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ABSTRACT Presently, the world is progressing towards the notion of smart and secure cities. The
automatic recognition of human activity is among the essential landmarks of smart city surveillance projects.
Moreover, classifying group activity and behavior detection is complex and indistinct. Consequently,
behavior classification systems reliant on visual data hold expansive utility across a spectrum of domains,
including but not limited to video surveillance, human-computer interaction, and the safety infrastructure of
smart cities. However, automatic behavior classification poses a significant challenge in the context of live
videos captured by the smart city surveillance system. In this regard, the use of pictures with pre-trained
convolution neural networks (CNNs)-assisted transfer learning (TL) has emerged as a potential technique
for deep neural networks (DNNs) object detection., resulting in increased performance in localization for
smart city surveillance. Against this backdrop, this paper explores various strategies to develop advanced
synthetic datasets that could enhance accuracy when trained with modern DNNs for object detection (mAP).
TL was employed to address the limitation of DL that necessitates a huge dataset. The KITTI datasets were
used to train a contemporary DNN single-shot multiple box detector (SSMD) in TensorFlow. A variety
of metrics were employed to assess the efficacy of the novel automated Transfer Learning (TL) system
within a real-world context, specifically designed for object detection within the DL framework (referred
to as OD-SSMD). The results unveiled that this developed system outperformed preceding investigations,
demonstrating superior performance. Notably, it exhibited the remarkable capability to autonomously discern
and pinpoint various attributes and entities within digital images, effectively identifying and localizing each
item present within the images.

INDEX TERMS Object detection, TL, DL, SSMD, CNN, VGG16, smart city, security, technological
development.

I. INTRODUCTION
The advancements in automation have greatly expanded the
range of view of modern computer vision (CV) systems,
enabling their use in various specialized industries such
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as robotics, manufacturing, building automation, intelligent
sensors, medical imaging, food processing, and autonomous
driving. This progress has been facilitated by the development
of multi-core architectures and improved processor designs,
which have enabled faster clock rates and GPU-assisted
parallel data processing, which has significantly increased
operational bandwidth. Additionally, Deep convolutional
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neural network (DCNN) architectures can now perform
object identification and classification tasks.

Neural networks (NNs) have garnered extensive acclaim
within computer technology due to their remarkable ability
to generalize extensive datasets with minimal processing
complexity. NNs can approximate any designated nonlin-
ear function with exceptional precision, rendering them
exceedingly self-sufficient and adept at achieving robust
generalization. Nevertheless, the task of image categorization
using Deep Convolutional Neural Networks (DCNNs) con-
tinues to pose significant challenges, primarily because the
efficacy of CNNs hinges upon layer-specific attributes. In the
context of object recognition, CNNs employ convolution to
harness multiple feature maps within each layer, thereby
unveiling a novel, spatially invariant feature ensemble. These
networks also use tailored learning mechanisms for distinct
purposes, including object localization.

To surmount the issues surrounding existing computer
vision systems, comprehensively produced images can be
applied to increase the overall quality of the training
data. Transfer learning (TL) is a technique that allows
information to be transferred from one subject to another, and
synthetic datasets-based pre-trained models can guarantee
successful transfer of features. However, using fake datasets
can be problematic. Open-source models were evaluated
for their efficiency in producing images with low-level
signals such as textures, poses, and context were employed
to train DCNNs, and the results demonstrated that low
cue constancy and photorealism levels did not interfere
significantly with training networks that used synthetic
data.

Multiple tiers of Convolutional Neural Networks (CNN)
can be strategically employed to achieve feature transfer-
ability. This transferability signifies the inherent versatility
of the initial layers, which can be effectively leveraged for
various object recognition tasks. This concept underscores
the potential for fine-tuning features and crafting synthetic
datasets with specific attributes to facilitate optimal training.
It emphasizes the importance of a cooperative approach to
dataset augmentation, involving the integration of synthetic
objects into the real-world environment to enrich dataset
diversity. These methodologies, as outlined above, share
a common thread in harnessing synthetic datasets across
supplementary resource categories to enhance the accuracy
of Deep Neural Networks (DNNs).

This paper conducts a comprehensive assessment of the
performance of various single-shot multiple box detector
(SSMD)models, all of which have beenmeticulously trained.
These models are rigorously tested using diverse datasets
that have been meticulously prepared in a consecutive
manner. Notably, the evaluation focuses on practical images
that have never been encountered in prior detection tasks,
spanning a spectrum of object types. The study delves
into the effectiveness of various data synthesis techniques
applied to these datasets, comparing their outcomes with
those of other datasets used for accurate feature classifi-

cation. At its core, the primary goal of this research is
to achieve a seamless transfer of learned representations
or features from synthetic to real-world domains. Such an
achievement significantly augments the proposed system’s
overall performance. To culminate, the study also thoroughly
examines both the quantity and diversity of synthetic datasets,
coupled with the fine-tuning of deep neural network (DNN)
hyperparameters. This comprehensive approach optimizes
the entire object identification pipeline for effective Transfer
Learning (TL).

II. RELATED WORKS
Through a comprehensive grasp of the contextual intricacies
surrounding the issue at hand, it can be inferred that object
detection studies still necessitate further exploration [15],
[16]. The greatest obstacle in object detection is to represent
an object with efficient and effective feature extraction
techniques for object representation [17], [18], which aims
to enhance the precision of detection performance. Object
detection finds wide-ranging application across diverse real-
world scenarios, encompassing domains like autonomous
vehicular navigation, robotic vision systems, and advanced
video surveillance setups [19], [20], [21]. Before the
emergence of CNNs, the deform parts model (DPM) [22]
and chosen to search [23] showed similar performance.
However, the advent of increased recurrence CNN (R-CNN)
[24] merged the chosen search regions proposal and post-
classification CNN, resulting in the emergence of regions’
proposals for classification-based object-detection systems.
Subsequently, several enhancements were made to the
original R-CNN approach, including the use of image
collection categorization. In order to elevate both the quality
caliber and speed of post-classification processes, as well as
the introduction of the SPPnet, which the original R-CNN
technique was greatly expedited. [25]. This was made
possible by introducing pyramid pool layers, which enabled
the classification of the layer by reusing the spatial features
obtained from the features map created with different images
resolution.

The Rapid R-CNN [26] expanded the SPPnet bymodifying
all layers via the loss minimization continuously bound
boxes regressions and confidences proposed in the multiple
boxes [27] to learn objects. Subsequently, deep neural net-
works (DNNs) improved proposal generation features [28],
[29]. However, most recent works have abandoned the
use of low-level image features-based proposals like multi-
box [27], [30] in favor of generating proposals directly from
a separate DNN [31], [32], [33]. This produces a more
multifaceted system requiring two correlated NNs training,
significantly enhancing detection accuracy [34]. The current
strategy falls under this category, as it lacks the proposal step
contains only default boxes. While default boxes offer greater
flexibility compared to current systems, it’s noteworthy
that they encompass a spectrum of aspect ratios and are
amenable to deployment across diverse scales at each feature
location [35].
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To train a model to recognize an item, computer vision
models are designed to learn which pixel patterns relate to
the object of interest [36]. As a result, this study encounters
various obstacles, including improving retrieval accuracy and
refining object descriptors and feature extraction stages [37].
The three components of a complete object detection
system are feature extraction, object recognition, and object
localization. Object detection has essential applications in
various domains, as previouslymentioned. Consequently, this
study considers the aforementioned extra qualities in addition
to the comparable criticality, and the term ‘‘usability’’ refers
to the system’s ability to recognize an item in various
domains [38].

III. MAIN CONTRIBUTIONS
This article aims to forge a nexus between the realms of deep
learning and transfer learning, harnessing principles akin to
human learning to give rise to the framework known as Deep
Transfer Learning (DTL) [39]. The study explores various
cutting-edge deep learning techniques based on self-learned
patterns, leading to the development of deep learning models.
The focus is on investigating how human-like learning
processes can inspire learning algorithms for transferring
information from one scenario to another [40]. The potential
causes of transfer learning settings, including distributions,
posterior probabilities, learning functions, and classification
tasks, are intriguing. The study also examines different
deep neural network (DNN) based strategies for creating
enhanced synthetic datasets to improve object detection
performance. The DTL was developed by transferring
learning from a previously trained model to a new model
created based on the information of the first model using
a dataset distinct from the dataset used to build the
pre-trained model, thereby overcoming the limitations of
DL [41].

Certainly, our research introduces several distinct facets
that contribute to its novelty and potential advantages over
existing state-of-the-art techniques in the domain of object
detection and transfer learning within smart city surveillance
systems. Enhanced object detection accuracy, our research
harnesses the Single Shot MultiBox Detector (SSMD)
architecture, specifically SSD-512 and SSD-300 models,
trained with the COCO dataset. Themeticulous incorporation
of transfer learning (TL) techniques empowers these models
to offer significantly improved object detection accuracy
compared to conventional methods. Synthetic dataset aug-
mentation, we explore the utilization of synthetic datasets
constructed from the KITTI dataset, enhancing the richness
and diversity of the training data. By introducing variations
such as lighting conditions and object orientations, our
method enhances the model’s adaptability to real-world sce-
narios, setting it apart from traditional training approaches.
Proposed research strategically employs transfer learning
by fine-tuning pre-trained models from the COCO dataset,
SSD-512 and SSD-300 models. This approach significantly
reduces the requirement for labeled examples and enhances

training efficiency, showcasing the innovative adaptation of
existing knowledge to improve object detection in smart
city surveillance. Comprehensive validation and performance
metrics, our study offers a thorough evaluation using various
performance metrics, such as accuracy, precision, recall, and
F1-score. This extensive analysis ensures a robust assessment
of the proposed models’ efficiency and provides a clear
comparison with established methodologies, underlining the
strength and reliability of our proposed techniques.

These highlighted facets collectively contribute to our
research’s uniqueness and potential advantages, underscoring
its significance in advancing the realm of object detection
within smart city surveillance and demonstrating its superi-
ority over current methodologies.

IV. DEEP LEARNING
Within machine learning (ML), an intriguing new avenue
known as deep learning (DL) has emerged. DL has
demonstrated remarkable promise, particularly in the domain
of computer vision. This methodology involves training
multi-layer artificial neural networks (ANNs) utilizing
diverse DL techniques, enabling the examination of various
features through a plethora of DL systems and models [42].
The effectiveness of these techniques can be enhanced
through iterative processes, facilitating the discernment of
intricate data-driven patterns. In the symbolic learning
paradigm of DL systems, each layer receives input from
its predecessor and passes it forward, with the initial layer
focusing on fundamental and coarse features. Deeper network
layers acquire a nuanced understanding, extracting more
precise features than the raw datasets, thereby shaping
distinctive characteristic traits that guide the progressive
evolution of AI software [43]. Due to its competence in
representing intricate data like images and sounds, DL has
found widespread adoption across diverse industries, making
it a focal point within ML. Notably, DL encompasses four
key categories of techniques, namely deep unsupervised
learning (DUSL), deep supervised learning (DSL), deep
reinforcement learning (DRL), and deep semi-supervised
learning (DSSL), each leveraging labeled datasets [44].
DSL, in particular, includes deep neural networks (DNNs),
convolutional neural networks (CNNs), and recurrent neural
networks (RNNs).

Recently, the CNN approach, as a DL technique,
has exhibited remarkable prowess in image recognition.
It encompasses an array of parameters: layer count, bias,
neuron count, activation functions, weights, stride, learning
rate, filter dimensions, and more. The architecture of CNN
can be categorized into seven distinct types: attention
mechanisms, feature map exploitation, multi-path structures,
breadth and depth adjustments, channel enhancements, and
spatial exploration. This architecture is divided into two
fundamental components: feature extractors and classifiers.
The CNN extractor includes a stack of convolution layers and
amax-pooling layer, while the CNNclassifier comprises fully
connected and softmax layers at the final stage. Prominent
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spatial exploration CNN architectural models encompass
Alexnet, VGG, GoogleNet, LeNet, and ResNet. ResNet
and GoogleNet are specifically tailored for large-scale
data processing, while VGG represents a more general
architecture [45]. It is worth noting that DL systems often
demand a greater volume of data and training iterations than
conventional ML systems to attain optimal results.

V. DATASET
Computer vision is an innovative technology that empowers
computers to understand and interpret images. By providing
the correct image datasets, data scientists can teach computers
to operate as if they had their own eyes. This technology
lays the groundwork for various groundbreaking discoveries
and advancements, such as facial recognition and self-
driving cars. In computer vision, a dataset is a thoughtfully
curated collection of digital images used by developers to
assess, train, and test the performance of their algorithms.
If we aim to identify items in photos with bounding boxes,
we require an object detection dataset. This dataset includes
both images (or videos) and annotations. The KITTI dataset
provides a complete set of visual tasks organized through
an autonomous driving platform [46]. The comprehensive
benchmark comprises a multitude of tasks, encompassing not
only stereo and optical flow but also extending its scope to
include monocular images and bounding boxes derived from
object detection datasets. Within this framework, bounding
boxes were meticulously incorporated into a substantial set
of 7481 images.

The approach taken in this research regarding augmented
synthetic datasets is indeed an intriguing facet of the study.
Augmented synthetic datasets offer the advantage of diversi-
fying the training data, which is critical for the robustness and
generalization of deep neural networks. The construction of
augmented synthetic datasets involves the generation of addi-
tional data images through data augmentation, which includes
rotation and lighting conditions. Moreover, by splitting the
data into training and validation sets, validation protocols are
crucial for assessing the performance of the model trained
on these synthetic datasets. Furthermore, the discussion
encompasses details on the evaluation metrics employed
to validate the effectiveness of the augmented synthetic
datasets. The metrics that we have used to measure the
accuracy, precision, recall, and F1-score, encountered during
the construction and validation processes. It’s important to the
construction and validation of augmented synthetic datasets
are imperative to provide a deeper insight into the method-
ologies employed, the quality of the generated data, and
the overall impact on the performance of the deep learning
models for object detection within the smart city surveillance
context. The original dataset is available at Kaggle website,
https://www.kaggle.com/datasets/klemenko/kitti-dataset

VI. CNN ARCHITECTURES
In Fig. 1, we can observe the fundamental architecture of
CNN [47], which comprises three distinct layers: input,

hidden (latent), and output. The hidden (latent) layer is further
categorized into fully connected, pooling, or convolutional
layers, each serving a unique function in the network’s
operations.

FIGURE 1. An illustrative diagram depicting the fundamental architecture
of a Convolutional Neural Network (CNN).

A. THE CONVOLUTIONAL LAYERS
Figure 2 illustrates the structure of a traditional, discrete
convolution layer. This layer occupies the highest position
in a Convolutional Neural Network (CNN) architecture.
It operates iteratively, employing convolution processes to
generate a dynamic output function from the provided
functions [48]. Within this convolutional layer, the filters
or feature maps consist of a multitude of neurons, typi-
cally sized proportionally to the input data. Consequently,
evaluating the convolution of individual receptors unveils
the responsiveness of these neurons. This evaluation relies
on the cumulative weight of input neurons and the application
of the activation function.

FIGURE 2. The architectural blueprint of a discrete convolutional layer.

B. MAX-POOLING LAYER
Figure 3 illustrates the intricate process of constructing
maximum combining layers. This involves the generation of
multiple interlaced structures originating from the output of
segmented convolution layers. To initiate this process, the
grid’s most elevated values were initially organized into a
matrix. Following this, the operator meticulously computed
each matrix, discerning whether to derive its average or select
its maximum value.

C. FULLY CONNECTED LAYERS
Figures 4 and 5 elucidate the distinct configurations of two
critical components within our framework: a conventional
fully connected layer and a comprehensive Convolutional
Neural Network (CNN) encompassing all three layers. The
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FIGURE 3. The architectural composition of max-pooling layers entails a
sophisticated configuration.

FIGURE 4. The complete configuration of the fully connected layers.

nomenclature ‘fully connected layer’ signifies a CNN in
which nearly 90% of its structural elements are engaged. This
layer orchestrates the seamless exchange of input data with
networks characterized by predetermined vector lengths [47].
At this juncture, the input dataset undergoes a transformative
metamorphosis before its eventual classification. Moreover,
while conserving the fidelity of information, the convo-
lutional layer undergoes a similar process of refinement.
Ultimately, neurons from each antecedent layer synergize to
form the fully connected layer, a pivotal element employed in
the intricate task of image classification.

It’s important to recognize that the CNN architecture
presented above may not be inherently optimized for tackling
the complexities of computer vision challenges, as its design
predominantly emphasizes object recognition. Consequently,
the development of a network configuration finely tuned to
the specific problem domain assumes paramount importance
in the pursuit of attaining peak performance. Nevertheless,
empirical evidence underscores that the CNN we have
constructed exhibits the capability to deliver the sought-after
solutions.

VII. SINGLE-SHOT MULTI-BOX DETECTOR
ARCHITECTURE
The SSMD model, introduced in reference [49], employs
network-wide maps to predict object locations and localiza-
tion scores simultaneously, accommodating standard boxes
with varying image attributes. This approach diverges from
earlier methods by utilizing multiple maps throughout the
network to enhance detection speed. SSMD, leveraging
Convolutional Neural Networks (CNNs), directly generates
bounding boxes based on object probabilities for each

class. Subsequently, it employs a non-maximum suppression
(NMS) technique to derive the ultimate detection outcomes.
The SSMD model comprises two prevalent architectures:
SSD-300 and SSD-512, designed for input sizes of 300 and
512, respectively [50]. SSD-300, illustrated in Figure 1,
utilizes VGG16_15 as the base network, featuring 512 38 ×

38-pixel feature maps. The subsequent part of the model
incorporates convolution layers to amalgamate multi-layer
features, generating bounding boxes for each class. Following
VGG16_15, five convolution layers are deployed, yielding
feature maps of sizes (19×19), (10×10), (5×5), (3×3), and
(1 × 1), with dimensions of 1024, 1024, 512, 256, and 256,
respectively. SSD-300 combines six distinct feature maps to
generate the desired bounding box. It’s worth noting that
while the aforementioned CNN structure is primarily tailored
for object recognition, custom network configurations are
imperative for optimizing performance in specific problem
domains [51]. Nevertheless, empirical results underscore the
capability of this constructed CNN to deliver satisfactory
solutions.

VIII. RGB COLOR SPACE
In the realm of color images, various hues are harmoniously
blended to create a cohesive visual representation. In the
context of our investigation, these representations serve as
repositories for the precise delineation of colors, specifying
both the quantities and varieties of color channels, which
are referred to as the color space. Notably, we focused on
the RGB (Red, Green, Blue) color space, often recognized
as the quintessential color model for digital images. In this
model, RGB images are envisaged as 3-D arrays, where
each dimension corresponds to one of the three primary
colors: red (R), green (G), and blue (B). RGB is widely
embraced as the go-to color space for digital images due
to its seamless alignment with the fundamental principles
of color mixing, making it the ideal choice for rendering
images on monitors and screens. To illustrate this, Figure 6
visually depicts the RGB color channels of a true-color
image [52]. In essence, genuine image colors emerge from the
skillful interplay of different hues residing within the RGB
channels.

IX. TRANSFER LEARNING
Initiating a deep learning (DL) model from scratch is
atypical due to the substantial data and time investment
required for it to converge effectively. Consequently, pre-
trained models often come into play, serving as a foundation
or feature extractor. Transfer learning (TL), a method in
which knowledge gleaned from one domain is transposed
to another through the reuse of a pre-trained model,
becomes instrumental in this context. TL streamlines data
requirements, augments training efficiency, and bolsters
accuracy. In this study, we harnessed TL by leveraging
pre-trained models derived from the Single Shot MultiBox
Detector (SSD) trained on the COCO dataset, addressing
the scarcity of labeled examples. We adopted SSD512 as
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FIGURE 5. The configuration of a conventional complete Convolutional Neural Network (CNN).

FIGURE 6. The RGB channels.

the base model, characterized by the VGGNet-16 network
structure and the Multi-Scale Convolution Feature Detection
Network (MSCFDN) for feature extraction and bounding box
creation. Fine-tuning, a pivotal TL technique, was employed
to adapt model parameters for class predictions and bounding
boxes based on the input dataset. During model training,
batch size, weight decay, momentum, iteration count, and
base learning rate were meticulously configured at 64,
0.05, 0.9, 50,000, and 0.01 divided by 10, respectively.
At 12,000 and 20,000 iterations, minimal compromises were
observed due to deploying a single deep neural detection
network.

The holistic convolution architecture obviates the need for
consistency considerations. Fig. 7 elucidates the operational
framework of the complete convolution structure, which
initially processes input feature maps of diverse shapes by
applying a 1×1 convolution kernel within the same channel.
The resultant feature map maintains identical channels for
all classes. Subsequently, a mean-pooling layer generates
an average vector with class-appropriate dimensions for
each channel. In this manner, the CNN leverages the
full convolution architecture to adeptly address complex
inquiries.

Figure 8 provides an insightful depiction of the com-
prehensive architecture of VGG16. This intricate structure

FIGURE 7. Working of fully convolutional structure.

is visually represented, with convolution layers in blue,
maximum-pooling layers in red, and fully connected layers
in yellow. Notably, VGG16 operates with input images
of dimensions 224 × 224 × 3. VGG16 has garnered
acclaim for its exceptional generative prowess. In a note-
worthy departure from its predecessor, Alexnet, VGG16
has achieved a significant reduction in the number of
parameters, a feat accomplished through the adoption of
smaller convolution kernels measuring 3 ∗ 3. A discern-
ing observation of Figure 10 reveals that the final three
layers of VGG16 are comprised of 4096 fully connected
elements.

FIGURE 8. The VGG16 neural network structure.
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X. THE FULLY CONVOLUTIONAL ARCHITECTURE AND
DETAILED ANALYSIS OF VGG16
We adopted a fully convolutional architecture to accommo-
date the varying input sizes stemming from a spectrum of
weld defects. Given the substantial diversity in the sizes
of these defects, they necessitated cropping into distinct
dimensions. Traditional fully connected layers function in
accordance with the mechanism illustrated by Eq. 5, wherein
the outcome of the product between W and X governs the
constitution of the initial fully connected layer. This layer is
subsequently supplied with the ultimate feature map derived
from the concluding convolutional layer, thereby preserving
the continuity of the preceding feature map dimensions.

O = h(Wx + b) (1)

XI. PERFORMANCE EVALUATION
In assessing the model’s efficacy, a range of metrics were
meticulously employed, encompassing accuracy, positive
predictive value (PPV), sensitivity (also known as recall),
and the F1 score. The F1 score, being a harmonious
amalgamation of precision and recall, was the gauge for
evaluating the system’s prowess in detection. Table 1 was
used to systematically tabulate the instances of true positives
(T.P.), true negatives (T.N.), false positives (F.P.), false
negatives (F.N.), and instances where nothing was detected
(N.P.), thus offering a comprehensive representation of the
outcomes [53].

TABLE 1. The accuracy for evaluation of object detection.

Calculation of Diverse Metrics Utilizing the Following
Formulas:

Acc =
(T.P. + T.N.)

(T.P. + F.P. + F.N. + T.N.)
(2)

P =
T .P.

T.P. + F.P.
(3)

Recall =
T .P.

N.P.
(4)

F score =
2 × (precision × recall)
(precision + recall)

(5)

XII. THE PROPOSED METHOD
During this investigation, we harnessed the KITTI dataset,
an extensive collection encompassing a total of 7481 images.

This dataset underwent an initial bifurcation into two distinct
subsets, with 80% allocated to the training set and the
remaining 20% earmarked for rigorous testing. To facilitate
the forthcoming transfer learning endeavor, a meticulous
preprocessing step was executed. Specifically, all images
were meticulously resized, with dimensions set at 300 ×

300 pixels for the training of SSD 300 and a larger 512 ×

512 pixel format for the training of SSD 512, ensuring
optimal readiness for subsequent model development and
assessment. Subsequently, the testing set was used to appraise
the performance of the proposed technique. Accuracy, preci-
sion, recall and F1-score were then computed, as illustrated
in Figure 9.

FIGURE 9. The main framework designs.

An object detection method that utilizes SSMD to identify
object type and position in a digital image was proposed.
A correct label was created to retrain the SSD KITTI, and
labeling was employed to generate labels for the training data.
The training data was composed of intermediate resolution
samples with dimensions of 512 × 512. To ensure compat-
ibility with the TensorFlow framework, data preprocessing
involved transforming the obtained KITTI label and image.
The dataset underwent a process of retraining within the
SSMD, where novel weight configurations were employed
to facilitate object detection within the digital image.
Python-based Keras served as the deep learning library,
while TensorFlow, developed and powered by Google Inc.,
functioned as the backend for object recognition. A visual
representation of the suggested approach for object detection
is illustrated in Figure 10.

The system under development trained an appropriate
label for the original image and securely stored it in the
SSMD. Subsequently, upon completing this training phase,
a new set of weights was acquired. These weights were then
employed to determine the optimal weight configurations
necessary for object detection. The selection of these weight
configurations was guided by the transformation of the
loss coefficients obtained during the Transfer Learning (TL)
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FIGURE 10. Transformation learning (TL) analysis of SSD-300: extracted
feature maps from five convolution layers following VGG16 layer.

process. The primary objective here was to establish a
meticulously documented implementation protocol for the
SSMD. This protocol aimed to simplify the process for users,
enabling them to utilize the code efficiently and either build
or apply a model. This approach was favored over alternative
implementation schemes, such as Keras, which often provide
minimal information or elucidation in their tutorials and
instructions.

The methodology adopted in this research embarks
on a meticulous approach encompassing the architecture
nuances and transfer protocols, particularly focusing on
the intricacies of the network design and the transfer
learning protocols. The study predominantly revolves around
the Single Shot MultiBox Detector (SSMD) architecture,
an innovative framework designed for object detection.
Within the SSMD, the underlying architecture comprises
both SSD-300 and SSD-512 models, each tailored for
specific input image dimensions. SSD-300, employing the
VGG16_15 architecture as its base network, operates with
multiple convolutional layers generating feature maps of
varying dimensions, followed by subsequent convolution
layers for multi-layer feature integration. Similarly, SSD-
512, designed for larger input images, demonstrates an
enhanced ability to detect and delineate objects with greater
precision.

Moreover, transfer learning (TL) is a pivotal component
employed in this research. TL involves the transference of
learned information from pre-trained models, enhancing the
efficiency of training models on new datasets. The study
adopts TL by utilizing pre-trained models derived from the
COCO dataset for the SSD-512 and SSD-300 base models.
This technique mitigates the scarcity of labeled data by
fine-tuning the model parameters based on the specific
dataset being used for training. The protocol of the TL process
involves meticulous configuration of various parameters
such as batch size, weight decay, momentum, iteration
count, and base learning rate to effectively adapt the model

parameters for the specific classification and bounding box
predictions on the new dataset. Additionally, the utilization of
TensorFlow and Keras within the Python framework serves
as the bedrock for developing and implementing the object
detection system, ensuring a robust and efficient model that
outperforms conventional methodologies.

Furthermore, the study also elaborates on the pre-
processing steps on the KITTI dataset, which involves
resizing the images to meet the required dimensions for
SSD training, ensuring optimal readiness for subsequent
model development and evaluation. The efficacy of the
proposed model was rigorously tested and evaluated through
a range of performance metrics, emphasizing accuracy,
precision, recall, and F1-score. This comprehensive assess-
ment included a thorough breakdown of the computer
systems and software utilized for the object detection process
through deep learning, along with the details of the testing
procedures. The meticulous evaluation, extensive analysis,
and comparison with previous techniques showcased the
superiority of the proposed SSMD-512 and SSMD-300
models in terms of accuracy and precision for object detec-
tion, thereby emphasizing their potential for advancing the
precision of object detection beyond current state-of-the-art
studies.

In essence, the research’s methodology intricately involves
the SSMD architecture’s detailed specifications and the
strategic implementation of transfer learning, underscor-
ing the pivotal role of these components in enhancing
object detection accuracy within smart city surveillance
systems.

XIII. RESULTS AND DISCUSSION
Figure 11 serves as a visual testament to the origins
of SSD300 and SSD512, affirming the efficacy of our
proposed method in precisely delineating object posi-
tions. The accuracy assessment was conducted through a
comprehensive evaluation encompassing multiple criteria,
meticulously detailed in Table 1. In Table 2, we provide an
exhaustive breakdown of the computer system and software
employed in the automated object detection process via
deep learning, as well as a concise overview of the testing
procedure.

FIGURE 11. The origins of SSD300 and SSD512 can be traced to models
designed with input image dimensions set at 512 pixels in both width
and height.

Table 3 furnishes invaluable insights into the accuracy,
F1-score, and computational runtime for the tested images.
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TABLE 2. Context of transfer learning and training.

TABLE 3. Classification of datasets with evaluation metrics and time
required for each epoch’s execution.

Additionally, Table 4 presents a dataset subjected to scrutiny
through the Transfer Learning (TL) model, specializing in
object detection and localization, achieved through bounding
boxes. This study harnessed two distinct deep learning
models, partitioning 80% of the learning dataset for rigorous
training and reserving the remaining 20% for meticulous test-
ing, sourced from the diverse KITTI dataset, encompassing a
total of eight object classes.

Numerous deep learning algorithms have been proposed
for feature extraction and object detection. However, the
accuracy of object detection remains a challenge. Deep
learning approaches have surpassed conventional machine
learning methods in visual object segmentation, and their
feature extraction efficiency may be scaled up based on
processing power, model complexity, and training data
quantity. This study’s analysis indicates that the proposed
deep learning method outperforms typical deep learning
techniques in terms of performance measures, as demon-
strated in Table 5, suggesting its potential for improving
object detection precision beyond current state-of-the-art
studies.

Certainly, while our approach exhibits notable strengths,
it also encompasses inherent limitations and areas for
potential improvement. One significant limitation lies in the
need for more comprehensive discussions or explorations
regarding the model’s performance in challenging scenarios,
especially when collecting high-quality datasets or complex
background settings. As our methodology heavily relies
on transfer learning and synthetic dataset augmentation,
the quality and representativeness of these synthesized
data become crucial factors impacting the model’s real-
world applicability. Additionally, the applicability of the
proposed system might encounter challenges when han-
dling real-time processing in smart city surveillance due
to the computational load associated with deep neural

TABLE 4. Conducting a testing procedure on a sample from the KITTI
dataset using a model that has undergone Transfer Learning (TL).

TABLE 5. The comparison for the proposed method with achievements of
previous techniques.

networks, an aspect necessitating further optimization to
ensure real-time implementation feasibility. Improvement
opportunities exist in refining the synthetic data generation
process to simulate a wider range of real-world scenarios
better, enhancing the robustness and adaptability of the
models. Furthermore, the generalizability of our method
across various domains within smart city applications would
greatly benefit from an extensive evaluation of diverse

VOLUME 12, 2024 13533



S. R. Waheed et al.: Synergistic Integration of TL and DL

datasets and practical implementation scenarios, which will
underscore its reliability and effectiveness in real-world
deployments. Identifying and addressing these limitations
will substantially contribute to the manuscript’s credibility
and pave the way for more practical and impactful real-world
applications of the proposed approach.

XIV. CONCLUSION
This study introduces an exceptionally efficient object
detection system that seamlessly integrates SSMD (Semantic
Segmentation and Object Detection) and Transfer Learning
(TL). The initial phase involved constructing a model through
pre-training to facilitate transfer learning. Subsequently, this
model was employed for the pre-training of SSMD-512 and
SSMD-300, utilizing the KITTI dataset. A comprehensive
evaluation of the model’s performance was conducted using a
set of rigorous performance metrics. The experimental results
clearly demonstrated a significant enhancement in the object
detection accuracy of the SSMD system.

Nevertheless, it was discerned that certain minor elements,
such as edges and corners, required careful consideration
within the current SSMD to mitigate false alarms. This
object detection methodology holds the potential to automate
error-prone and time-intensive tasks, precisely identifying
object locations and bounding boxes. The integration of
Transfer Learning played a pivotal role in detecting items
and pinpointing objects across diverse datasets, catering to
the needs of AI scientists. The remarkable performance of
this novel approach can be attributed to the symbiosis of
Deep Learning (DL) and Transfer Learning, allowing for
the automatic extraction of image features, while traditional
Machine Learning (ML) necessitates manual feature selec-
tion. Furthermore, DL’s data-hungry nature allows Transfer
Learning to be flexibly applied across various related
scenarios, facilitating knowledge transfer. This system can
be leveraged for the automatic categorization, deduplication,
and organized storage of digital photographs upon the com-
pletion of object position detection. When juxtaposed with
existing methods like CNNs and conventional SSMDs, the
newly developed Transfer Learning model, SSMD-512, and
SSMD-300 exhibit peak performance, ensuring heightened
accuracy and efficiency.
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