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ABSTRACT This study focuses on the design of an integral sliding mode-based fault-tolerant control
allocation (ISM-FTCA) scheme for the class of uncertain linear parameter varying (LPV) systems. The
objective is to tackle the fault occurring in the actuator channel by exploiting available redundancy through
a control allocation (CA) scheme in an output feedback framework. In this work, the assumption on the
estimation of actuator effectiveness level, which was previously considered (in the existing literature) to be
perfect coming from fault diagnosis and identification (FDI) scheme, is relaxed due to its bit conservatism
nature. The uncertain system dynamics, originating due to faults, failures, and imperfect fault information,
are catered to by designing a virtual control law using the LPV output ISM control strategy. An unknown
input LPV observer is designed to provide the estimate of unmeasured plant states to the virtual control law.
This work thoroughly investigates the closed-loop dynamics of the uncertain LPV system, utilizing the small
gain theorem to develop criteria for stability. These conditions provide crucial insights into the performance
and robustness of the suggested strategy. Finally, the efficiency of the proposed control scheme is verified
in the simulation environment by using a nonlinear 6-degree-of-freedom dynamic model of the octarotor
unmanned aerial vehicle (UAV) system. Numerical simulations under different faults and failures conditions
and in the presence of imprecise estimation validate the closed-loop performance close to nominal scenarios.

INDEX TERMS Fault tolerance, sliding mode control, robust control, aerospace control, control system
synthesis.

I. INTRODUCTION
Safety is essential in aerospace systems. Despite being the
safest mode of transportation, air travel is still susceptible
to sudden actuator failure, sensor malfunctions, and even
structural damage [1]. These damages and faults can result
in non-equilibrium flight conditions together with varied
inertial and aerodynamic properties, additional sources of
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uncertainty, and even reduced flight authority. Therefore,
it is crucial to study fault-tolerant control (FTC), which
automatically accommodates errors and uncertainties while
maintaining stability and ideal performance.

Linear parameter varying (LPV) has gained significant
interest in recent decades due to its applicability in systems
with real-time sensor input-output data. This approach allows
the tuning of controller parameters in the presence of param-
eter variations [2], [3]. LPV control method was initially
introduced in the work of [4] to the author’s best knowledge.
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Now, LPV paradigm has become the standard formulation in
the field of systems and control, serving as the established
formulation for tasks such as model identification, analysis,
and controller synthesis. Within the field of FTC for LPV
systems, numerous noteworthy findings are documented in
the current literature. Such as in [5], the actuator fault-
tolerant control was achieved by placing the virtual actuator
between the faulty plant and the nominal system. The
authors in [6] proposed an adaptive polytopic observer-based
state feedback control law to deal with the time-varying
actuator faults in the LPV system. A reconfigurable PID
fault-tolerant tracking control law was developed in [7]
for the LPV systems influenced by actuator faults and
external disturbance. An event-triggered mechanism-based
FTC approach was proposed for the LPV system in [8] where
the fault observer is used to estimate the fault.

In recent years, there has been a notable advancement in the
development of Linear Parameter-Varying (LPV) synthesis
methodologies for applications in aerospace, particularly
fault-tolerant systems and fault diagnosis. The adoption of
LPV frameworks in this context is attributed to their capabil-
ity to ensure stability and resilience across a broad spectrum
of airborne scenarios. The authors in [9] developed a time-
driven switching controller for a switched LPV system that
incorporates actuator faults. This controller was successfully
implemented to aero engines. LPV control technique was
also utilized in [10] to perform the aggressive maneuvering
of unmanned helicopter system where actuator fault and
system states are estimated using an unknown input observer
(UIO). In [11], a robust active FTC scheme is proposed for
a polytopic LPV system and is applied to a vertical take-off
landing (VTOL) aircraft system. The LPV controller is based
on sliding-mode-based state feedback control equipped with
H∞ performance criteria. Addressing the issue of effective
utilization of actuator redundancy in aircraft dissimilar
redundant actuation system, [12] presented an adaptive LPV
integral SMC-based control approach. This controller is
tailored to mitigate the effect of actuator faults. However, the
complete failure cannot be handled by the proposed scheme
which presents a more severe challenge. Recently in [13],
a robust estimated based dual mode predictive FTC scheme
is proposed for LPV system to deal with actuator fault while
also taking into account limits on the system’s states and
input. For the class of switched LPV system, the authors
in [2] proposed an active FTC approach where both input and
output matrices can vary with parameters. Through a unique
Lyapunov function approach, dependent on both dwell time
and parameter variations, an integrated scheme is designed
to address fault detection, estimation, and compensation
simultaneously. Fault estimation plays a crucial role in
active FTC by providing the ability to detect, isolate, and
estimate faults in real time. Some recent works on fault
estimation schemes hold valuable results in the simultaneous
estimation of systems states, faults, and disturbances for the
class of nonlinear and T-S fuzzy systems, such as recently
proposed in [14], [15], and [16]. In contrast, the proposed

LPV-based UIO approach that is proposed in this paper can
explicitly account for parameter variations, which makes it
appropriate for systems with known parameter variations
such as airplanes and UAVs.

The utilization of actuator redundancy is enhanced by the
implementation of a control allocation (CA) scheme, which
has been widely recognized as a successful strategy. This
approach is particularly advantageous due to its ability to pro-
vide a flexiblemodular design [17]. One notable benefit of the
CA scheme is its ability to allow for the independent design
of the controller, without necessitating prior knowledge of
the specific characteristics of the fault. The CA strategy is
in charge of allocating control effort to the available healthy
actuators whenever the specific actuator is prone to fault
and failure. There are several elegant algorithms described
for the CA approach such as pseudo-inverse scheme [18],
daisy-chaining [19], convex optimization approach [20], and
singular value decomposition approach [21]. Several notable
results on the CA-based FTC scheme have been presented in
recent years that deal with the class of linear-time invariant
(LTI) systems such as see [22], [23], [24], [25], and [26].
In the context of the LPV system, several CA schemes have
been proposed recently. One notable example is the dynamics
CA scheme introduced by [27] in their work on the quadrotor
system. In [28], an interval sliding mode observer-based
online CA scheme is proposed for a non-minimum phase
LPV system. In the output feedback framework, the authors
in [29] presented an integral SMC-based CA scheme for
over-actuated LPV systems to deal with actuator faults and
failures. In this formulation, the virtual control law, derived
from the ISMC approach, is transformed into physical control
input through a fixed CA scheme. Likewise, SMC-based
CA is proposed for the LPV system in [30] and is tested
on a full-scale aircraft system, showcasing the maintenance
of flight paths despite aileron and rudder faults. Recently
in [31], the LPV SMC-based CA scheme is also applied to
an octoplane UAV system that utilized the pseudo-inverse-
based CA method to reconfigure control law. Compared
to the extensively studied SMC-based CA scheme for the
LTI scheme, less literature is available for the LPV system,
particularly in the output feedback framework. In practice,
the output feedback control is more appealing to the scientific
community because, in reality, the whole states are rarely
available at the output. In the existing work on output ISMC-
based CA scheme, such as in [29], a fixed CA unit was used
that only tolerates limited faults and failure combinations.
In another work [30], the online CA scheme was proposed
but the fault and failure information was assumed to be
perfect which is not a practical assumption. Therefore, it is
important to study the LPV-based FTC scheme that can
deal with the faulty actuators by considering imperfect fault
information (which is a realistic approach) obtained from
the fault estimation module while actively reconfiguring the
control signals amongst the redundant actuators. Moreover,
it is also crucial to study the output feedback control which is
more practical compared to full-state feedback.

12258 VOLUME 12, 2024



O. Azeem et al.: Output Feedback FTC for LPV Plants Considering Imperfect Fault Information

Therefore, the goal of this research is to develop an output
feedback FTC-based CA method for LPV systems that can
cope with actuator faults and failures while maintaining
nominal closed-loop performance and providing additional
robustness towards the parameter variation. To cope with
potential actuator faults and failures, an online CA scheme
is presented first by performing the partitioning of the
input distribution matrix that redistributes the virtual input
signals amongst the available set of redundant actuators. The
unknown system states are then estimated by using an LPV-
based UIO unit which is known to be inherently robust to
uncertainties making it well-suited for systems with unknown
or time-varying parameters. Based on the estimated state
information, a virtual LPV control law is designed using
the output integral SMC technique. A detailed closed-loop
stability (CLS) analysis is performed to prove the system
stability under uncertainty that arises in the system due to
faults, failures, and fault estimation errors. An LMI synthesis
procedure is adopted to obtain the controller and observer
gains. Finally, the proposed scheme is implemented on a
nonlinear model of an octorotor UAV system. Nonlinear
simulations under different faults and failure conditions are
performed to demonstrate the effectiveness of the proposed
scheme. Compared to the existing methods [21], [23], [29],
[30], [32], [33], [34], the unique contribution and advantages
of the proposed scheme are outlined as follows:

• In contrast to established ISMC-based online CA
techniques tailored for linear time-invariant (LTI) sys-
tems [21], [23], [30], [32], [33], this work considered
LPV system to formulate FTC law in the output
feedback framework. A distinctive feature of this work
involves a pioneering consideration of imperfections
inherent in fault estimation units during FTC analy-
sis. Unlike prior effort [29], [30], the current study
meticulously accounts for challenges posed by imperfect
estimations, thereby enhancing the robustness of the
proposed method.

• Unlike existing studies in [29] and [34], the online CA
unit can toleratemore combinations of faults and failures
occurring in the actuator channel.

• The effectiveness of the enhanced system is thoroughly
demonstrated through a two-step validation procedure.
The initial validation process involves the utilization of
LPV model of an octarotor UAV system. The adaptabil-
ity of the suggested approach is further emphasized by
its application to the six-degree-of-freedom nonlinear
model of the octarotor UAV by using a two-loop
control structure, thereby confirming its promise in other
intricate systems.

II. PROBLEM FORMULATION
Consider an uncertain LPV system with faults and failures in
the actuators and external disturbance, expressed as

ẋk (t) = Ak (ρk )xk (t) + Bk (ρk )Wk (t)uk (t) + Dk (ρk )dk (t, xk )

yk (t) = Ckxk (t), (1)

where Ak (ρk ) ∈ Rn×n, Bk (ρk ) ∈ Rn×m and Dk (ρk ) ∈

Rn×q represent system matrix, input distribution matrix, and
disturbance matrix depend on the scheduling parameter ρk ,
whereas Ck ∈Rp×n constitutes of an output matrix, dk (t, xk )
represents an external disturbance input matrix and Wk (t) ∈

Rm×m stands for a semi-positive definite diagonal effec-
tiveness matrix defined as Wk (t) = diag(w1(t), ..,wm(t))
where the time-varying diagonal entries wi(t) model the
effectiveness level of the actuators and satisfy 0 ≤ wi(t) ≤ 1 .
For example,wi = 1 implies that the relevant actuator is fault-
free, and 0 < wi(t) < 1 denotes that the relevant actuator is
working at a decreased efficiency owing to some amount of
fault, while wi = 0 denotes that the actuator has completely
failed. In LPV plant (1), ρk (t) belongs to a known bounded
set i.e. � ⊂ Rr and matrices Ak (ρk ) and Bk (ρk ) dependent
affinely on parameter vector ρk expressed as

Xk (ρk ) = X0 +

r∑
i=1

ρkXk , (2)

where Xk (ρk ) ∈ {Ak (ρk ),Bk (ρk )}. The fault considered
in this work is treated as a multiplicative actuator fault.
However, it can also affect the actuator channel in an additive
way by defining Wk (t) := 1 − K (t) such as see the earlier
work [26], [35]. A layout of the overall control strategy
is shown in Fig. 1. To resolve actuator redundancy, the
parameter-dependent matrix Bk (ρk ) is first expressed as

Bk (ρk ) = Bf Ek (ρk ), (3)

where Bf ∈ Rn×m is a fixed matrix and Ek (ρk ) ∈ Rm×m is
parameter dependent matrix depends on scheduling variable
ρk (t). In (3), the matrix Bf is further partitioned as

Bf = [BT1 BT2 ]
T , (4)

where B1 ∈R(n−l)×m, B2 ∈Rl×m and l < m. The partitioning
of Bf in (4) ensures ∥B2∥ ≫ ∥B1∥ which means that the
components associated with B2 have dominant contribution
in delivering control effort compared to B1. In the field of
the aircraft system, the channel B2 is often correlated with
the equation of angular acceleration governing roll, pitch, and
yaw dynamics because most of the control objectives can be
attained by controlling the desired moments. By hypothesis,
∥B1∥ is assumed to be small. To create this separation, the
permutation of states must usually be undertaken.
Remark: Note that the structure and formal representation

of the LPV system in (1) is quite similar to the T-S
fuzzy system. However, they differ in their underlying
representation and methodology. LPV system focuses on
linear variations in a deterministic manner, while the T-S
fuzzy models use fuzzy logic to approximate nonlinear
systems with a set of local linear models.
Assumption 1: From the partitioning of Bf in (4), it is

assumed that the states can be scaled to ensure B2B2T = Il
and ∥B2∥ = 1.

Since rank(B2) = Il , therefore assumption 1 can be
achieved without loss of generality. Considering (3) and (4),
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FIGURE 1. Layout of the proposed control strategy.

the LPV uncertain system in (1) can be written as

ẋk (t) = Ak (ρk )xk (t) +

[
B1Ek (ρk )Wk (t)
B2Ek (ρk )Wk (t)

]
uk (t)

+ Dk (ρk )dk (t, xk ). (5)

Assumption 2: The information of actuator healthiness
level Wk (t) provided by the FDI unit is not perfect.
To model the level of imperfection in estimated fault
information, we define

Wk (t) = (Im −1k (t))Ŵk (t), (6)

where Ŵk (t) = diag{ŵ1(t), . . . , ŵm(t)} is the estimation
of actuator effectiveness and the scalars ŵi(t), i = 1 . . .m
are assumed to satisfy 0 ≤ ŵi(t) ≤ 1. In (6), 1k (t) =

diag{δ1(t), . . . , δm(t)} denotes the error in estimation and
δm(t) represents the imperfection level in fault estimation.
The uncertain system dynamics (5) after considering the
effect of imperfection (6) is obtained as

ẋk (t) = Ak (ρk )xk (t) +

[
B1Ek (ρk )(1 −1k (t))Ŵk (t)
B2Ek (ρk )(1 −1k (t))Ŵk (t)

]
uk (t)

+ Dk (ρk )dk (t, xk ). (7)

Remark: In the earlier work on the FTC of LPV
system [29], the fault information was assumed to be
perfectly available. Nevertheless, this study incorporates a
fault estimation error δk (t) when measuring the efficacy
of each actuator (6). To maintain the estimate within the
theoretical bounds, a saturation block with a limit [0 1]
is used before the information sent to the CA unit. In the
next section, a comprehensive closed-loop stability analysis
will be conducted taking into account imperfection in
fault estimation. The objective is to assess the maximum
estimation error that the suggested method can tolerate.

III. VIRTUAL CONTROL LAW DESIGN
This subsection introduces a virtual control law vk (t) ∈

Rl which is defined as the total amount of control effort
generated by the actuators

vk (t) = B2Ek (ρk )uk (t). (8)

The choice of physical control law in (8) is considered as

uk (t) = E†k (ρk ) vk (t), (9)

where

E†k (ρk ) = Ŵk (t)(Ek (ρk ))−1BT2 (B2(Ek (ρk ))Ŵk (t)

× (Ek (ρk ))−1BT2 )
−1, (10)

is one of the choice of a weighted right pseudo inverse of
B2(Ek (ρk )). Using (9), the expression in (7), with respect to
virtual control vk (t), can be expressed as

ẋk (t) = Ak (ρk )xk (t) +

[
B1Ek (ρk )(1 −1k (t))ŴkE

†
k (ρk )

B2Ek (ρk )(1 −1k (t))ŴkE
†
k (ρk )

]
× vk (t) + Dk (ρk )dk (t, xk ). (11)

With the choice of

v̂k (t) = B2Ek (ρk )Ŵk (Ek (ρk ))†vk (t), (12)

the expression in (11) is further written for convenience as

ẋk (t) = Ak (ρk )xk (t) +

[
B1Ek (ρk )(1 −1k (t))E

‡
k (ρk )

B2Ek (ρk )(1 −1k (t))E
‡
k (ρk )

]
︸ ︷︷ ︸

Bw(ρk )

v̂k (t)

+ Dk (ρk )dk (t, xk ), (13)

where

E‡k (ρk ) = Ŵ 2
k (t)(Ek (ρk ))

−1BT2 (B2(Ek (ρk ))Ŵ
2
k (t)

× (Ek (ρk ))−1BT2 )
−1 (14)

is also a weighted right pseudo inverse of B2Ek (ρk ), provided
that det(B2(Ek (ρk ))Ŵ 2

k (Ek (ρk ))
−1B2T ̸= 0.

A. NOMINAL LPV CONTROLLER
The nominal virtual control law to be formed is based on
the fault-free system, thus taking into account the case when
the actuator efficiency estimate is ideal i.e. 1k (t) = 0 and
system does not have actuator faults,i.e Ŵk (t) = Im, then the
uncertain system in (13) can be simplified as

ẋk (t) = Ak (ρk )xk (t) +

[
B1BT2
B2BT2

]
︸ ︷︷ ︸

Bv

vk (t), (15)

where Bv = Bf BT2 . Assume a positive definite matrix P ∈

Rn×n and a feedback gain F(ρk ) ∈Rl×n exists such that(
Ak (ρk ) − BvF(ρk )

)TP+ P
(
Ak (ρk ) − BvF(ρk )

)
< 0, (16)

then

ẋk (t) =
(
Ak (ρk ) − BvF(ρk )

)
xk (t) (17)

is quadratically stable. The feedback gainF(ρk ) is formulated
to minimize the linear quadratic regulator (LQR) cost
function

∫
(xkQTk xk + ukRkuk )dt where Qk and Rk represent

symmetric-positive-definite (s.p.d.) matrices. The specific
method of selecting F(ρk ) is derived from the work of [36]
and is not discussed in this paper.
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B. SWITCHING FUNCTION DESIGN
The nominal control law ensures stability in fault-free
condition. However, the uncertainty arose due to system
faults and failures can influence the system dynamics. In this
subsection, a nonlinear LPV ISMC law that interfaces
with the nominal control law is designed to enhance the
robustness. The first step is to define a switching surface
S = {xk ∈ Rn : σk (t) = 0}, where σk (t) denotes the switching
function defined as

σk (t) := Gkyk (t) − Gkyk (0) +

∫ t

0
F(ρk )x̂k (τ )dτ, (18)

whereGk ∈Rl×n is the design choice. In this paper, thematrix
Gk in (18) is selected as

Gk := B2((CkBf )TCkBf )−1(CkBf )T . (19)

The choice of Gk in (18) assures that GkCkBv = Il , which is
useful in deriving the expression of virtual control law.
Assumption 3: In this paper, we considered rank(Bf ) =

rank(CkBf ) = m.
The relevant control expression and the stability of the slid-

ing dynamics are derived by taking switching function (18)
derivative which yields

σ̇k (t) = F(ρk )x̂k (t) + Gk ẏk (t). (20)

By substituting (1) and (13), the switching function deriva-
tive (20) can be expressed as

σ̇k (t) = GkCk ẋk (t) + F(ρk )x̂k (t)

= GkCkAk (ρk )xk (t) + GkCkBw(ρk )v̂k (t)

+ GkCkDk (ρk )dk (t, xk ) + F(ρk )x̂k (t). (21)

Assume that during sliding σk (t) = σ̇k (t) = 0, therefore, the
equivalent control representation can be written as [37],

v̂eq(t) = −(GkCkBw(ρk ))−1(F(ρk )x̂k (t)
+ GkCkAk (ρk )xk (t) + GkCkDk (ρk )dk (t, xk )

)
.

(22)

With the choice of Gk in (19), the following simplification is
made as

GkCkBw(ρk ) = I − B2ψ(t, ρk ), (23)

where

ψ(t, ρk ) = Ek (ρk )1k (t)E
‡
k (ρk ). (24)

Substitute (23) into (22), we get,

v̂eq(t) = −(I − B2ψ(t, ρk ))−1(F(ρk )x̂k (t)

+ GkCkAk (ρk )xk (t) + GkCkDk (ρk )dk (t, xk )).

(25)

Next, the dynamics associated with the sliding surface is
obtained by substituting the equivalent virtual control law

(25) into (13) which yields

ẋk (t) = Ak (ρk )xk (t) − Bm((F(ρk )x̂k (t) + GkCkAk (ρk )

× xk (t))+(1−Bω(ρk )(GkCkBω(ρk ))Dk (ρk )dk (t, xk ),

(26)

where

Bm :=

[
B1Ek (ρk )(1 −1k (t))E

‡
k (ρk )(I − B2ψ(t, ρk ))−1Il

]
.

(27)

Remark: With the choice of Gk in (19) and utilizing the
results of proposition 3 in [37], we can conclude that the
Euclid norm of uncertain term is equal to one i.e.∥3∗

∥ = 1.
Therefore, ∥3∗Dk (ρk )dk (t, xk )∥ ≤ ∥Dk (ρk )dk (t, xk )∥.
Next, add and subtract the term Bv(F(ρk )x̂k (t) +

GkCkAk (ρk )xk (t)) to the right hand side and using ek (t) =

xk (t)− x̂k (t), the system (26) can be additionally written in a
form suitable for stability analysis

ẋk (t) = (−BvGkCkAk (ρk ) + Ak (ρk ) − BvF(ρk ))xk (t)

+ BvF(ρk )ek (t) + B̃8̃(t)(F(ρk )(xk (t) − ek (t))

+ GkCkAk (ρk )xk (t)) + Dk (ρk )dk (t, xk ), (28)

where

B̃ :=

[
In−l
0

]
(29)

and 8̃(t) denotes the system uncertainty which is defined as

8̃(t) = B1BT2 − B1Ek (ρk )(I −1k (t))E
‡
k (ρk )

× (I − B2ψ(t, ρk ))−1. (30)

Let’s define an allowable a set of actuator faults that can be
tolerated as

Wδ = {(w1, . . . ,wm) ∈ Iδ : (GkCkBw(ρk ))T

× (GkCkBw(ρk )) > ϵI }, (31)

where Iδ = [0 1] × . . . × [0 1] and 0 < ϵ ≤ 1.
It is necessary to note that when estimation of actuator
effectiveness is perfect i.e.1k (t) = 0 and all actuators
are working perfectly i.e Ŵk (t) = I and dk (t, xk ) =

0, the term ψ(t, ρk ) = 0 in (6), therefore the matrix
(GkCkBw(ρk ))T (GkCkBw(ρk )) = I and hence the set Wδ ̸=

∅. It can be easily shown that∥∥∥(GkCkBw)−1
∥∥∥ =

∥∥∥(I − B2ψ(t, ρk ))−1
∥∥∥

= (I − ∥B2ψ(t, ρk )∥)−1

<
1

1 −
1maxco√

ϵ

, (32)

where co = maxρ∈� ∥Ek (ρk )∥
∥∥Ek (ρk )−1

∥∥ and 1max =

∥1k (t)∥. The bounded condition in (32) is an important
condition, where 1maxco√

ϵ
< 1 and will be incorporated in the

analysis of CLS.
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IV. LPV OBSERVER DESIGN
In this paper, we assumed only the measured outputs yk (t)
to be accessible. However, the design of virtual control law
requires the information of system states. To reconstruct all
the state vector, a full order observer can be developed in
this scenario. Considering the imperfect fault estimation (6)
given by the FDI scheme, the uncertain LPV system in (1)
can alternatively be expressed as

ẋk (t) = Ak (ρk )xk (t) + Bk (ρk )(I −K̂ )uk (t) − Bk (ρk )

×1k (t)(I −K̂ )uk (t) + Dk (ρk )dk (t, xk ), (33)

where K̂ := I − Ŵk . The matrix K̂ := diag[k̂1, . . . , k̂m] and
the diagonal elements ki satisfy 0 ≤ k̂m ≤ 1. In uncertain
LPV plant given in (33), K̂uk (t) is regarded as an unknown
input. The suggested LPV observer’s structure is as follows:

żk (t) = M (ρk )zk (t) + T (ρk )Bk (ρk )uk (t) + L(ρk )yk (t) (34)

x̂k (t) = zk (t) + H (ρk )yk (t), (35)

where the matrices M (ρk ) ∈ Rn×n,T (ρk ) ∈ Rn×n,H (ρk ) ∈

Rn×p are selected such that the unknown input term K̂uk (t)
can be decoupled from the error dynamics. In (34), x̂k (t)
represents the estimated state. Next define ek (t) = xk (t) −

x̂k (t), and time derivative of ek (t) after substituting (33)
and (34) is written as

ėk (t)

= (Ak (ρk )xk (t) + Bk (ρk )(I −K̂ )uk (t) − Bk (ρk )1k (t)

× (I −K̂ )uk (t) + Dk (ρk )dk (t, xk ) −M (ρk )zk (t) − T (ρk )

× B(ρk )uk (t) − L(ρk )yk (t) − H (ρk )ẏk (t) − Ḣ (ρk )yk (t)

= (In − H (ρk )Ck )Ak (ρk )xk (t) + (In − H (ρk )Ck )B(ρk )uk (t)

− (In − H (ρk )Ck )Bk (ρk )K̂uk (t) − (In − H (ρk )Ck )Bk (ρk )

×1k (t)uk (t) + (In − H (ρk )Ck )Bk (ρk )1k (t)K̂uk (t)

−M (ρk )zk (t) + (In − H (ρk )Ck )Dk (ρk )dk (t, xk ). (36)

With the appropriate choice of design matrices H (ρk ) and
T (ρk ) in (36), in particular,

H (ρk ) = Bk (ρk )((CkBk (ρk ))TCkBk (ρk ))−1((CkBk (ρk ))T

T (ρk ) = In − H (ρk )Ck (37)

and by selecting L(ρk ) = L1(ρk ) + L2(ρk ), the unknown
input term BkK̂uk (t) is separated from the system error
dynamics (36), yielding

ėk (t) = T (ρk )(Ak (ρk )xk (t) −M (ρk )(x̂k (t)

− H (ρk )yk (t)) − L1(ρk )yk (t) − L2(ρk )yk (t)

+ T (ρk )Dk (ρ)dk (t, xk ) − Ḣ (ρk )yk (t), (38)

where, rank(CkBk (ρk )) = rank(Bk (ρk )) = m and the choice
of H (ρk ) and T (ρk ) in (37) ensures that T (ρk )Bk (ρk ) = 0.
Assumption 4: Assume that the pair (T (ρk )Ak (ρk ),Ck ) is

detectible for all ρk ∈ �.

Using the appropriate design of L2(ρk ) and M (ρk )
specifically,

L2(ρk ) = M (ρk )H (ρk )

M (ρk ) = T (ρk )Ak (ρk ) − L1(ρk )Ck , (39)

the error dynamics in (36) is written as

ėk (t)= (T (ρk )Ak (ρk ) − L1(ρk )Ck )xk (t) −M (ρk )xk (t)

+M (ρk )ek (t)−Ḣ (ρk )Ckxk (t)+T (ρk )Dk (ρk )dk (t, xk )

(40)

and further simplification leads to the form

ėk (t)=M (ρk )ek (t)−Ḣ (ρk )Ckxk (t)+T (ρk )Dk (ρk )dk (t, xk ).

(41)

Assumption 5: The disturbance/uncertainty function
dk (t, xk ) satisfies the following equality dk (t, xk ) =

ψk (t, xk )xk (t) where ∥ψk (t, xk )∥ ≤ ψ̄k and ψ̄k denotes the
bound on uncertainty term which is assumed to be known.

Now consider a candidate function Vo(t) = eTk Poek ,
where Po is defined as positive definite symmetric matrix
derived from the solution PoM (ρk )+MT (ρk )Po = −I for all
ρk ∈ �.
Then the time derivative of Vo(t) gives

V̇o(t) = ėTk Poek + eTk Poėk . (42)

Substitute (41) into (42), we get

V̇o(t)

= ek (PoM (ρk ) +MT (ρk )Po)eTk − 2eTk PoḢ (ρk )

× Ck x̂k (t) + 2eTk PoT (ρk )Dk (ρk )dk (t, xk )

≤ −∥ek∥2 − 2 ∥ek∥ ∥Po∥
∥∥Ḣ (ρk )Ck

∥∥ ∥∥x̂k (t)∥∥ + 2∥ek (t)∥

× ∥Po∥∥T (ρk )∥∥Dk (ρk )∥ψk (t, xk )∥∥xk (t)∥)

≤ −∥ek∥2 − 2 ∥ek∥ ∥Po∥ (
∥∥Ḣ (ρk )Ck

∥∥ − ∥T (ρk )∥∥Dk (ρk )

× ∥ψk (t, xk )∥)∥xk (t)∥. (43)

Hence, an appropriate choice of L1(ρk ) yields convergence of
error dynamics asymptotically.

A. ANALYSIS OF CLOSED-LOOP SYSTEM STABILITY
Prior to CLS analysis, an augmented system is created by
combining the LPV uncertain system (28) and observer error
system (41) as[

ėk (t)
ẋk (t)

]
= Aa(ρk )

[
ek (t)
xk (t)

]
+ Ba3(t)Ca(ρk )

[
ek (t)
xk (t)

]
, (44)

where

Aa(ρk ) =

[
M (ρk ) 0
BvF(ρk ) Ac(ρk ) − BvF(ρk )

]
Ac(ρk ) = (I − BvGkCk )Ak (ρk )

Ba(ρk ) =

[
−Ḣ (ρk )Ck + (1 − H (ρk )Ck )Dk (ρk )ψ̄k 0 0

0 B̃ B̃

]
,

(45)
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and

Ca(ρk ) =

 0 I
−F(ρk ) GkCkAk (ρk ) + F(ρk )

0 I

 , (46)

and 3(t) in (44) is an uncertain term defined as

3(t) = diag(0, 8̃(t), 0). (47)

For the analysis of the stability of closed-loop system, it is
appropriate to examine augmented system (44) in (ek , x̂k )
coordinates system, therefore by utilizing ek (t) = xk (t) −

x̂k (t), we can write (44) as[
ek (t)
x̂k (t)

]
=

[
I 0

−I I

]
︸ ︷︷ ︸

T̃

[
ek (t)
xk (t)

]
. (48)

By utilizing (48), the system (44) can be written as[
ėk (t)
˙̂xk (t)

]
= Ãa(ρk )

[
ek (t)
x̂k (t)

]
+ B̃a(ρk )3(t)C̃a(ρk )

[
ek (t)
x̂k (t)

]
,

(49)

where

Ãa(ρk ) =

[
M (ρk ) 0

Ac(ρk ) −M (ρk ) Ac(ρk ) − BvF(ρk )

]
,

B̃a(ρk ) =

[
−Ḣ (ρk )Ck + (I − H (ρk )Ck )Dk (ρk )ψ̃k 0 0
Ḣ (ρk )Ck + (I − H (ρk )Ck )Dk (ρk )ψ̃k B̃ B̃

]
,

C̃a(ρk ) =

 I I
GkCkAk (ρk ) GkCkAk (ρk ) + F(ρk )

I I

 .
To assure the boundedness on the uncertain term 8̃(t) in (47),
it is sufficient to ensure that the pseudo-inverse of B2Ek (ρk )
is norm bounded. By utilizing the property of pseudo-inverse,
it is straightforward to show that for all combinations of 0 <
ŵm(t) ≤ 1,∥∥∥8̃(t)∥∥∥ ≤

∥∥∥B1BT2 ∥∥∥ + ∥B1∥ ∥Ek (ρk )∥ (1 +1max)

× ∥Ek (ρk ))‡∥
∥∥∥(I − B2ψ(t, ρ))−1

∥∥∥
≤ γ1(1 +

c(1 +1max)

1 −
1maxc√

ϵ

), (50)

where γ1 = ∥B1∥ and ∥B2∥T = 1. The augmented
uncertainty term in (47) is assumed to be norm-bounded and
is defined as

∥3(t)∥ < γδ. (51)

In nominal scenarios (i.e 1k (t) = 0 and Ŵk (t) = I ), the
augmented closed loop system in (49) becomes[

ėk (t)
˙̂xk (t)

]
= Ãa(ρk )

[
ek (t)
x̂k (t)

]
, (52)

where the stability of matrix Ãa(ρk ) depends on the diagonal
entries M (ρk ) and Ac(ρk ) − BvF(ρk ) which are made stable
individually by selecting the appropriate observer gain L1(ρk )

and controller gain F(ρk ). As a result, the overall system is
stable. However, it is critical to ensure the stability of the
closed-loop system in the event of actuator failures/faults.
To do so, define a scalar γ2 > 0 as a L2 norm linked with
the term G̃L(s) i.e.

γ2 = ∥G̃L(s)∥, (53)

where G̃L(s) = C̃a(ρk )(sI − Ãa(ρk ))−1B̃a(ρk ).
Proposition 1: The closed loop system in (49) is stable for

any combination of actuator failures or faults belonging to the
set Wk (t) ∈ Wδ and for all ρk ∈ �.

γ2γδ < 1. (54)

Proof: In order to satisfy the CLS condition in (54), the
augmented system defined in (49) is expressed as[

ėk (t)
˙̂xk (t)

]
= Ãa(ρk )

[
ek (t)
x̂k (t)

]
+ B̃a(ρk )ũa(t) (55)

ỹa(t) = C̃a(ρk )
[
ek (t)
x̂k (t)

]
, (56)

where

ũa(t) = 3(t)ỹa(t). (57)

By writing augmented system (49) into the form (55), it may
be regarded as feedback connection of linear term G̃L(s)
(53) and bounded uncertain term 3(t). Then, by employing
a small gain theorem [38], if the stability condition (54) is
satisfied then closed loop uncertain system (49) is stable. This
complete the proof.

B. LPV INTEGRAL SLIDING MODE CONTROLLER
An LPV ISMC can be designed in the form as

vk (t) = (GkCkBw(ρk ))−1(vl(t) + vn(t)), (58)

where

vl(t) = −F(ρk )x̂k (t) − GkCkAk (ρk )x̂k (t), (59)

and the nonlinear term vn(t) is

vn(t) = −kδ(t)
σk (t)

∥σk (t)∥
, (60)

where kδ(t) denotes the modulation gain, whose precise value
is discussed in the next section.
Proposition 2: The designed nonlinear ISMC control law

in (58) imposes the sliding motion into the sliding manifold
for all allowable sets of failures or faults associated with the
set Wϵ and for all ρk ∈ � provided the kδ is chosen as

kδ(t) ≥ ∥Gk∥ ∥Ck∥ ∥Ak (ρk )∥ ∥ek∥ + ∥Gk∥ ∥Ck∥

× ∥Dk (ρk )∥ ∥ψk (t, xk )∥ ∥xk (t)∥ + ηδ, (61)

where ηδ > 0.
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Proof: To check the control law in (58) satisfies the
reachability condition for the sliding surface, substitute (58)
into (21) and further simplification yields

σ̇k (t) = GkCkAk (ρk )xk (t) + vl(t) + vn(t) + F(ρk )x̂k (t)

+ GkCkDk (ρk )dk (t, xk ). (62)

Substitute the values of vl(t) and vn(t) from (58-(60)
respectively and by taking considering the fact that ek (t) =

xk (t) − x̂k (t), the switching function in (62) is expressed as

σ̇k (t) = GkCkAk (ρk )ek (t) − kδ(t)
σk (t)

∥σk (t)∥
+ GkCkDk (ρk )dk (t, xk ). (63)

Multiply the left and right hand side of (63) with σkT (t),
results

σk
T (t)σ̇k (t) = σk

T (t)GkCkAk (ρk )ek (t) − kδ(t) ∥σk (t)∥

+ ∥GkCkDk (ρk )dk (t, xk )∥

≤ ∥σk∥ ∥GkCkAk (ρk )ek (t)∥ − kδ(t) ∥σk (t)∥

+ ∥GkCkDk (ρk )dk (t, xk )∥

≤ −∥σk∥ (kδ(t) − ∥Gk∥ ∥Ck∥ ∥Ak (ρk )∥ ∥ek (t)∥)

+ ∥Gk∥ ∥Ck∥ ∥Dk (ρk )∥ ∥ψk (t, xk )∥ ∥xk (t)∥.

(64)

Next after substituting the modulation gain kδ defined in (61)
into (64) and the derivative of Lyapunov function with
respect to time σkT (t)σ̇k (t) along the system trajectory after
simplifying becomes

σk
T (t)σ̇k (t) ≤ −ηδ ∥σk (t)∥ . (65)

Hence so-called reachability condition is satisfied for all the
time which can be verified from condition (65).
Finally, using (58),(59) and (60), the actual control input (9)
is finally obtained as

uk (t) = Ŵk (t)(Ek (ρk ))−1BT2 (B2Ek (ρk )Ŵk (t)(Ek (ρk ))−1

BT2 )
−1(

− F(ρk ) − GkCkAk (ρk ))x̂k (t) − kδ(t)
σk (t)

∥σk (t)∥

)
.

(66)

Algorithm for Proposed FTC Scheme: In this section,
a step-wise procedure is provided to demonstrate the
implementation of the proposed scheme.

• The input distribution matrix Bk (ρk ) is first partitioned
into fixed Bf and parameter-dependent matrix Ek (ρk )
according to (3).

• The fixed matrix Bf is further partitioned to the form (4)
to resolve actuator redundancy. This may be achieved by
appropriate state reordering and scaling is performed to
further ensure B2BT2 = Il .

• Consider the pair (Ak ,Bv) is controllable, design a
state feedback gain F(ρk ) to make nominal closed-loop
system (17) quadratically stable. The LMI procedure to
obtain F(ρk ) is given in [34].

FIGURE 2. Star shaped octarotor.

• Design an LPV-UIO to estimate unknown states using
observer dynamics in (34) and observer gain L(ρk ) is
designed using MATLAB synthesis code ‘‘msfsyn’’.

• Design a virtual control law using (58-60) where σk (t)
is defined in (18).

• Finally the physical control law uk (t) is obtained using
the (9).

• With the selection of controller gain F(ρk ) and observer
gain L(ρk ), calculate the L2 norm γ2. If γ2 ≤ 1/γδ ,
then the stability requirement in (54) is met, otherwise
consider redesigning of F(ρk ) and L(ρk ).

V. MODELING OF OCTAROTOR
The effectiveness of the aforementioned strategy is assessed
on the LPV model of an octarotor UAV system and afterward
verified on a 6-DoF nonlinear model. The star-shaped
octarotor is comprised of eight rods that are interconnected by
a central plate, which houses the power supply and avionics
systems of the vehicle. Each arm is positioned at a 45Â◦

angle, as depicted in Fig. 2. The dynamics equations of
octarotor are described as [39].

ẍe = (cosφesinθecosψe + sinφesinψe)
1
m
U4

ÿe = (cosφesinθesinψe − sinφecosψe)
1
m
U4

z̈e = −g+ a1bzU4

ṗe = a2qere−a3qeω + a4U1

q̇e = a5pere−a6pω + a7U2

ṙe = a8peqe−a9U3,

(67)

where xe, ye and ze are the output of the system, which depicts
the position of the vehicle, θe, φe andψe denote the pitch, roll,
and yaw angles, while pe, qe and re denotes angular velocity.
All xe, ye, ze, pe, qe and re are described with respect to the
body fixed frame. The constant parameters are given by

a1 =
1
m
, a2 =

Iy − Iz
Ix

, a3 =
Jr
Ix
, a4 =

1
Ix

a5 =
Iz − Ix
Iy

, a6 =
Jr
Iy
, a7 =

1
Iy

a8 =
Ix − Iy
Iz

, a9 =
1
Iz
, bz = cosφsinθ.

(68)
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To obtain the same entities in the earth fixed frame, the
transformation matrix used is given as.φ̇eθ̇e

ψ̇e

 =

1 sinφetanθe cosφetanθe
0 cosφe −sinφe

0
sinφe
cosθe

cosφe
cosθe


peqe
re

 .
(69)

The plant inputs U1(t), . . . .U4(t)) can be expressed as
individual contributions from each of the eight rotors as

uτ (t) = B�uk (t), (70)

where uτ (t) = [U1,U2,U3,U4] and uk (t) is defined as

uk (t) =
[
�1(t)2 �2(t)2 . . . �8(t)

]T
, (71)

where�i, i = 1 . . . .8 represents the speed of rotor. The fixed
matrix B� is defined as

B� =


b b b b b b b b
0 0 − bl − bl 0 0 bl bl
bl bl 0 0 − bl − bl 0 0
−d − d d d − d − d d d

 ,
(72)

where l is the moment arm length (for octarotor l = Lcosπ8
and L is the arm length). The fixed scalars b and d in (72)
denotes the thrust and drag factor respectively.
LPV Model of UAV: Similar to existing work, a two-

loop control structure is proposed to attain 6-DoF motion
control of UAV. Therefore the states associated with inner
loop dynamics, which are directly related to control inputs,
are converted into LPV form. The inner-loop state vector is
defined as

xk =
[
ze φe θe ψe że pe qe re

]T
. (73)

It should be noted that the states xe and ye, as well as
their derivative ẋe and ẏe, are not encompassed in (73) for
the purpose of designing the inner loop (rate) controller.
This phenomenon arises from the conventional practice of
utilizing the pitch and roll angles as manipulated variables
to regulate the xe and ye coordinates of the octarotor [39].
To further assist the controller synthesis, it is assumed that
the perturbations from hover flights are smaller than the
following approximation (φ̇e, θ̇e, ψ̇e) = (pe, qe, re) holds.
Therefore, the nonlinear system (67) associated with state
vector (73) is written into LPV form (1) by considering the
following set of scheduling variable ρk defined as

ρk =
[
ρk1 ρk2 ρk3 ρk4

]
=

[
pe(t) qe(t) re(t) bz

]
, (74)

The parameter-dependent matrices LPV system are defined
as

Ak (ρk ) =

[
04×4 I4×4
04×4 A22(ρk )

]
, Bk (ρk ) =

[
04×4
B21(ρk )

]
,

Ck =
[
I4 04

]
,Dk (ρk ) =

[
04×4

D21(ρk )

]
, (75)

where

A22 =



0 0 0 0

0 0
a2
2
ρk3

a2
2
ρk2

0
a5
2
ρk3 0

a5
2
ρk1

0
a8
2
ρk2

a8
2
ρk1 0

 ,

B21(ρk ) =


−ρk4a1 0 0 0

0 a4 0 0
0 0 a7 0
0 0 0 a9

 , and

D21(ρk ) =


0 1

a3ρk2 0
−a6ρk1 0

0 0

 .
Using torque/force-rotor speed mapping given in (71-72), the
LPV system (1) can also be represented as

ẋk (t) = Ak (ρk )xk (t) + Bk (ρk )(18 −1k (t))Ŵk (t)uk (t), (76)

where Bk (ρk ) = Bτ (ρk )B�. Based on the structure of Bτ and
B�, Bk (ρk ) can be perfectly factorized into fixed and varying
component (3)

Bk (ρk ) = Bf Ek (ρk ), (77)

where Bf =

[
04 × 4
I4

]
and Ek (ρk ) is defined in (78), as shown

at the bottom of the next page, where b symbolizes the lift
coefficient, l denotes the distance from center of each rotor
to the center of gravity, d designates the force-to-moment
scaling factor.

VI. CONTROLLER PARAMETERS SETTINGS AND
NUMERICAL SIMULATIONS
A. CONTROLLER PARAMETERS SETTINGS
The parameters of nonlinear model are m = 1.3Kg, g =

9.8 m/s2, Ix , Iy = 0.0150, Iz = 0.0026, jr = 6 × 10−5, b =

3.13 × 10−5, and d = 7.5 × 10−7 [39]. Note that Bf is
already in the form given in (4) and it can be verified that
B2BT2 = I4, ∥B2∥ > ∥B1∥ and ∥B2∥ = 1. The controller
gain is computed by using a fixed Lyapunov function that
results in designing of gainF(ρk ) by usingMatlab LMImulti-
model state-feedback synthesis code ‘‘msfsyn’’ to solve the
LMIs. LQR type cost function was selected. It is a trade-
off between performance and actuator effort. The parameters
Qk and Rk are adjusted to meet the desired performance by
considering energy constraints. The matrices Qk and Rk are
taken as Qk = diag[1, 0.001, 1, 0.001, 1, 0.001, 1, 0.001]
and Rk = diag[2.4, 2.4, 2.4, 2.4]. The feedback gain matrix
F value comes out as shown in the equation at the bottom
of the next page, Over the entire working regime, a fixed
observer gain L(ρk ) = L is acceptable and is implemented
with the ‘‘msfsyn’’ command in the MATLAB, where, LMIs
are solved for observer gain using the duality property, i.e.
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FIGURE 3. Architecture of controller implementation to octarotor system.

observability of (T (ρk )Ak (ρk ),Ck ) implies controllability of(
(T (ρk )Ak (ρk ))T ,CT

k

)
. The observer gain L1 is computed as

L =


8.6 0 0 0 17.85 0 0 0
0 6.6 0 0 0 10.85 0 0
0 0 7.8 0 0 0 14.85 0
0 0 0 6.3 0 0 0 9.9

 .
With the choice of F(ρk ), the scalar γ2 is computed as 0.24.
Therefore, the norm on uncertainty should satisfy γδ <

1/0.24 to satisfy the closed-loop stability. The sliding gain
kδ(t) is selected as 5.928 to satisfy the reachability condition
and ηδ = 0.005. In order to track the desired position in
both the x and y directions, a PID structure in the outer loop
subsystem has been taken into account.{

ẍc = ẍd + kdx (ẋd − ẋe) + kpx (xd − xe)
ẍc = ÿd + kdy (ẏd − ẏe) + kpy (yd − ye),

(79)

where the position controller gains are chosen as kdx =

5.6, kpx = 0.9, kdy = 0.2, kpy = 0.2. In order to compute the
desired roll and pitch commands for the inner loop subsystem,{

φd = (ẍcsin(ψdes) − ÿccos(ψdes))/g
θd = (ẍccos(ψdes) − ÿcsin(ψdes))/g.

(80)

Figure 3 illustrates the comprehensive arrangement of the
outer loop PID control and inner loop ISMCwith CA scheme.
The resulting signals from the PID controller are utilized as
the command signal for roll and pitch angles to the inner loop
subsystem. In the interest of simplicity, the command signal
for yaw angle is deliberately set to zero.

B. ACTUATOR FAULT RECONSTRUCTION SCHEME
In the LPV observer design section, it is mentioned that the
fault term K̂u(t) is decoupled from the error dynamics using
the suitable choice of M (ρk ) and H (ρk ) matrices. The fault
term K̂u(t) can be reconstructed using the concept given in
[34],specifically

K̂u(t) ≈ ((Bf Ek (ρk ))TBf E(ρk ))−1(Bf Ek (ρk ))Tυδ(t) (81)

where υδ(t) is the injection term necessary to maintain
sliding. The injection term is discontinuous and can be
approximated to any level of accuracy. The scalar k̂i(t) can
be obtained by introducing a small threshold ε such that if at
time tε, | ui(t) |≤ ε, then

k̂i(t) =


((Bf Ek (ρk ))TBf Ek (ρk ))−1(Bf Ek (ρk ))Tυδ(t)

ui(t)
if |ui(t)| > ε

k̂i(tϵ) otherwise
(82)

where

υδ(t) := −ρe
ek (t)

∥ek (t)∥ + δ
(83)

where δ is a small positive scalar, ek (t) is defined in (38) and
the scalar ρe must be chosen such that ρe ≥

∥∥∥K̂ (t)u(t)
∥∥∥.

VII. SIMULATIONS AND RESULTS
The simulations in this section are performed with the
primary aim of demonstrating the effectiveness of the
proposed methodology. The simulations contain a wide range
of combinations that involve faults/failures in the actuator
channel including the imperfection in the estimation. The
following analysis applies to the performance of closed-
loop tracking. The proposed methodology is executed
and simulated using the MATLAB/Simulink platform. The
evaluation process entails the exploration of three distinct
scenarios

• In the initial scenario, the performance of the octarotor
is evaluated under nominal settings, where it is assigned
the responsibility of accurately following a predeter-
mined reference trajectory.

• Subsequently, the trajectory tracking is evaluated with
partial faults/failure in rotors.

Ek (ρk ) =


−ρk4a1b −ρk4a1b −ρk4a1b −ρk4a1b −ρk4a1b −ρk4a1b −ρk4a1b −ρk4a1b

0 0 −a4bl −a4bl 0 0 a4bl a4bl
a7bl a7bl 0 0 −a7bl −a7bl 0 0
−a9d −a9d a9d a9d −a9d −a9d a9d a9d

 , (78)

F =


0.43 −0.12 0.21 0.40 8.03 −0.31 −0.93 0.10

−0.48 −0.11 0.19 0.36 −0.31 8.10 −0.84 0.09
0.00 0.01 0.57 −0.29 −0.72 −0.64 6.41 −0.54
0.00 −0.62 −0.07 −0.28 −0.10 −0.09 −0.27 1.82

 .
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FIGURE 4. 3D View of desired trajectory tracking under nominal
conditions.

FIGURE 5. Octarotor roll and pitch angle tracking at nominal condition.

• In the third case performance is assessed under the
worst-case scenario, which involves the failure of all the
redundant rotors during the flight state.

Throughout the simulations, it is assumed that no two rotors
in a pair (1, 2), (3, 4), (5, 6) and (7, 8) failed completely.

A. CASE 1: REFERENCE TRAJECTORY TRACKING UNDER
NOMINAL CONDITION
In this study, the simulations are conducted to attain a
reference trajectory with a focus on achieving the nominal
performance. The desired tracking signals for x − y position
are sine and cosine signals of amplitude 8 m and frequency
1Hz, while the desired altitude signal is a ramp signal
with initial amplitude 2m and slew rate is 0.2 m/s and the
desired yaw angle is set to zero. The simulation results
depicted in Fig. 4 show a meticulous evaluation of the
desired trajectory versus the actual measured trajectory. The
attitude tracking results, presented in Figures 5 and 6, show
an excellent performance of the proposed scheme in the
nominal condition. This demonstrates that the designed LPV
controller works well in the nominal condition. The plots of
speed of individual rotors are given in Figures 7 and 8. It can
be seen that all the rotors are contributing to achieving the
flight path in nominal conditions.

B. CASE 2: REFERENCE TRAJECTORY TRACKING WITH
ACTUATOR FAULTS AND FAILURES CONDITION
The simulation aims to examine the ability of an octarotor to
accurately follow a predetermined trajectory in the presence

FIGURE 6. Octarotor Yaw angle tracking at nominal condition.

FIGURE 7. Speed of individual Rotors-1 to 4.

FIGURE 8. Speed of individual Rotors-5 to 8.

of malfunctioning of two or more actuators. It should be
noted that the same desired reference trajectories are provided
as in the nominal scenarios. To test the faults and failure
conditions, the rotors 5 and 8 lost their effectiveness up to
50% after 25 s and 90 s, while, the rotors 2 and 3 were
subjected to complete failure after 25 s and 90 s respectively.
The failed rotors are not able to contribute towards desired
reference tracking. However, all the remaining four rotors are
assumed to be working perfectly. Remarkably, as shown in
Figures. 9, 10 and 11, the octarotor successfully maintains its
intended trajectory despite the disturbance and rotor failures.
In the case of desired yaw angle tracking, a slight deviation
becomes evident subsequent to the malfunctioning of rotors
2 and 3. However, it is noteworthy that the deviation is kept
within the tolerable limit and the yaw angle state remains
close to the predetermined nominal path. The plots of the
speed of individual rotors are given in Figure 12 and 13. It is
notable that rotors 1, 4, 6, and 7 increase their control effort to
maintain tracking and desired performance while the speed of
rotors 2 and 3 reduced to zero after 25s and 90s respectively.
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FIGURE 9. 3D view of desired trajectory tracking in case of fault and
failure.

FIGURE 10. Roll and pitch angle tracking under fault/failure conditions.

FIGURE 11. Yaw angle tracking under fault/failure condition.

FIGURE 12. Speed of individual rotors; 1 to 4.

This illustrates the effectiveness of the CA scheme in terms
of the redistribution of control signals among the available
redundant actuators.

C. CASE 4: FAILURE WITH IMPERFECT ESTIMATION
In this simulation, different imperfection levels are intro-
duced in the measurement of the actuator effectiveness level.

FIGURE 13. Speed of individual rotors; 5 to 8.

FIGURE 14. 3D view of desired trajectory tracking with imperfect
estimation.

FIGURE 15. Roll and pitch angle tracking subject to imperfect estimation.

FIGURE 16. Yaw angle tracking with imperfect estimation.

Theoretically, the maximum percentage error 1max that the
proposed scheme can withstand and yet ensure the stability
condition of proposition 1 is 5.5%. However, to simulate the
theoretical findings, two different levels of imperfectness are
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FIGURE 17. Speed of individual rotors with imperfect estimation: Rotor
1 to 4.

FIGURE 18. Speed of individual rotors with imperfect estimation: Rotor
5 to 8.

considered to analyze the closed-loop stability and tracking
performance. The desired reference trajectory in this case
is similar to the first two cases. To test the fault-tolerant
condition, the failure condition is introduced to rotors 1, 4,
6, and 7 after 40 s. Two imperfection levels are introduced
in the estimate of rotor effectiveness level i.e. 2% and 5%.
The simulation plots showing the tracking performance are
provided in Figures 14, 15, and 16. The tracking response
clearly shows that the system states are following the desired
trajectories nominally. However, a slight deviation can be
observed in the case of pitch and yaw angle tracking. The
control redistribution curves in Figures 17 and 18 show the
redistribution of control effort among the healthy redundant
rotors 2, 3, 5, and 8 in case of failure of the associated rotors.
This shows the dominant performance of the proposed CA
scheme. The plot of the switching function in Figure 18 shows
that sliding motion is maintained all the time.

D. CONCLUSION
This work proposed a nonlinear ISM fault-tolerant CA
scheme for the class of LPV system in an output feedback
frame. The CA unit relies on the information of actuator
healthiness level to redistribute the control signals among
the available redundant actuators. In this work, imperfect
estimation information is included in the controller synthesis
procedure and closed-loop stability conditions are derived
to ensure the system stability up to a certain extent of fault
estimation error. The numerical simulations are carried out
on a 6-degree-of-freedom nonlinear model of octarotor UAV

system expressed in LPV form. Various fault and failure
conditions including imperfect estimations, are included
in the simulation to demonstrate the effectiveness of the
proposed method. In future work, a sensor fault estimation
scheme will be considered and an adaptive adjustable
dimension observer, similar to the one proposed in [40], will
be designed for the class of LPV system.
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