical, in which
the LBP falls [83]. The local binary pattern technique was
initially developed for texture description and is widely used
for its efficiency and low execution time [86]. The classic
version of LBP generates a label for each pixel in an image
by thresholding the 3×3 pixel neighbourhood and converting
the result to a binary value [84], [86]. The set of binary values
produced by each operation on an image patch is used as a
local patch descriptor, and the combination of these descrip-
tors gives the overall texture description of the image [87].
By converting the LBP binary codes to a decimal number,
a feature vector that represents the textural information of
an image is generated [88]. Subsequently, histograms created

from these vectors form the basis for comparing the images
using a distancemetric [89]. Figures 2 and 3 show raw images
of the Building superclass in the AID dataset, the Euclidean
distance, the earth mover’s distance values between the first
image and each image in the class, and the corresponding
histograms generated from the converted LBP codes.

LBP (xc, yc) =

∑n−1

n=0
2ns (in − ic) (2)

FIGURE 2. Images of Buildings superclass of AID and corresponding
Euclidean and Earth Mover’s distance values, respectively.

FIGURE 3. Local Binary Pattern (LBP ) histograms for the 7 images of
Buildings superclass of AID (from Fig.2).
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FIGURE 4. Multilevel LBP Operator showing different sampling pixels and
radius values [84].

In equation (2), ic is the grey level intensity of the central
pixel per patch and the grey level value at position n. The
result of s(in-ic) is 1 if (in-ic) ≥ 0 and 0 otherwise [85].
The main limitation of the classic LBP operator is the small
neighbourhood considered (only 3×3), which could not cover
the most prevalent features in an image [87]. To address this
limitation, further improvement on LBP makes it possible to
accommodate textures at different levels by using a neigh-
bourhood of varying sizes [85], [87]. LBP has been applied
with CNNs for remote sensing scene classification to improve
image classification based on texture [90]. However, the core
idea of this work, which is using texture to group classes into
superclasses, has yet to be exploited.

In the improved version of LBP, a neighbourhood is
defined by the number of sampling pixels. Depending on the
size of the sampling pixels, a circle of evenly spaced points
is formed around the central pixel, which is used to threshold
the surrounding pixels [88]. Ojala et al. [82] found out that
LBP patterns representing the key distinguishing features of
images, such as edges, curves, line-ends, etc., occur more
frequently than other patterns. Based on this observation,
uniform patterns were adopted to reduce the feature vector’s
length and improve the method’s statistical robustness [88],
[91]. Fig. 4 shows an example of different radius values and
sampling pixels of an LBP operation using 8 sampling pixels
and 1 radius, 16, 2 and 24, 3 values, respectively.

The Euclidean Distance (ED) is an effective metric widely
used for image retrieval due to its efficiency. The ED between
two vectors is obtained by taking the square root of the sum of
the squared absolute difference between the vectors. Because
the LPB codes are in a one-dimensional vector, the Euclidean
distance becomes themetric of choice since it works verywell
with low-dimensional data [92].

ED =

√∑N

i=1
(H1−H2)

2 (3)

The Earth Mover’s Distance (EMD) measures the distance
between two probability distributions, A and B, and it is
estimated as the most negligible cost of converting one distri-
bution into another [80], [93].

EMD =

∑N
i,j di,jgi,j∑N
i,j gi,j

(4)

Here, di,j represents the dissimilarity between bin i and j, and
gi,j ≥ 0 is the optimum flow between the two distributions
such that the total cost

∑N
i,j di,jgi,j is minimalised [93].

IV. METHODOLOGY
A. PROBLEM STATEMENT
Several attempts have been made to design deep learning
techniques to address the issue of misclassifications due to
inner-class variability and outer-class similarity by combin-
ing the local and global features of images and by improving
the quality of the extracted features using content enhance-
ment modules in some cases [2].Even so, misclassifications
remain high, as mentioned by Li et al. [1]. To address the
challenge of misclassifications by deep learning classifiers,
we propose a technique for combining the categories of some
selected land-use and land cover classification datasets into
superclasses based on colour, spatial, and textural similarities.
This approach reduces the need for a highly sophisticated
model. It introduces an alternative to the traditional scene
classification approach that has not been explored, with the
potential of a wide range of applications in areas of earth
observation such as agriculture, disaster management, change
detection, town planning, defence, and other fields of earth
observation.

B. INNER-CLASS VARIABILITY AND OUTER-CLASS
SIMILARITY ASSESSMENT TECHNIQUES
For each class in a dataset, depending on the number of
images per class, the LBP code of each image is extracted and
converted to a histogram. A distance metric, Euclidean Dis-
tance or Earth Mover’s Distance, is used to compare the LBP
code histogram of each image with another. The similarity
score is stored in a vector. Each class’s minimum, maximum,
mean, standard deviation and other statistical parameters are
computed. Classes with similar spatial structure or structural
functionality are grouped to form superclasses using the sta-
tistical measure as the criterion.

1. ∀y∈C: compute the colour histograms of each image and
save the result in the vector Q⃗;

2. ∀C′∈Q⃗: normalise the histograms;
3. ∀q∈Q⃗: compute the Bhattacharyya(1) histogram similar-

ity value, DH , from qi to qi+1 to n−1 and save the result to
another vector F⃗;

4. Using F⃗, compute the min, max, mean and standard devi-
ation of all the values in F⃗.
where:
y, C,C′,Q⃗, F⃗ and q are the images in a superclass,
the superclass label, image histograms, the first vector,
the second vector, and the histogram similarity values,
respectively.

The classes are grouped by comparing markers on their
respective box plots. The same steps are repeated for image
texture similarity assessment using the local binary pat-
tern and structural similarity index (SSIM). The images are
grouped into superclasses depending on their levels of simi-
larity according to the below steps.

1. ∀y ∈ C : compute the LBP using equation (3) and save
the result to the vector Q⃗;

2. ∀C′ ∈ Q⃗ : convert the LBP into histograms;
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FIGURE 5. Different stages of the combined framework showing: (a) the original dataset; (b) the image similarity analysis framework; (c) the
clustering stage; and (d) the fine-tuned Xception model.
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FIGURE 5. (Continued.) Different stages of the combined framework showing: (a) the original
dataset; (b) the image similarity analysis framework; (c) the clustering stage; and (d) the
fine-tuned Xception model.

FIGURE 6. The workflow diagram shows all the stages described in Figure 5 above.

3. ∀q ∈ Q⃗: compute the histogram similarity, d using the
Euclidean Distance, ED (5) or Earth Mover’ s Distance,
EMD (6) from xi to xi+1 to n−1 and save the result to
vector F⃗;

4. Compute the min, max, the mean and standard deviation
of all the values in F⃗.

Where:
y, C,C′, Q⃗, F⃗, and q, are the images in a superclass,

the superclass label, LBP codes, the first vector, the second
vector, and the histogram values, respectively.

As shown in Fig. 5 and 6 above, the workflow has three
data processing stages. First, the image similarity analysis
framework takes input and compares them depending on the
user’s choice. There are four approaches for comparing the
images in the framework: a comparison based on colour,
texture, structural similarity, and a combination of these three
methods. For the colour similarity analysis, we used the Bhat-
tacharyya metric for comparing the images, considering its

efficiency in measuring the similarity between a pair of statis-
tical distributions. Each image is read, and the corresponding
histogram is generated and saved in a vector. Subsequently,
the histograms are compared one after the other, and the
result is transposed from a row to a column vector and into a
comma-separated values (CSV) file after each iteration.

TABLE 1. Merged classes in each of the 4 Superclasses and the
corresponding number of samples in the UCM dataset.
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FIGURE 7. Box plots and similarity scores distribution for the sports facility superclass: (a) Baseball diamond; (b) Golf
course; (c) Tennis court; and (d) & (e) Sports facility.

TABLE 2. Merged classes in each of the 7 Superclasses and the
corresponding number of samples in the OPTIMAL-31 dataset.

The mean, the standard deviation, the variance, and other
relevant statistical measures are computed and saved on a sep-
arate file. Further additional similarity analysis approaches
on texture and structural similarity follow the same proce-
dure, using a combination of the Euclidean distance, local
binary pattern (LBP) and structural similarity index (SSIM).
However, for the texture similarity analysis, luminosity is
first added to the images to sharpen them and improve the
quality of their features. The LBP codes for each image are
then extracted and converted into histograms before applying
a distance metric to determine the similarity level between
each pair.

TABLE 3. Merged classes in each of the 7 Superclasses and the
corresponding number of samples in the AID dataset.

Where all three features, colour, texture and structural
similarity, are of interest, as in the case of this work, two
images are uploaded and processed simultaneously, and the
result of each similarity approach is saved into a row vector
before being transposed into a column vector. The average of
the three scores is then generated as the basis for comparing
the images. From the average score and the scores for the
other similarity comparisons, box and scatter plots of each
result are plotted to help establish the degree of similarity
between classes before combining them into clusters. Upon
careful observation of the statistical markers on the plots,
classes with values within specific ranges are grouped to form
superclasses. The similarity result for each feature per class is
appended to a new CSV file from which superclass box plots
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are generated to compare the statistical correlation between
each class and its superclass. The generated superclasses,
each consisting of a range of subclasses, are then clustered
further to establish the degree of inner-class similarity among
them. In the final phase of the framework, the clustered
classes are fed into the classification module.

V. EXPERIMENTS
A. XCEPTION MODEL AS THE BACKBONE FOR TRANSFER
LEARNING
The idea of the Xception model [21] stemmed from the need
to develop a deep separable convolutional neural network as
an alternative to the regular CNNs models and the depth-wise
separable convolution. The Xception model can be viewed
as the culmination of improvements of some of the most
predominantly used transfer learning models, such as Incep-
tion V1-4 [22], [94], [95], [96], and VGGNet [20]. Despite
having the same parameters as the Inception V3, this model
has proven more reliable for image classification due to its
efficient use of parameters [21]. The choice of the model
for this research is informed by its simple yet efficient
structure and effective use of the model training parameters.

B. DATASETS
The UCMerced dataset (UCM) [97] is anHRRS image scene
dataset of 21 classes containing 2100 images. Each category
contains 100 RGB images with a size of 256×256 pixels and
a uniform spatial resolution of 0.3 meters. Classifying images
in the UCM dataset is challenging due to the high inner-class
variability and outer-class similarity among the images in
some categories. For example, the images in class River
and those in class Forest have a high degree of similarity,
which could cause misclassifications by the deep learning
classifiers. The superclasses generated from the categories in
this dataset are given in Table 1.
OPTIMAL-31 [98] is a scene classification dataset of

31 classes. Each category in this dataset contains the same
number of images, 60, of size 256 × 256 pixels, totalling
1860 images from the categories given in Table 2. Like the
AID dataset, images in OPTIMAL-31 were also sourced from
Google Earth Images.

The Aerial Image Dataset (AID) [99] is one of the most
extensive scene classification datasets. It contains 30 classes
of between 200 and 420 images per category (Table 3). The
images in AID are of a uniform dimension of 600×600 pixels
and spatial resolution ranging from 8 to 0.5 meters. There are
10,000 images from the categories given in Table 3. Unlike
the UCM dataset, AID is a multi-source dataset gathered
from Google Earth Images and other sources and, thus, more
challenging to work on than UCM images.
NWPU-RESISC45 is a single-label dataset of 45 classes

comprising 31,500 images of different observation scenes.
The dataset was developed by the Northwestern Polytechnic
University [15]. Each of the 45 dataset classes consists of
700 images of size 256 × 256 in RGB format and a spatial

resolution ranging from 30 to 0.2m. All the images were
acquired through Google Earth imagery across more than
100 countries and regions [77].

C. TRAINING STRATEGY
1) DATA AUGMENTATION
Considering the amount of data needed to train a deep learn-
ing model from scratch, which is one of the primary reasons
for opting for the transfer learning approach, we decided
to incorporate some data augmentation techniques to boost
the size of the datasets. Eight more copies of each training
image were generated by applying vertical flip, horizontal
flip, rotation, width shift, height shift, zooming, and shear
operations, generating 11,760 more training samples for the
UCM and 56,000 for the AID and 10,416 for OPTIMAL-31.

2) TRAINING PARAMETERS
To fine-tune the Xception model for our task, the top layers
of the model were cut off, leaving only the bottom layers
from the input layer to the last convolutional layers of the
model. This base model is used as the backbone for feature
extraction; six more layers, besides the classification layer,
were stacked atop the backbone. The first layer added is the
GlobalAveragePooling layer,which takes the average of each
feature map, followed by a dense layer with 256 filters, an l2
regulariserwith a 0.001 regularisation value and a ReLU acti-
vation function. In addition to the l2, to make the model more
efficient and reduce the risk of overfitting, we added a dropout
layer with a 0.25 dropout value. The next block contains the
same layers, filters, and l2 regulariser as in the previous layer.
In the last layer (before the classification layer), the number
of filters was increased to 512 to extract more discriminative
features. The dropout value was also doubled to mitigate the
possibility of overfitting. The Adam optimiser with a fixed
learning rate of 10e-6 and a decay value of 10e-6 was used
for the model training parameters. Since this is a multiclass
classification task, the categorical cross-entropy loss function
was employed to update the model’s weights. We used the
softmax function for the eventual classification of the images.
For a class si, the Softmax function is calculated using the
expression:

f (s)i =
esi∑C
j e

sj
,

where sj is the vector of the scores predicted by the model
for each class in C. The cost function for the model, using
categorical cross-entropy loss, is computed as:

Cost function = −

∑C

i
tilog (f (s)i) +

λ

2
∗ 6 ∥w∥

2 ,

where Cis the number of classes, ti is the index of the target
ground truth in vector t,f (s)i is the inferred value for the class
si, λ is the regularisation rate, and w is the model’s weights.
Earlystopping was used to terminate the training if the

metric of interest (validation loss) did not improve for
100 epochs. To split the data into test, train and validation
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TABLE 4. Comparison between our approach and some state-of-the-arts
on the UCM dataset.

TABLE 5. Comparison between our approach and some state-of-the-arts
on the OPTIMAL-31 dataset.

TABLE 6. Comparison between our approach and some state-of-the-arts
on the AID dataset.

sets, we set aside 80% of the dataset for training and 20% for
testing. Out of the training set, 15% was used for validation.
Overall, the model is trained for 350 epochs. All experiments
were run on Google Collaboratory with a high accelerator
set as GPU and runtime shape as High-RAM. The models are
modified and fine-tuned using TensorFlow [113] and Keras
environment [114].

TABLE 7. Comparison between our approach and some state-of-the-arts
on the NWPU-RESISC45 dataset.

TABLE 8. Ablation experiments conducted on the UCM dataset.

TABLE 9. Ablation experiments conducted on the OPTIMAL-31 dataset.

TABLE 10. Ablation experiments conducted on the AID dataset.

TABLE 11. Ablation experiments conducted on the NWPU-RESISC45
dataset.

D. ABLATION EXPERIMENT
To demonstrate the effectiveness of the proposed approach,
we carried out ablation experiments on the four datasets. The
experiments were performed to analyse the impact of the
added blocks on the proposed model. The entire experiments
can be divided into two parts.

1) Verify the effect of removing the added blocks on the
performance of the proposed model. This was achieved by
removing all the added blocks and retaining only theXception
feature extraction module and the classification layer. The
removal of the added blocks shows that the feature extraction
part of the proposed model cannot, on its own, achieve the
desired result.
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FIGURE 8. Confusion matrices for (a) 4 superclasses; (b) 10 superclasses; and (c) 21 classes of the UCM dataset.

2) Three blocks have been added to the baseline model
to form the proposed model. Each block consists of a dense
layer, an l2 regularisation, a ReLU and a dropout layer.
In the second part of the ablation experiment, one block
was removed, leaving the baseline model and two other
blocks. Finally, two blocks were removed to assess the effec-
tiveness of a single block of four layers on the proposed
model.

E. EVALUATION METRICS
To evaluate the performance of the modified architec-
ture, we employ the following metrics: overall accuracy,
balanced accuracy, confusion matrix, F1 Score, Kappa
Score, precision, recall, and ROC Curve. We consid-
ered balanced accuracy (BA) mainly because of ran-
domness in how the test, train and validation sets are
split.
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FIGURE 9. ROC Curves for the (a) 4 superclasses and (b) 21 classes of the UCM dataset.

1) OVERALL ACCURACY (OA)
The overall accuracy is obtained by dividing the total number
of correctly predicted test samples by the total number of
samples in each category [115].

Accuracy =
TP+ TN

TP+ TN + FP+ FN

2) BALANCED ACCURACY (BA)
the average of the specificity and sensitivity. It gives infor-
mation on the probability of classifying a class correctly. The
critical difference between the BA and OA is how accuracy
for balanced and imbalanced data is computed. If the data is
balanced, the two converge and vice versa [115].

Balanced Accuracy =

TP
TP+FN +

TN
TN+FP

2

3) CONFUSION MATRIX
This visual performance evaluation metric shows how well a
model classifies the categories in each dataset class. It is easy
to interpret and shows the exact number of accurate classifica-
tions and misclassifications per class in a row/column [115].

4) F1 SCORE
It uses the confusion metric to aggregate precision and recall
through harmonic mean. F1-Score can be viewed as the
weighted average between precision and recall and returns
a value of 1 for an ideal model and 0 for the worst perfor-
mance [115].

F1 − Score = 2 ×

(
precison× recall
precision+ recall

)
5) KAPPA SCORE
Cohen’s Kappa score measures the agreement between the
predicted and the actual labels in a classification task. In a
multiclass classification, Cohen’s Kappa works on the same
principle as Matthews Correlation Coefficient [115].

Kappa =
c× s− 6K

k pk × tk
s2 − 6K

k pk×tk

6) PRECISION AND RECALL
Precision is obtained by dividing the number of True Positives
(TP) by all positively classified labels (TP and FP). The
Recall (sensitivity or TPR) measures the proportion of actual
positives categorised correctly by the model. The values
of other metrics, such as accuracy, balanced accuracy and
F1-Score, are obtained from these essential metrics [115].

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

7) ROC CURVE
TheReceiver Operating Characteristic (ROC) is a probabilis-
tic curve that illustrates the performance of a classification
model at all classification thresholds (TPR vs. FPR at dif-
ferent classification thresholds). The ROC curve gives a
summary of a classifier’s performance. To visualise a model’s
performance, the area under the ROC curve (AUC) shows
the degree of accuracy with which the model can separate
among classes in a given task. In addition, the AUC is
used to compare the performances of different classification
models [116].

F. EXPERIMENTAL RESULTS
In addition to the model’s overall accuracy, we extracted
a few more performance evaluation metrics, such as bal-
anced accuracy, to address the imbalance in the datasets
(UCM, AID, OPTIMAL-31, and NWPU-RESISC45).
Tables 4, 5 and 6 show our approach’s comparisons
with the state-of-art OA models. The precision, recall,
F1-Score, and Kappa scores have all been calculated
(see Tables 12, 13, 14, and 15). Table 16 gives the AUC
for the three experiments under each dataset. The UCM has
AUC values of 0.9913, 0.9904, and 0.9852 for the four super-
classes, 10 superclasses and 21 classes, respectively. AID has
AUC values of 0.9841, 0.9827, and 0.9767 for the 7 super-
classes, 17 superclasses, and 30 categories, respectively.
OPTIMAL-31 has 0.9846, 0.9821, and 0.9591, respectively.
It is noteworthy that some of these state-of-the-art have
different test-train ratios. For the UCM dataset (Table 4), the
comparison shows that our approach of combining the classes
into superclasses has led to desirable results, outperforming
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FIGURE 10. Confusion matrices for (a) 7 superclasses; (b) 17 superclasses; and (c) 30 classes of the AID
dataset.

most of the state-of-the-art methods. The model performance
improvement is due to the careful clustering of the classes
into superclasses based on the similarity scores produced
by the proposed image similarity analysis framework. Some

state-of-the-art shown in the table contain feature fusion
strategies that involve fusing the local and global image
features to enhance models’ classification ability. At the
same time, our approach is simple yet highly efficient. The
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FIGURE 11. ROC Curves for the: (a) 7 superclasses; (b) 30 classes of dataset AID dataset.

architecture of our approach includes only the backbone
network (the Xception model) and a few additional layers
incorporated to stabilise and enable the model to extract more
features and mitigate the risk of overfitting.

As can be observed from Table 7, the model’s perfor-
mance decreases as the number of classes expands towards
the original number of the dataset’s classes. This reduction
in the model accuracy is due to the confusion induced by
inner-class variability and outer-class similarity. Even in the
21 classes of the dataset, the model performance is quite com-
petitive compared to the more sophisticated approaches used
in some state-of-the-art. Our technique gives the best result
and is arguably the most efficient for the purely fine-tuned
models shown in Table 4. The trend of model performance
deterioration is also apparent in Table 8, where the AUC
for the 4 superclasses is 99.13% against 98.52% for the
21 classes of the dataset. The same performance pattern can
be seen in Fig. 9(a) and (b), where the ROC curves values
for the 4 superclasses and the 21 dataset classes differ by
1%. It is essential to mention that for most of the monitored
performance metrics in the case of this dataset, the variations
between the model’s performance on the 4 superclasses and
the 10 superclasses are negligible. This can be attributed to
the size of the dataset and the close similarity in how the
superclasses in the two experiments were formed.

The number of misclassifications due to similarities and
variabilities between and among the classes of the dataset
rises with the expansion of the classes, as shown by the confu-
sion matrices in Fig. 8(a), 8(b) and 8(c). The number jumped
from just 4 for the 4 superclasses to 9 for the 21 classes. The
issue of misclassification due to inner-class variability and
outer-class similarity can be reduced by carefully and logi-
cally clustering the overlapping classes of HRSS images into
superclasses. This will result in more classification accuracy
and increased efficiency.

For the AID, the performance comparison of our approach
with the state-of-the-art models is given in Table 6. Compared
to the state-of-the-art, our method gives the best result in
the 7 and the 17 superclasses. It also shows competitive
performance in the result for classifying the 30 classes of

the dataset. Similarly, from Table 8, the performance of
our model for each of the three experiments on AID can
be observed. For all the metrics shown in the table, the
proposed technique performs best on the 7 superclasses,
followed by the 17 superclasses and the 30 classes of the
dataset. An observable correlation among the metrics’ val-
ues for all the datasets shows the model is stable. Like the
pattern of performance shown in the three experiments with
the UCM dataset, the model’s performance also reduced as
the number of classes moved towards the dataset’s original
size. In Table 10, the AUC also shows a similar trend of
performance reduction with the increase in the number of
classes. As the classes increase and more categories become
independent, the tendency for the classifier to misclassify the
images due to inner-class variability and outer-class similarity
increases. Our approach has proven to be very effective for
classifying images by grouping different images into super-
classes based on the selected image properties. The confusion
matrices, Fig. 10(a), (b) and (c), for the three experiments
also corroborate the results in tables and figures. For the first
experiment on the 7 superclasses, there are 55 misclassifica-
tions, with the Buildings and the Urban classes accounting
for nearly 50% of these misclassifications. This is due to the
intricate structural similarities between the superclass and
the images of the classCentre in theUrban superclass. For the
second experiment on the 17 superclasses, the model records
62 misclassifications, which is 7 more than in the previous
experiment. The last experiment on the original classes of
the dataset resulted in 105 misclassifications, which is almost
100% increase in misclassifications compared to the number
in the first and the second experiments.
OPTIMAL-31 is a small dataset compared to the UCM

and the AID datasets, and research on this dataset is less
than on the UCM dataset. This dataset differs from the other
two datasets (UCM and AID) because it has more categories
but fewer samples per class. The performance comparison of
our model and the state-of-the-art on this dataset is given in
Table 5. Compared toKBFNet, which contains three branches
and an inference aggregation module, our approach performs
better in the first experiment on the 7 superclasses and the
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FIGURE 12. Confusion matrices for (a) 7 superclasses; (b) 15 superclasses; and (c) 31 classes of the OPTIMAL-31
dataset.

TABLE 12. Performance evaluation metrics values for the three experiments on the UCM dataset.

third experiment on the 31 classes. The same performance
pattern is also demonstrated by our approach in terms of

overall accuracy, precision, recall, F1-Score, and Kappa,
as can be observed in Table 9. For all the metrics, the
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FIGURE 13. ROC curves for (a) 7 superclasses and (b) 31 classes of the OPTIMAL-31 dataset.

FIGURE 14. Confusion matrices for (a) 10 superclasses; (b) 18 superclasses; and (c) 45 classes of the
NPUW-RESIC45 dataset.
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FIGURE 15. ROC curves for (a) 10 superclasses and (b) 45 classes of the NWPU-RESISC45 dataset.

TABLE 13. Performance evaluation metrics values for the three experiments On the AID dataset.

TABLE 14. Performance evaluation metrics values for the three experiments on the OPTIMAL-31 dataset.

TABLE 15. Performance evaluation metrics values for the three experiments on the NWPU-RESISC45 dataset.

TABLE 16. AUC values for the three datasets for each of the three experiment.

performance is affected by the expansion of the classes. Sim-
ilarly, the ROC curves in Fig. 13(a) and 13(b) also show that
the AUC decreases with the number of classes. This demon-
strates that inner-class variability and outer-class similarity
could degrade themodel’s performance by causing to confuse
one class with another. The AUC values for OPTIMAL-31
also decline with the expansion of the classes, as given in
Table 10. The reduction in the model’s performance across
all the experiments demonstrates the effect of inner-class
variability and outer-class similarity on the deep-learning

classifiers. Consequently, where, for example, the goal is to
count the number of buildings instead of their type and detect
vegetation regardless of its make, this approach could be
more effective than the traditional method of independently
classifying each class.

NWPU-RESISC45 is one of the most extensive datasets
of scene classification images. It has more categories and
images compared to the other datasets used in this experi-
ment. The proposed approach shows the same performance
pattern for the superclasses and the 45 classes as in the
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other three datasets. The model classified the 10 super-
classes with higher accuracy compared to the 18 superclasses
and the 45 classes. As shown in Fig. 14(a), (b) and (c),
the composition of the superclasses reduces the number
of misclassifications and improves the model’s overall per-
formance. For the 10 superclasses, 79 misclassifications
have been recorded, while more than 120 misclassifications
occurred after expanding the classes back to the dataset’s
original size. In terms of other metrics, Table 7 gives.

VI. CONCLUSION
In this article, we propose a framework for combining
classes of remote sensing scene classification datasets into
superclasses based on textural, spatial, and colour similar-
ities to improve the model classification performance. For
the textural and spatial similarity analysis, we used the
Local Binary Pattern in combination with the Euclidean
Distance, Earth Mover’s Distance and Bhattacharyya for
image histogram similarity assessment and the Structural
Similarity Index (SSIM) for spatial similarity comparison.
We also present a fine-tuned model based on the Xception
model, an improved version of successive transfer learn-
ing techniques. The Xception has not received its fair share
of attention from researchers despite its simple yet highly
efficient architecture. We demonstrate that a systematic clus-
tering based on some image properties, such as texture,
colour, and other spatial properties, can potentially reduce
the risk of misclassifications (due to inner-class variability
or outer-class similarity) by deep learning classifiers. The
experiment results showed that texture plays a critical role
in determining the most intrinsic features of an image than
colour and structural similarity. This approach can be con-
sidered a proof of concept for adoption for use in object
detection, change detection, and scene classification, where
objects of interest share some features. More so, it has the
potential to be applied in urban mapping, settlement identi-
fication and risk analysis, particularly in areas where certain
facilities should not be situated in proximity due to risk haz-
ards. In the future, we plan to automate the image clustering
process and include a decision module to merge classes into
superclasses based on the similarity scores. For the fine-tuned
model, we plan to add a few more branches that would take
input from some of the model layers and pass it into a content
enhancement module for more accurate classification.
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