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ABSTRACT The field of deep learning for tabular datasets has made significant strides in recent times.
Previously, gradient boosting and decision tree algorithms had been the go-to options for processing such
datasets due to their superior performance. However, deep learning has now reached a level of development
where it can compete with these algorithms on equal footing. Accordingly, we propose latent factorizer
transformer (LF-Transformer). Our proposing method, LF-Transformer, involves applying the transformer
architecture to columns and rows of a given dataset to identify the attention latent factor matrix. This matrix
is then used for prediction. The process is akin to matrix factorization, which involves breaking down the
original matrix into a latent matrix and then reconstructing it again. Our experimental results indicate that
the LF-Transformer approach outperforms general feature embedding methods, providing superior feature
presentation. Additionally, the approach has demonstrated a relative superiority in regression and classification
across various datasets that we have tested. In conclusion, the LF-Transformer presents a promising direction
for deep learning approaches in tabular datasets. Its ability to identify latent factors and provide superior
performance in regression and classification makes it a compelling alternative to traditional algorithms.

INDEX TERMS Tabular dataset, tabular learning, self-attention, row-wise attention, column-wise attention,
matrix factorization.

I. INTRODUCTION
The prevailing opinion is that there is no field that deep
learning cannot penetrate. Deep neural network models,
including ensemble models and their derivatives, have been
evaluated as efficient and effective in various domains
including text, audio, and images [1], [2], [3], [4], [5].
Furthermore, the tabular dataset has been evaluated as an
unconquered castle [6]. Certainly, deep learning cannot be
used to solve all the problems. According to some claims, most
tabular data models, which have recently received attention
from the research community, have shown performances
inferior to that of extreme gradient boosting (XGBoost)
[7] and light gradient boosting machine (LightGBM) [8]
with significantly less tuning [9]. It has even been argued
that deep learning is not an absolute necessity for tabular
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data [9]. Several other studies [7], [10], [11] have supported the
claims of Shwartz-Ziv and his colleague. These studies have
supported the use and consideration of tree-based ensemble
algorithms such as XGBoost and LightGBM for cases
involving real-life tabular datasets. It was recently suggested
that TabNet [6] is superior to the gradient boosted decision
tree (GBDT) algorithms for tabular datasets. However, at least
as a result of implementing and experimenting with TabNet,
the performance presented in the original study [6] was
not properly reproduced, and it can be seen through the
experimental results in [12].
In this competitive state-of-the-art algorithm development

on tabular datasets, we discuss the process of improvement and
development of a new model called the latent factorizer trans-
former (LF-Transformer) based on the feature tokenizer trans-
former (FT-Transformer) [12] and matrix factorization [13]
in this study. The codes and datasets related to our proposed
model (LF-Transformer) and research are publicly available on
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our GitHub project (URL: https://github.com/kwangtekNa/LF-
Transformer/ accessed on 5 January 2024.).

The LF-Transformer we propose, which combines the
matrix factorization idea with the transformer idea, has the
following contributions.
Contribution 1: Column and row transformer enables

capturing not only the attention relationship between features
(columns) but also the attention relationship between data
(rows).
Contribution 2: Our idea of reconstructing the data matrix

by embedding columns and rows into the latent space by
applying the matrix factorization concept has shown good
results in feature representation.
Contribution 3: We designed a new architecture called

LF-Transformer and had a relative superiority in regression
and classification in many of the datasets we tested.

II. RELATED WORKS
Traditional machine learning methods such as gradient-
boosted decision trees (GBDTs) and tree-based ensemble
models [14], [15] are still widely used for tabular data
modeling [9]. However, several attempts have been made to
use deep learning with tabular data. These attempts such as
TabNet [6], oblivious decision ensembles (NODE) [16], and
disjunctive normal form-based method (Net-DNF) [17] have
shown better performances than that of GBDTs. However,
since the aforementioned studies did not employ standard
benchmarks and used different datasets, significant model and
parameter tuning will be required when using these models
while ensuring that the various problems associated with deep
neural networks (such as lack of locality, missing input data,
data type problems, etc.) are avoided. Thus, it is evident
that extensive work must be done with regard to fine tuning
when using these models. In this sense, we briefly outline
the key ideas of tabular models that are relevant to our study.
We then present a review as well as a brief explanation of
our study motivation. Finally, we present our methodology
(LF-Transformer) combining the idea of FT-Transformer and
matrix factorization.

A. TABULAR DATA LEARNING
NODE: The NODE model [16] primarily ensures that the
error gradient is effectively backpropagated. Differentiable
oblivious decision trees are set up to perform this task, and
similar to traditional tree models, their performance on data
segmentation and training for a selection function is decided
based on a threshold. Only one function is used at each level,
resulting in a balanced tree for differentiation. The final model
is presented in the form of a differentiable ensemble.
TabNet: TabNet [6] is a representative and popular model

that combines deep learning with attentive mechanism for
tabular dataset presented by Google AI. This model has
been proven to perform well on multiple datasets. TabNet
involves a sequential decision stepwherein an encoder encodes
each corresponding feature using sparse learning and selects
a relevant feature for each row using an attention mask.

In encoding, a small set of features is forcibly selected, and the
sparsemax layer is used. A typical advantage is that there is no
need to select all or none of the features during the learning
process, and instead of using a threshold value for each feature,
the learnable mask can deliver a softer decision. This problem
can also be mitigated through the use of a feature selection
method.
FT-Transformer: The FT-Transformer has been proposed

by [12]. The authors apply the transformer architecture [18]
to perform regression and classification on a tabular dataset.
The FT-Transformer embeds both categorical and numerical
features in a d-dimensional vector space. In addition, the final
representation of classification token (CLS token) is used for
final prediction by inserting the CLS token into the embedding
vector [12].
SAINT: As far as we know, the self-attention and

intersample attention transformer (SAINT) [19] is the first
model to apply row attention to tabular datasets, which is
referred to as inter-sample attention in the paper. SAINT
performs self-attention between columns and then applies
inter-sample attention sequentially to the output of self-
attention. As per the authors, the application of inter-sample
attention results in the following effect: In instances where
a particular feature is absent or contains noise in a given
row, SAINT is empowered to utilize intersample attention
for borrowing the relevant features from other data samples
that are similar in the batch.

III. MOTIVATION
Matrix factorization [13] is a method of approximating
the original data matrix by mapping each column and
row of the data matrix to the latent feature space, and by
multiplying them again. It is mainly used in recommendation
systems or information retrieval. When considering a movie
recommendation system, each row is assigned to a user and
each column is assigned to a movie title. At this moment,
matrix factorization decomposes this matrix which consists
of users (rows) × movie titles (columns), and maps each
to a latent feature space. Its performance varies depending
on the number of dimensions of the latent feature space
determined by the researcher. Latent vectors’ each dimension
of users and movie titles is mapped to the latent feature
space, and can be analyzed through latent semantic analysis
(LSA). In this kind of movie recommender system, each
dimension of the latent space can be interpreted as the degree
of sci-fi genre propensity, the degree of romance propensity,
and etc. The matrix factorization can grasp the characteristics
of data that cannot be confirmed in the original data, and
also has an effect of removing noise. We applied this idea of
matrix factorization to transformer. The purpose of the column
transformer is to generate column attention latent features
using the attention information between columns, and the row
transformer uses the attention information between rows to
create row attention latent features and multiplies them again
to identify information that cannot be confirmed in the original
data.
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FIGURE 1. Architecture of LF-Transformer.
Note: First, the original input data is embedded and inserted into a d-dimensional space, and a latent factor is inserted to learn column and row
information. Afterwards, it goes through the column transformer and row transformer respectively to obtain the column latent matrix with column
information and row latent matrix with row information. These two matrices are multiplied again to produce the final embedded matrix, and the CLS token
is inserted into it to obtain the final result.

IV. PROPOSED MODEL
As depicted in Figure 1, the structure of our proposed
model applies the concepts of FT-Transformer and matrix
factorization. A transformer is applied to each column and row,
resulting in the generation of column attention latent factor
matrix and row attention latent factor matrix. These matrices
are multiplied together to create the final embedding matrix.
The embedding matrix created at this time is a matrix created
after mapping column information and row information to
latent space, and removes noise, which has the effect of
clarifying. A detailed analysis of this is covered in the analysis
section. Then, after inserting the CLS token to be used for
prediction into the latent embedding matrix, the final output
is obtained through the CLS query-wise transformer.

A. LATENT FACTORIZER
The latent factorizer module embeds the input feature in the
d-dimensional space and adds a latent factor so that the final
representation vector of the input feature appears in the Latent
space. If f is the function embedding the input features x which
is one data point in the batch. it can be expressed as follows.

Tj = bj + fj(xj), fj : Xj → Rd (1)

Here, xj represents j-th, that is the input feature, bj represents
the bias, Tj represents the d-dimensional embedding vector of
xj. We refer to the study Gorishniy et al. [12], the numerical
feature, f (num) can be expressed as an element-wise product
of the weight vector,W (num)

j ∈ Rd , and the categorical feature,

f (cat) and W (cat)
j are selected by each corresponding vector

from the look-up tableW (cat)
j ∈ Rsj×d .

T (num)
j = b(num)j + x(num)j W (num)

j ∈ Rd (2)

T (cat)
j = b(cat)j + eTj W

(cat)
j ∈ Rd (3)

T = stack[T (num)
1 , . . . ,T (num)

k (num)
,T (cat)

1 , . . . ,T (cat)
k (cat)

]

T ∈ Rk×d (4)

Afterwards, in order to generate the latent factor matrix,
we insert the latent factor F into the embedding vector T.

T = stack[F,T (num)
1 , . . . ,T (num)

k (num)
,T (cat)

1 , . . . ,T (cat)
k (cat)

]

T ∈ R(k+p)×d , F ∈ Rp×d (5)

In F ∈ Rp×d , the dimension, p is the dimension of the latent
factor which is hyper parameter being embedded in the latent
space.

B. COLUMN AND ROW TRANSFORMER
The transformer layer we utilize is based on the pre-
normalization (PreNorm) transformer of the study Gorishniy
et al. [12]. In (a) of Figure 2, it consists of a total of the
L number of transformer layers and operates like a general
transformer up to the L − 1th layer, but only the query latent
factor is input as the query input in the last layer, Lth Layer.
Therefore, the final output is a latent factor matrix that has
learned from the column information or row information,
and the column is formed as the B × p × d dimension,
the row is composed of p × M × d dimension. Here, B is
the batch size, M is k (num) + k (cat) the number of features,
d is the dimension of the feature embedding, and p is the
dimension of the latent factor. Column transformer plays a
role in identifying which features play an important role by
utilizing the attention technique between features. As shown
in (b) of Figure 2, the self-attention used in the previous
study [12] is identical to the self-attention of the column
transformer in our proposed algorithm. Row transformer’s
self-attention utilizes attention between each instance within
batch data. The row transformer’s self-attention allows it to
learn by borrowing information from other instances in the
batch if a specific instance is noisy or blur. More detailed
content is covered in the analysis section. The input of column
transformer is the output of the column factorizer, which is
B × (M + p) × d . The input of the row transformer is the
output of row factorizer, that is (B+ p) ×M × d .

C. CLS TOKENIZER AND CLS QUERY-WISE TRANSFORMER
CLS Tokenizer works the same as column latent factorizer.
However, a CLS token is inserted, not a latent factorizer, and
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FIGURE 2. Column and Row Transformer.
Note: As shown in (a), it consists of a total of L number of layers for transformer, and only query factorizer enters the query in the
last Lth layer. For the column and row transformer, the PreNorm transformer [12], [20] is used as in (b).

the dimension of the token is always one-dimensional. CLS
query-wise transformer works the same as Lth layer of column
transformer. However, the CLS Token for prediction, not the
latent factorizer, is inserted into the latent embedding matrix.
Therefore, the transformer’s self-attention is applied to the
CLS query token, storing information for the final prediction.

V. EXPERIMENTS
A. DATASETS AND COMPUTING RESOURCES
We used a diverse set of eleven public datasets which is
the same dataset of the previous study Gorishniy et al. [12].
However, considering the training time, we reduced the size
of large data through random sampling. All datasets are
consisting of train set, validation set, test set and all algorithms
use the same datasets. Table 1 shows the source of datasets
and Table 2 describes the details of the datasets. In order to
conduct the experiment, we employed particular hardware
specifications. These specifications consisted of an NVIDIA
Tesla V100 16GB GPU, an Intel Xeon 2.30GHz CPU, and
64GB of RAM. The software utilized for the experiment was
Python version 3.8.8, along with PyTorch version 1.7.1 and
CUDA version 11.1.

B. DATA PREPROCESSING
We preprocessed the same way of the previous study [12].
Basically, the quantile transformation was applied, and
standard normalization was applied to the Helena dataset and

TABLE 1. Sources of datasets.

the ALOI dataset. For Epsilon dataset, As discussed in the
prior study [12], we concluded that preprocessing adversely
affects performance, so raw features were utilized without
preprocessing.

C. HYPERPARAMETER TUNING
We utilized Bayesian optimization for hyperparameter tuning.
In Table 3, it can be observed that an early stopping was
applied with a patience of 16, and the total number of epochs
was not separately indicated. The Hidden factor is used to
calculate the output dimension of a fully connected layer inside
a transformer. For example, when the input dimension of the
fully connected layer is n, the output dimension would be int
(n × Hidden factor).
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TABLE 2. Properties of datasets.

TABLE 3. Hyperparameter of LF-transformer.

TABLE 4. Results of singular model.

D. RESULTS
As can be seen in Table 4, FT-Transformer and NODE
performed well on several datasets. However, our proposed
model shows the best performance in most of the other
datasets. As discussed in the case of NODE in the previous
study [12], a direct comparison is difficult because it has a
complex structure in the form of an ensemble rather than
a single model. Table 5 shows the ensemble results of
resnet, FT-Transformer, and our proposed algorithm. The
ensemble algorithms utilized the average results from each
of the 15 individually trained models. As shown in the
table, the LF-Transformer demonstrates superior performance
compared to both individual models and a single model.
It was confirmed that the ensemble of NODE showed lower
performance than the FT-Transformer in the prior study [12],

so it was not tested separately. Table 6 shows the performance
comparison of the LF-Transformer ensemble model with
GBDT algorithms.

VI. ANALYSIS
The mnist dataset was used to analyze the effects of column
transformer, row transformer, and latent factorizer. The mnist
dataset is a handwriting image dataset, and although it is
far from the tabular dataset, it was chosen because it is very
popular and easy to visualize the results.

A. FEATURE ATTENTION MAP
We confirmed the attention map through the method proposed
by [31] and [32]. In order to see the attention map, the attention
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TABLE 5. Results of ensemble model.

TABLE 6. Comparison of GBDT and LF-transformer ensemble.

TABLE 7. Effects of latent factor dimensions on real datasets.

score, softmax((QKT )/
√
d) value has to be checked. The

attention score of the row transformer is a three dimensional
(3D) tensor, which is 784 × (B + p) × (B + p). After
selecting factor p from the second component of tensor, it was
visualized by removing factor p from the 784 × (B + p).
The attention score of the column transformer is a 3D tensor,
B × (784 + p) × (784 + p). To secure the attention map,
if factor p is chosen from (784 + p), the second component
of tensor, it becomes a two dimensional (2D) matrix of
B× (784 + p), and we exclude the factor p with the selection
ofvf B× 784 for visualization. Looking at the attention map
of the Row Transformer in (a) of Figure 3, the features with
numbers show a strong attention, and the area around the
number features shows very low attention. Parts that are far
from the number features appear relatively bright and show
some degree of attention, but they are relatively very low
compared to the attention applied to the number features.

B. BATCH ATTENTION MAP
To check the row transformer’s batch attention map,
20 features were randomly sampled in the dimension of mnist
data, 28 × 28 = 748 in (b) of Figure 3. Although it is not
known exactly what part each feature is responsible for in the
image, features 15, 75, 362, 479, and 533 are identified as
features that do not have numerical features, so it can be seen
that attention is not captured at all. On the other hand, it can be
seen that features such as 626 and 544 are helping to borrow
information by paying attention to other samples on the batch.

C. EFFECT OF LATENT FACTOR DIMENSIONALITY
In Figure 4, when the latent factor is one-dimensional, it is
confirmed that each number is mixed. However, as the number

FIGURE 3. Transformer Attention Map.
Note: In (a), the row and column transformer feature attention map is
shown. The first line is the original input, the second is the row attention
feature map, and the last is the column attention feature map. In (b), the
row transformer batch attention map from the top left to the right, 15th,
70th, 75th, 124th, 151th, 174th, 203th, 209th, 329th, 334th, 348th, 263th,
479th, 487th, 544th, 544th, 626th, 680th, 710th, and 713th features are
shown.

of dimension of the latent factor increases, it is noticeable
that the class of each number is clearly distinguished. It is
obvious that the latent factor is a hyper parameter, and the
optimal value must be obtained through hyper parameter
optimization.
Table 7 confirms that the performance varies according to

the latent factor dimension for the ALOI dataset and the yahoo
dataset. The ALOI dataset’s accuracy is better when the score
is closer to 1 and the Yahoo dataset’s root mean square error
(RMSE) is better when the score is closer to 0. Both datasets
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FIGURE 4. T-sne Results of Latent Matrix.
Note: The t-sne result of latent embedding matrix according to the dimension of latent factor for mnist data. Latent factor in dimensions 1, 5, 10, 15, 20, 25,
30, 40, 50, and 60 from the top left to the right. It can be seen that the feature representation improves as the latent dimension increases.

FIGURE 5. Comparison of T-sne Results.
Note: The t-sne result of embedding matrix with 40-dimnnsional latent
factor. a) applies only the column latent factorizer. (b) is our proposed
model, and both Column and Row latent factorizers have been applied.
It can be seen that the final embedding matrix performs better in feature
representation.

show better performance when the dimension of latent factors
is 2.

D. DIFFERENCE BETWEEN ORIGINAL AND LATENT
EMBEDDING
In (a) of Figure 5, the t-sne result of the embedding matrix
applied with the column latent factorizer looks okay in terms
of separation. The distinction between 4 (brown) and 9 (blue)
in the bottom left is not clear. However, as shown in (b) of
Figure 5, the t-sne result of the embedding matrix to which
the Latent Factor 40 dimension is applied shows a relatively
clear distinction between 4 and 9.
Through this, the effect can be confirmed like matrix

factorization, which restores the original matrix by embedding
features in the latent space. The performance of clustering is

evaluated based on two important criteria: how tightly the
points are packed within each cluster, and how far apart the
clusters are from each other. It can be observed that our model
outperforms in both of these metrics.

VII. CONCLUSION
A. LIMITATIONS AND FUTURE WORK
In addition to the common limitations of tabular data-based
deep learning ensemble algorithms, this study also intends
to suggest additional research directions by identifying the
following limitations.

First, our proposed model, LF-Transformer, does not fully
provide explainable insights. As discussed in the analysis
(section VI), it is possible to identify which features and
data influenced the results through the attention map, but it
is difficult to see that it provides all possible explanations.
Therefore, additional research on the application of additional
explainable techniques is needed. Second, although the
superiority of LF-Transformer was demonstrated through
various experiments in terms of performance, it was confirmed
that our proposed model may not be optimal in several
experiments. Besides the tabular data used in the experiment,
LF-Transformer may not be a globally optical solution,
so adjustments such as additional parameter tuning are
required to properly utilize it. In addition, like other most
of the tabular data-based algorithm improvement studies,
continuous efforts are required to develop a globally optimal
solution through unending research and experiments. Third,
the LF-Transformer requires a significant amount of memory,
because it creates separate data tensors for columns and
rows in the model. This means that the model’s complexity
is high and may not be optimal in terms of time and cost
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efficiency. Therefore, future research should consider metrics
that factor in time and cost efficiency. Last but not least, since
LF-Transformer applies a row-wise transformer, the batch size
must always be the same. This means that the entire dataset
must be divided by the batch size, and the dataset that is not
divisible by the batch size must be partially deleted or enlarged
to match the size. For example, if the number of rows in an
entire dataset is 4,120 and a batch size is 200, only 120 rows
are entered in the last batch of the last iteration, so in this
case, the total number of rows should be reduced by 4,000 or
increased up to 4,200. Future research should aim to solve this
problem and create an environment in which the model can
run well.

B. CONCLUDING REMARK
In this study, as we were Influenced and inspired by
previous studies on FT-Transformer and matrix factorization,
we proposed LF-Transformer, of creating the final latent
embedding matrix by generating an attention latent factor
matrix with a transformer. It was confirmed that the data
representation of our proposed method is rather superior.
Further, it was found that when this latent embedding matrix
is used for classification or regression problems based on
tabular datasets, it shows relatively superior performance
compared to other current state-algorithms. We hope that our
study results and our model would serve as basis and go-to
option for further developments on tabular data-based deep
learning.
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