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ABSTRACT Deep Learning (DL) plays a successful and influential role inmedical imaging diagnosis, image
detection, and image classification. Diabetes is a significant public health concern, and diabetic eye disease
will be the leading cause of vision loss across the globe. This research proposed a multi-classification deep
learning model for diagnosing and identifying four different diabetic eye diseases: Diabetic Retinopathy
(DR), Diabetic Macular Edema (DME), glaucoma, and cataract which we called the DeepDiabetic
framework. The proposed models were assessed using 1228 images from six different available datasets
(DIARETDB0, DIARETDB1, Messidor, HEI-MED, Ocular, and Retina). In addition to the original dataset,
wemeasured the performance of the deep learningmodels according to two different geometric augmentation
methods called online augmented and offline augmented. The present work considers five architectures’
performances: EfficientNetB0, VGG16, ResNet152V2, ResNet152V2 + Gated Recurrent Unit (GRU), and
ResNet152V2 + Bidirectional GRU (Bi-GRU). A comprehensive analysis and evaluation of these deep
learning architectures is provided using public fundus datasets with four classes (i.e., DR, DME, Glaucoma,
and Cataract). To the best of our knowledge, no other deep learning models for choosing between these
models for these specific diseases are found in the literature. The results of the experiments showed
that the EfficientNetB0 model outperforms the other four proposed models. The EfficientNetB0 model
achieved 0.9876 in accuracy, 0.9876 recall, 0.9876 precision, and 0.9977 AUC based on fundus images.
Our EfficientNetB0 model achieves 98.76% accuracy, while the previous studies only achieved 88.33%,
89.54%, 97.23%, and 80.33% accuracy, respectively. When compared to the previous studies as Fast-RCNN,
RCNN-LSTM, and InceptionResNet, our EfficientNetB0 model achieves much higher accuracy, recall,
precision, and AUC. According to the outcomes, our proposed models, especially the EfficientNetB0 model,
are significantly more accurate than the state-of-the-art models.

INDEX TERMS Deep learning, diabetic eye disease, multi-class classification, offline augmented, online
augmented, retinal fundus images.

I. INTRODUCTION
Deep learning (DL) is being used in many domains to
discover new approaches to urgent issues and is demon-
strating remarkably good performance in categorization
tests. Artificial intelligence (AI) tools and techniques are
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approving it for publication was Ikramullah Lali.

appropriate in medicine. AI is one of the most powerfully
transformative technologies in the 21st century. This trans-
formation occurred through the use of powerful machine
learning (ML) tools and techniques such as deep convo-
lutional networks, generative adversarial networks (GANs),
deep reinforcement learning (DRL), convolutional neural
networks (CNNs), recurrent neural network (RNN), and
artificial neural networks (ANNs). Lately, deep learning (DL)
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has been outperforming traditional artificial intelligence (AI)
in crucial tasks like speech recognition, image characteriza-
tion, and natural language generation.

DL has been proven to be a successful and influential
method in many fields of medical imaging diagnostics in
image detection and classification. DL can be used for
detecting and classifying eye diseases, including diabetic eye
disease, by employing fundus images to analyze and diagnose
eye diseases. Diabetic retinopathy (DR), diabetic macular
edema (DME), glaucoma, and cataracts all fall under the
umbrella of diabetic eye disease. Patients between the ages
of 20 and 74 can suffer severe vision loss or perhaps go low
vision as a result of diabetic eye disease. Preventing vision
loss is impossible without early identification of diabetic eye
illness. Ninety percent of diabetics can avoid diabetic eye
damage if they are detected [1].

This research aims to enhance DL detection models
for diabetic eye diseases. Fundus images of diabetic eye
disease should be collected for use as input into DL
models. The images are then processed using several image
preprocessing techniques. Extracting features and learning
analysis rules is done automatically using pre-processed
images. The authors in [2] reviewed the interest in the
detection and classification of respiratory diseases employing
ML including the most significant articles published between
2018 and the end of 2021. Because of these findings, the
researchers may better organize their work and contribute
more effectively to the field. So, we found Ibrahim et al. [3]
employing TL on a combination of chest X-ray and CT scan
images for multiclass classification using the VGG19-CNN,
ResNet152V2, ResNet152V2 + gated recurrent unit (GRU),
and ResNet152 V2 + bidirectional GRU (Bi-GRU) archi-
tectures. The developments of their research were very rich
and motivated us to apply GRU and Bi-GRU in the field
of multiclassification of diabetic eye diseases, especially as
they are models that have not been used before in this field.
Furthermore, Eko et al. [4] discovered the combination of
EfficientNetB7 models and some augmentation processes
obtain increased classification accuracy for diabetic eye
diseases.

In this work, models such as VGG16, EfficientNetB0,
and ResNet152V2 are chosen as a CNN pre-trained model.
In addition, ResNet152V2 is even integrated with two
RNN models: GRU and Bi-GRU. Due to limitations of the
availability of datasets, we applied two different geometric
augmentation methods to measure the performance of the
deep learning models besides the original dataset. These
methods are the online augmented and offline augmented
geometric augmentation methods.

Diabetes patients are one of the world’s most populous
disease categories today. diabetic fundus diseases, the leading
cause of blindness, can cause visual loss. DR, Glaucoma,
cataracts, and other fundus diseases now affect visual func-
tion [2]. When fundus disease reaches a late stage, it greatly
impairs the patient’s vision and cannot be specifically treated.
Because even highly skilled eye specialists often misidentify

eye lesions, reliably diagnosing diabetic retinopathy using
retinal fundus images is difficult. Supporting a technique
that aids in disease detection is beneficial since early
identification of diseases helps avoid blindness.

Due to its great feature-learning ability, CNN has achieved
exceptional success in the field of fundus images. The
literature has presented several deep-learning architectures
that have achieved excellent results in detecting certain
diabetic eye diseases. To the best of our knowledge, at the
beginning of our research, the classification model of
the four diseases of diabetes (DR, DME, Glaucoma, and
Cataract) had been rarely touched. But recently, by the
end of 2021, we found Rubina Sarki et al. [5] presented a
classification framework for those four diseases. However,
they only applied one CNN model in their work, and their
dataset showed class imbalance. They attained only 81.33%
accuracy, which is still considered low compared to recent
research in DL classifications.

According to the previous studies, cataract disease did not
have sufficient studies investigating cataract classification
and prediction [6]. They were also independent studies
to classify the cataract disease separately. Reference [7]
recommended DME disease detection as the gap in research
direction since detecting DME is highly likely to mean that
the retina is developing DR, which supports researchers
in understanding the causes of retina-based diseases better.
The further DL model concerns training minimal data and
datasets with a class imbalance between different diseases.
The accuracy of the findings produced may suffer if the
training set is too small. Utilizing improvement strategies via
traditional data augmentation is looked at as an appropriate
choice.

The main contributions of this study are:
• Propose the DeepDiabetic Framework, a multi-
classification deep learning model for detecting and
recognizing the four most common complications of
diabetes affecting the eyes: diabetic retinopathy (DR),
diabetic macular edema (DME), glaucoma, and cataract.

• We employed both online and offline geometric aug-
mentation methods to assess the accuracy of the deep
learning models, in addition to the original dataset.

• EfficientNetB0, VGG16, ResNet152V2, ResNet152V2+
Gated Recurrent Unit (GRU), and ResNet152V2 +
Bidirectional GRU (Bi-GRU) are the five architectures
whose performances are taken into consideration in this
work. Using public fundus datasets with four classes,
a thorough examination, and evaluation of these deep
learning architectures (i.e., DR, DME, Glaucoma, and
Cataract). As far as we are aware, there aren’t any other
GRU models used for classifying these models for these
particular diseases in the literature.

• Comparing the performance measures of our proposed
work with different models reported in the prior studies
for diagnosing and classifying diabetic eye disorders.

The remainder of the paper is outlined as follows:
Section II presents a summary of the literature review,
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Section III describes the dataset of the study, and image
augmentation explains the experimental setup conducted to
create the framework, including the deep learning proposed
classification models. Section IV presents the results and
discussions while Section V illustrates the comparative
analysis and discussion. Finally, Section VI concludes the
paper.

II. LITERATURE REVIEW
In this section, we introduce some related studies on diabetic
eye diseases using deep neural networks. We discovered that
building an efficient neural network classifier requires careful
consideration of both the network architecture and the data
input. The literature has much research about the use of deep
learning as a classification model for diabetic eye disease
using fundus images, as in Refs. [14], [15], [25], and [26].

The principle of Transfer Learning (TL) approach is
commonly adopted in diabetic eye disease, including the
authors in [29], [30], [31], [32], [33], and [34]. Instead of
generating parameters at random, the TL initializes them
using information from prior learning. The initial layers
intuitively learn to extract core features similar to edges,
textures, etc. The top layers, similar to blood vessels and
exudates, are more particular to the task. In situations where
there is insufficient data to train a neural network from
scratch, the TL is employed effectively in [29], [32], [33],
and [34].
Pan et al. [29] Compared three CNN models: DenseNet,

ResNet50, and VGG16, among four types of lesions of
DR. The experimental outcome shows the effective model
is DenseNet to identify and differentiate retinal lesions
automatically in multi-label classified images. Nevertheless,
the procedure does not accurately determine microaneurysms
since they are easily misclassified in the pervasive presence
of fluorescein.

Moreover, Samanta et al. [30] created TL architecture
CNN-based on color fundus photography that executes
relatively well in the identification of DR (No DR, Mild
DR,Moderate DR, and Proliferative DR) from hard exudates,
blood vessels, and texture on limited dataset. They utilized
their model with several frameworks, including Inceptionv1,
Inceptionv2, Inceptionv3, Xception, VGG16, ResNet-50,
DenseNet, and AlexNet.

Zhang et al. [31] presented a framework for actively detect-
ing the existence and severity of DR. By Utilizing various TL
architectures: ResNet50, InceptionV3, DenseNets, Xception,
and InceptionResNetV2. Despite the proposed framework
attaining a sensitivity of 97.5% and a specificity of 97.7%,
their model must be assessed using a more extensive and
detailed dataset.

Additionally, the Lookahead optimizer and CNN model
were utilized for the image classification of cataract disease
in [32] to increase accuracy and minimize processing time.
Through the CNN-AlexNet architecture and the Lookahead
optimizer on Stochastic gradient descent and Adam, the
model successfully identified the label of the images. As a

result, CNN-AlexNet enhances optimizer Stochastic gradient
descent by 2.5% and increases accuracy by 20%.

Sarki et al. [34] introduced a deep learning architecture
with 13 CNN models merged with image processing
techniques to endorse early detection of diabetic eye diseases
(DR, DME, glaucoma). The early classification of diabetic
eye disease had several limitations that were realized.
Later, they produced an automatic classification scheme
that examined multi-class and mild multi-class diabetic eye
disease [33]. Different performance improvement techniques,
including fine-tuning, optimizing, and contrast enhancing,
were employed by applying the VGG16 and InceptionV3.
In addition, the VGG16 model attained accurate results of
88.3% for multi-class classification and 85.95% for mild
multi-class classification.

To retrain a new image, such as a set of medical images,
there are several TL implementations available, largely inDL.
However, this architecture performs less effectively when
classifyingmedical images. Because such TL frameworks are
made for purposes like animals, flowers, etc., Pan et al [29]’s
utilization of VGG16 for DR detection using fundus images
achieved around 79.6% specificity. Hence, TL methods are
not suitable for real-time medical images.

Recent research has integrated ML and DL classifiers,
including random forests (RF), support vector machines
(SVM), naive Bayes, and decision trees, to detect diabetic
eye diseases [35], [36], [37]. Grassmann et al. [35] trained
several CNNs for the severity scale for age-related macular
degeneration separately, and based on the outcome of the
single CNNs, RF algorithms were trained to build a model
ensemble. A framework with several ML techniques, such
as Decision Tree, RF, naive Bayes, and artificial neural
network algorithms, was developed by Malik et al. [36].
The researchers discovered that tree-based techniques out-
performed artificial neural networks. There are various types
of studies that combine DL with ML using SVM, as SVM
is a rapid and accurate classification method that works well
with limited evaluation data. Theera-Umpon et al. [21] used
SVM, hierarchical adaptive neuro-fuzzy inference system,
multilayer perceptron network, and CNNs to develop a
model to detect hard exudates with a limited dataset.
They discovered that CNN performs well; however, it is
not the greatest classifier for hard exudate. Furthermore,
a combination of effective classifiers and image-processing
techniques can achieve satisfactory results in hard extraction.
A recent paper illustrated the combination of DL and ML
models, CNN based on the Resnet152 model, and sev-
eral ML classifiers, including SVM, K-Nearest Neighbors,
Naive Bayes, Multi-layer Perceptron, Decision Tree, and
Random Forest, to detect human eye infections of Glaucoma
disease.

Various DL diabetes-based eye disease techniques have
been built in several studies, which employed RCNN for
localization and segmentation [27], [42], [43]. Although
the technique is robust for glaucoma detection, it is
computationally complex. The effectiveness is affected by
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growing the network’s hierarchy, which affects the loss of the
discriminated collection of features.

Recently, researchers have developed new network archi-
tectures as an alternative to TL, as in [38], [39], [40], and
[41]. The authors have created their DL frameworks to
detect diabetic eye diseases automatically with the indicated
classifier, the number of layers, and a model used, and
illustrate the findings obtained.

In [38], two models were presented, the first to predict
the DR and the second to classify the five DR stages. The
Siamese-like CNN structure employed in the Zeng et al.
framework was trained using TL by the weight-sharing layer
principle based on Inception V3. The model, unfortunately,
needed paired fundus photos to work; therefore, datasets
without paired fundus images may not benefit as much
from it.

The authors of research [39] presented a DL approach
to predict the expected DR class and assign scores to
individual pixels to demonstrate their importance in each
input sample. Then the assigned score is to make the final
categorization decision. Their model was provided, which
increased its sensitivity and specificity values by more than
90%. However, by taking the proper measures, the evaluation
performance of the learning process can be improved.

A new approach to detect hypertensive retinopathy was
developed by Abbas et al. [40] and consists of multiple
multilayer architectures with trained and dense feature
layers combined within a CNN algorithm. Combining dense
feature transform and dense, hyper learning to improve
classification accuracy. They came to a substantial finding,
obtaining an accuracy of 95% and AUC values of 0.96.
However, a limited dataset was used to produce a highly
accurate DL method. Araujo et al. established a DL model
to aid in decision-making by providing attention maps
that can be understood medically and an approximation
of how uncertain that prediction is, leaving it up to the
ophthalmologist to determine how much of the result could
be trusted [41]. To infer an image grade associated, they
developed a Gaussian-sampling technique built-in Multiple
Instance Learning structures, including a description graph
and prediction uncertainty. Consequently, low-quality images
are frequently linked to greater uncertainty, indicating that
unsuitable images for processing result in less precise
predictions.

In [8], the authors presented a framework that integrated
the retrieved features to leverage the benefits of the chosen
models, VGG and InceptionV3. The classification stage was
proceeded by the use of the entropy concept. Their models
are appropriate for classifying the highlights such as veins,
liquid dribbling, exudates, hemorrhages, and miniature-scale
aneurysms.

Recently, Rubina Sarki et al. [5] introduced the CNNmodel
for themulti-classification of DR, DME, Cataract, Glaucoma,
and healthy classes. The datasets were gathered from four dif-
ferent open-source Messidor, Messidor-2, DRISHTI-GS, and

Retina datasets. They reached significant results, accuracy
was 81.33%, the sensitivity was 100%, and the specificity
was 100%. RMSprop optimizer was used to enhance their
model; which optimizer technique offered in [28] was based
on the adaptive learning rate. However, they only applied
one CNN model in their work, and their dataset showed
class imbalance. They achieved only 81.33% accuracy, which
is still considered low compared to recent research in DL
classifications.

A recent study utilized CNN based on several TL
models. In [20] applied VGG16 based on CNN architecture,
to classify normal and abnormal eye diseases. Similarly, [24]
employed CNN with residual networks to produce the results
of ocular damage levels. An enhanced activation function that
automatically reduces loss and processing time in the various
CNN models was proposed in [23] for diagnosing DR using
fundus images. With the Kaggle dataset, the ResNet-152
model has the highest accuracy (99.41%).

On the other hand, some researchers focused on improving
the hybrid DL features to attempt to solve class imbalance
issues in an available dataset as [16] used TL to extract
funds image features with ResNet-18 and GoogleNet models.
Likewise, [17] used a hybrid DL classifier to enhance the
image quality by taking advantage of the new architecture,
which is designed based on ResNet50.

The main mechanism for identifying ophthalmology
diseases is fundus imaging. Finding a fund’s image dataset
that covers diabetic eye disease is considered to be the
most challenging stage during the research. Recently,
an Ocular Disease Intelligent Recognition (ODIR) dataset
containing eight classes of eye diseases included three
diabetic eye diseases (DR, Glaucoma, and Cataract) [45].
Studies have emerged using the ODIR dataset to provide
a multi-classification of eye diseases [12], [13], [18]. The
R-CNN+LSTM architecture was employed in [12] to
extract deep features, using a residual approach, and the
LSTM model was added to the RCNN+LSTM model, the
classification accuracy improving by 4.28% and 1.61%,
respectively. Moreover, In [13], the author utilized the
ODIR dataset for four classification models based on TL:
the VGG-16 model that reached an accuracy of 97.23%;
the Resnet-34 model obtained an accuracy of 90.85%; the
MobileNetV2 model achieved an accuracy of 94.32%, and
the EfficientNet model attained an accuracy of 93.82%.
The suggested architecture in [18] enables CNN to learn
discriminative features with an attention module without
adding additional cost. They solved the issue of class
balancing in the extremely imbalanced ODIR dataset with
several common labels for a patient’s left and right fundus
picture pairs.

In this research, we focus on evaluating various image
augmentation techniques as preprocessing steps carried
out before training the DL models. Images pre-processed
with different filters before being entered into the training
model produced significant results, as experimental results
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TABLE 1. Overview of studies using deep learning approaches with their working methods and performance metrics for Diabetic eye disease images.

demonstrated in [22]. Table 1 shows an overview of studies
using deep learning approaches with their working methods,
performance metrics results, and comments on these studies
for diabetic eye disease images. Table 2 illustrates an
overview of studies using deep learning approaches with their
working methods and performance metrics for diabetic eye
disease images that classify at least three diabetic diseases
from the four diseases focused on in this study.

III. MATERIALS AND METHODS
The purpose of this study is to compare the ability of several
deep-learningmodels to detect these four diabetes-related eye
diseases. Six different open-source databases will be utilized

to generate our dataset. After that, the gathered images go
through a series of preprocessing steps. Following the com-
pletion of the dataset, five distinct models are used to deter-
mine how each disease should be classified. The pre-trained
CNN models VGG16, EfficientNetB0, and ResNet152V2
are selected. The RNN models gated recurrent unit (GRU)
and bidirectional gated recurrent unit(Bi-GRU) are also
coupled with ResNet152V2. Next, we have the VGG16,
EfficientNetB0, ResNet152V2, GRU+ResNet152V2, and
Bi-GRU+ResNet152V2 models for deep learning. The
models for diabetic eye diseases were then assessed using
a variety of criteria. Figure 1 depicts a summary of our
proposed DeepDiabetic framework methodology.
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TABLE 2. Overview of studies using deep learning approaches with their working methods and performance metrics for Diabetic eye disease images that
classify at least three diabetic diseases.

TABLE 3. The details of the collected dataset for the four DR, Cataract,
Glaucoma, and DME classes.

A. DATASETS FOR THE STUDY
1) DATA COLLECTION
For our experiments, many sources of fundus images were
accessed and collated. This collection includes DR, Cataract,

Glaucoma, andDME. First, for DR,we selected datasets from
DIARETDB0 and DIARETDB1 [44] with about 219 images.
Secondly, we used Messidor [46] and HEI-MED [47] for
DME with 151 images and 169 images, respectively. The
third dataset source is the ODIR dataset [45] which contains
multiple classes of eye diseases. We used 312 images
for Cataracts and 178 images for Glaucoma. The last
selected dataset for Cataracts and Glaucoma also is a Retina
dataset [48] of 100 images for Cataracts and 99 images for
Glaucoma. The outcomes of the collected datasets are 412,
320, 280, and 219 images for Cataract, DME, Glaucoma,
and DR, respectively, as shown in Table 3. There are a total
of 1228 images obtained from the datasets collected, and
these images have been randomly divided into training and
validation sets. Figure 2 shows samples of fundus images for
DR, Cataract, Glaucoma, and DME.

2) DATASET PRE-PROCESSING
Pre-processing is typically utilized to get the dataset ready
to fulfill the prerequisites of the deep learning model. The
first technique is to split the data between the four training
classes: DR, Cataract, Glaucoma, and DME. Then, the
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FIGURE 1. The block diagram of our proposed DeepDiabetic framework.

FIGURE 2. Samples from the original dataset of the fundus images.

images will be applied as input for the pre-processing data
stage; in our model, different pre-processing steps in input
images, including resizing, normalizing, and converting the
images into arrays for employing them as input for the
following stage of the model. Then, we will randomly split
our dataset (1228 images) for training the deep learning
model to ensure the variety of the images into two parts, 70%
(about 858 images) and 30% (370 images) for training and
validation, respectively.

Pre-processing is widely used to prepare a dataset to meet
the requirements of a deep learning model. In our model,
different pre-processing steps in input images are applied.
The first process is to split the dataset between the four
classes: DR, Cataract, Glaucoma, and DME. TensorFlow

does not support some image formats such as (JPEG, PNG,
GIF, BMP, and TIFF). The extension of those image files is
indicative only and does not execute anything on the image’s
content. This research replaces all the image extensions to
the JPG format. Then, these images will be applied as input
for the pre-processing data stage. They were resizing images
to 224 × 224. after reading and having a batch size equal
to 32. Since the pipeline processes batches of images that
all have the same size, this must be provided. They were
providing true value for shuffling whether to shuffle the
data. They were adding optional random seeds for shuffling
and transformations equal to 100. Then, normalizing and
converting the images into arrays for employing them as
input for the following stage of the model. The label_mode
is categorial are a float 32 tensor of shape (batch_size,
num_classes), representing a one-hot encoding of the class
index. Lastly, we randomly split our dataset for training the
deep learning model into two parts: 70% (858 images) and
30% (370 images) for training and validation, respectively,
to guarantee that the images are diverse.

3) DATASET AUGMENTATION
Due to the limitations of the available dataset of diabetic eye
disease, this research used data augmentation techniques that
increased the sample size of each class with affine-altered
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TABLE 4. A summary of the augmentation types with their feature value.

FIGURE 3. Samples of fundus images after augmentation.

images and provided themodels withmore learnable features.
Image data augmentation can be achieved in two different
ways [9]: (1) Online augmentation - it is also referred
to as on-the-fly augmentation - which is processed by
performing transformations on the mini-batches that would
be fed to the model during training. (2) offline augmentation,
which is processed by performing the transformations on
the images and saving the results in memory or on the
desk. Thereby, increasing the size of the dataset by a factor
equal to the number of transformations performed. In our
work, we will use three methods based on three kinds of
datasets:

• Method 1: Non-augmented dataset
This method uses the original collected dataset men-
tioned in the Data Collection III-A1 which consists of
1228 images without any augmentation.

• Method 2: Online augmented dataset
This method applies the augmentation during the model
training. This means that in each epoch the model is fed
by a randomly selected batch of the original dataset and
then the transformations are executed online. Moreover,
for each epoch, the images fed to the model are different
based on the transformations applied.

• Method 3: Offline-augmented dataset
This method applies the augmentation to the original
dataset before it is used in the model. As explained
before, the original dataset is randomly split into two
sets: the training set and the validation set. Here,
we perform the augmentation only on the training set
of images, which is about 858 images. We used six
different transformations on each image (in addition

TABLE 5. The proposed EfficientNetB0 architecture.

TABLE 6. The proposed VGG16 architecture.

to the original image) to result in a total of 6006
images.

The data augmentation will be executed utilizing the
preprocessing layers of Keras; the specified values for aug-
mentation will generate new variations of the original images
without affecting their essential characteristics. Therefore,
this research uses subtle transformations that prevent such
a problem. Table 4 illustrates the augmentation types along
with their feature value that will be used in image data
augmentation. Figure 3 shows samples of fundus images after
augmentation.

B. DEEP LEARNING PROPOSED METHODS
In this paper, several supervised deep-learning methods are
employed to develop the proposed classification models.
They aim to examine their performance in detecting the
four considered diabetic eye diseases and ending the best
of them. Three pre-trained models consisting of a CNN
are VGG16, EfficientNetB0, and ResNet152V2. Recurrent
neural network (RNN) combined gated recurrent unit (GRU)
and bidirectional gated recurrent unit (Bi-GRU) models are
also available. In the following sections, we provide further
information on each of the five models we’ve developed.

1) EFFICIENTNETB0 DEEP MODEL
The EfficientNetB0 has been selected to achieve accurate
classifications and cost-effectiveness. A reshape layer, two
dimensions of global average pooling, a dropout layer, and
a dense layer with a Softmax activation function were
used to classify the data into their appropriate categories.
The proposed architecture of the EfficientNetB0 model is
shown in Figure 4, and further information regarding the
architecture of the model can be found in Table 5. The total
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FIGURE 4. EfficientNetB0 proposed model architecture.

FIGURE 5. VGG16 proposed model architecture.

number of parameters for the EfficientNetB0 is 4,054,695,
and these parameters are divided into two categories: the
trainable parameters, which have a value of 4,012,672, and
the non-trainable parameters, which have a value of 42,023,
respectively.

2) VGG16 DEEP MODEL
VGG16 was chosen because it is the most efficient model for
image classification and has the simplest feature extraction.
Figure 5 illustrates the VGG16 proposed model architecture.

Followed by a layer that does reshaping, two dimensions
of global average pooling, a layer that does dropouts, and
a layer that does dense layering. Table 6 provides further
information regarding the design of the model, which has a
total of 14,716,740 trainable parameters.

3) RESNET152V2 DEEP MODEL
For this study, we used the ResNet152V2 model since it
provides both high precision and processing speed. The
architecture of themodel comprises the ResNet152V2model,
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FIGURE 6. ResNet152V2 proposed model architecture.

TABLE 7. The proposed ResNet152V2 architecture.

TABLE 8. The proposed GRU+ResNet152V2 architecture.

which is then followed by a reshape layer, a 2D of global
average pooling, a dropout layer, and a dense layer with
a Softmax activation function to categorize the image into
its appropriate class. Table 7 and Figure 6 both contain
more information regarding the architecture of the model.
The total number of parameters for the ResNet152V2
is 58,339,844, and these parameters are split into two
categories: trainable parameters and non-trainable param-
eters, with the former category containing 58,196,100
parameters and the latter category containing 143,744
parameters.

TABLE 9. Proposed Bi-GRU+ResNet152V2 architecture.

4) RESNET152V2 AND GRU DEEP MODEL
As illustrated in Figure 7, The sequential model, which
comprises ResNet152V2 followed byGRU, is used to achieve
the study’s objective. The main advantage of GRU is that
it permits the long-term retention of information that is not
essential to the forecast without getting rid of it. The model
consists of the ResNet152V2 layer, followed by a reshape
layer, a GRU layer with 256 units, a flattened layer, a dense
layer with 128 neurons, a dropout layer, and a dense layer,
all of which use the Softmax activation function to classify
the image as belonging to one of our four disease categories.
Table 8 provides more information regarding the architecture.
The ResNet152V2 has a total of 69,573,252 parameters,
which are divided into two categories: trainable parameters
make up 69,429,508 of the parameters, and non-trainable
parameters make up 143,744 of the parameters.

5) RESNET152V2 AND BI-GRU DEEP MODEL
The sequential model of ResNet152V2, followed by bi-GRU,
is the last proposed deep learning model in this research.
The model architecture is described in detail in Figure 8.
This model uses a SoftMax activation function to classify
the image into one of our four disease categories. It starts
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FIGURE 7. GRU+ResNet152V2 proposed model architecture.

FIGURE 8. Bi-GRU+ResNet152V2 proposed model architecture.

with a ResNet152V2 and continues with a reshape layer,
a bi-GRU layer with 512 units, a dense layer, a dropout
layer, and another dense layer. The structure of the model
is presented in Table 9. The overall number of parameters
is 80,814,212, and there are two categories of parameters:
trainable parameters make up 80,670,468 of the totals, while
non-trainable parameters make up 143,744 of the totals.

IV. RESULTS
A. TRAINING PARAMETERS
Using the same parameters and criteria, each CNN model
was trained and assessed independently in this research
project. We needed to increase the overall amount of data and
epochs to adequately train deep learning models. We trained
the models on different epochs and batch size values to

accomplish the best results. Our models were trained and
validated with the use of an optimizer and appropriate fit
functions. During training, each model completed approxi-
mately 300 epochs, and the batch size was set to 32. The
results were acquired by including the performance metric
equations into the outcomes of the resultant validation data,
and the reported results represent the maximum validation
values that were attained. The Adam optimizer [10] was
utilized to get the best results for our proposed models.
Table 10 displays the learning rate (LR) values and optimizers
used for all models.

B. EARLY STOPPING (CALLBACK)
An important concern with training neural networks is
selecting the number of training epochs. Too many epochs
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TABLE 10. The training parameters of the Models: learning rate value and
optimizer.

can cause the training dataset to overfit, while too few can
result in an underfit model. There are many techniques on
how to set the number of epochs like early stopping and
model checkpoint. We use the early stopping strategy in
our work, which involves setting a very large number of
epochs and turning off the training when the improvement
over the subsequent epochs is not satisfactory and meets our
expectations.

Early stopping is a technique for specifying an arbitrarily
large number of training epochs and stopping training once
the model performance on a hold-out validation dataset
stops improving. Keras has a callback named EarlyStopping
that allows you to stop training early. Callbacks allow the
execution of the code automatically and interact with the
training model process. At the end of each epoch, the loss
function of the validation dataset chosen to be optimized for
models is calculated. The first sign of no further improvement
is not always the optimum time to quit training. This is
because the model may reach a point of no improvement
or perhaps worsen slightly before improving significantly.
We set the ‘‘patience’’ argument to 60 in this experiment
to delay the number of epochs we would like to see no
improvement.

The execution of our experiment is divided into three main
cases: non-augmented dataset, online augmented dataset, and
offline augmented dataset. For each case, we will experiment
with two different execution parameters: First assigned to
300 epochs and second with a callback. So, this will be
conducted through the five deep learning models: VGG16,
EfficientNetB0, ResNet152V2, GRU+ResNet152V2, and
Bi-GRU+ResNet152V2.

C. PERFORMANCE METRICS
The performance of diabetic eye disease classificationmodels
was evaluated using several metrics: accuracy, loss, recall,
precision, specificity, and AUC. For each model, a confusion
matrix is then introduced. Accuracy, in Eq. (1), is the number
of instances that can be accurately predicted based on the
overall number of instances.

Accuracy(ACC) =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
(1)

where TP and TN stand for the true positive and true negative
parameters, respectively, and where FP and FN stand for the
false positive and false negative values, respectively. Recall,
given in Eq. (2), is the number of samples that were positive
in addition to the number of samples that were anticipated to

TABLE 11. Confusion matrix explanations.

be positive out of the total number of samples.

Recall(Sensitivity) =
Tp

Tp+ Fn
(2)

Eq. (3) shows the precision, also called the positive predictive
value [11], which is the number of samples that were both
actually and predicted to be positive out of the total number
of samples predicted to be positive.

Precision =
Tp

Tp+ Fp
(3)

Moreover, recent studies support the use of confusion
matrix analysis in model validation [11] since it is robust
in categorizing data relationships and any distribution.
It provides extra information on illustrating the classification
models. To analyze our models using a confusion matrix,
we have to understand how it is structured and we need to
define all variables and parameters that can be extracted from
Table 11.

D. MULTI-CLASSIFICATION DEEP LEARNING MODEL
RESULTS
To determine the important findings, we conducted a
large-scale experiment and collected several outputs that
matched the performance indicators. As a result, we pre-
sented the findings for each model experiment in tables.
To determine the optimal derivative value, we experimented
with six different parameter approaches. Columns on the
tables illustrate the performance of the classifier models in
the following metrics: validation loss, validation accuracy,
validation precision, validation recall, and validation AUC.
The bold font is used to select the highest value in each
column. The rows in each table illustrate the type of each
experiment. The rows in the first column are divided to
present the data method used in execution into three main
categories: non-augmented, online augmented, and offline
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TABLE 12. True positives, true negatives, false positives, and false negatives variables definitions.

FIGURE 9. Confusion matrix of the proposal EfficientNetB0 model.

augmented. Furthermore, each of those categories is divided
into two rows the first row for the results of the early stopped
method, equal to 60 of the patients of loss improvement, and
the second row for the results of 300 epochs.

The most popular technique for evaluating classification
errors is the confusionmatrix. Table 12 explains the confusion
matrix and we used it to generate the confusion matrix for
each of the proposed models. For both the training and
validation stages we report the loss of AUC, precision, recall,
and accuracy between the training and validation phases
in two ways: one is by using several 300 epochs, and the
second with using a callback function for all the proposal
models.

1) EFFICIENTNETB0 DEEP MODEL
The performance measures of the EfficientNetB0 model
using the three different data augmentation methods are
illustrated in Table 13. In addition to the non-augmented
images, online and offline augmented images are produced
using three different ways of image data augmentation.
Additionally, both with and without callbacks are taken
into account for each method. the bolded values showed
the higher values. The non-augmented dataset achieved the
highest result, 0.9876, in accuracy, precision, and recall
performance matrices. The best value of loss matrices of
the EfficientNetB0 model was obtained from the online

FIGURE 10. Loss, AUC, precision, recall, and accuracy between the
training and validation phases, with number of epochs for the
EfficientNetB0 model.

augmented data method with the callback function, 0.1044,
which stopped training execution after 172 epochs. Con-
sequently, offline augmented data seems to have lower
results for both methods of the epochs. The confusion
matrix in Figure 9 shows that the EfficientNetB0 model
successfully classifies the four patient statuses (DR, DME,
Glaucoma, and Cataract) with the highest balance to the
DMR and DME images, then Cataract (0.9750), followed by
Glaucoma (0.9744). This result confirms that the classifica-
tion is executed correctly for the four classes. Furthermore,
Figure 10 displays the loss, AUC, precision, recall, and
accuracy between the training and validation phases with the
number of epochs for the EfficientNetB0 model with online
augmented.

2) VGG16 DEEP MODEL
Performance metrics for the VGG16 model employing the
three distinct data augmentation techniques are shown in
Table 14. As the EfficientNetB0 model, the non-augmented
dataset with the callback achieved the highest result, 0,9811,
in accuracy, precision, and recall performance matrices.
The best value of loss matrices of the VGG16 model
was obtained from the online augmented data method
with the callback function (0.0889). Accordingly, VGG16

VOLUME 12, 2024 10781



A. Albelaihi, D. M. Ibrahim: DeepDiabetic: An Identification System of Diabetic Eye Diseases

TABLE 13. Performance measures of EfficientNetB0 model using different methods: online and offline augmented images, as well as non-augmented
images. Also, each method with 300 epochs and no callback is taken into account.

TABLE 14. Performance measures of VGG16 model using different methods: Online and offline augmented images, as well as non-augmented images.
In addition, for each method with 300 epochs and without callback are considered.

FIGURE 11. Confusion matrix of the proposal VGG16 model.

offline augmented data seems to have lower results in
loss, accuracy, precision, and recall performance matrices,
despite it acquiring the highest AUC value with 0.9984.
The confusion matrix for the VGG16 model can be seen in
Figure 11. This matrix shows that the model can categorize
all four patient states (DR, DME, Glaucoma, and Cataract).
We find that the DME images have the highest ratio, then
DR (0.9697), followed by Cataract (0.9355), and finally
Glaucoma (0.9286). These results are less impressive than
those produced by the EfficientNetB0 model, which had
higher DR values. Furthermore, Figure 12 illustrates the loss,
AUC, precision, recall, and accuracy of the model with an
early stopped function when comparing the training phase
to the validation phase. The graphs show that the model
stopped training after 160 epochs, which means there is no
improvement after epoch 100.

3) RESNET152V2 DEEP MODEL
The performance measures of the ResNet152V2 model using
the three different data augmentation methods are illustrated

FIGURE 12. Loss, AUC, precision, recall, and accuracy between the
training and validation phases, with number of epochs for the VGG16
model.

in Table 15. The non-augmented and online augmented
method of the ResNet152V2 model obtained similar results,
0.9730 for accuracy, precision, and recall performance
matrices. The difference between them is achieving the same
result faster using the online enhanced method. In contrast,
the values of loss and AUC, 0.1143 and 0.9978, respectively,
achieved the best value for the ResNet152V2 model in the
augmented offline method. The best value of loss and AUC
matrices of the ResNet152V2 model was obtained from the
offline augmented data method with the callback function.
Likewise, in Figure 14, the values of loss, AUC, precision,
recall, and accuracy between the training and validation
phases of the ResNet152V2 model, with the number of
epochs, are displayed. Consistently, the ResNet152V2 model
confusion matrix is presented in Figure 13. The Figure indi-
cates the successful classification of the four patient statuses
(DR, DME, Glaucoma, and Cataract), starting with the DR
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TABLE 15. Performance measures of ResNet152V2 model using different methods: Online and offline augmented images, and non-augmented images.
Additionally, every procedure with 300 epochs and no callback is considered.

FIGURE 13. Confusion matrix of the proposal ResNet152V2 model.

FIGURE 14. Loss, AUC, precision, recall, and accuracy between the
training and validation phases, with number of epochs for the
ResNet152V2 model.

images, which have the highest ratio, then Cataract, followed
by DME, and lastly Glaucoma.

4) RESNET152V2 AND GRU DEEP MODEL
The GRU+ResNet152V2 model showed that the perfor-
mance of ResNet152V2 was better when combined with
GRU, which is evident from the higher values shown

FIGURE 15. Confusion matrix of the proposal GRU+ResNet152V2 model.

FIGURE 16. Loss, AUC, precision, recall, and accuracy between the
training and validation phases, with number of epochs for the
GRU+ResNet152V2 model.

in Table 16. The offline augmented data of the GRU+

ResNet152V2 model had the best values in the perfor-
mance matrix, except the AUC value reached the high-
est value with the online augmented value. Furthermore,
the GRU+ResNet152V2 with offline augmented method
reached 0,9838 in accuracy, precision, and recall performance
matrices. In addition, GRU+ResNet152V2 with the offline
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TABLE 16. Performance measures of GRU+ResNet152V2 model using different methods: Online and offline augmented images, and non-augmented
images. In addition, each method with 300 epochs and no callback is considered.

FIGURE 17. Confusion matrix of the proposal Bi-GRU+ResNet152V2
model.

augmented method scores 0.0679, which is better than the
VGG16 and ResNet152V2 models. While the highest AUC
value of GRU+ResNet152V2was with the online augmented
method, it obtained 0.9972. Similarly, in Figure 15, the
confusion matrix of the GRU+ResNet152V2 model shows
the classification of the four patient statuses ((DR, DME,
Glaucoma, and Cataract), with the highest ratio to the
DME and DR images, then Cataract (0.9839), and finally
Glaucoma (0.9542). Figure 16 depicts the epoch-by-epoch
variation in loss, AUC, precision, recall, and accuracy for the
ResNet152+GRU model throughout training and validation.

5) RESNET152V2 AND BI-GRU DEEP MODEL
The performance measures of the Bi-GRU+ResNet152V2
model using the three different data augmentation methods
are described in Table 17. Offline augmentation gives the best
method for the Bi-GRU+ResNet152V2 model in the per-
formance matrix as the GRU+ResNet152V2 model. The
offline augmented data mothed achieved the highest result,
in all performancematrices, with the callback function, which
stopped training execution after 107 epochs. This method
achieved 0.0578, 0.9811, 0.9811, 0.9811, and 0.9980 For
loss, accuracy, precision, recall, and AUC, respectively. The
loss value (0.0578) achieved by the Bi-GRU+ResNet152V2
model was lower than that of the GRU+ResNet152V2
model. The Bi-GRU+ResNet152V2 model training results
showed that the callback approach outperformed the other

FIGURE 18. Loss, AUC, precision, recall, and accuracy between the
training and validation phases, with number of epochs for the
Bi-GRU+ResNet152V2 model.

augmentation strategies. Similarly, in Figure 18, loss, AUC,
precision, recall, and accuracy between the training and
validation phases of the Bi-GRU+ResNet152V2model, with
the number of epochs, are displayed.

Also, the Bi-GRU+ResNet152V2 model confusion matrix
is presented in Figure 17. In the Figure, we can see
the four diagnosed conditions (DR, DME, Glaucoma, and
Cataract). The DR images had the highest ratio, followed by
those of DR, DME, Cataract, and Glaucoma, in that order.
Comparatively, these results are inferior to those achieved
by the GRU+ResNet152V2 model but superior to those
obtained by the ResNet152V2 model alone.

V. COMPARATIVE ANALYSIS AND DISCUSSION
This paper proposes five deep-learning models for dia-
betic eye disease detection (EfficientNetB0, VGG16,
ResNet152V2, GRU+ResNet152V2, and Bi-GRU+

ResNet152V2). These models are used to classify the most
common diabetic eye diseases: DR, DME, Cataract, and
Glaucoma. The various models that were suggested were
evaluated based on their accuracy, recall, precision, loss,
and AUC. The obtained results show that the EfficientNetB0
model gave the best classification performance (0.9876 in
accuracy), followed by GRU+ResNet152V2, with 0.9838 in
accuracy. Conversely, ResNet152V2 is the lowest of the
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TABLE 17. Performance measures of Bi-GRU+ResNet152V2 model using different methods: Online and offline augmented images, and non-augmented
images. Additionally, every procedure with 300 epochs and no callback is considered.

FIGURE 19. Accuracy measures for the proposed models (EfficientNetB0,
VGG16, ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2).
Three different methods of image data augmentation are achieved:
non-augmented images, and online and offline augmented images.
Additionally, every procedure with 300 epochs and no callback is
considered.

other architectures since this model has obtained the lowest
accuracy, as illustrated in Figure 19. Furthermore, the VGG16
and the Bi-GRU+ResNet152V2 models reached the same
value of 0.9811 in accuracy, precision, and recall performance
matrices.

In this experiment, three different methods of image
data augmentation are achieved in online and offline
augmented besides the non-augmented images. In addition,
for each method with and without a callback is consid-
ered. We discovered that offline augmented obtained better
values with sequential models (GRU+ResNet152V2 and
Bi-GRU+ResNet152V2) because this augmentation method
increases the dataset size of the training set to six times the
original size. At the same time, EfficientNetB0 and VGG16
models assumed the best values of the evaluation matrixes in
the non-augmented data.

The loss value for GRU+ResNet152V2 was better, how-
ever, the AUC performance value for VGG16 was superior.
Figure 20 showed the Bi-GRU+ResNet152V2 reached
the most useful value of the loss metrics by contacting
0.0578. The Bi-GRU+ResNet152V2with offline-augmented
reached the lowest, which means the best value of the loss
metrics by contacting 0.0578.

FIGURE 20. Loss measures for the proposed models (EfficientNetB0,
VGG16, ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2).
Three different methods of image data augmentation are achieved:
non-augmented images, and online and offline augmented images.
Additionally, every procedure with 300 epochs and no callback is
considered.

After assigning the callback method for the whole
experiment implementation, 300 training epochs stopped
training once the model performance on the loss matric
validation dataset stopped improving for 60 more epochs.
We found that the callback method performs more valuable
to the augmented online technique for all five models. At the
same time, we didn’t notice the benefit of using the call-
back method with non-augmented and offline-augmented.
In addition, the results of the Bi-GRU+ResNet152V2 model
showed that callback performed more useful for all types of
augmentation.

Figures 21 and 22 display the measurement of the
precision and the recall for the following models: Efficient-
NetB0, VGG16, ResNet152V2, GRU+ResNet152V2, and
Bi-GRU+ResNet152V2. The results of precision and recall
are considerably equal in all the methods. Slight differences
between precision and recall result in the offline augmented
value with callback in all the models. Furthermore, the last
figure, Figure 23, indicates all the details values of the
AUC measurement for all these models. The best AUC
measurements were conducted during the callbacks with
offline augmented for three models, VGG16, ResNet152V2,
and Bi-GRU+ResNet152V2.

According to the results of the accuracy, our deep learning
models achieved higher than the previous studies. As a
consequence of this, we recommend that the EfficientNetB0
model, which is based on fundus images, be utilized in the
process of diagnosing the health status of diabetic patients
concerning DR, DME, cataracts, and glaucoma. We have
introduced some deep models, and their results, in the hopes
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FIGURE 21. Precision measures for the proposed models (EfficientNetB0,
VGG16, ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2).
Three different methods of image data augmentation are achieved:
non-augmented images, and online and offline augmented images.
Additionally, every procedure with 300 epochs and no callback is
considered.

FIGURE 22. Recall measures for the proposed models (EfficientNetB0,
VGG16, ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2).
Three different methods of image data augmentation are achieved:
non-augmented images, and online and offline augmented images.
Additionally, every procedure with 300 epochs and no callback is
considered.

that these can be used as a starting point for constructing a
system that can diagnose eye diseases based on images of the
fundus.

As discussed in the literature review section, few methods
have focused on classifying between three or four diabetic
eye diseases. As illustrated in table 2, DR, DME, GC, and
Cataract were the four complications of diabetes, although
their classification scheme was rarely modified. By the end
of 2021, we found Rubina Sarki et al. [5] presented a
classification framework for those four diseases. However,
they only applied one CNN model in their work, and their
dataset showed class imbalance. They attained only 81.33%
accuracy, which is still considered low compared to recent
research in DL classifications. The other studies on the same
table classified between three diabetic eye diseases

FIGURE 23. AUC measures for the proposed models (EfficientNetB0,
VGG16, ResNet152V2, GRU+ResNet152V2, and Bi-GRU+ResNet152V2).
Three different methods of image data augmentation are achieved:
non-augmented images, and online and offline augmented images.
Additionally, every procedure with 300 epochs and no callback is
considered.

TABLE 18. Comparison of the performance evaluation metrics of the
different models presented in previous studies and our proposed
EfficientNetB0 model.

Table 18 shows a comparison of the performance eval-
uation metrics of the different DL models presented in
previous studies and our proposed five models (Efficient-
NetB0, VGG16, ResNet152V2, GRU+ResNet152V2, and
Bi-GRU+ResNet152V2), as also represented in Figure 24.
In this paper, we evaluated the proposed model in terms of
accuracy, precision, f1-score, recall, and AUC. The accuracy
reached by our EfficientNetB0 model is 98.76% in compari-
son with Vgg16 [33], Fast-RCNN [27], RCNN-LSTM [12],
Vgg16 [13], ResNet34 [13], MobileNetV2 [13], and Effi-
cientNet [13] which have 88.3%, 95.2%, 89.54%, 97.23%,
90.85%, 94.32%, and 93.82%, respectively. While the AUC
achieved by our EfficientNetB0, Vgg16, ResNet152V2,
GRU+ResNet152V2, and Bi-GRU+ResNet152V2 models
are 99.77%, 99.4%, 99.6%, 99.08,%, and 99.8%, respec-
tively, compared with Fast-RCNN [27], RCNN-LSTM [12],
and InceptionResNet [18] which got 95.8%, 97%, and
96.08%, respectively. Similarly, the table shows the differ-
ences between the previous studies and ours in terms of
precision, f1-score, and recall evaluation metrics. The results
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FIGURE 24. Comparison of the performance evaluation metrics: The
accuracy, precision, F1-score, Recall, and AUC values between the
different models presented in the previous studies [12], [13], [27], [33],
[18], and our proposed five models.

show that our proposed EfficientNetB0 model outperforms
all the existing models by a significant value, which
demonstrates the effectiveness of our predictive model.

VI. CONCLUSION AND FUTURE WORK
In this research, a multi-classification deep learning model,
called the DeepDiabetic framework was designed and evalu-
ated for detecting DR, DME, Glaucoma, and Cataract from
fundus images. It is important to correctly diagnose these
diseases early to determine the proper treatment. However,
it is challenging to accurately identify via fundus images,
and even highly experienced ophthalmologists are prone to
misdiagnose eye lesions.

To the best of our knowledge, there are no other GRUmod-
els in the literature that choose between DR, DME, cataract,
and glaucoma. Five model architectures were offered
in this research: EfficientNetB0, VGG16, ResNet152V2,
GRU+ResNet152V2, and Bi-GRU+ResNet152V2. Most of
the previous research focused on the classification and
development of a single fundus disease independently;
despite this research, the primary focus was to provide
a multi-classification of the four diabetic eye diseases,
which presents a big obstacle. This research employed a
combination of datasets from various sources to examine the
technique’s robustness and adaptability in dealing with real-
world cases.

The accuracy, precision, f1-score, recall, and AUC of
the proposed models were measured in this paper. Our

EfficientNetB0 model achieves 98.76% accuracy, while
Vgg16 [33], RCNN-LSTM [12], Vgg16 [13], and CNN [5]
only achieve 88.33%, 89.54%, 97.23%, and 80.33% accuracy,
respectively. When compared to Fast-RCNN [27], RCNN-
LSTM [12], and InceptionResNet [18], our EfficientNetB0
model achieves a far higher AUC of 99.77%. The accuracy
reached by our EfficientNetB0 model is 98.76% in compari-
son with Vgg16 [33], Fast-RCNN [27], RCNN-LSTM [12],
Vgg16 [13], ResNet34 [13], MobileNetV2 [13], and Effi-
cientNet [13] which have 88.3%, 95.2%, 89.54%, 97.23%,
90.85%, 94.32%, and 93.82%, respectively. As you can see,
the AUC for our EfficientNetB0, Vgg16, ResNet152V2,
GRU+ResNet152V2, and Bi-GRU+ResNet152V2 models
is 99.77%, 99.47%, 99.6%, 99.8%, and 99.8%, respectively.
For Fast-RCNN [27], it was 95.64%, for RCNN-LSTM [12],
and for InceptionResNet [18], it was 96.8%. Similarly, the
table shows the differences between the previous studies and
ours in terms of precision, f1-score, and recall evaluation
metrics. According to the outcomes, our suggested Efficient-
NetB0 model is significantly more accurate than the state-of-
the-art models.

To the best of our knowledge, our five multi-classification
models of the four diabetic diseases (DR, DME, Glaucoma,
and Cataract) achieved the highest accuracy result in state-
of-the-art. The EfficientNetB0 model achieved 98.76%
accuracy, 98.76% recall, 98.76% precision, and 99.73%AUC
based on fundus images. The EfficientNetB0 model did
better than the other five proposed models in a large set of
experiments and results using fundus images from a number
of different sources.

In future work, understanding various features of deep
neural networks and visualization is also a significant
research field to increase clinical acceptance of deep learning
models. We’ll have to collect huge training datasets with tens
of thousands of abnormal cases from other hospitals using
various types of cameras in the future. So, more features will
be added to help enhance accuracy and generalization.

More work can be done to make the suggested model
work better by adding more images to the datasets that are
used, training epochs, and using different GAN architectures
and other deep learning techniques for classification and
enhancement.
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