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ABSTRACT Driver assistance systems and autonomous vehicle navigation have become important topics
in vehicular technology. Among all of the functions, lane detection is one of the most important. A variety of
approaches have been proposed in this field. While learning-based methods achieve impressive accuracy
in detecting complex lane markings under clear daylight conditions, adapting these models to diverse
weather conditions remains a challenge. On the other hand, geometric-based approaches require parameter
tuning for different scenarios but require fewer computational resources. A self-tuned algorithm with
high generalizability across diverse weather conditions is proposed in this paper. The algorithm integrates
fuzzy logic-based adaptive functions with edge identification and line detection modules, enabling image
adjustments in response to challenging weather conditions. The proposed tracking function utilizes previous
detection results to fine-tune the selected Range of Interest (ROI), optimizing both accuracy and processing
time. By incorporating these adaptive features into common geometric-based frameworks, the algorithm
achieves higher detection rates compared to previous studies during challenging weather conditions.
Furthermore, the proposed work exhibits better generalizability and significantly shorter processing time
when compared to state-of-the-art learning-based models, as demonstrated through extensive testing on
multiple datasets.

INDEX TERMS Adaptive, fuzzy logic, image processing, lane detection.

I. INTRODUCTION
Driver assistance and autonomous driving systems have
become important topics in vehicular technology. To reduce
human error and thereby enhance the safety of driving,
a variety of functions have been developed for driver
assistance systems. The most common applications include
Lane Keep Assistance (LKA), Autonomous Emergency
Braking (AEB), and Autonomous Cruise Control (ACC)
systems. The reliability of these functions has continuously
improved as research advances.

Lane detection is regarded as an essential technology
because it is a building block for most functions in driver
assistance systems and autonomous driving systems. Several
different approaches have been developed in this area. One of
them involves collecting the position of the lane along a large
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number of roads, and creating a lane map with respect to the
GPS signal [1]. Though the lane map data can be downsized
by approximating the lanes with curves, a considerable
amount of data collection work is still required. Apart from
lane maps, proximity sensors have been used to detect lanes.
For example, LiDAR sensors could be leveraged to construct
a 3D map of the scene. By differentiating the ray intensity
reflected from the road and the lane lines, the position of the
lines were identified [2], [3].

Another common approach used camera sensors of various
wavebands, and is known as the vision-only approach. As all
lane marks were designed for human eyes, cameras have been
adopted by amajority of lane detection algorithms. Other than
vision-only approaches, [4] proved that the fusion of LiDAR
and camera could further improve the detection rate.

Though many algorithms have been proposed, complex
weather conditions can greatly influence the detection results
from LiDAR and cameras [4], [5]. The light during day
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and night conditions vary widely, usually requiring different
parameters or even different algorithms. During rainy and
snowy weather conditions, raindrops or snowflakes on the
windshield reduce visibility. Furthermore, the fast-moving
wipers pose additional challenges for camera-based algo-
rithms. The water accumulating on the ground changes the
reflected intensity of LiDAR rays.

The key finding from this study is a lane detection
algorithm adaptable to varying weather effects. With an
adaptively tuned edge detection and ROI selection module,
the algorithm demonstrated exceptional generalizability over
data collected under diverse weather conditions. It was shown
that under identical initial parameters, the proposed algorithm
could tune the parameters adaptively under all weather
conditions. The findings were verified experimentally under
a geometrical detection framework. Results demonstrated
that the lane detection rate improved significantly under
challenging weather compared to previous approaches.
Furthermore, the adaptability of this work was also shown
to outperform learning-based methods.

The remainder of this study describes the method, demon-
strates results and provides a conclusion. All of the theoretical
derivations and experimental setup are illustrated in detail in
section III. The features of all datasets included in this work
and the experimental setup are included in section IV. The
analysis of the lane detection errors under various weather
conditions is presented in section V. The conclusion of the
proposed study and several potential future research topics
are proposed in section VI and VII.

II. BACKGROUND
Lane detection algorithms can be broadly categorized
into geometric-based (model-based) and learning-based
approaches. Geometrical approaches leverage intrinsic lane
characteristics such as parallelism and color [6]. Though
manual parameter-tuning is usually required, geometrical
approaches are more robust over various lighting and weather
conditions. On the other hand, learning-based algorithms
rely on data collected under different road and weather
conditions. However, the availability of training datasets
that cover diverse weather conditions remains limited. Well-
known datasets like Tusimple [7], LLAMAS [8], and
Caltech [9] mainly consist of images collected under clear
weather conditions. However, the size of data in challenging
weather is still limited [10]. Consequently, developing robust
learning-based methods for different weather conditions
becomes more challenging.

To tackle this challenge, researchers have proposed models
trained on daytime data and tested on other weather condi-
tions [11], [12], [13]. Additionally, efforts have been made to
generate datasets with complex weather conditions, aiming
to increase the diversity of available data. For instance, [14]
and [15] successfully synthesized foggy and blurry images
from data originally collected under clear daytime conditions.
Similar attempts have been made to transform daytime
images into nighttime representations [16]. However, rainy

FIGURE 1. The flow diagram of a typical lane detection algorithm.

and snowy weather conditions have yet to be adequately
addressed. The presence of raindrops or snowflakes on
windshields, with their dynamic flow while the vehicle is in
motion, presents additional challenges for both approaches.

Given the difficulties faced in the dataset of challenging
weather conditions, efforts have been made to improve the
generalizability of learning-based methods. The study in
[15] created images with blurred lane lines in order to
enhance the performance of algorithms under complicated
weather conditions. The work in [17] adopted self-attention
distillation (SAD) to improve the algorithms’ accuracy in the
scenes where only limited visual cues were present.

In addition to learning-based methods, non-learning-
based lane detection algorithms were also proposed in the
community as they are not limited by the size and abundance
of datasets. For example, [18] utilized EDLines [19] along
with a temporal tracking function to detect and connect the
lanes in the images. References [20] and [21] incorporated
a range of interest (ROI) selection strategy to raise the
detection rate. In addition, [22] applied particle filter in a
temporal-spatial framework performed lane detection task in
multiple datasets. A general flow diagram of lane detection
algorithms is shown in Figure. 1.

A. CONTRAST ADJUSTMENT
In most previous studies, typical RGB cameras were adopted
for lane detection. Since lane lines are usually bright
in color compared to the asphalt road, the images were
usually translated into grey-level representations. A typical
translation formula considering the luminance isGraylevel =

0.3 × Red + 0.59 × Green+ 0.11 × Blue.
It is more difficult to detect yellow lane lines than the

typical white lines. In [23], the YUV color representation was
leveraged to increase the detection rate of yellow and blue
lines. The transformation from RGB channels to YUV color
space used in [23] is written asYU

V

 =

 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

 RG
B

 (1)

In [18], it was shown that the YUV color space was
capable of enhancing the detection rate of the yellow and
blue lane lines in typical daylight. However, this function
had to be switched off manually under certain conditions,
such as during nighttime operation. A robust algorithm
automatically enabling/disabling the YUV channel under
the proper situation could have improved the overall lane
detection rate.

B. ROI SELECTION STRATEGY
The Range of Interest (ROI) selection strategy is a critical
building block in lane detection algorithms. Proper ROI
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selection can increase the performance of lane detection
significantly. Rectangular ROIs were adopted in a majority of
previously proposed algorithms. The top (sky) and the bottom
(hood) of the image were usually cropped. Rectangular ROIs
were used in [6] and [24].

Typically, lane lines are parallel to one another. According
to the optical property of cameras, they coincide at the
vanishing point near the center of the image. Triangular
ROIs were commonly used in lane detection algorithms [20],
[21], [25], [26], [27]. The advantage of triangular ROIs is
that the information from adjacent lanes can be filtered out,
thereby increasing the accuracy of the center lane. However,
as the vanishing point changes with the angle of the camera,
so when a curved road is encountered, a fixed triangular ROI
could fail to detect the lines.

In [18], a unique 3–shaped ROI was adopted. With one
vanishing point at the center and four adaptively calculated
points at the bottom of the image, an 3-shaped ROI could
be fully defined. In adopting this 3-shaped ROI, the system
was able to further avoid the distraction of lane marks such as
arrows and speed limits painted on the ground between lane
lines. However, more calculation was required for all anchor
points of this setup, and the smaller ROI selection limited the
tolerance of detection errors. When the ROI did not include
the lane lines, it significantly increased the possibility of a
detection failure.

Given the variety of ROI selection strategies, it is important
to design one that can adapt to the road and the field of view
of the cameras.

C. LINE DETECTION
The lane lines are usually composed of elements with a
similar color or gradient value [19]. However, lane lines
can be painted in a range of colors and their appearances
may also vary with illumination and shadows. Even with
the gradient calculating edge detection method, the threshold
value where the edges/non-edges are differentiated requires
tuning. Studies were proposed on the tuning strategy of
the threshold value. For example, [20] used an equation to
adjust the threshold during rainy weather. However, after
implementation, it was found that the equation had difficulty
working at night. Therefore, a more robust and automated
method to determine a proper threshold under varying
weather and illumination conditions is needed.

III. METHOD
The developed algorithm presented in this study demonstrates
precise lane detection through a vision-only approach. The
primary contribution of this approach lies in the adaptation
of an error-based control scheme to the field of image
processing. In contrast to learning-based methods that
determine parameters based on overall detection error, the
proposed framework defined ‘‘observable parameters’’ and
utilized them to adjust the corresponding ‘‘target parameters’’
accordingly.

FIGURE 2. The flow diagram of the proposed algorithm.

Unlike approaches that rely on pre-trained parameters or
select parameters under discrete conditions, the proposed
method iteratively tuned the ‘‘target parameters’’ based on
the deviation of ‘‘observable parameters’’ in each frame. This
iterative process optimized overall accuracy and enhanced the
algorithm’s adaptability across diverse lighting and weather
conditions.

Analogous to control theories, the amount of adjustment
increased with the deviation of observable parameters,
making the tuning process interpretable. In this work, a fuzzy
inference system (FIS) was employed to determine the extent
to which target parameters should be adjusted. Leveraging
the probabilistic properties of fuzzy logic, the algorithm was
tuned continuously, ensuring it is not unduly affected by
sudden environmental changes.

The proposed framework comprised several modules,
including contrast adjustment, noise reduction, ROI selection,
line detection, and a tracking function to enhance algorithm
stability. Figure. 2 illustrates the flowchart depicting the
algorithm’s sequence of operations.

The proposed method processed the input images in
sequence from the database. After contrast adjustment, the
image underwent a noise reduction process. Followed by the
Canny edge detection function, a proper ROI was selected
from the image, where line detection was done within the
ROI. The detected line number and line color were used in
adapting the edge detection and contrast adjustment function.
In the case where no line was detected, the tracking function
was enabled. When a valid result was obtained, its position is
used to refine the ROI for improved outcomes.

A. COLOR SPACE SCALING
The color space scaling module was responsible for trans-
forming the image from RGB to YUV or Grayscale color
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FIGURE 3. At 3/4 of the image, the detected lines were sampled along the
white lines shown in the figure.

space. The switching mode was based on comparing the
current image and the previous detection results. With the
default setting, themodule transformed the images fromRGB
to Grayscale. If yellow lines were detected in the images, the
transformation from RGB to YUV color space was leveraged
instead.

According to [23], the difference between the U channel
and the V channel is the indication of a yellow element. The
threshold of a yellow pixel is defined as

U − V < −15 (2)

To identify a yellow line, a horizontal line was plotted at
3/4 of the image height, centering at the detected lane line.
11 points with a separation of 1% image width were sampled
along the horizontal line. An example is shown in Figure. 3.
If any of the points met the requirement of Equation. 2, the
line was regarded as a yellow line. If a yellow line had been
detected on the left/right-hand side of the previous image, the
corresponding side of the current image was transformed into
the YUV color space. This approach successfully increased
the contrast between the yellow lane lines and the asphalt
ground (Figure. 4(b)). However, the performance of the YUV
color space deteriorated under yellow light sources [23]. The
YUV transforming module was therefore switched off when
more than 15% of the whole image was defined as yellow
pixels.

This approach could successfully detect the yellow lines,
switch on the YUV color space representation, and identify
the lines better than in grayscale images. By processing the
lines on the left and right-hand sides independently, the image
could be interpreted and detected correctly even when the
color of the lines differed from each other. Additionally,
the colors of the lines were checked every 30 frames in
order to maintain the robustness of the contrast adjust-
ment module. An example of successful lane detection
with the aid of the automatic YUV switch is shown
in Figure.5.

B. NOISE REDUCTION
The noise reduction technique used in this algorithm is
a Bilateral filter [28]. The filter is capable of eliminating
the noise in the image while preserving the edges, thereby
assisting the lane line detection task.

FIGURE 4. An example of a single sided YUV color space transformation
with (a) the image with only grayscale transformation (b) the left hand
side of the image in the YUV color space.

FIGURE 5. An example of the detection result of a frame before (a) and
after (b) applying YUV channel.

FIGURE 6. The image before (left) and after (right) the denoise function
done by the bilateral filter. It can be found that the noise in the images
were greatly reduced.

The Bilateral filter uses the convolution of a kernel with
the image. The value in the kernel is represented as

Kxi (x) =
1
W
exp

(
||xi − x||2

σs

)
exp

(
|I (xi) − I (x)|2

σI

)
(3)

where W is the normalization factor of the kernel, the first
exponential is the Gaussian smoothing function of space, and
the second exponential is the Gaussian smoothing function of
intensity. In the equation above, xi is the element in the kernel
while x is the element in the image.

The parameters used in this work were determined
experimentally. A range of parameters were tested using the
datasets, and the most accurate option was selected. In this
filter module, a kernel size of 7×7, with the variance of 25 in
intensity and 50 in space was adopted. The image before and
after the filtering process is shown in Figure 6. It was shown
that the noise in the image was suppressed while the edges of
the lane lines were still clear.
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C. FUZZY-ADAPTIVE EDGE DETECTION
In the proposed algorithm, a Canny edge detection algo-
rithm [29] was used to identify the points with larger gradient
values. With two independent threshold values, the Canny
edge detector outperformed the other algorithms with its
higher degree of flexibility. When the gradient value was
larger than the higher threshold, this pixel was regarded
as an edge. When it was smaller than the lower threshold,
the pixel was regarded as a non-edge point. And when the
gradient value of the pixel was between the two thresholds,
it was identified as an edge only if it was neighboring other
edge points. The flexibility provided by the two thresholds
contributed to the algorithm’s adaptability over varying
weather conditions.

In order to adapt to all scenarios, a fuzzy logic-based tuning
method is proposed in this study. Fuzzy inference systems
are also known as expert systems because they integrate
the decision-making process of experts [30], [31]. Their
ability to handle uncertainty gives the system more flexibility
and tolerance toward image noise. Though an Adaptive
Neuro-Fuzzy Inference System (ANFIS) was adopted in
image segmentation [32], fuzzy inference systems have not
been used to tune parameters.

Fuzzy systems are commonly used in control applications.
The relative control commands are applied to systems to
reduce errors based on required performance criteria. This
work adopted a similar approach for the parameter-tuning
process of image processing. With the empirical observations
of the edge detector, the threshold value required tuning
to maintain adequate edge information while lowering the
computation cost. The fuzzy system rule base was derived
from adjusting the threshold value based on the observed
information.

The Canny thresholds adjustments were made recursively.
The thresholds depended on the number of detected lines
from the previous frame. An ‘‘observable parameter’’
(the detected line number) was used to tune the ‘‘target
parameter’’ (the Canny thresholds). When the detected line
number was higher than expected in the previous frame, the
Canny thresholds were raised, discarding the edge pixels
with lower gradient values. On the other hand, when the
edges of the lines blurred and therefore reduced the detected
lines, the thresholds were tuned lower to consider more
pixels.

The detailed tuning process involved in the proposed
module adopted a Mamdani fuzzy inference system (FIS).
The Canny threshold started with an initial value of 1 in all
experiments. The tuning process of the ‘‘high threshold’’ in
the Canny edge detector was performed with the FIS. Both
the input and the output linguistic values were determined
experimentally. The detected line number was categorized
into five different conditions according to the range of
threshold values observed in the experiments. Specifically,
the threshold variation was observed from 20 to 40 in one
scene. Therefore, to converge within 30 frames (1 second),
the increment was designed to be ±1.5/frame. As a result,

FIGURE 7. (a) The input linguistic variable ‘‘Line number’’ (b) The output
linguistic variable ‘‘Canny threshold’’, Linguistic values and membership
functions.

TABLE 1. The rule base of the fuzzy edge detection module.

5 rules were designed in the proposed FIS. The case ‘‘Zero’’
adjusted the threshold value for −0.5 ∼ 0.5. The cases
‘‘Add/Minus Little’’ adjusted the threshold value for ±0 ∼

0.5. The cases ‘‘Add/Minus Some’’ adjusted threshold value
for ±0.5 ∼ 1.5.
The input linguistic variables that mapped the input into

five categories are shown in Figure. 7(a). Following the
concepts of control algorithms, the shapes of the membership
functions were comparable to the design adopted in [33].
Using the detected line number, the FIS rule base was defined
in Table, 1. The Canny threshold was determined using the
detected line number in the Line detection module. When
the detected line number was higher/lower/similar to the
expected value, a corresponding adjustment was applied to
the Canny threshold. Finally, the decision made according to
the rule base was defuzzified using the linguistic variables
shown in Figure. 7(b) to generate a quantitative action and
apply it to the system. The fuzzification and defuzzification
method is the Center of Area (CoA) method. After tuning
the ‘‘high threshold’’, the ‘‘low threshold’’ was calculated by
dividing the high threshold by 3.

ThresholdLow =
ThresholdHigh

3
(4)
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The introduction of the fuzzy logic-based technique
demonstrated that the algorithm could successfully adapt
to different weather conditions and further improve the
detection rate.

D. ROI SELECTION
The ROI (Range of Interest) is an effective approach
to exclude non-lane objects from the images. In order
to optimize the processing time and system robustness,
a triangular ROI was adopted in this study. Ideally, the
triangular ROI should be based on the bottom of the image,
with the tip (XROI ,YROI ) located at the vanishing point.
However, in practice, the tip of the ROI needs to be adjusted
adaptively according to the changing road directions.

1) CALCULATION OF XROI
The default position of the XROI was set at the center of the
image.When the vehicle was going through a turn in the road,
one of the lines might be cropped from the ROI. As a result,
the XROI was adjusted 5% towards the left when the lane line
on the left-hand side disappeared, and vice versa. This setting
was shown to overcome the failed frames when the vehicle
was turning and also worked well on all selected datasets in
this work.

2) CALCULATION OF YROI
Though the typical vanishing point is at the center of the
image, setting the YROI at 1/2 of the image height might crop
part of the lane when either the road or the camera is not
horizontal. The default position of the y-axis intercept was set
at 2/3 of the image height to ensure the complete lane lines
were shown in the ROI.

Based on image projection principles, the parallel road
lines intersect at the vanishing point of images. However,
though usually centered on the horizontal axis, different
camera mounting angles and the field of view change the
height of the vanishing point. A mechanism was introduced
in this algorithm to trim the ROI according to the camera
configuration. When the previous frame was successfully
detected, e.g. detection of both the lines on the left and right-
hand side, the y-axis intercept was lowered to 1.1 times the
vanishing point height. When either of the lanes was not
detected, the YROI was replaced by the averaged vanishing
point height in the previous 30 detected frames.

The methodology mentioned above was used to derive the
XROI and YROI . The ROI was able to adapt to varying camera
angles, effectively cut out unwanted objects, and leave only
the lane in view. This approach successfully reduced the
difficulties encountered in the line detection process.

E. LINE DETECTION
The line detection was performed using the Hough Trans-
form [34] and some geometrical properties. The distance
resolution of theHough transformwas set as 1 pixel, while the
angular resolution was 1 degree. The accumulator threshold

of the Hough Transform was set to 5, which meant that only
line candidates that went through at least 3 edge points were
considered. This value could be fixed since the threshold of
the Canny edge detector was adaptive. Specifically, if only
very few lines had intersected over 3 edge points, the
threshold of the Canny edge detector decreased, allowing
more edge points to be considered.

The geometric properties of the lines were used to filter
out the lines that did not apply to normal road conditions.
As in [20], only the lines with angles between 25◦ and
65◦, or 110◦ and 155◦ were considered. In addition, the
coordinates where the lines intercepted the bottom of the
image were used to identify reasonable detection results.
For the lines with angles between 25◦ and 65◦, only the
candidates that intercepted the bottom on the left-hand side
were considered. For lines with angles between 110◦ and
155◦, the intercepts on the right-hand side of the image were
used. When the detected line angle was between 25 and 65,
it was regarded as the line located on the left-hand side of the
lane. In this case, only those lines intercepted with the bottom
of the image at the left half of the imagewere considered valid
candidates.

Using the geometric criteria, the candidates could be
effectively identified. Based on the Hough accumulator, the
three highest accumulated candidates on each side were
chosen. Their Hough Transform parameters, ρ and θ , were
averaged and recorded.

The averaged ρs and θs were used to visualize the detection
results. The detected lines were plotted accordingly on the
images. An example of the detection result visualization is
shown in Figure 5.

F. TRACKING
A tracking function was also essential for the algorithm.
Some of the previous studies used Kalman filter to predict
the line position when the detection failed. However, when
driving in the lane, the lines tend to stay in similar positions.
When one of the frames had a deviated detection result,
the Kalman filter takes the false velocity into account and
predicts a result that was even farther from the lanes. In this
case, a simpler solution was shown to benefit the detection
rate more. When the algorithm failed to detect the left/right
line in this frame, the ρ and θ from the previous frame were
adopted.

IV. EXPERIMENT
To assess the accuracy and robustness of the proposed
algorithm, comprehensive experiments were conducted on
three distinct datasets. In these evaluations, the algorithm
was compared against several prominent methods in the field.
This section includes detailed information on the datasets and
the experimental setups.

A. DATASETS
The DSDLDE dataset [35] offers a diverse range of weather
conditions, making it an ideal choice for assessing the

11190 VOLUME 12, 2024



I.-C. Sang, W. R. Norris: Robust Lane Detection Algorithm Adaptable to Challenging Weather Conditions

robustness of the proposed algorithm. The dataset comprises
50 video clips, including 27 captured during the daytime
and 23 during the nighttime. Each video has a resolution
of 1080 × 1920 with three color channels (Red, Green, and
Blue).

The dataset presents significant challenges due to its
extensive variation in weather and road conditions. It encom-
passes a wide range of rain intensities, from drizzling to
pouring, providing a comprehensive representation of differ-
ent precipitation scenarios. Moreover, the dataset includes
diverse scenes such as tunnels, highways, and urban areas,
further adding to its complexity. The inconsistent camera
setup makes the dataset more challenging. The camera was
positioned inside the car, resulting in varying viewing angles
across the different videos. The hood of the vehicle may
take 1/10 to 1/3 of the image. Additionally, objects and their
reflection on the windshield are visible in some of the clips
(Figure. 9h). To eliminate the effect caused by objects in the
vehicle, everything below the windshield was cropped from
the images.

To demonstrate the generalizability of the proposed work,
the algorithm was tested on the popular Caltech dataset [9]
and Tusimple dataset [7] as well. The Caltech and Tusimple
datasets include only clear to cloudy daytime images with
more complicated lane markings. The traffic scene of the
three datasets also highly differ from one another. While
DSDLDE dataset contains various scenes, such as highway,
urban, cave, and country, the Caltech dataset only contains
urban scenes, and the Tusimple dataset contains only
highway.

B. EXPERIMENTAL SETUPS
The experiment was performed independently between
different videos. The frames in the videos were processed in
sequence by the algorithm, simulating the scenario of a com-
puter processing the images captured by the onboard camera.
The validation of the algorithm was performed by processing
the images in sequence using a PC with an Intel core i7,
3.2GHz CPU with 16GB RAM, and a GTX 1660 GPU with
16GB memory. Each clip was processed independently with
identical initial conditions. When conducting the comparison
study, the proposed algorithm was executed on the CPU. And
the compared algorithm (CLRNet) [36], which was trained
with the training set of the Tusimple dataset, and tested on
the DSDLDE dataset using GPU.

The detection algorithm was programmed in Python
3.8 under Windows 10 operating system and included the
fuzzylab, OpenCV2, and numpy libraries. A minor edit was
made in the fuzzylab package to realize the designed shape
of the fuzzy membership functions. The revised version
is available at https://github.com/ichensang/fuzzylab. The
training and testing of CLRNet was conducted according to
the software and package requirements listed on the official
github of CLRNet.

During the evaluation of the proposed algorithm, there
was no need for additional resizing or cropping, except for

the area below the windshield. In contrast, to optimize the
performance of CLRNet on the test set, an additional resizing
process for validation due to the significant difference
between the camera views in the training and test sets. All
images in the DSDLDE dataset were consequently cropped
and resized to align with the geometry of the Tusimple
dataset.

To ensure a valid and fair comparison, the verification
process and the exclusion of samples were conducted in
accordance with the methodologies employed in previous
works published on each respective dataset. By adhering
to these established rules, the results of our method were
effectively compared with those reported in the literature.
The experiments on the DSDLDE and Caltech datasets
followed [18], [20], and [21]. The detection accuracy was
calculated for every video independently. The formula for the
detection accuracy is

Detection Accuracy =
TP

TP+ FN
(5)

where TP is true positive and FN stands for false negative.
In the experiments of DSDLDE dataset and Caltech

dataset, a stricter frame-based metric was adopted. Instead
of calculating the detection accuracy of individual lane
marks, only the frames with visible lines on both sides
were considered effective cases. Following previous studies,
no false positive or true negative cases were included in
the calculation. As verified, this method was comparable to
the official quantitative metrics provided by the Tusimple
dataset. With the provided ground truth and evaluation
code, the proposed algorithm achieved 86.94% accuracy
in the Tusimple dataset, while the abovementioned method
measured 87.05%.

The result showed that the proposed algorithm could
successfully detect most of the frames in the dataset. Figure 8
shows several examples of successfully detected frames.

V. RESULTS
Using the experimental setup and methodology previously
discussed, a series of experiments were conducted. In the
following subsections, the accuracy of lane detection on
multiple datasets, the generalizability of the model, the
contribution of each module, and the processing efficiency
will be discussed sequentially.

A. LANE DETECTION ACCURACY
The proposed algorithmwas evaluated on DSDLDE, Caltech,
and Tusimple datasets. The detection result was compared
with both geometric-based and learning-based methods. The
results of the comparison are shown in Table. 2-7.

The performance of the proposed model on the DSDLDE
dataset is presented in Table. 2 and 3. The detection accuracy
from all six weather conditions is provided accordingly. The
proposed algorithm demonstrably achieved high levels of
accuracy (>97%) in daytime cases, while nighttime results
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FIGURE 8. Successful detection results in (a)Clear days (b) Rainy days
(c) Snowy days (d) Clear nights (e) Rainy nights (f) Snowy nights.

TABLE 2. The comparison between the proposed method and several
previous studies. The unit of all numbers is percentage.

ranged from 92% to 99%. Among all the weather conditions,
the snowy night scene was the most challenging.

The algorithms this work compared with on the DSDLDE
dataset are [18], [20], and [21]. In [18], a variety of videos
were selected from each weather condition to calculate the
average. In this research, an identical sampling approach was
taken to achieve a more effective comparison as presented
in Table. 2. The number of video clips sampled from
each weather condition is shown in parentheses in Table 2.
Although a simpler ROI design was adopted, the proposed
algorithm provided a greater detection accuracy under all
weather conditions as compared to [18].
In [20] and [21], although attempts to tackle the chal-

lenging weather conditions were made, the parameters only
worked for rainy and nighttime clips respectively.

From the results in Table 2, the proposed algorithm works
on all challenging weather conditions with the same initial
parameters. The adaptive algorithm attained the highest
detection rate among all the previous studies performed on
the same dataset.

In addition to geometric-based methods, the proposed
method was also compared with state-of-the-art learning-
based methods. In this study, a comparison study with
CLRNet [36] was conducted on the DSDLDE dataset. The

TABLE 3. The result of the comparison study between the proposed work
and CLRNet [36]. (Unit:%).

overall accuracy of the proposed algorithmwas 97.28%while
CLRNet only reached 85.80%. The detailed experimental
result is shown in Table. 3.

The DSDLDE dataset comprises a wide range of weather
conditions and scenes, which can be categorized into
‘‘typical scenes’’ and ‘‘complicated scenes’’ to facilitate a
clearer comparison. The typical scenes consist of regular
traffic scenarios with clear windshields. The generalizabil-
ity of lane detection methods is an important indicator
of the performance. According to the result in Table.
3, the proposed algorithm showed better or comparable
accuracy with CRLNet in the typical scenes. However,
CLRNet’s accuracy significantly dropped significantly in
DayRain/NightRain/NightSnow cases to around 50%, while
the proposedmethod still maintains accuracies that are higher
than 90%. Some examples are shown in Fig. 9.
The proposed approach outperformed the learning-based

method due to the invariant geometric properties of the
lines during challenging weather conditions. While the
color and clarity of the images changed with illumination
or precipitation under extreme weather, the information
processed by the neural network changed significantly.
However, since the geometry of lanes remained the same,
geometric methods outperformed learning-based methods as
long as the algorithms could tackle varying image clarity.

On the other hand, both the proposed work and CLRNet
were evaluated using the Tusimple dataset. Trained on the
Tusimple dataset, CLRNet achieved a 96.8% accuracy in
the test set of Tusimple. The proposed method showed a
lower (87.0%) accuracy in this dataset as the focus was set
on the robustness over different weather conditions instead
of various lane configurations. However, when considering
the performance drop between datasets, CLRNet exhibited
a significant decrease from 96.8% on typical scenes in
the Tusimple dataset to 50% on the non-typical scenes in
the DSDLDE dataset. In contrast, the proposed method
experienced a relatively smaller decrease from 99% on the
DSDLDE dataset to 87% on the Tusimple dataset. Moreover,
due to the substantial difference in the field of view between
the DSDLDE and Tusimple datasets, significant cropping
and resizing of images were required to make CLRNet work
on the DSDLDE dataset. This observation highlights the
better generalizability of the proposed method across diverse
datasets, further emphasizing its practical applicability.
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FIGURE 9. Detection results compared between the CLRNet (a)(c)(e)(g)(i),
and the proposed method (b)(d)(f)(h)(j) in challenging scenarios.

The generalizability of the proposed algorithm was further
tested with the Caltech dataset. The lane detection accuracy
of the proposed method and previously published literature
are shown in Table. 4. The result has shown that the proposed
algorithm is able to generalizemultiple datasets with different
weather conditions and image configurations.

The proposed algorithm showed improved generalizability
compared to previous work. Though the proposed method
did not outperform most studies in regular (clear day
weather) scenes, it demonstrated significant improvements in

TABLE 4. The lane detection result on the Caltech dataset. (Unit:%).

TABLE 5. The result of the ablation study.

complicated scenes with various weather effects, including
raindrops, snowflakes, andmoving wipers on the windshield.

B. ABLATION STUDY
An ablation study was conducted to show the contribution of
four key modules. This experiment was done on the Tusimple
dataset because of the availability of an official evaluation
metric. The evaluated modules are labeled below:

1) Yellow line detector
2) Triangular ROI
3) Adaptively adjusted triangular ROI
4) Fuzzy-tuned Canny edge detection threshold

When excluding all modules listed above, the algorithm
was implemented without an ROI, a fixed Canny edge
detection threshold, and without all yellow-line-related
calculations. This fundamental configuration was defined as
the baseline of this work. The result of the ablation study is
shown in Table. 5.
As the Tusimple dataset contained very few images

with yellow lane lines, the inclusion of the yellow line
detector (1) added 5 ms in the processing time while having
minimal improvement in accuracy. However, the triangular
ROI module (2) significantly improved the detection results.
By cropping unnecessary backgrounds, the triangular ROI
improved the accuracy by more than 10%, significantly
reducing processing time. Notably, even without an ROI
selection module, the fuzzy-tuned Canny threshold mod-
ule (4) alone could tune the threshold adaptively and diminish
the unnecessary information in the images. The results
demonstrated a significant improvement in accuracy (25%)
and a reduction in processing time (55 ms).

The effect of the adaptively adjusted ROI (3) was shown by
comparing cases ‘‘Fundamental + 2’’ and ‘‘Fundamental +

2 + 3.’’ When including the ROI averaging mechanism
previously mentioned, the size of the ROI was further
reduced, raising the detection accuracy by 5%.

Based on the results presented above, it is evident that
functions 2, 3, and 4 have made substantial improvements to
the detection performance. Additionally, these improvements
have had a positive impact on the processing speed,
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TABLE 6. The processing time of a single frame compared to the
proposed method and several previous studies.

as indicated in the last column of the table. The utilization of
a triangular ROI, even with a fixed pivot, effectively narrows
down the search region for lane marks, resulting in enhanced
accuracy. Furthermore, the adaptive pivot of the ROI, which
averages previous detection results and tightens the ROI,
further contributes to improved performance.

The fuzzy-tuned threshold of the Canny edge detector
plays a crucial role in controlling the number of detected edge
pixels. By dynamically adjusting the threshold, the algorithm
maintains a reasonable number of edge pixels in the image,
thereby minimizing the risk of mis-detecting noise pixels as
lane marks during the Hough Transform process.

The experimental data also clearly demonstrates an
improvement in processing time. The processing time of
the Hough Transform is directly affected by the number of
edge pixels present in the images. Without the triangular
ROI, the processing time significantly increased due to
the large number of detected edge pixels. The fuzzy-tuned
Canny edge detector helps optimize the processing time
by incorporating feedback from the Hough Transform and
reducing the number of edge pixels to an essential level.

In the context of the yellow line detector, its impact was not
particularly pronounced in this experiment, as the Tusimple
dataset predominantly contains white lane marks. However,
we have included an example below where the yellow line
detector successfully assists in lane detection where the
fundamental structure alone fails (Fig. 5).

C. PROCESSING TIME
An analysis was conducted on the processing time of
the algorithm. A comparison was performed between the
proposed algorithm and the referenced work. The adopted
resolution and the processing time of all the algorithms are
shown in Table. 6.
The proposed method also demonstrated a considerable

improvement in processing speed compared to CLRNet.
The results are presented in the table below, highlighting
the significant advantages of the proposed approach over
learning-based methods. Unlike CLRNet, which necessitates
a GPU for execution, the proposed method can efficiently
operate on a CPU, further underscoring its practicality and
accessibility. The system does not require a GPU, so the
processing speed of the proposed algorithm has the potential
of being applied to real-time systems with minimal hardware
requirement issues.

As a result of integrating a fuzzy logic-based parameter
tuner with a geometric-based lane detection framework, this
study has demonstrated comparable accuracy to previous
work while exhibiting improved generalizability across

TABLE 7. The processing time comparison between the proposed work
and CLRNet on the Tusimple dataset.

various datasets. The algorithm’s generalizability is primarily
attributed to its robust and adaptive edge detection and ROI
localizationmethods. Due to its modular design, the proposed
approach can seamlessly integrate with various lane detection
frameworks, showcasing its versatility and applicability in
broader contexts.

VI. CONCLUSION
In this study, an algorithm equipped with a fuzzy logic-based
adaptive module was introduced. The key findings from
this work include an adaptive ROI selection module,
an adaptive threshold-tuning module, and a color channel
selection mechanism. The proposed approach demonstrated
exceptional resilience in tackling diverse and challenging
weather conditions, employing consistent initial parameters
throughout. Additionally, the algorithm exhibited a higher
level of generalizability over learning-based frameworks
and outperformed previous geometric-based studies in terms
of accuracy. There are some limitations in using the
proposed geometric-based method. Specifically, learning-
based methods still outperform geometric methods in dealing
with multiple and curved lines. Integrating the proposed
parameter-tuningmethod with state-of-the-art learning-based
methods is a promising alternative.

VII. FUTURE WORK
There is substantial future potential for this algorithm.
As mentioned above, the proposed approach not only
functions as an independent lane detection solution but
can be seamlessly integrated with other learning-based
methods. The fusion between geometric-based methods and
learning-based methods to further enhance the accuracy in
lane detection is very promising, serving as an effective
and accurate pre-processing module. Leveraging the algo-
rithm’s generalizability, future research could explore its
application in alleviating the manual labor associated with
labeling datasets containing challenging weather conditions.
Additionally, drawing inspiration from the field of control
systems, there is scope for transferring these concepts to the
computer vision domain for adaptive-tuning applications.
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