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ABSTRACT In vehicular applications, remote eye pupil tracking is essential, particularly for advanced
augmented reality (AR) 3D head-up displays (HUDs), and driver monitoring systems (DMS). However,
achieving accurate pupil center localization under varied head poses presents significant challenges,
especially when cameras are positioned on a vehicle’s A-pillar. This placement introduces substantial head
pose variations, complicating traditional tracking methods. In response, this study presents a remote pupil
localization method designed to address the unique challenges posed by a camera situated on a vehicle’s
A-pillar, a spot causing significant head pose variations. The proposed technique relies on a head pose-aware
pupil localization strategy utilizing A-pillar cameras. Our pupil localization algorithm adopts a Transformer
regression approach, into which we integrate head pose estimation data, enhancing its capability across
diverse head poses. To further enhance our approach, we used an optimized nine-point eye-nose landmark set,
to minimize the pupil center localization loss. To demonstrate the robustness of our method, we conducted
evaluations using both the public WIDER Facial Landmarks in-the-wild (WFLW) dataset and a custom in-
house dataset focused on A-pillar camera captures. Results indicate a Normalized Mean Error (NME) of
2.79% and a failure rate (FR) of 1.28% on the WFLW dataset. On our in-house dataset, the method achieved
an NME of 2.96% and a FR of 0.72%. These impressive results demonstrate the robustness and efficacy of
our method, suggesting its potential for implementation in commercial eye tracking systems using A-pillar
mounted cameras, especially for AR 3D HUD and DMS applications.

INDEX TERMS Pupil center localization, remote eye tracking, head pose-aware pupil regression, eye-
nose points regression, head pose estimation, A-pillar camera, augmented reality (AR) 3D head-up displays
(HUDs), driver monitoring system (DMS).

I. INTRODUCTION
Pupil center localization plays an important role in many
applications designed for drivers inside vehicles. One of
the innovative vehicular user convenience systems is the
combination of augmented reality (AR) and autostereoscopic
three-dimensional (3D) display techniques in next-generation
head-up displays (HUDs) [1]. These advanced AR 3D HUDs
can show augmented reality 3D objects in line with the
road, without the limitations of viewing zone boundaries [2].

The associate editor coordinating the review of this manuscript and
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To provide users with a 3D visual experience free from
3D crosstalk and without the necessity of special 3D
glasses, it’s essential to use technology that accurately tracks
the user’s pupil center [3]. Additionally, in the area of
driver monitoring systems (DMS), it is very important to
assess a driver’s alertness, concentration, and overall driving
status [4]. In these DMS systems, eye-gaze information is
essential, and pupil center localization is a key component
of the process [5].

Eye tracking has traditionally been used in wearable
AR and VR devices to mitigate 3D fatigue [6], [7] and
enable effective human-computer interaction (HCI) [8]. Most
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FIGURE 1. (a) Top: Illustration of the camera location at the A-pillar in vehicles. Bottom: Varied facial poses captured from our in-house dataset, showing
the impact of this camera placement. (b) A step-by-step demonstration of the head pose-aware Transformer-based pupil center regression method on a
public dataset, WFLW. Red dots indicate the pupil centers and green dots indicate other eye-nose points.

research and development in this area focus on using near-
infrared (NIR) cameras, especially in AR/VR wearable
glasses that are worn closely [9]. In contrast to this,
our work on pupil localization aims to identify the pupil
center from a distance. Remote pupil tracking has been
useful in various applications, including autostereoscopic 3D
displays [10], AR 3D HUDs [3], DMS [5], and HCI [11].
It’s designed to quickly and accurately find the user’s eye
position from approximately 1 meter away, ensuring stable
performance even if the eyes are occluded. However, these
technologies usually expect the camera to be directly in
front of the user’s face and have difficulties with varying
poses.

In commercial vehicles, directly placing the camera in
front of the driver is highly challenging. This is because
it would obstruct the driver’s forward view, leading to
potential hazards [12]. The automotive industry, aware of
this, is now moving towards installing cameras on the A-
pillar [13]. This setup ensures that the driver’s view remains
clear while still allowing for effective eye tracking. However,
having the camera on the A-pillar presents challenges due
to significant pose variations, making it difficult to predict
pupil tracking using traditional models. This paper aims to
enhance remote pupil localization performance, especially
when the camera is set on the A-pillar and the driver
shows pronounced head movements. Our method estimates a
driver’s head pose and incorporates it into a head pose-aware
regression for pupil localization. Figure 1a shows a camera

on the A-pillar capturing the driver’s faces, while Figure 1b
provides an overview of our proposed head pose-aware pupil
localization technique. The key contributions of our work
include:

• Head Pose-Aware Pupil Localization: We introduce
a novel approach that combines head pose estimation
with pupil localization, specially designed for A-pillar
mounted cameras in vehicles. This method effectively
addresses the challenge of diverse head movements, ensuring
accurate detection of the pupil center in different driving
situations.

• Transformer-Based Algorithm Integration: Our work
advances the state-of-the-art by incorporating head pose
information into a Transformer-based regression algorithm.
This integration enhances the algorithm’s capability to
accurately localize the pupil in varied conditions.

• Optimized Nine Eye-Nose Points: We propose a
refined set of nine key eye-nose points, specifically
optimized for remote pupil localization. This focus on
essential keypoints, rather than the entire facial struc-
ture, reduces alignment errors and improves localization
accuracy.

• Comprehensive Evaluation with In-House Dataset:
In addition to the public face dataset, we tested our method
with our own unique in-house dataset. This dataset captures
real driving scenarios from an A-pillar camera. This two-fold
dataset approach highlights our method’s effectiveness across
varied situations.
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II. RELATED WORKS
A. FACIAL KEYPOINTS ALIGNMENT FOR PUPIL
LOCALIZATION
The process of determining the pupil’s center heavily depends
on the alignment of facial landmarks. Initially, this process
involves detecting the face using a face detector [14], [15],
followed by aligning facial landmarks within the detected
face area using techniques like face keypoints alignment [16].
The final step is localizing the pupil’s position. Early methods
relied on basic machine learning algorithms like Active
Appearance Models (AAMs) [17] and other handcrafted
feature-based methods, such as the Supervised Descent
Method (SDM) [18], which used features like scale-invariant
feature transform (SIFT) [19].

Deep neural networks (DNN) have significantly enhanced
these methods, which are generally divided into two types:
coordinate regression models and heatmap regression mod-
els. Coordinate regression models [15], [20], [21], [22]
directly transform input features into vector coordinates of
keypoints. For example, the TCDCN [15] performs multi-
task learning, predicting both landmark coordinates and
facial bounding boxes. The MDM [20] utilizes recurrent
neural networks (RNN) for evenly distributing convolutional
layers across cascade steps. RetinaFace [21] combines
face detection, landmark localization, and detailed 3D face
regression in a single framework. The SAN [22] uses style-
aggregated images, enhancing stability against various image
styles.

Heatmap regression models are based on the concept
of creating heatmaps using landmark coordinates and then
adjusting them [23], [24], [25], [26]. This method then
converts the heatmap back into coordinates to identify the
landmarks. LAB [23] introduced a boundary-aware technique
using boundary lines for better alignment. AWing [24] intro-
duced the adaptive Wing loss for optimizing the difference
between foreground and background pixels. LUVLi [25]
presented a loss that aids a CNN in simultaneously covering
the uncertainty and visibility of landmarks.

Recent advancements show the Transformer model [27]
surpassing conventional DNN, especially in the natural
language processing. The Vision Transformer (ViT) [28] in
the image domain, with its adaptive global attention, has
become notable for tasks like object detection [29] and
human pose estimation [30]. While still in the early stages
in the domain of facial keypoints, pioneering works such as
the SLPT [31] are beginning to surface. SLPT discerns the
interrelation between landmarks through the Transformer and
utilizing sparse local patches, it aligns them using a coarse-
to-fine strategy.

B. HEAD POSE ESTIMATION
In our study, accurate head pose estimation is essential for
enhancing the precision of our remote pupil localization
in A-pillar mounted cameras. This methodology adaptively
adjusts the initial keypoint set, ensuring consistent and

precise pupil tracking across a range of driving scenarios
and head poses. The estimation of the head pose is widely
used in areas like human motion [32], gaze estimation [33],
and user attention recognition [34]. Classical methods for
head pose estimation rely on appearance-based template
models. These models compare test images with a set of pose
samples to identify the best match for the head pose [35],
[36]. This approach utilizes templates derived from face
detectors, with each detector being specifically trained to
recognize a particular head pose. As research continued,
facial landmark detector-based template methods advanced
significantly [37].
The growth of DCNN has brought in new methods for

head pose estimation. Using shallow CNN and calculating
regression loss to effectively estimate the head pose was pro-
posed by [38]. Going a different way, KEPLER [39] used an
iterative method based on a new Heatmap-CNN architecture,
aimed at accurate 3D pose prediction. HyperFace [40] came
out as a multi-task learning solution, built on a deep CNN
foundation. This algorithm can detect faces, find landmarks,
estimate poses, and by combining intermediate layers, it can
even recognize gender. Later, the [41] was introduced as
another multi-tasking learning algorithm. It could handle
face detection, landmarks localization, pose estimation,
gender recognition, smile detection, age estimation, and face
identification and verification, all in one system. Taking a
detailed approach, [42] used a multi-loss CNN. It focused on
joining binned pose classification and Euler angle regression,
offering a smart algorithm for head pose prediction. Recent
improvements like MNN [43] combine head pose estimation
within a face keypoints alignment model. Made with an
encoder-decoder design, this model has a bottleneck structure
and adds a head pose task at the end of the encoder to predict
head pose.

C. REMOTE PUPIL LOCALIZATION
Compared to facial landmark alignment techniques, there
are not many studies that focus solely on remote pupil
localization. Previous studies on remote pupil localization
use frame-based RGB or NIR cameras to find the entire
face area, eye-nose region, or eye region, and then extract
the center of the pupil by regressing landmark points in the
found region of interest. In autostereoscopic 3D displays,
it is essential to accurately find the location of the pupil
to separate the left and right stereoscopic images for the
user [44]. A content-aware eye tracking method is proposed
in [10]. This method distinguishes between contents such as
thick eyeglasses, small eyes, and reflection of eyeglasses in
the face image captured from an RGB camera, and performs
SDM-based eye-nose points regression for each content.
In the HCI field, commercial NIR camera-based methods are
mainly used [45], which generate pupil cornea reflection and
bright pupil using NIR light source, and then find the center
of the pupil by simple image processing [46]. This method
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FIGURE 2. Overview of the proposed head pose-aware regression method for pupil localization from A-pillar cameras. The process begins with a
CNN-based backbone for 3D head pose estimation. Following this, optimized eye-nose initial points are derived for pupil localization. Sparse local
patches around these eye-nose points are subsequently generated. These patches are then integrated with a CNN feature map and fed into the
Transformer regression network, resulting in the final pupil center localization. The example face image is sourced from the WFLW dataset [23].

requires special hardware with camera sensors and NIR light
sources located in specific locations.

Remote pupil tracking technology is also being actively
researched for vehicular systems. In outdoor vehicular
environments, driver facial images show many challenges
such as diverse illumination conditions from oversaturation
to low-light, occlusions due to various head poses and the use
of sunglasses or hats, and the limited computing resources
in vehicular embedded systems. An adaptable eye tracking
technique that functions effectively in real-time, even with
constrained system resources, was presented in [3]. Their
approach combines classical machine learning methods like
SDM [18] with CNN-based techniques such as practical
facial landmark detection (PFLD) [47]. This combination
effectively serves drivers with both bare faces and those
wearing sunglasses. In DMS, lightweight traditional methods
like Kalman filtering and support vector machine (SVM)
are favored to run user monitoring algorithms based on
eye tracking technology [48], [49]. A different approach
presented in [50] assesses driver fatigue by monitoring
yawning, blinking, and the duration of eye closure. It relies on
the TCDCN [15] for face detection and pinpointing the center
of the pupil, subsequently determining the driver’s current
driving state. However, many of these existing techniques rely
solely on front cameras in vehicles and overlook the potential
of the A-pillar camera.

In summary, while existing remote pupil localization
methods have made significant progress in parallel advance-
ments in facial keypoints alignment techniques, they function
optimally when the camera is positioned at a precise location
for remote pupil tracking. However, these methods haven’t
been thoroughly studied for use with A-pillar cameras in

vehicles, where varied head poses pose unique challenges
for remote eye tracking. To overcome these limitations,
we introduce a novel approach: a head pose-aware pupil
localization method. This method combines head pose esti-
mation information with Transformer-based facial keypoints
alignment technology, specifically designed to handle the
diverse head movements of drivers when using the A-pillar
camera. This approach allows for more accurate and reliable
pupil tracking, even in challenging conditions such as varied
head poses, changing light conditions, and partial occlusions
commonly encountered in vehicular environments in AR 3D
HUDs and DMS.

III. METHOD
Our primary objective is to design a method that can
efficiently localize the center of pupils using a camera
positioned at the A-pillar, designed for advanced driver
assistance systems in commercial vehicles. The challenge
posed by the A-pillar’s side location, as opposed to a front-
facing position, means that the system has to contend with
non-frontal views of the driver’s face, encountering a variety
of poses. This requires a pupil center tracking system that
remains robust across these diverse orientations.

To address this challenge, we’ve expanded upon the tra-
ditional Transformer-based landmark regression method by
incorporating the user’s head pose data, ensuring consistent
performance across diverse facial orientations. Our method-
ology consists of the following key steps. 1) Initialization
of head pose-aware eye-nose keypoints: first, we generate
keypoints sensitive to the head pose. This is achieved using
a CNN-based head pose estimation network called the multi-
task network (MTN) [51]. After this, we extract a set of nine
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FIGURE 3. Illustration of the 6 steps in our proposed head pose-aware
regression method for pupil localization from A-pillar cameras on WFLW
dataset [23]. The steps are presented from left to right: Initial full facial
keypoints, adjustments based on head pose estimation results, optimized
eye-nose initial points for pupil localization, followed by regression
stage 1, stage 2, and concluding with the final pupil center points.

optimized eye-nose points specifically designed for accurate
pupil alignment. 2) Integration with localized patches and
CNN-based features: once the nine head pose-aware eye-
nose keypoints are identified, we create localized sparse
patches around them. Features extracted from the original
input image, using the methodology outlined in [52], are then
combined with these patches. 3) Landmark regression using
a Transformer: the created sparse landmark patches are input
to the Transformer-based landmark regression approach,
as described in [31]. This step finalizes the localization of the
pupil center. A detailed visual representation of our proposed
method is available in Figure 2.

A. HEAD POSE-AWARE TRANSFORMER-BASED PUPIL
REGRESSION
Our proposed head pose-aware pupil regression method is
built upon two foundational studies. Firstly, the CNN-based
head pose estimation algorithm, MTN [51], and secondly,
the Transformer-based facial landmark localization network,
sparse local patch Transformer, SLPT [31]. While our
approach is grounded in the SLPT keypoints regression tech-
nique, it differs from the original by adopting a head pose-
aware approach. Given the unique perspective challenges of
a camera positioned at the A-pillar, we enhanced the SLPT by
integrating a head pose module. For the head pose estimation
task, we utilized MTN [51].
SLPT [31] is a Transformer-based network designed

for facial keypoints alignment, utilizing on the inherent
relationship between facial keypoints. It begins its process
by creating sparse local patches from initial facial keypoints
derived from an average shape of facial datasets. These
patches, once combined with a pre-processed CNN-based
feature map, enter the Transformer network. Unlike the
traditional Vision Transformer (ViT) [28], which breaks
down the entire image into multiple patches for the attention
mechanism, SLPT focuses solely on patches centralized
around landmarks. The SLPT Transformer network accepts
these sparse local patches and progresses through patch
embedding, an attention mechanism termed as the inherent
relation layer, and finally passes through a prediction head,

which uses multi-layer perceptron. The outcome is a set of
regressed optimal shape points. This hybrid model utilizes
the local feature extraction capability of CNNs and the global
feature capturing attribute of Transformers. Furthermore,
with each iteration through the Transformer network, the
sparse local patches are cropped based on the landmarks
predicted in the previous stage, gradually converging to
the optimal facial landmarks in a coarse-to-fine regression
framework.

To address the specific needs of an A-pillar camera in
vehicles, we adapted the Transformer-based SLPT [31] algo-
rithm into a head pose-aware format. In constructing our head
pose-aware network, a head pose module was incorporated
into the SLPT. The emphasis for this enhancement was the
starting point of regression, the mean face initial point. While
conventional facial regression networks utilize a traditional
two-dimensional (2D) mean face initial point, our approach
integrates it with head pose estimation, resulting in a head
pose-aware initial point. The head pose estimation network
uses the multi-task network (MTN) [51]. MTN is a head
pose estimation approach that utilizes a stacked hourglass
(HG) [53] encoder-decoder network architecture. Within this
architecture, an additional head pose encoder is connected to
the bottleneck of the encoder, enabling the estimation of a
3D head pose. Once this 3D head pose is obtained, it is used
to rotate the 3D face model, specifically AFLW [54]. After
that, a 2D projection is done, which results in the creation of
our head pose-aware initial points. In the subsequent stages
of our algorithm, these initial points are refined into nine
optimized eye-nose initial points. Only these selected points
are then input into the SLPT [31] regression module. This
method leads to the precise determination of the regressed
pupil center. A step-by-step breakdown of this regression
process can be illustrated in Figure 3.

B. 9-POINT ALIGNMENT FOR PUPIL LOCALIZATION FROM
A-PILLAR CAMERAS
Traditional facial keypoints alignment algorithms predomi-
nantly target the full facial region, relying on comprehensive
keypoints such as 98 points [23] and 68 points [55], [56].
However, our primary objective is the precise localization
of the pupil center. Thus, instead of looking at all facial
keypoints, we selectively concentrated on essential facial
points specific to our study. Utilizing the full set of facial
keypoints for pupil localization can cause inaccuracies.
Specifically, the algorithm learns to minimize the error loss
across all keypoints. Consequently, under dynamic illumina-
tion conditions encountered in vehicular settings, or due to
facial motions, inaccuracies in the regression of points such as
face boundary points or mouth points can increase alignment
errors in the pupil center. For instance, when using A-pillar
cameras in vehicles, the challenges are manifold: occlusions
from hands on the steeringwheel, wearables like caps causing
shadowing, or even dynamic movements of the mouth, which
are unrelated to pupil movements. To focus exclusively on
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TABLE 1. Performance evaluation of our proposed model across various WFLW [23] test subsets, measured using NME, FR10, and AUC10 metrics.

FIGURE 4. Example images (WFLW dataset [23]) with 9-point alignment
for pupil localization. Instead of the conventional full facial keypoints
commonly used in public face databases, we adopt a set of points
optimized specifically for pupil center localization in our
Transformer-based regression network. This consists of 9 selected points,
excluding those such as face boundary and mouth landmarks that could
decrease the precision of pupil localization regression.

the pupil center localization, we carefully selected keypoints
robust against varied illumination, occlusion due to driving,
and facial poses via an A-pillar camera.

Through extensive testing with diverse facial images
captured from the A-pillar, we identified an optimal set of
nine points suited to our objectives.While driversmainly look
ahead, we considered head rotations of up to approximately
30 degrees to either side to ensure clear visibility while
driving. Given this angular assumption, we utilized our
keypoint selection to ensure the visibility of both the
endpoints of the eyes. As a result, we opted for keypoints as
follows: the medial canthus, lateral canthus, and pupil center
from the eyes, bridge of the nose, nose tip, and subnasale.
Figure 4 visualizes these nine selected points.

In our proposed head pose-aware Transformer-based pupil
regression algorithm, these keypoints are used during the
head pose-aware initial points phase. As shown in the first
and second steps of Figure 3, our algorithm first utilizes
the full facial keypoints, for example, the 98 points in
WIDER Facial Landmarks in-the-wild (WFLW) [23], for
user head pose estimation. After determining the head pose,
our system transitions to the Transformer-based regression
phase, avoiding the full facial keypoints and adopting the

FIGURE 5. Visualization of our proposed method for pupil center
localization using the public face dataset, WFLW [23]. Red dots represent
the pupil centers, while the green dots illustrate the remaining 7 eye-nose
landmarks.

specialized 9-point scheme introduced in this paper (3rd step
in Figure 3). Rather than using all facial landmarks, our
method generates sparse local patches from these 9 eye-nose
keypoints. This refined input is then processed through the
Transformer-based landmark regression to precisely adjust
these 9 keypoints (4th to 6th steps in Figure 3).

IV. EXPERIMENTAL RESULTS
In this research, we evaluated our proposed head pose-aware
pupil localization algorithm on the popular public dataset,
WFLW [23], as well as our in-house dataset captured from
A-pillar cameras mounted in real vehicles.

A. DATASETS
In the absence of a dedicated benchmark dataset for remote
pupil localization, we have chosen the WFLW dataset [23]
as a suitable alternative for our evaluations. Recognized
for its comprehensive and challenging nature in the facial
keypoints alignment domain, the WFLW dataset provides a
robust platform to assess the effectiveness of our proposed
pupil localization method across a variety of driving con-
ditions. It is comprised of facial images taken from wild
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TABLE 2. Performance evaluation of our proposed model across various
in-house test subsets, measured using NME, FR10, and AUC10 metrics.

environments. It contains 7,500 training images and 2,500
test images, each annotated with 98 keypoints. The dataset
is categorized based on six attributes: pose, expression,
illumination, make-up, occlusion, and blur. Additionally, it’s
grouped into 62 diverse categories such as parades and
sports. Particularly, it incorporates a significant amount of
challenging pose data. Thus, it’s suited for training and
testing our A-pillar camera-based head pose-aware pupil
localization algorithm. Unlike other famous datasets like
300W [56], which lacks pupil center localization annotation,
the 98 annotations ofWFLW include the pupil center, making
it an ideal primary experimental dataset for our purposes.

To enhance the validation of our algorithm, we not
only relied on public datasets but also created an in-
house dataset. This dataset was generated from cameras
mounted on the A-pillar of vehicles, capturing diverse head
poses of real drivers. The recordings were made with six
volunteers simulating driving scenarios, which were captured
in a resolution of 1920 × 1080. For the application of
our head pose-aware localization algorithm, we processed
these images by manually cropping only the facial regions
and subsequently resizing them to 256 × 256 dimensions
for optimal input. It’s important to note that the distance
between the driver and the A-pillar-mounted camera was
approximately 0.5 meters. Abiding by our study’s premise,
which assumes that drivers mainly face forward but might
rotate their heads up to 30 degrees on either side for better
visibility, we curated a final test dataset of 100 images. Our
tests were specifically limited to head poses where both
lateral canthus were clearly visible. These 139 test images
underwent manual nine eye-nose keypoint annotation by our
team. Of these, 77 represent drivers looking straight ahead,
while 62 capture slight lateral head movements within around
the 30-degree range. All human participants in this study
provided their informed consent.

B. EVALUATION METRICS
For our head pupil center localization task, we adopted
standard metrics widely used in facial keypoint localization
studies. A key metric for accuracy is the Normalized Mean
Error (NME), for which we adopt a normalization process
inspired by [23]. In this statistic, the distance between the
outer corners of the eyes termed the ‘‘inter-ocular’’ distance,
is used as the normalization factor. In addition to the NME,
we also utilized two more metrics: the Failure Rate (FR)
for sufficiency and the Area Under the Curve (AUC) for
reliability. The FR represents the proportion of test images

FIGURE 6. Visualization of our proposed method for pupil center
localization using an in-house dataset. Images show various poses
captured inside a vehicle with a camera positioned at the A-pillar. Red
dots denote the pupil centers, while green dots highlight the remaining
7 eye-nose landmarks.

where the NME exceeds a given threshold. On the other
hand, the AUC provides a measure of the area under the
Cumulative Error Distribution (CED) curve. In this study,
we standardized the thresholds for both FR and AUC to 10%.

C. IMPLEMENTATION DETAILS
For our pupil localization task, we designed our network
model utilizing the PyTorch framework and executed the
computations on an Ubuntu 20.04.6 LTS system equipped
with an RTX 4090 (24GB) GPU. All training and testing
images were manually cropped based on facial bounding
boxes and resized to a uniform resolution of 256 × 256. Our
pupil regression algorithm uses the adaptive head pose-aware
initial keypoints for each individual face. These specially
modified head pose initial points were derived using a pre-
trained model from MTN [51] head pose estimation. Once
these head pose-informed initial points were obtained, they
were combined with the cropped facial image to train the
SLPT [31] regression model. For the CNN-based feature
extraction within the SLPT model’s architecture, we used
HRNetW18C [52] as the backbone network. The training
process maintained hyperparameters in the original SLPT
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TABLE 3. Performance comparison highlighting the effects of head pose
and number of points used in WFLW [23] dataset. Metrics include NME,
FR10, and AUC10. Performance was calculated for all the keypoints
alignment.

TABLE 4. Performance comparison highlighting the effects of head pose
and number of points used in our custom in-house dataset. Metrics
include NME, FR10, and AUC10. Performance was calculated for only pupil
center alignment.

implementation, using a batch size of 32 and a learning rate
of 0.001.

D. EVALUATION ON WFLW
Weconducted an evaluation of our proposedmethod using the
publicly available WFLW dataset [23]. In our experiments,
we utilized 2,500 images from the WFLW dataset for testing.
Across all test datasets, our method achieved an NME of
2.79%, an FR10 of 1.28%, and an AUC10 of 0.731. In the
pose subset of the WFLW, which includes a diverse range of
facial poses, the NME slightly increased to 5.28%, indicating
a more challenging subset compared to the entire dataset.
Detailed results from the evaluation across the six attribute
subsets of theWFLWdataset can be found in Table 1. Figure 5
provides visual examples from the WFLW test dataset,
especially focusing on challenging images featuring distinct
poses and occlusions, further demonstrating the effectiveness
of our proposed method.

E. EVALUATION ON IN-HOUSE DATASET
To further validate the robustness of our proposed algorithm,
we evaluated its performance on a set of 139 images from
our in-house dataset. Across this dataset, the proposed pupil
localization method yielded an NME of 2.96%, an FR10 of
0.72%, and an AUC10 of 0.707. Upon analyzing the in-house
dataset results, we observed an NME of 2.67% in the front
subset and 3.32% in the side subset. Interestingly, due to
the distinct positioning of the A-pillar mounted camera, the
front subset, where the driver mainly faces forward, showed
a slightly higher NME. Detailed outcomes from this in-house

FIGURE 7. Comparison of the ground truth, face alignment results of the
original SLPT [31], and our proposed regression method on faces with
various poses, blur, make-up, and occlusion from WFLW [23]. Detected
pupil centers are emphasized and enlarged in red boxes for clarity.

evaluation are tabulated in Table 2. Figure 6 shows a variety
of results from both the front and side subsets of our in-house
dataset, further demonstrating the algorithm’s performance
across different orientations.

V. DISCUSSION
Our proposed method shows outstanding performance on
both the challenging and widely recognized WFLW [23]
public face dataset and our custom in-house dataset, which
captures driver faces directly from an A-pillar camera.
Specifically, the algorithm achieves an NME of 2.79%, FR of
1.2%, and AUC of 0.731 on the entire WFLW test dataset.
Furthermore, to verify the effectiveness and potential of our
head pose-aware pupil localization, we tested it on various
subsets of WFLW, including the pose attribute subset. Even
in such challenging subsets, the algorithm still demonstrated
impressive performance with an NME of 5.28%, FR of
6.14%, and AUC of 0.524, despite a slight decline compared
to the complete dataset results.

For a more realistic evaluation, in addition to the public
WFLW dataset, we also assessed our algorithm’s perfor-
mance on our in-house dataset captured from an A-pillar
mounted camera in vehicles. This dataset is divided into front
and side subsets, specifically capturing the varied head poses
typical in driving scenarios. On this dataset, the algorithm
achieves an NME of 2.96% on the entire dataset, 2.67% on
the front subset, and 3.32% on the side subset. Interestingly,
while the in-house dataset registers a slightly higher NME
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of 2.96% compared to the 2.79% of the WFLW [23] full
test dataset, this can be attributed to the inherently greater
pose variations in the in-house dataset due to the unique
positioning of the A-pillar mounted camera. The front subset
of our custom in-house dataset outperforms the pose subset
of WFLW, achieving an NME of 2.67% compared to 5.28%.
This can be attributed to our experimental setup in the in-
house dataset, which ensures clear visibility of both eyes and
excludes extreme head poses such as 90-degree rotations.
Notably, in our in-house dataset, the FR demonstrates
excellent results, with a remarkable 0% in the front subset,
which aligns with our study’s premise that drivers primarily
face forward. In the side subset, where head rotation of up
to 30 degrees is considered, the FR is still low at 1.61%,
indicating sufficient and robust performance even under
moderate head pose variations. Additionally, considering the
3D margin of AR 3D HUDs [3], our results demonstrate
high accuracy for commercial applications. Furthermore, our
method’s AUC of 0.707, a comprehensive indicator of overall
reliability, highlights the reliability and robustness of our
approach in diverse driving conditions.
Effects of Head Pose and 9-Point Alignment:
Our proposed method integrates two primary elements:

head pose estimation and an optimized set of eye-nose
keypoints for precise pupil localization. We validated the
effectiveness of our method on the WFLW dataset [23].
Given that our pupil regression algorithm is derived from
the SLPT [31], which utilizes a full set of 98 facial
keypoints, we conducted an ablation study using this model
as a foundation. We analyzed the influence of our primary
components on established metrics such as NME, FR, and
AUC, with detailed results presented in Table 3 and Table 4.
Performance metrics in Table 3 were determined for all the
keypoint alignments, whereas those in Table 4 focused solely
on the accuracy of pupil center points.

It’s important to emphasize that head pose estimation
is an integral component of our algorithm. As shown
in Table 3, integrating pose estimation with the original
SLPT [31] led to a decrease in NME from 4.14% to 4.09%.
Additionally, we observed a reduction in FR by 0.28%
and an improvement in AUC by 0.007, marking overall
performance enhancements. Also shown in Table 4, which
presents the evaluation of our in-house data, indicates that
integrating pose estimation with the original SLPT led to
a decrease in NME from 1.56% to 1.53%. Furthermore,
we noted an improvement in AUC by 0.003, signifying
overall performance enhancements. Subsequently, we eval-
uated the efficacy of our proposed 9-point scheme for
pupil localization. When compared to the 98-point facial
recognition method enhanced with head pose estimation,
our 9-point approach resulted in a decrease in NME from
4.09% to 2.79%, a reduction in FR from 2.48% to 1.28%,
and an increase in AUC from 0.602 to 0.731. Similarly,
for another dataset, the 9-point method brought the NME
down from 1.53% to 1.31% and increased the AUC from
0.847 to 0.869. This analysis clearly demonstrates that

FIGURE 8. Comparative analysis of performance metrics in various head
poses. This figure illustrates the NME, FR10, and AUC10 for our remote
pupil localization method. The metrics are compared across different
in-house test subsets, including moderate head poses (front, side) and
extreme poses.

both the head pose integration and our customized 9-point
configuration enhance the original SLPT’s performance.
Figure 7 provides a visual representation of our findings
on the WFLW dataset, contrasting the ground truth, the
original SLPT, and our pupil localization technique, thereby
highlighting the precision of our detection method. To further
investigate the performance of our method in extreme head
poses, we conducted additional experiments and presented
the results in Figure 8. This figure illustrates the performance
of our method in scenarios with head poses exceeding
60 degrees. As shown, while our method performs well
in moderate head pose variations, there is a noticeable
performance drop in scenarios with extreme head poses,
indicating an area for future enhancements.

Our approach improves upon the original SLPT by
recognizing the user’s head pose and modified initial points
closely to optimal locations using head pose information,
enhancing regression accuracy. Additionally, by eliminating
unnecessary points and focusing solely on essential key-
points for pupil regression, our method minimizes errors
caused by irrelevant points, resulting in superior quantitative
performance.

A. COMPARISON WITH EXISTING APPROACHES
To demonstrate the competence of our algorithm, we con-
ducted a comparison with the existing state-of-the-art facial
keypoint regression algorithms. Our evaluations, particularly
on the public WFLW dataset [23], are presented in Table 5.
Impressively, our method outperforms previous approaches
across all performance metrics, including NME, FR, and
AUC. It’s worth emphasizing that our method registered
an NME of 2.79% on the full WFLW dataset, surpassing
the most competitive state-of-the-art method, ADNet [26],
which achieved 4.14%. Furthermore, when evaluating the
WFLW pose subsets, our algorithm stands out distinctly. The
best performance from existing methods recorded an NME
of 6.96%, whereas ours achieved 5.28%. Our algorithm,
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TABLE 5. Comparing with state-of-the-art methods on WFLW [23]. The
best results are marked in bold. Metrics include NME, FR10, and AUC10.

TABLE 6. Computational complexity of our method and state-of-the-art
methods.

similar to other state-of-the-art methods, exhibited decreased
performance on the pose subset compared to the full dataset.
This reduction in performance was due to the pose subset
predominantly comprising large-angle head poses, which
inherently presented greater challenges for accurate pupil
localization. A comprehensive comparison between our
novel algorithm and state-of-the-art deep learning techniques,
specifically LAB [23], SAN [22], LUVLi [25], AWing [24],
ADNet [26], and SLPT [31], is provided in Table 5.
Among heatmap regression methods, ADNet [26] showed
performance nearly comparable to the Transformer-based
method, SLPT [31]. However, by integrating head pose
estimation information and our optimal eye-nose 9 points,
our results surpass both ADNet and SLPT. In addition to
performance metrics, we have also addressed computational
complexity, as detailed in Table 6. Our algorithm, while
exhibiting higher computational complexity than some state-
of-the-art methods, demonstrates a necessary trade-off to
achieve higher accuracy and robustness, especially in A-pillar
mounted camera scenarios. This balance of complexity
and effectiveness aligns with [58], where increased system
sophistication leads to improved adaptability and precision
in dynamic environments.

Differentiating from facial landmark point alignment
technologies, studies exclusively dealing with remote eye
tracking are relatively sparse. They either do not offer

precision in pupil center localization, or they use varying test-
ing datasets, making direct comparisons on public datasets,
similar to those used for facial keypoint alignment, practically
impossible. It’s also notable that many of these prior works
rely on front cameras instead of A-pillar mounted ones.
For instance, the study in [6] developed a driver fatigue
monitoring system based on the TCDCN method, using
a front camera. While they achieved a 95% drowsiness
detection rate using their custom in-house dataset, they did
not provide the precision of pupil center localization. Their
lack of reliance on the A-pillar camera suggests they did not
account for diverse head poses. Our primary reference for
remote pupil localization, [3], utilized two distinct methods
for scenarios with and without sunglasses, ensuring coverage
for occlusions. Their evaluation spanned both their in-house
dataset and the public WFLW dataset. On the WFLW, their
sunglasses tracker registered a 7.43% NME while their bare
face tracker achieved 1.71% NME. Although their bare face
tracker, tested on a selected subset of WFLW where the
pupils were clearly visible, outperformed our method, a direct
comparison is complicated since our evaluation includes the
entire WFLW dataset [23], covering challenging cases with
various poses.

VI. CONCLUSION
In this paper, we have effectively integrated a head pose-
aware regression approach into traditional pupil localization
methods that primarily used facial keypoints alignment.
By understanding the relationship between a person’s pupil
position and head pose, our method ensures consistent
pupil center localization, even in different head poses.
Furthermore, with our proposed set of nine eye-nose points,
we’ve improved the accuracy of pupil detection, particularly
when other facial features might be hidden. Our method has
demonstrated strong performance on both the well-known
public WFLW dataset and our specific in-house dataset,
emphasizing its potential for commercial eye tracking using
A-pillar mounted cameras.

While our proposed method has yielded impressive results,
there were a few limitations in our study. One of the
limitations is the relatively small size of our in-house test
dataset, primarily due to the challenges associated with
manual keypoint labeling. Additionally, although the in-
house dataset was captured using A-pillar mounted cameras
in vehicles, it lacks diversity in terms of driving scenarios.
Conditions like low light environments, backlighting, varying
illumination levels, and occlusions were not extensively
covered. Creating a comprehensive dataset that includes
these scenarios is challenging, not only because of the
inherent risks associated with ensuring volunteer driving
safety but also due to the costs of manual labeling. Moreover,
our method currently struggles with extreme head poses,
particularly those exceeding 60 degrees, such as when the
driver looks towards the right side rear mirror at an angle
of 90 degrees. Addressing these extreme head poses presents
a significant opportunity for future research. Expanding our
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approach to integrate occlusion handling techniques with our
head pose-aware strategy could offer a more comprehensive
solution, enhancing the adaptability and effectiveness of our
method for a range of vehicular applications. This direction
is essential for developing a robust commercial solution that
can effectively handle significant head poses with A-pillar
mounted cameras. Furthermore, a deep study on optimizing
computational efficiency while retaining high performance
using pyramid interconnection networks [59] may provide a
more efficient study for remote pupil tracking.
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