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ABSTRACT To ensure the reliability of autonomous driving, the system must be capable of potential
hazard identification and appropriate response to prevent accidents. This involves the prediction of possible
developments in traffic situations and an evaluation of the potential danger of future scenarios. Precise
Collision Risk Assessment (CRA) faces complex challenges due to uncertainties inherent in vehicle and road
environmental conditions. This paper introduces a newCRA approach, theMulti-Dimensional Uncertainties-
CRA (MDU-CRA), which integrates uncertainties related to driver behavior, sensor perception, motion
prediction models, and road infrastructure into a comprehensive risk evaluation framework. The estimation
of vehicle state is initiated using Extended Kalman Filtering (EKF) to capture uncertainties in sensor
perception. Concurrently, a probabilistic motion prediction model based on Gaussian distributions has been
developed, which considers the uncertainty in driver behavior. Subsequently, the uncertainty of the road
structure is modeled using a truncated Gaussian distribution. Finally, collision risk is quantified as the future
probability of collision through heuristic Monte Carlo (MC) sampling. This paper presents the results of two
experiments Firstly, our proposed method is demonstrated to outperform the reference neural network-based
method in terms of short-term motion prediction accuracy. Secondly, two driving scenarios are extracted
and reconstructed from the Next Generation Simulation (NGSIM) dataset for validation and evaluation,
i.e., an active lane-change scenario and an emergency braking scenario. In the domain of collision risk
assessment, our approach consistently outperforms other evaluation methods. It exhibits the capability to
perceive collision risks 2 to 5 seconds in advance, significantly reducing the probability of imminent collision
incidents.

INDEX TERMS Motion prediction, collision risk assessment, intelligent vehicles, multi-dimensional
uncertainties.

I. INTRODUCTION
Safety stands as the foundational pillar for both Advanced
Driver Assistance Systems and Autonomous Vehicles [1].
A major challenge lies in the real-time detection of dan-
gerous situations and the initiation of responses to prevent
accidents [2]. Central to this challenge is the need for accurate
short-term risk assessment, which involves the prediction of
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future collision probabilities by forecasting the evolution of
the current traffic situation of surrounding vehicles.

Presently, risk prediction methodologies bifurcate into two
streams: deterministic and probabilistic, distinguished by
their consideration of future motion uncertainties. The deter-
ministic variant typically relies on physics-driven motion
models [3], [4], [5], [6], [7], [8], [9], such as constant
velocity (CV), constant acceleration (CA), and constant yaw
rate and acceleration (CYRA). These models predict vehic-
ular trajectories and subsequently compute risk metrics like
Time-to-Collision (TTC) [3], Time-to-Brake (TTB) [4], and
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Time-to-Steer (TTS) [5]. This schema extends to the iden-
tification of potential trajectory intersections [6], [7], [8] or
analysis of intersection duration across a given trajectory [9],
[10], [11]. However, a deterministic paradigm has intrinsic
limitations, as it fails to capture future motion uncertainties
or factor in the influence of road geometry on vehicular
trajectories [12]. Consequently, in the context of collision
predictions, it is crucial to acknowledge the possibility of
unanticipated risk factors arising from deviations in human or
autonomous driving system behavior from expected inputs.
Additionally, the fidelity of risk assessments may be com-
promised if the state estimation by the perception system is
biased, particularly in edge cases. Furthermore, discrepancies
between the kinematic model’s projections of reachable areas
and the actual road geometry can result in an underestimation
of risks.

To address maneuver-intention-related limitations, a
method centered on maneuver-oriented trajectory prediction
has emerged. This approach begins with the deduction of a
driving maneuver, followed by the generation of trajectories
aligned with these identified maneuvers. The assessment of
vehicular maneuvers pivots on the compatibility between
ongoing vehicle movements and the overarching road infras-
tructure, including lane configurations and driving lanes [13].
Additionally, probabilistic analysis methods, encompassing
the Hidden Markov Model (HMM) [14], Dynamic Bayesian
Networks (DBN) [15], [16], and a combination of Artifi-
cial Neural Network (ANN) with Support Vector Machine
(SVM) [17], prove viable for intention recognition through
observational sequences or dataset training. Considerable
progress has also been made in intention recognition through
machine learning techniques [18] or game theory [19]. When
combined with maneuver intents, data-centric deep learning
architectures [20], [21] such as Long Short-Time Memory
(LSTM) networks [22], [23], [24] and graph convolution
networks (GCN) [25] take precedence over other methods.
Moreover, deterministic quantitative indicators are employed
to evaluate the collision risk between vehicular trajectories.
While this model has demonstrated promising results in
long-term trajectory prediction, its generalization capability
is constrained due to the lack of training datasets for intricate
urban scenarios. Additionally, the method’s assessment of
collision risk does not adequately account for uncertainty
information.

Similar to the deterministic method, MC offer an alter-
native approach as it generates potential future trajectories
through random control inputs. Subsequently, they estimate
collision probabilities by counting the number of trajectories
resulting in collisions [11], [26]. However, conventional MC
simulations usually rely on deterministic models and fail
to capture essential uncertainties. Therefore, their prediction
accuracy degrades in dynamic situations, such as emergency
braking or complex road layouts.

A probabilistic approach presents another methodology
for risk evaluations, considering motion uncertainty. This

technique incorporates error propagation along the predicted
trajectory, indicating the ambiguity of future states [27],
[28]. Typically, uncertainty is modeled using the Kalman
filter, which assumes a Gaussian distribution of future vehicle
positions [3], [29], [30], [31]. Additionally, collision prob-
abilities are calculated based on the overlap of ellipsoids
representing vehicle state variance [29]. MC simulations are
frequently utilized to calculate the collision probability based
on the joint Gaussian distribution [26], [27]. Nonetheless, the
motion uncertainty, characterized by the Gaussian distribu-
tion, neglects road geometry and driver behaviors (control
input), inadequately representing uncertainties observed in
real-world driving scenarios.

Therefore, to address the aforementioned challenges,
we introduce in this paper the Multi-Dimensional Uncer-
tainties Collision Risk Assessment (MDU-CRA) method,
specifically designed for accurate assessment of short-term
collision risks. This is achieved by a multi-dimensional,
uncertainty-aware probabilistic motion prediction for both
the ego vehicle and its neighboring traffic. Distinct from
prevailing prediction strategies rooted in Gaussian distribu-
tion, our proposed method models future motion uncertainty
by considering the uncertainties in sensor perception, driver
behavior, motion prediction model, and road structure. As a
result, it is better equipped to articulate motion uncertainties
found prevalent in real-world driving scenarios. The main
contributions of this paper are summarized as follows:

(1) Firstly, we present a computational method for driver
behavior and utilize an EKF is utilized to emulate the uncer-
tainty in sensor perception. Moreover, we have developed
a Gaussian distribution-based motion prediction model that
incorporates the intrinsic uncertainties of driver behavior,
sensor perception and motion prediction model.

(2) Secondly, to simulate uncertainties in the road envi-
ronment, we harness the truncated Gaussian distribution to
enable sampling within a confined region. With heuristic
MC sampling conducted from the Gaussian distribution of
potential future trajectories, we assess the collision between
each possible pair to quantify collision risk in terms of the
probability of future collisions.

(3) Thirdly, to enhance the practicality of the algorithm
and reduce the complexity of the computational model,
we introduce a distance-based deterministic collision detec-
tion algorithm, which means that in areas deemed absolutely
safe or dangerous, the current probability is determined
directly without the need for complex MC sampling.

(4) Fourthly, we conduct two experiments to validate the
effectiveness of our proposed method. The results illus-
trate that our method outperforms the referenced neural
network-based method in terms of short-term motion predic-
tion accuracy and accurately assesses collision risk.

The remaining sections of this paper are organized as
follows. Section II introduces our framework and system
architecture. Section III illustrates the multi-dimensional
uncertainty probability motion prediction. Section IV
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FIGURE 1. The overall framework of proposed collision risk assessment.

describes the CRA employing a heuristic MC approach
rooted in the truncated Gaussian distribution. Furthermore,
Section V details the experimental settings and presents the
results. Finally, the conclusions and future work are summa-
rized in Section VI.

II. FRAMEWORK OF MDU-CRA
The overall framework of the proposed multi-dimensional
uncertainties collision risk assessment approach for intelli-
gent vehicles is depicted in Fig. 1. The blue vehicle represents
the controlled ego vehicle (denoted as ego), while various
object vehicles, such as preceding, leaders, and followers,
are represented with distinct color designations. This method
allows for a nuanced understanding of vehicular interactions
in complex traffic scenarios, enriching the adaptability and
predictive capabilities of our model.

Firstly, we introduce a probabilistic motion predic-
tion model that considers multi-dimensional uncertainties.
A driver model is developed to encompass uncertainties
in human driving behaviors, complemented by the use of
Extended Kalman Filtering (EKF) to mitigate uncertainties

from sensor measurements. Simultaneously, kinematic mod-
els that integrate perceptual data from the driving environ-
ment are formulated for the ego vehicle (CYRA) and other
object vehicles (CV). These models account for variances
in driver behavior (as discussed in section III-B), sensor
perception (as described in section III-C), and the motion
prediction model (as detailed in section III-D) and ensure a
comprehensive understanding of vehicle trajectory uncertain-
ties in future scenarios.

Next, we propose a collision risk assessment algorithm that
accurately estimates the risk of collisions within a specified
time frame. This is achieved by a probabilistic vehicle motion
prediction model and heuristic MC methods. Absolute dan-
ger and safety scenarios are identified through deterministic
detection based on the location of vehicles. This approach
eliminates the necessity for MC sampling in situations where
hazardous or safe conditions are clearly defined, thereby
enhancing the efficiency of MDU-CRA. Collision probabil-
ities are directly inferred by the system when deterministic
thresholds are satisfied. In instances where the mean dis-
tance of future positions between the ego and object vehicle
falls within the danger and safety thresholds, sampling is
conducted using MC methods based on truncated Gaussian
distribution. This distribution, truncated in accordance with
road edges, prevents sampling in locations inaccessible to
vehicles, incorporating uncertainties in road structure. Con-
sequently, this method enhances assessment efficiency and
accuracy.

Finally, to validate our approach, we conducted an analysis
on two driving scenarios derived from the NGSIM Dataset:
the active lane-change scenario and the emergency braking
scenario. Comparative evaluations emphasize the advan-
tages of our approach over conventional collision detection
methodologies, highlighting its capacity to predict potential
collisions with an extended lead time. This provides drivers
with more time to react and avoid impending dangers.

III. MULTI-DIMENSIONAL UNCERTAINTY-AWARE
PROBABILITY MOTION PREDICTION
An integrated approach for capturing motion uncertainties is
presented in this section. Specifically, uncertainties related
to sensor measurements are modeled using EKF. Addition-
ally, a probabilistic motion prediction model is developed,
which explicitly incorporates uncertainties associated with
driver behaviors. By harmonizing these methods, short-term
motion forecasting is achieved for both the ego vehicle and its
surrounding vehicles, thereby constructing a comprehensive
and robust predictive model for complex traffic scenarios.

A. EGO AND OBJECT VEHICLE MODELS
It is posited that for a comprehensive understanding of the
vehicle’s surroundings, the vehicle is equippedwith advanced
on-board sensing systems, notably lidar and camera. Such a
system not only empowers the ego vehicle to actively perceive
the environment but also to record historical vehicle posi-
tions. The configuration representing the vehicle is succinctly
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captured in (1).{
Xv = [xv, yv, φv, vxv, vyv, ωv, axv, ayv]T

Xo = [xo, yo, vxo, vyo, axo, ayo]T
(1)

where, Xv,Xo represent the configurations of the ego and
object vehicle, respectively. (xv, yv) denote the coordinates of
the ego vehicle at the current time. Its heading angle is given
by φv. (vxv, vyv) indicate the velocities along the x and y axes.
ωv is yaw angular velocity and (axv, ayv) refer to the angular
velocities along the x and y axes. For the object agent, (xo, yo)
depict its current coordinates. Its velocities on the x and y
axes are represented by (vxo, vyo), while (axo, ayo) denote its
angular velocities on those axes. All variables are defined in
the reference frame of the ego vehicle.

B. DRIVER BEHAVIOR UNCERTAINTY MODELING
In the intricate landscape of microscopic traffic flows, the
ego vehicle frequently engages in complex behavioral inter-
actions with surrounding object vehicles. These interactions
can manifest as car-following, lane-changing, and merging
behaviors, among others. In potentially dangerous scenar-
ios, the certainty of a collision between the ego and object
vehicle is rendered ambiguous due to the intervention of
the driver, who often takes preemptive action to mitigate
imminent collisions. The choice of response—be it steering
adjustments, braking, variations in input magnitude or direc-
tion, or other evasive maneuvers—is inherently uncertain and
deeply rooted in the variability of individual driver behaviors.
Recognizing this element of unpredictability, this work incor-
porates the dimension of driver behavior uncertainty into the
MDU-CRA.

Drawing from real-world scenario statistics, a three-tiered
driver maneuver model is formulated, subsequently leading
to the genesis of a multi-level risk situation. Table 1 delin-
eates the range of steering and braking inputs for each risk
situation level, contingent upon the perceived threat level
from the surrounding vehicular environment. Drivers eval-
uate their actions based on the surrounding environmental
context, primarily focusing on the relative distance between
vehicles. In the first driver model, when the distance between
vehicles exceeds Dlevel_1, there’s ample space for the driver
to maneuver and avoid collisions. Typically, drivers resort to
braking inputs to mitigate imminent threats, ensuring a safety
buffer between their own vehicle and any obstructing vehicle,
thus resulting in a level-1 risk situation. This model mirrors
a commonly observed driving behavior, boasting universal
applicability. The second driver model is invoked when the
conditions of a level-1 risk situation aren’t met, i.e., the rel-
ative distance falls between Dlevel_1 and Dlevel_2. This model
integrates both steering and braking inputs to further pre-
vent collisions. Steering adjustments, frequently employed by
drivers, are either to adapt to unsatisfactory driving conditions
or to secure more driving space, manifesting as lane changes
or collision avoidance. For this model, the average steering
and braking inputs lie at 0.2 g with a standard deviation of

TABLE 1. Mean and standard deviation of driving behavior.

0.05 g. Li and Pend have shown that 99% of the braking
inputs applied by drivers under normal driving conditions are
less than 0.23 g, which is similar to the acceleration values
of the first and second driver models [32]. The third driver
model pertains to emergency scenarios when the relative
distance exceeds Dlevel_3. This involves urgent braking and
steering, suggesting limited space for maneuvering. During
these emergency scenarios, the average steering input stands
at 0.57 g with a standard deviation of 0.14 g, and the braking
input average is 0.69 g with a standard deviation of 0.18 g.
By integrating these three distinct driver models, our trajec-
tory prediction framework comprehensively accounts for the
inherent uncertainties in driver behaviors, thereby ensuring
its responsiveness to varied driving maneuvers produced by
the surrounding environmental contexts.

The ability of drivers to undertake avoidance maneuvers
serves as an indirect indicator of potential vehicle collisions.
Once the driver decides on an evasive action, the direction
of steering for both level-2 and level-3 scenarios necessitates
further modeling. This work presents a model to capture
driver steering preferences. Under the assumption of vehic-
ular movement within a structured road environment, the
model employs the approach angle and the offset between the
primary and the potentially threatening vehicles to determine
steering direction preference.

Fig. 2 illustrates the steering preference direction for the
approach angle in forward (rear-end) and oblique collision
scenarios, respectively. Specifically, Fig. 2(a) demonstrates
that in the context of forward (rear-end) collisions, the prob-
ability of steering in either direction remains consistent.
However, for oblique collisions, as shown in Fig. 2(b), the
steering direction preference is influenced more significantly
by the prevailing environmental conditions. This is partic-
ularly true in terms of the relative velocity and position
deviation between the ego and the dangerous vehicles. For
instance, when a threatening vehicle approaches from the
right of the ego vehicle, the latter tends to slow down and veer
left, distancing itself from the threat. Conversely, if the ego
vehicle is positioned to the left of the threatening vehicle, the
latter is likely to navigate rightward. This research assigns a
probability, contingent upon the approach angle θ , to a spec-
ified steering preference direction. The steering preference
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FIGURE 2. Example of the preference for the steering direction.
(a) Head-on collision. (b) Oblique collision.

weightingWθ is shown in (2).

Wθ = 50 · (1+ sin θ ) · 100% (2)

The equation (2) determined the probability of steering left
without considering the offset amounts and guarantees a 50%
chance of steering left under head-on or rear-end collisions
and a 100% chance of steering left under a pure right-side
impact collision.

The preference in steering direction for a vehicle is influ-
enced by both the approach angle between vehicles and
the relative displacement deviation between the ego and the
threatening vehicles. For a more comprehensive representa-
tion of the steering direction preference, an added weight
is incorporated to minimize overlap in steering decisions,
as depicted in Fig. 3. This designates the pivotal offset amount
at which collisions are averted and actions like braking or
steering are deemed unnecessary during vehicular motion.
The weighting Woff for the steering direction can be formu-
lated as in (3).

Woff

=


1
2
· [1+ sign(cos θ )], 1loff ≥ loffc

1
2
· [1+ sign(

π

2
·
1loff
loffc

) · (sign(cos θ ))], |1loff| > loffc
1
2
· [1− sign(cos θ )], 1loff ≤ loffc

(3)

where, 1loff represents the lateral relative displacement devi-
ation between the ego and the object vehicle. loffc is the
critical offset amount that ensures no collision without any
action. 1loff

/
loffc reflects the proximity between the object

and the ego vehicle. The larger the value of 1loff
/
loffc, the

smaller the danger; conversely, the smaller the value, the
greater the danger.

In the context of the prevailing environmental conditions,
the probability Psteer_left of the vehicle making a left turn
is articulated as shown in (4). It incorporates the steering
preference probabilityWθ and a weighting factorWoff which
accounts for the relative positional deviation in turning.

Psteer_left = Woff ·
[1+ cos2θ ]+Wθ · [1− cos 2θ]

2
(4)

The driver model in this work, which encompasses normal
brake only, normal brake and turn, and emergency brake

FIGURE 3. Preference for the steering direction depending on the offset.

and turn, is determined based on relative distance thresholds
(Dlevel_1,Dlevel_2,Dlevel_3). When the driver model indicates
steering input (i.e., level-2 and level-3), we employ Psteer_left
to determine the vehicle’s future steering direction.

C. PERCEIVED UNCERTAINTY PROPAGATION
BASED ON EKF
Considering the uncertainties associated with sensors and
to be in line with practical applications for vehicles and
similar systems, it is assumed in this work that all vehicles
in the vehicular network are equipped with low-cost onboard
GPS receivers and various sensors (e.g., lidar, camera). The
propagation of uncertainty can be assessed for any given
continuous time. EKF operates by predicting or updating
the current state based on the preceding state. Essentially,
it leverages control theory to deduce the optimal estimate and
covariance matrix for the present moment using the motion
model based on the state from the previous time. This iterative
process continues for subsequent estimations. By employing
the motion system equations and measurement models, along
with their associated errors, the Kalman gain is obtained. The
filtered values, obtained through this process, are then utilized
to rectify errors iteratively, thereby providing an optimal
trajectory prediction during vehicle movement.

The system uncertainty is represented by the prior estimate
covariance P−t at the current time step.

P−t+1 = APtAT + Q (5)

where, Pt corresponds to the posterior estimate covariance
at the previous time step, while Q illustrates the variance of
the process noise, serving as a quantifier for the uncertainties
inherent in the motion system. This process noise adheres to
a standard normal distribution with a mean value of 0 and a
standard deviation by Q represented.
The Kalman gain coefficient can be represented as (6):

Kt+1 =
P−t+1H

T

HP−t+1H
T + R

(6)

where, Kt+1 represents Kalman gain coefficient, functioning
as a weighting factor to balance the uncertainties between
the predicted state and the observed measurements, thereby
facilitating the update of the system state. H is referred to
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as the observation matrix and is effectively a linearization
of the observation model in the vicinity of the current state,
commonly realized through the Jacobian matrix. R is the
observation noise covariance matrix, which quantifies the
uncertainties inherent in the sensing mechanisms. This obser-
vation noise follows a standard normal distribution with an
expected value of 0 and a standard deviation denoted by R.
As the vehicle moves, the system will accumulate errors,

which need to be continuously updated through the covari-
ance matrix.{

Xt+1 = X−t+1 + Kt+1(Zt+1 − HX
−

t+1)
Pt+1 = (I − HKt+1)P

−

t+1
(7)

where, Xt+1 represents the best estimate value at time t + 1.
For the ego vehicle, the relevant parameter is represented by
Xv, while for the object vehicle, the corresponding parameter
is denoted as Xo. Zt+1 is the true value at time t + 1, Pt+1
denotes the updated error, and I refers to the identity matrix.

The optimal estimation of the current state is obtained
using EKF, serving as the foundation for predicting future
motion subject to uncertainties, denoted as Xv and Xo. Subse-
quent research is grounded on this data.

D. UNCERTAINTY PROPAGATION IN KINEMATIC
MOTION MODELS
The possible distribution range of future trajectories for the
ego and object vehicle is calculated in the derivation of
trajectory uncertainty. This forms the basis for determining
whether the state of the ego vehicle is dangerous. Considering
that instability and errors can be introduced when linearizing
and discretizing a typical nonlinear system, the use of a non-
linear system within the model-based prediction approach is
employed in this paper to enhance the robustness of trajectory
forecasting. By incorporating the previously discussed driver
model into the kinematic model, the predicted trajectory can
take into account constraints arising from driver behaviors.
Within dynamic environments, the influence of the driver
model on the kinematic model is predominantly evident in
aspects like lateral and longitudinal velocities, acceleration,
and steering angle. As such, these constraint factors are inte-
grated into the Jacobian matrix.

The nonlinear system equation is given as (8):

Xt+1 = f (Xt )+ Lwt (8)

where,Xt ,Xt+1 are the system states at time t and t+1 respec-
tively. Notably, Xt is derived through EKF to obtain a state at
time t . For the ego vehicle, its system state is denoted as Xv,
while for the object vehicle, it’s denoted as Xo. wt represent
a Gaussian noise which acts as an input to the system state.
The matrix L characterizes the mapping of this noise into the
state space.

Considering the characteristics, necessary parameters, and
suitable operational conditions of the model, the CYRA
model for the ego vehicle is opted in this work. The CYRA

can be rewritten as (9):

xv(t + 1)
yv(t + 1)
φv(t + 1)
vxv(t + 1)
vyv(t + 1)
wv(t + 1)
axv(t + 1)
ayv(t + 1)


=



vxv(t)cos(φv(t))− vyv(t) sin(φv(t))
vxv(t) sin(φv(t))+ vyv(t) cos(φv(t))

wv(t)
axv(t)+ vyv(t)wv(t)
ayv(t)+ vxv(t)wv(t)

0
0
0



+



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



Ww(t)
Wax(t)
Way(t)

 (9)

where, Wax and Way indicate noise for the longitudinal and
lateral acceleration derivatives, and Ww is the noise for the
yaw rate derivative.

For object vehicles, considering that their state is measured
by the ego vehicle’s onboard sensors and can only measure
their relative position, angle, and speed to the ego vehicle,
a CA model is used for their state prediction.

The expression for CA can be reformulated as shown
in (10):

Ẋo(t + 1)
Ẏo(t + 1)
V̇xo(t + 1)
V̇yo(t + 1)
ȧxo(t + 1)
ȧyo(t + 1)

 =

Vxo(t)
Vyo(t)
axo(t)
axo(t)
0
0

+

0 0
0 0
0 0
0 0
1 0
0 1


[
WAx(t)
WAy(t)

]
(10)

where, WAx and Way indicate noise for the longitudinal and
lateral acceleration derivatives.

The traditional CYRA model does not consider the uncer-
tainty of motion prediction and driver uncertainty, so an
improved CYRAmodel is proposed to describe the impact of
uncertainty on trajectory prediction. Firstly, the future trajec-
tory of the vehicle considering driver uncertainty is obtained,
and then a normal distribution is used to generate the future
trajectory distribution.

The expected value and covariance matrix of the dis-
cretized trajectory are derived as (11):{

Xt+1 = FtXt∑
Xt+1
= Ft

∑
xt
FTt + LtQtL

T
t

(11)

where,
∑

xt represents the covariance of the system state. For
the ego vehicle, its covariance is denoted as

∑
v, while for

the object vehicle, it’s denoted as
∑

o. t denotes time. Ft
is the Jacobian matrix of the system state at time t . Qt
indicates the covariance matrix of Gaussian noise wt .

To achieve a cohesive integration of the driver model into
the kinematic schema, one must meticulously translate the
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salient parameters of the driver model to correspond with
those of the kinematic paradigm. Therefore, assuming that
the model is a front-wheel-drive model, the steering wheel
angle is close to the front-wheel angle.

β = tan−1(
lr

lr + lf
tan(δf ))

Vt =
√
v2xv(t)+ v2yv(t)

ϕ =

∫ 1t

0

Vt · sin(β)
lr

d1t

(12)

where, lrand lf denote the distances from the vehicle center
to the front and rear wheels, respectively. βrefers to the slip
angle of the ego vehicle, and δf indicates the steering angle
of the ego vehicle.

For object vehicles, their uncertainty in terms of driver
uncertainty and future trajectory distribution is similar to
that of the ego vehicle. It should be noted that for object
vehicles, the ego vehicle is a dangerous vehicle. For an ego
vehicle in level-1, the value of Psteer_left is set to 50%, and the
vehicle follows a linear trajectory.When the vehicle is catego-
rized under level-2 or level-3, a value of Psteer_left exceeding
50% signifies a leftward turn. In contrast, if the probability
Psteer_left is less than 50%, the vehicle is interpreted as making
a rightward turn. Additionally, the mean and covariance of
the driver model parameters are integrated into the Jaco-
bian matrix. Based on Table 1, the Jacobian matrix of level
1 that integrates driver uncertainty into the system equation
is derived as (13), as shown at the bottom of the next page, the
Jacobian matrix of level 2,3 is denoted as in (14), as shown
at the bottom of the next page. Based on the aforementioned
motion model, we can derive the distribution of the ego vehi-
cle’s motion V = {X iv,

∑i
v}i=t+1,...,t+Nt

and the distribution
of the object vehicle’s motion O = {X io,

∑i
o}i=t+1,...,t+Nt

over Nt future time. Finally, v and o are defined by: v =
(Xv,

∑
v) and o = (Xo,

∑
o).

IV. COLLISION RISK ASSESSMENT BASED ON HEURISTIC
MONTE CARLO OF TRUNCATED GAUSSIAN DISTRIBUTION
In this section, a deterministic collision detection algorithm
based on relative distance is introduced to eliminate unnec-
essary sampling points, thereby enhancing the algorithm’s
efficiency and reducing the model’s complexity. The deter-
ministic collision detection algorithm is triggered when the
vehicle’s position falls within areas of absolute safety or abso-
lute danger. A mixed truncated Gaussian filter is employed to
exclude points outside the feasible driving area suggested by
the kinematic model, thereby modeling the inherent uncer-
tainty in road structures. MC sampling is utilized to calculate
collision probabilities, improving MC efficiency by avoiding
deterministic risk points and points outside the road bound-
aries that are definitively unreachable.

A. DETERMINISTIC COLLISION DETECTION
In dynamic driving scenarios, continuous probability colli-
sion detection is not requisite at every time step. Such a

practice could lead to a significant wastage of computational
resources. Moreover, human drivers typically don’t overly
focus on potential collisions when they perceive vehicles to
be within a safe distance range. Given this context, a safety
assessment detection algorithm for structured roads in our
research is introduced, primarily targeting kinematic model
predictions of forward positions at future time steps. The
deterministic safety assessment detection determines the like-
lihood of a collision based on the safe/dangerous zones
between the ego and the object vehicle. If both the trajecto-
ries of the ego and object vehicle adhere to safety distance
standards, a risk assessment can be directly inferred without
considering the uncertainty of the trajectories. Otherwise, the
uncertainties in the trajectory and the unpredictability of the
driver are taken into account to estimate the probability of a
collision.

When the combined lateral and longitudinal relative dis-
tances between the two vehicles near a predefined dangerous
threshold, signifying an impending collision, the collision
probability Picoll (v, o) at time i is directly assigned a value
of 1. When the lateral and longitudinal relative distances
between the two vehicles exceed the safety threshold, the sit-
uation is deemed safe, and the collision probability is directly
assigned a value of 0. If the situation falls between the safety
and danger thresholds, the computational method outlined in
Section IV-B is described.
The criteria for deterministic safety detection are eluci-

dated in (15), as shown at the bottom of the next page.
where, Lv, dv,Lo, do represent the length and width of the

ego and object vehicle;vv =
√
v2xv + v2yv is the traveling speed

of the ego vehicle; 1L denotes a parameter related to the
vehicle’s body length; 1d refers to lateral safety distances;
α, β are respectively angles between the diagonal line from
the center point of the ego vehicle to its corners and its short
side and long side;1φ|| is the absolute value of the difference
in yaw angle between both vehicles.

B. ROAD UNCERTAINTY BASED ON TRUNCATED
GAUSSIAN DISTRIBUTION
In the probabilistic model forMDU-CRA, it’s vital to account
for the effects of unreachable areas shaped by road boundaries
and other factors. As illustrated in Fig. 4, vehicles are improb-
able to venture outside these boundaries, thereby preventing
unrealistic accidents or collisions.

Guided by heuristic insights, the vehicle’s trajectory is
sampled via a truncated Gaussian distribution. This ensures
dense sampling within feasible regions while sparsely sam-
pling in inaccessible zones. By eliminating outliers or
extreme values, the modeling of the vehicle collision risk
is further refined, significantly enhancing the precision of
estimations and forecasts.

Considering the inherent intricacy ofmultidimensional dis-
tributions that precludes straightforward expression deriva-
tions, we focus on a multi-dimensional variable set Xv =
[xv, yv, φv]T ,Xo = [xo, yo]T . Using the ego vehicle v as a
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FIGURE 4. Inaccessible area diagram.

representative example (the computational approach remains
analogous for both the ego and object vehicle), the truncated
Gaussian probability density function (pdf) pv(X ) having cor-
responding covariance matrix

∑
v and mean Xv is delineated

in (16).

pv(X ) =
1

2π3/2|
∑

v |
1/2 ·

exp(− 1
2 (X − Xv)

T ∑
−1
v (X − Xv))∫ bx

ax

∫ by
ay

∫ bφ

aφ
pv(X ) dθdydx

(16)

where, X = [x, y, φ]T is a random variable vector. The deter-
minant of the covariancematrix

∑
v is denoted as

∣∣∑
v

∣∣, while
the covariance matrix

∑
v is obtained from the controlled ego

vehicle. We adopt an integral formulation to normalize the
pdf pv(X ) within a specified truncation interval. This normal-
ization ensures that the function represents a valid probability
distribution over the state space of interest, thereby facilitat-
ing accurate statistical inference.

Considering the uncertainties in state estimation and driver
behavior, short-term motion prediction trajectories that align
with human cognition can be derived. The pdf of an ego
vehicle v and an object vehicle o are denoted pv(X ) and po(X ).

C. COLLISION RISK ASSESSMENT BASED ON
HEURISTIC MONTE CARLO
The external shape of vehicles is approximated as rectangles
tomodel them. This results in an uncertainty region represent-
ing potential positions or states of a vehicle. Subsequently,
the possibility of spatial conflicts or potential collisions is

Ft+1 =



0 0
−(vxv(t)+ axv(t) ·1t) sin(φ(t))
−vyv(t) cos(φ(t))

cos(φ(t)) − sin(φ(t)) 0 0 0

0 0
(vxv(t)+ axv(t) ·1t) cos(φ(t))
−vyv(t) sin(φ(t))

sin(φ(t)) cos(φ(t)) 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 ω(t) vyv(t) 1 0
0 0 0 −ω(t) 0 −(vxv(t)+ axv(t) ·1t) 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(13)

Ft+1 =



0 0
−(vxv(t)+ axv(t) ·1t) sin(φ(t))
−(vyv(t)+ ayv(t) ·1t)(t) cos(φ(t))

cos(φ(t)) − sin(φ(t)) 0 0 0

0 0
(vxv(t)+ axv(t) ·1t) cos(φ(t))
−(vyv(t)+ ayv(t) ·1t)(t) sin(φ(t))

sin(φ(t)) cos(φ(t)) 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 ω(t) (vyv(t)+ ayv(t) ·1t)(t) 1 0
0 0 0 −ω(t) 0 −(vxv(t)+ axv(t) ·1t) 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(14)



Picoll = 0,


∣∣∣(x iv − x io) cos(φiv)+ (yiv − y

i
o) sin(φ

i
v)

∣∣∣ ≥ 0.5(
√
L2v + d2v sin(α + |1ϕ|)+ Lo)+ 1.2vv

or∣∣∣(yiv − yio) cos(φiv)+ (x iv − x
i
o) sin(φ

i
v)

∣∣∣ ≥ 0.5(
√
L2v + d2v sin(β + |1ϕ|)+ do)+1d

Picoll = 1,


∣∣∣(x iv − x io) cos(φiv)+ (yiv − y

i
o) sin(φ

i
v)

∣∣∣ ≤ 0.5(
√
L2v + d2v sin(α + |1ϕ|)+ Lo)+1L

or∣∣∣(yiv − yio) cos(φiv)+ (x iv − x
i
o) sin(φ

i
v)

∣∣∣ ≤ 0.5(
√
L2v + d2v sin(β + |1ϕ|)+ do)+1d

(15)
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Algorithm 1 Collision Risk Assessment Considering the
Multi-Dimensional Uncertainties (MDU-CRA) Algorithm
Input: Data matrix Xv,X0. Xv,X0 are the state parameters of

the ego and the object vehicle respectively.
Output:Collision probability Pcoll(v, o). //Output future

collision risk in 2 seconds
1. [xv, yv, φv, vxv, vyv, ωv, axv, ayv] =EKF(Xv);//Update ego
status via EKF;
2. [xo, yo, vxo, vyo, axo, ayo] =EKF(X0);//Update object status
via EKF;
3.[drive1, drive2, drive3]=buildDriverModel();
4. {X iv,

∑i
v}i=1,...,Nt

=CYRA(Xv, drive1, drive2, drive3);//

Ego vehicle X iv = [(x i,1v , yi,1v , φi,1v ), . . . , (x i,Ntv , yi,Ntv , φ
i,Nt
v )]

5. {X io,
∑i

o}i=1,...,Nt
=CA(X0, drive1, drive2, drive3);//object

vehicle X io = [(x i,1o , yi,1o ), . . . , (x i,Nto , yi,Nto )]
6. for i←1 to Nt do //Nt is number of the future trajectories
7. if

∣∣(x iv − x io)cos(φv)+ (yiv − y
i
o)sin(φ

i
v)

∣∣ or∣∣(yiv − yio)cos(φv)+ (x iv − x
i
o)sin(φ

i
v)

∣∣ ≥ Dsafety then
8. Pcoll(v, o) = 0;
9. break;
10. else if

∣∣(x iv − x io)cos(φiv)+ (yiv − y
i
o)sin(φv)

∣∣ or∣∣(yiv − yio)cos(φv)+ (x iv − x
i
o)sin(φ

i
v)

∣∣ ≤ Ddanger then
11. Pcoll(v, o) = 1;
12. break;
13. else
14. for j←1 to Nc do //Nc is the total number of
MC samples
15. (x i,jv , yi,jv , φ

i,j
v ) =randc(φpv((x

i,j
v , yi,jv , φ

i,j
v ));

16. (x i,jo , yi,jo ) =randc(po((x
i,j
o , yi,jo ));

17. if Sv(x
i,j
v , yi,jv , φ

i,j
v )∩So (x

i,j
o , yi,jo ) ̸= ∅ then

18. Pi,jcoll(v, o) =1;
19. else
20. Pi,jcoll(v, o) =0;
21. end if
22. end for

23. Picoll(v, o) =
∑Nc

j=1 2P
i,j
coll(v,o)

Nc
;

24. end if
25. end for
26. Pcoll(v, o) =max([P1coll(v, o),. . . , P

Nt
coll(v, o)]);

27.return Pcoll(v, o);

determined by checking if the uncertainty regions of two
vehicles overlap. Leveraging the expected value and the
covariance matrix of the joint pdf, the system can compute
the vehicle’s collision probability.

As shown in Fig. 5, Sv ∩ So ̸= ∅ indicates that there is
an intersection between the spatial positions occupied by the
ego and object vehicle, i.e., a collision occurs between them.
Sv, So represent the spatial positions occupied by the ego and
object vehicle at the current time, respectively. They are the
safety zone boundaries represented by the outer envelope
expansion of the geometric shapes of the ego and object
vehicle.

FIGURE 5. Diagram of collision between ego and object vehicle.

The Multi-Dimensional Uncertainties-CRA determines
the likelihood of a collision between the ego vehicle and
a specific object at a given instant. To assess the risk, the
collision probability between the ego and the object vehicle
must be repeatedly computed at various predicted times.
To address the complexity of the integral computation, the
Monte Carlo simulation method is employed to solve the
aforementioned equation. The MC method operates on a
foundational principle: it commences by randomly sampling
variables pertinent to the problem, adhering to their genuine
mathematical distributions, across a voluminous dataset. For
each of these sampled values, simulated experiments are con-
ducted to ascertain the occurrence of an event. Subsequently,
its probability is estimated based on the event’s recurrence
rate. The uncertainty surrounding a vehicle’s state aligns with
the Gaussian joint probability distribution. Considering the
differences in shapes between the ego and the object vehicle,
the Monte Carlo method is used to calculate the collision
probability Picoll (v, o) represented by (17):

I icoll(Sv(pv(x
i,j
v , yi,jv , φi,jv )), So(po(x i,jo , yi,jo )))

=

{
0, Sv(x iv, y

i
v, φ

i
v) ∩ So(x

i
o, y

i
o) = ∅

1, Sv(x iv, y
i
v, φ

i
v) ∩ So(x

i
o, y

i
o) ̸= ∅

Picoll(v, o) =
1
Nc

Nc∑
j=1

I icoll(Sv(pv(x
i,j
v , yi,jv , φi,jv )),

So(po(x i,jo , yi,jo )))

(17)

where, Nc represents the total number of MC samples
for the position of the ego vehicle and object vehicle. j
is the j-th sampling. ((x i,1v , yi,1v , φi,1v ),. . . ,(x i,Ncv , yi,Ncv , φ

i,Nc
v ))

and ((x i,1o , yi,1o ),. . . ,(x i,Nco , yi,Nco )) are samples generated by
following the distribution of the ego vehicle pv(X ) and
the distribution of the obj vehicle po(X ) at time i.
I icoll(Sv(pv(x

i,j
v , yi,jv , φ

i,j
v )), So(po(x

i,j
o , yi,jo ))) is a collision test

between the Sv of the ego vehicle and the Soof the object
vehicle at time i.

The MDU-CRA algorithm is as shown in algorithm 1.
Between lines 1 and 2, the EKF is employed to derive realistic
motion states for both the ego vehicle and the object vehicle.
The development of a driver model is indicated in the 3 line,
where drive1, drive2 and drive3 respectively represent normal
brake only, normal brake and turn, and emergency brake and
turn. Kinematic models are leveraged in lines 4 and 5 to
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TABLE 2. Parameters of all experiments.

TABLE 3. RMSE and ADE values of prediction error.

forecast forthcoming trajectories for both vehicles. In lines
7 to 13, deterministic collision detection is adopted, pri-
marily relying on the relative distance metric to distinguish
between benign and perilous situations. Here, Dsafety embod-
ies the superior portion of Equation (16)’s right-hand side;
its value domain is largely influenced by the current vehicle
speed. Conversely, Ddanger symbolizes the inferior segment
of Equation (16)’s right-hand side, with its amplitude chiefly
swayed by vehicular geometry. In conclusion, the truncated
Gaussian distribution is incorporated in tandem with MC
sampling in lines 15 to 25 to quantify collision probabilities.
In line 26, the conclusive collision risk is determined by
selecting the median of the maximal probabilities foreseen.

V. PERFORMANCE EVALUATION
In order to evaluate the proposed collision risk assessment
method considering the multi-dimensional uncertainties, two
experiments are performed in this section. Two driving sce-
narios are extracted and reconstructed from the NGSIM
dataset for validation and evaluation, i.e., an active lane-
change scenario and an emergency braking scenario. The
proposed MDU-CRA algorithm is compared to the proba-
bilistic multi-modal expected trajectory prediction (PMETP)

FIGURE 6. Emergency braking scenario (a) Scenario I: schematic diagram
of the location for the emergency braking scenario. (b) trajectories of ego
vehicle and objects in scenario I.

[33] trajectory predictor in terms of short-term motion pre-
diction accuracy. The efficacy of our risk assessment model
is gauged by benchmarking against a range of state-of-the-art
models [26], [34] and employing multiple evaluation metrics.

A. EXPERIMENTAL SETTINGS
1) EVALUATION ENVIRONMENT SETTING
Active lane-change scenarios and emergency braking sce-
narios were extracted from the NGSIM dataset [35]. The
sampling points were set at 1000, with a calculation
speed of approximately 0.001 seconds, facilitating real-time
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FIGURE 7. Results of emergency braking scenario (a) t=10 s (b) t=12 s (c) t=14 s.

operation. The relevant experiments for this work were con-
ducted using MATLAB 2021, and data pre-processing was
completed using Python 3.8. The parameters of all experi-
ments are presented in Table 2.

B. EXPERIMENTAL RESULTS
1) PRECISION COMPARISON OF TRAJECTORY PREDICTION
In this work, a comparative assessment is conducted
between our newly introduced trajectory prediction model,
which incorporates multi-dimensional uncertainties, and the
PMETP approach over a 2-second prediction span. The effec-
tiveness of both models is evaluated using Root Mean Square
Error (RMSE) and Average Displacement Error (ADE) as
the primary metrics. The Sequence to Sequence (seq2seq)
encoder-decoder framework is employed by the PMETP
model, amalgamating features of the predicted vehicle and its
neighboring vehicles into an LSTM to holistically represent

the vehicular context. Additionally, PMETP demonstrates
proficient end-to-end training capabilities for on-site traffic
scenarios.

From Table 3, it can be observed that our proposed
trajectory prediction model, which takes into account mul-
tidimensional uncertainty, has smaller RMSE and ADE in
short-term prediction compared to the LSTM-based model.
Therefore, our trajectory prediction model exhibits a higher
level of predictive accuracy.

2) THE EFFICACY OF RISK ASSESSMENT
In this work, a detailed comparative analysis is conducted
on risk assessment, employing ordinary evaluation met-
rics like Advanced Collision Detection Time (ACDT),
Time-to-Collision (TTC), and Time Headway (THW), with
a focus on scenarios such as emergency braking and active
lane changes.
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The methods proposed in this article and in [26] and
[34] were implemented and evaluated using python. Ref-
erence [34] involves an integration of Autoware with a
Cooperative Collision Warning System (CCWS) to predict
future trajectories and assess collision risks. Reference [26]
initially constructs the geometric shapes of lanes using
OpenStreetMap (OSM) to determine an initial coarse risk
classification, followed by a more comprehensive estimation
of criticality.

ACDT stands as a paramount metric in the context of
inter-vehicle collision detection. By providing timely and
accurate predictions of potential collisions, ACDT empowers
drivers with the foresight to initiate preemptive maneuvers.
An extended window for driver response is provided by the
heightened ACDT, highlighting the robustness of the MDU-
CRA in accommodating potential system latency and egress
timings.

ACDT = tc − td (18)

where tc and td , respectively, denote the time a crash occurs
and is detected.

TTC [36] and THW [37] serve as pivotal tools for accident
prevention and the assessment of driving behavior, commonly
employedwithin the safety algorithms of autonomous driving
systems to determine the critical junctures for evasive actions.
In accordance with German traffic regulations and the study
presented in [35], the typical value for TTC is set at 2.6 s,
while THW is determined to be 0.9 s. The formulas for TTC
and THW are depicted in equation (19).

TTC =
xo − xv
vxv − vxo

THW =
xo − xv
vxv

(19)

• Scenario I: Emergency braking
Scenario I focuses on the sudden deceleration of a preceding
vehicle and its associated collision probability evaluation.
Fig. 6(a) depicts the ego vehicle trailing the preceding vehicle
on a dual-lane road. After covering a designated distance,
the preceding vehicle decelerates abruptly, coming to a halt.
Within this deceleration scenario, Fig. 6(b) illustrates the
trajectories of the ego vehicle and the neighboring traffic. The
ego and preceding vehicles’ trajectories are marked in red and
blue, respectively. Concurrently, the left and right object vehi-
cles follow paths depicted in green and orange, respectively.
It is pertinent to highlight that modifications were made to the
NGSIM dataset for this experimental evaluation. Specifically,
in the event of a preceding vehicle’s deceleration, the ego
vehicle initially reduces its speed, thereafter sustaining a
consistent velocity for continued progression. This adaptation
was incorporated to thoroughly assess the efficacy of the
proposed MDU-CRA approach.

Fig. 7 presents schematic representations of the vehicle’s
state at 10 s, 12 s, and 14 s. It also illustrates the prob-
ability distribution maps for predicted trajectories and the
associated collision likelihoods. On the left side of Fig. 7(a)

FIGURE 8. Collision probability estimates’ evaluation.

FIGURE 9. An lane-changing driving scenario (a) Scenario II:schematic
diagram of the location for the Lane-changing driving
scenario.(b) trajectories of ego vehicle and objects in scenario II.

to 7(c), the dynamic changes in the feasible driving area
for the ego vehicle at distinct time instances are evident.
Specifically, as the ego vehicle approaches the threatening
vehicle, its maneuvering space becomes increasingly con-
stricted. Conversely, the probability distribution of the ego
vehicle’s projected trajectories over the next 2 seconds, sam-
pled at 0.4-second intervals, is displayed on the right side of
Fig. 7(a) to 8(c). The consequent collision probabilities for
these instances are 16.8%, 85.3%, and 100% respectively.
A critical observation at t=14 s is that the average trajectory
for the fifth step shifts by 0.568 m to the left in contrast to
the primarily horizontal orientations of the first and second
steps. This deviation signifies a common driver behavior: as
one nears a potential threat on the road, there’s an instinctual
swerve away from the perceived danger to avert possible
collisions.

Fig. 8 illustrates the performance comparison of our pro-
posed method with those baselines in [26] and [34] under
the scenario of the lead vehicle executing an emergency
braking maneuver, as well as the analysis employing various
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FIGURE 10. Results of lane-changing scenario (a) t=16.3 s (b) t=17.1 s (c) t=18.1 s.

evaluation metrics. As the temporal progression ensues and
the inter-vehicular distance diminishes, there’s a concomitant
escalation in the collision probability. Intriguingly, the colli-
sion probability trajectory of our model manifests a steeper
ascent than the referenced method.

Assuming an alarm is triggered by the system when the
collision probability exceeds 50%, an ACDT value of 4.9 sec-
onds is exhibited by our method, surpassing the ACDT values
reported in [26] and [34], which are 2.8 seconds and 3.5 sec-
onds, respectively. In terms of the preset TTC and THW
thresholds, the alarm signals are activated at approximately
1.4 seconds and 0.9 seconds, respectively. This demonstrates
that a substantially earlier warning time in the longitudinal
evaluation process is provided by our model, indicating its
superiority. The notable efficacy of our approach is primarily
attributable to its state-centric sampling which, compared
to static interval-based methods, delivers a more pragmatic
representation.

• Scenario II: Lane-changing

Scenario II delineates a situation where the ego vehicle is
engaged in a lane transition. In Fig. 9(a), the transition of
the vehicle from lane 2 to the less-congested lane 1 after
traversing a certain distance is illustrated. In Fig. 9(b), the tra-
jectories of the ego vehicle are elaborated upon in relation to
the surrounding traffic during this lane change. Here, the ego
vehicle and the potentially perilous vehicles are represented
by the red and blue trajectories, respectively, while other
surrounding objects are signified by the green and orange
trajectories.

A visual representation of the evolving scenario at intervals
of 16.3 s, 17.1 s, and 18.1 s is provided by Fig. 10, concur-
rently showcasing the probabilistic distributions associated
with the predicted trajectories and their respective collision
likelihoods. As depicted on the left side of Fig. 10(a)∼(c),
the permissible driving envelope for the ego vehicle gradually
contracts with the passage of time. Given the absence of
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FIGURE 11. Lateral acceleration and orientation angle of ego vehicle in
Lane-changing scenario.

FIGURE 12. Collision probability estimates’ evaluation.

an outermost lane during the lane maneuver, a truncated
Gaussian function is judiciously employed to sample within
the lane, guided by the lane parameters, and to exclude
regions beyond the lane boundary. This deliberate approach
augments the collision prediction accuracy. The ensuing plots
in Fig. 10(a)∼(c) articulate the probabilistic trajectory dis-
tributions of the ego vehicle for a predicted horizon of 2 s,
sampled at intervals of 0.4 s, and reveal collision probabil-
ities of 16.8%, 26.5%, and 79.7%, respectively. Taking into
account typical driver behaviors, the averaged trajectory pro-
jections for the ego vehicle over the 2 s window progressively
align with the target lane, registering maximum deviations of
0.564 m, 1.299 m, and 1.651 m, in sequence. This modeling
aligns coherently with real-world vehicle movement patterns.

In Fig. 11, the variation and boundary constraints associ-
ated with the steering angle and lateral acceleration of the ego
vehicle throughout the active lane transition in Scene II are
illustrated. Upon completion of the maneuver, both metrics –
the steering angle and lateral acceleration – revert to a null
state.

In Fig. 12, the processes involving ourmodel, various state-
of-the-art models, and different evaluation metrics within
the context of active lane-changing scenarios are delineated.

In terms of ACDT, a value of 1.9 seconds is recorded by
our model when the collision probability exceeds 50%, while
ACDT values of 1.1 seconds and 1 second are reported in [26]
and [34], respectively. For TTC and THW, the times at which
the alarm signals are activated are 2.1 seconds and 1.5 sec-
onds, correspondingly. It is evident that, compared to other
reference models, an approximately 1-second time advantage
in ACDT is offered by ourmodel, capable of issuingwarnings
2 seconds prior to a potential collision. However, during the
active lane-changing process, the performance of our model
is close to that of THW but surpasses that of the TTC metric.

Based on the parameter evaluations in the aforemen-
tioned scenarios, superiority over other advanced metrics is
demonstrated by our proposed model, making it suitable for
the situational assessment modules of assisted driving or
autonomous driving systems.

VI. CONCLUSION
This paper presents an MDU-CRA framework designed to
account for multidimensional uncertainties, including driver
behavior, sensor perception, motion prediction models, and
road structure. This algorithm enables the estimation of future
risks related to surrounding vehicles, allowing autonomous
vehicles to safely handle dangerous driving situations and
proactively avoid or mitigate potential collisions. Firstly,
we propose a deterministic collision detection algorithm
based on relative distance, which enhances efficiency by
eliminating unnecessary sampling points. Secondly, our tra-
jectory prediction model combines three different driver
intentions with vehicular kinematic models, incorporating a
Gaussian truncation function along with Monte Carlo sam-
pling techniques for the prediction of future driving risks.
This comprehensive approach ensures autonomous vehicles
account for uncertainties in driver behavior, motion predic-
tion models, and road structure when navigating conditions
that involve turns and deceleration. Validation is conducted
through sudden braking and lane-changing scenarios from
the NGSIM dataset. Experimental outcomes underscore our
model’s capability to preemptively discern impending col-
lisions with a lead time of 1-2 s compared to conventional
models, with the projected trajectory probability distribution
closely mirroring real-world vehicular movements.

Nevertheless, this research has potential for further refine-
ment. Currently, our focus is primarily on vehicular dynamics
models, which might compromise long-range accuracy. Our
forthcoming efforts involve the incorporation of neural net-
work methodologies into risk assessment, with a specific
focus on the integration of attention-driven mechanisms and
graph neural networks to discern inter-vehicular social inter-
actions. This aims to enhance the overall intelligence of
vehicular collectives.
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