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ABSTRACT Micro-earthquakes are frequently associated with volcanic activity and are vital indicators of
volcanic processes. These minor seismic events occur within or near volcanic systems, yielding valuable
insights into subsurface activities. Geologists meticulously record and analyze these events to monitor
volcanoes and forecast eruptions.While recent years have seen several studies proposing automated detection
and classification systems of seismic events, approaches based on Manifold Learning techniques could be
beneficial in terms of information interpretability and transfer learning to other Machine Learning tasks.
This paper presents a novel approach employing audio features and psychoacoustic scales to represent
micro-earthquakes at Cotopaxi and Llaima Volcanoes, and these representations are then transformed into
low-dimensional latent spaces. We implemented a multi-class classification system for events generated by
these volcanoes, incorporating feature selection techniques based on audio-inspired features. This approach
enhances the detection of volcanic phenomena triggering eruptions and improves interpretability. Our results
indicated high accuracy, with rates of 94.44% for Llaima Volcano and 95.45% for Cotopaxi Volcano when
utilizing mutual information to select the most relevant features. Spectral Roll-off Point and Spectral Flux
dominate in classifying events for both volcanoes. These findings suggest that low-dimensional latent spaces,
particularly when utilizing spectral features, can be a promising foundation for developing transfer learning
schemes in general, and new multi-class classification systems in particular, for detecting volcanic micro-
earthquakes.

INDEX TERMS Audio features, latent space separability, manifold learning, micro-earthquake
classification, mutual information.

I. INTRODUCTION
Around the world, institutions in charge of monitoring active
volcanoes, such as Cotopaxi in Ecuador and Llaima in Chile,

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino .

have installed several seismic monitoring stations equipped
with high-precision instruments capable of recording seismic
signals that travel through the ground. The purpose of
these seismic networks is to continuously monitor volcanic
activity to determine possible upheaval behavior that may
force authorities to generate early warning strategies for the

20624

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1340-3234
https://orcid.org/0000-0001-7519-3167
https://orcid.org/0000-0001-6916-6082
https://orcid.org/0000-0002-4866-184X
https://orcid.org/0000-0003-0426-8912
https://orcid.org/0000-0001-8848-9928
https://orcid.org/0000-0003-4200-2584


C.-P. Bernal-oñate et al.: Volcanic Micro-Earthquake Classification With Spectral Manifolds

population at risk of an imminent eruption [1], [2]. In this
way, those monitoring networks are intended to minimize the
catastrophic consequences that could occur due to a volcanic
eruption.

Numerous studies have been conducted over the years
in seismic event detection and classification. These studies
vary primarily in terms of methodology and tools employed
to identify the type of seismic event. For instance, in [3],
a classifier was developed by extracting 79 features related to
time, frequency, and scale domains. The classifier considered
metrics such as the Gini index, the drag rule, and the standard
deviation. This system achieved an approximate classifi-
cation accuracy of 95% for Long-Period (LP), Volcano-
Tectonic (VT), and Hybrid (HB) events from Cotopaxi
volcano (Ecuador). Similarly, in [4], a study of signals
from Nevado del Ruiz (Colombia) demonstrated distinctions
among various seismic events based on a stochastic-type
measure applied to a wide range of time-varying features.
The classification accuracy for LP, VT, HB, and Tremors
(TR) events achieved by this system was approximately
88%. On the other hand, in [5], the authors utilized a
deep-learning framework to detect and classify LP and VT
events from the Cotopaxi volcano, achieving a classification
accuracy of 97%. Another noteworthy example can be found
in [6], where the authors compared several neural networks
and deep-learning architectures to classify LP, VT, HB,
TR, and Tectonic (TEC) events. Their system achieved an
impressive classification accuracy of 98%. Another approach
for the analysis of seismic signals from volcanoes is the
proposal of [7] that uses the databases of the Popocatépetl
and Volcán de Fuego in Colima (Mexico), and through
the parameterization of seismic data using Mel Frequency
Cepstral Coefficients as features used in Hidden Markov
Models to classify the 7 events contained in the databases
obtaining an accuracy over 78%. Following this line of
research in [8] proposes using Linear Prediction Coefficients
(LPC) and statistical properties as features to feed deep neural
networks obtaining varied results for the 7 types of events of
the Volcán de Fuego. In [9] they propose the use of Bayesian
Neural Networks together with the extraction of features
proposed in [8] to improve the Volcán de Fuego classifier, for
which it uses the Volcán de Fuego features for the training
and testing set and for the blind tests with Mount St. Helens
(USA) and Peteroa (Chile) volcanoes. Finally, in [10] the use
of recurrent neural networks to detect and classify the events
of the Deception Island Volcano in Antarctica using LPC
and Logarithmic Filter Banks (LFB), this database contains
only 5 types of events and its results are over 90%. These
studies collectively illustrate the diversity of approaches and
the effectiveness of various methodologies in classifying
seismic events, providing valuable insights into the field of
vulcanology.

Despite this variety of existing works, and to the best of
our knowledge, a few efforts have been made to scrutinize
the possibilities of Manifold Learning (MnL) techniques in

volcanic event classification. MnL is a set of techniques for
finding low-dimensional representations of high-dimensional
data by assuming that said data have some intrinsic, low-
dimensional, geometrical structure. They were extremely
popular in machine learning in the 2000s, mostly for data
visualization. MnL seeks to find a method to generalize
to all data structures by applying differential geometry to
machine learning. The fundamental assumptions [11] are:
(1) There exist nonlinear relationships in the data that
can be modeled with manifolds, this is, surfaces that are
smooth, not too complex, and continuous, and span multiple
dimensions; (2) It is not important to maintain the shape
of the original data, but; (3) If each data point preserves
the distance with the close ones, the geometric relationships
can be maintained. Clustering, dimensionality reduction,
and many semi-supervised and supervised machine learning
algorithms can be used with great advantage in applications
whose data are well represented by manifolds [12]. Several
methods have been proposed for MnL, which initially
focused on visualization, but their practical relevance was
then reinforced. Latent-variable models aim to explain the
surface structure of the data with some underlying hidden
variables [13], and their advantages include dimensionality
reduction (and subsequently, increased robustness to overfit-
ting), generalization improvement, and especially, suitability
for transfer learning for other machine-learning related tasks,
as well as interpretability and visualization in their analysis.
However, it is important to evaluate empirically how these
techniques can affect the performance of a specific data
model in a given practical problem. Additionally, these
models provide interpretability and visualization capabilities
crucial for the in-depth analysis of volcanic datasets.
However, it is paramount to empirically evaluate how these
MnL techniques can impact the performance of specific data
models in the context of volcanic event detection. By bridging
the gap between traditional methodologies and the innovative
applications offered by MnL, our study aims to shed light on
the potential of these techniques for advancing the field of
vulcanology.

In this work, we characterize and classify the different
types of micro-earthquakes generated by the eruptive process
of volcanoes, for which we use the databases of Cotopaxi
and Llaima Volcanoes, which as a common denominator
are strato volcanoes. In contrast to previous work in
which frequency, voice, LFB, statistical properties or time
characteristics were extracted to feed a machine-learning
classifier, we start from the assumption that using audio and
voice analysis with psychoacoustic scales can better represent
the evolution in frequency and time of micro-earthquakes.
In this sense, a total of 14 features are extracted with linear
and nonlinear scales divided into 32, 64, 128, and 256 bands.
The use of frequency features and psychoacoustic scales are
associated with the term instantaneous feature, short-term
feature, low-level feature, or audio descriptor is generally
used for measurements that generate one value per (short)
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block of audio samples. An instantaneous feature is not
necessarily significant from a musical, musicological, or per-
ceptual point of view, which would be the case for a signal
of volcanic origin, so it is often referred to as a low-level
feature. A low-level feature can be a basis for constructing
higher-level features describing more meaningful properties
of the (musical) signal [14]. In this context, we use several of
these features over time to increase the amount of information
delivered to the classifier through a windowing process that
somehow preserves certain features in time, helping with
the classification process. With all these features, manifold
algorithms visualize low-dimensional latent spaces where the
relationships between micro-earthquake classes for different
volcanoes can be observed and analyzed. Autoencoders are
also used to generate latent spaces, and classifiers of several
micro-earthquakes are built by supervised learning to obtain
objective metrics such as accuracy, precision, and sensitivity.
From the obtained results, the features, scales, and bands
that better represent the evolution in time and frequency of
the different types of micro-earthquakes are chosen. For a
systematic selection of features, a technique based on mutual
information (MI) is also used to determine the relevance
of each feature in the performance of the classifier and its
contribution to the dynamics of the eruptive process of the
volcanoes [15]. Based on all these analyses, we were able to
establish similarities between the micro-earthquake events at
Cotopaxi and Llaima Volcanoes.

The remainder of the manuscript is organized as follows.
Section II reviews the main concepts of manifold algorithms,
psychoacoustic audio scales, and feature selection methods.
Section III describes the databases and the features used in
this work. Section IV presents the main results obtained using
supervised learning autoencoders, together with the analysis
of the most relevant features. Finally, Section V concludes
this work and foresees relevant future lines of research.

II. BACKGROUND
A. MANIFOLD LEARNING
High-dimensional datasets are difficult to analyze due to
different issues known as curse of dimensionality [16].
Therefore, dimensionality reduction techniques are used to
transform data to lower-dimensional subspaces for better
representation [17]. Usually, representing high-dimensional
structured data within a low-dimensional latent space allows
us to find a compressed state containing a small set
of essential and informative variables. Traditional and
machine-learning manifold algorithms are presented below.

1) TRADITIONAL MANIFOLD ALGORITHMS
Many linear dimensionality reduction techniques, such as
principal component analysis (PCA), have been developed
to simplify the representation of high-dimensional datasets.
These algorithms choose a linear projection of the data
according to specific rules. Although these techniques are
powerful, they often overlook essential nonlinear structures

in the data. On the other hand, t-distributed stochastic
neighbor embedding (t-SNE) converts affinities of data points
into probabilities [18]. Joint Gaussian probabilities represent
affinities in the original space, while students’ t distributions
represent affinities in the embedded space. This featuremakes
t-SNE quite sensitive to local structures, revealing structures
at many scales.

Unlike t-SNE, uniform manifold approximation and pro-
jection (UMAP) is a general nonlinear dimensional reduction
technique. This algorithm is based on three assumptions
about the data [19]: (i) data are uniformly distributed on a
Riemannian manifold, (ii) the Riemannian metric is locally
constant (or it can be approximated as such), and (iii) the
manifold is locally connected.

2) MACHINE-LEARNING MANIFOLD ALGORITHMS
Compact representations of data are essential to machine and
deep learning since lower dimensional data representations
permit automatic feature extraction [20]. Thus, manifold
learning is a machine-learning scheme that enables the map
of observed high-dimensional data into a low-dimensional
embedded space. Despite the existence of specific tech-
niques to carry out MnL in machine learning, autoencoders
have emerged as flexible and valuable manifold learners.
An autoencoder is an artificial neural network based on
unsupervised learning with a particular architecture to learn a
lower-dimensional encoding from higher-dimensional input
data. In this way, the neural network architecture can
be trained to capture the intrinsic structure of the input
data within each encoding and use this information to
perform quantitative and qualitative analyses on the learned
associations.

The autoencoder architecture consists of an encoder and
a decoder. The encoder compresses the input data xi into
an encoding symbol hi, and the decoder decompresses the
encoding hi, reconstructing the input data as an approximated
output (or estimation) x̂i [20]. The encoding hi represents the
autoencoder input data in the latent space (or bottleneck).

Encoder and decoder architectures can be extended to
include multiple hidden layers, providing increased represen-
tational capacity. These layers are trained similarly to other
artificial neural networks, with the objective of minimizing
the difference between the input xi and the output x̂i of
the network [21]. Mathematically, this can be expressed as
follows for an autoencoder with L multiple hidden layers:

h(1)i = φ(1)(W (1)
e xi + b(1)e ) (1)

h(2)i = φ(2)(W (2)
e h(1)i + b(2)e ) (2)

· · · (3)

h(L)i = φ(L)(W (L)
e h(L−1)

i + b(L)e ) (4)

x̂i = ϕ(Wd h
(L)
i + bd ) (5)

where h(l)i denotes the encoding at the l-th layer in the
latent space corresponding to the input xi, φ(l)(·) and ϕ(·) are
nonlinear transformations, W (l)

e is the weight matrix of the
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TABLE 1. Selected audio-based features to be extracted from windowed
volcanic signals.

encoder at layer l, b(l)e is the bias vector of the encoder at layer
l, Wd is the decoder weight matrix, and bd is the decoder
bias vector. During training, weights and biases (i.e., W (l)

e ,
Wd , b(l)e , and bd ) are adjusted using a set of samples such
that x̂i ≈ xi. Common loss functions include mean squared
error and cross-entropy.

B. AUDIO FEATURES, SCALES, AND SELECTION
Psychoacoustic scales have been used to extract features for
voice and audio analysis and for characterizing, analyzing,
and modeling many other types of signals [22], [23], [24].
The psychoacoustic scales aim to extract information from
audio signals regarding the perceptual characteristics of the
environment and the listener [25]. Considering the physical
nature of audio signals, the best results are usually obtained
by analyzing them in the frequency domain and considering
that the response of the auditory nerve is logarithmic. This
has led to the development of a series of scales based on
critical bands (i.e., filter banks that attempt to represent the
response of the auditory nerve) and psychoacoustic tests.
Thus, the most relevant scales in this field are the Mel, Bark,
and Equivalent Rectangular Bandwidth (ERB) scales [14],
[26]. Many masking phenomena can be explained regarding
sound frequency ranges known as critical bands. A critical
band can be related to a bandpass filter whose frequency
response roughly corresponds to the tuning curves of auditory
neurons. In psychoacoustic experiments, a critical band
defines a frequency interval in which perception changes
abruptly when a narrow-band sound stimulus is modified
to have frequency components beyond the band. When
two competing sound signals pass energy through a critical
band filter, the sound with higher energy within the critical
band dominates perception and masks the other sound [27].
The shapes of critical band filters have been determined in
experiments in which broadband low-pass or high-pass noise
is used to mask a tone. As the cutoff frequency of a low-pass
noise is increased beyond the tone frequency f . An analytical
expression that maps the frequency f to the critical band rate

m is:

m = 2595 log10

(
1 +

f
700

)
(6)

called Mel scale [27], the mapping is approximately linear in
frequency up to 1kHz and logarithmic at higher frequencies,
such tonal frequency can be adjusted to the sampling
frequency ranges of micro-earthquakes. The analytical rep-
resentation of the Bark scale can be found [28], and that for
the ERB scale in [29].
The number of frequency bands into which each scale

can be divided is variable and is typically a power of 2.
This processing in the frequency domain and based on
psychoacoustic scales can help us extract features such as
centroids, kurtosis, and many others from these frequency
bands, resulting in a more extensive representation of the
speech and audio signals. In this work, 14 spectral features
were used, as detailed in Table 1. These features can be
extracted linearly or logarithmically using scales divided into
32, 64, 128, and 256 bands.

A widely used feature selection method is Statistical
Dependence (SD). Its goal is to measure whether the values
of a feature depend on the associated class labels or whether
the two coincide by chance. Each feature value is first
quantized at one of the QS levels, where the feature-specific
quantization scale is adaptively determined so that each bin
will contain approximately the same number of samples
across the entire data set [30]. SD is typically measured as
MI, which is given by:

MI =

∑
y∈Y

∑
z∈Z

p(y, z)
p(y, z)
p(y)p(z)

(7)

where the probability p(·) of each bin y and each class z is
computed by frequency of occurrence. The MI score allows
the user to rank the features, selecting the ones with the
highest values.

III. PROPOSED METHOD AND DATASET
The proposed system evaluates the separability of micro-
earthquakes of Cotopaxi and Llaima Volcanoes in a
three-dimensional latent space using machine-learning algo-
rithms and mutual information for feature selection. The aim
is to visualize and analyze these latent spaces corresponding
to several volcanic events and classify them among LP, VT,
and REG for Cotopaxi Volcano and among LP, VT, TR, and
TEC for Llaima Volcano. The main steps of the proposed
methodology are shown in Figure 1 and can be summarized
as follows:

1) Preliminary processing, including signal conditioning
and noise removal, generates 60-second sequences for
both volcanoes.

2) Fourteen audio features are extracted from the
sequences, which serve as inputs to the different
network architectures
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FIGURE 1. Pipeline of the proposed approach for feature reduction and classification of micro-earthquakes in Cotopaxi and Llaima Volcanoes.

FIGURE 2. Two-dimensional cut of the spectrograms of Cotopaxi Volcano events using a 100-Hz sampling frequency: (a) LP, (b) VT, and (c) REG
events.

3) Mutual information and automatic feature selection are
used to reduce the number of features and improve
network performance.

4) In parallel, latent spaces are observed using t-SNE,
PCA, and UMAP techniques to assess existing sepa-
rability. Also, autoencoders are used to generate latent
spaces. Original features with and without feature
selection are analyzed.

5) Classifiers based on artificial neural networks are used
to detect the different types of micro-earthquakes of the
two volcanoes.

All this analysis is focused on two datasets of micro-
earthquakes. The first one is available from the ESeismic1

repository [31], which is the first annotated Ecuadorian
volcano seismic public repository, and the second one is

1ESeismic Repository was provided by courtesy of the IGEPN
and collaborators, and it is available at http://www.igepn.edu.
ec/eseismic_web_site/index.php

available from Mendeley Data repository,2 which is the first
annotated Chilean volcano seismic public dataset [6].

The first repository contains a dataset named MicSigV1,
which has been obtained from Cotopaxi Volcano, located
in Ecuador (latitude 0◦41’05’’ S and longitude 78◦25’54.8’’
W). This dataset contains a total of 1187 independent
micro-earthquakes recorded at two different seismic stations
installed on flanks of the volcano and sampled at 50 Hz
and 100 Hz, respectively. These particular recordings have
been extracted, identified, and labeled by experts at the
IGEPN from continuous monitoring seismogram recordings.
The dataset contains samples distributed in five classes
corresponding to LP, VT, REG, HYB, and Icequakes (ICE),
and distributed as follows: NLP = 1044, NVT = 101,
NREG = 27, NHYB = 8, and NICE = 7. Since the last
types of events are scarce, all of them have been labeled as

2Llaima dataset was provided by courtesy of the Observatorio
Vulcanológico de los Andes Sur (OVDAS). It is available at
http://dx.doi.org/10.17632/dv8nwdd36k.1
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FIGURE 3. Two-dimensional cut of the spectrograms of the typical Llaima Volcano events using a 100-Hz sampling frequency: (a) LP, (b) VT,
(c) TEC, and (d) TR events.

others. Micro-earthquakes at Cotopaxi Volcano have a typical
duration below 60 seconds.

The second dataset was obtained from Llaima Volcano
in Chile (latitude 38◦41’ S and longitude 71◦44’ W).
This dataset contains 3592 independent micro-earthquakes
recorded at one of the seven seismic stations deployed at
Llaima Volcano and sampled at 100 Hz. These particular
recordings have been normalized using their maximal values
and labeled by the specialists from OVDAS. The dataset
contains samples distributed in four classes corresponding to
LP, VT, TR, and TEC, and distributed as follows: NLP =

1310, NVT = 304, NTR = 490, and NTEC = 1488. Micro-
earthquakes at Llaima Volcano also have a typical duration
below 60 seconds.

IV. EXPERIMENTS AND RESULTS
This section presents the outcomes of our experiments along
with relevant details regarding the various steps involved

in data processing, including preprocessing and feature
extraction, feature selection, low-dimensional representation,
classification, and sensitivity analysis. The methodology
employed in this study is illustrated and summarized in
Figure 1.

A. PREPROCESSING AND FEATURE EXTRACTION
The Cotopaxi Volcano database encompasses five types of
events, but the hybrids and icequakes together total only
15 instances. Initially, we worked with the entire database
and obtained promising results. However, due to the limited
number of signals from these events, we found that the
results lacked generalization. Therefore, we focused on the
three event types with more signals (i.e., LP, VT, and REG),
restricting the duration to a maximum of 60 seconds and
upsampling all the signals to 100 Hz. Figure 2 shows the
spectrograms of typical examples of LP, VT, and REG events.
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TABLE 2. Classification results for different scales and the number of
bands in Cotopaxi Volcano.

TABLE 3. Centroids and standard deviation for UMAP, t-SNE, PCA and
autoencoders with 3848 Cotopaxi volcano features.

TABLE 4. Classification results for different scales and number of bands
in Llaima Volcano.

Conversely, the Llaima Volcano database comprises four
event types (i.e., LP, TEC, TR, and VT) with a maximum
duration of 60 seconds. Figure 3 depicts the spectrograms
for these typical Llaima events. The evolution of the different
events was analyzed within a 60-second time frame, enabling
the observation of micro-earthquake development.

From the signals of Cotopaxi and Llaima Volcanoes,
we extracted 14 features using psychoacoustic scales and a
sliding window size of 100 samples. A rectangular window
with 80% overlap was employed, resulting in 296 values
for each of the 14 features. The Harmonic Ratio feature,
containingmany zeros, was excluded. Consequently, the final
dataset included 3848 features for each event. TheMImethod
was then utilized for feature reduction.

Then, a supervised classifier based on autoencoders
was employed to assess the effectiveness of feature

TABLE 5. Predominant features according to Mutual Information for
Llaima Volcano.

reduction. Our proposed autoencoder architecture included a
low-dimensional projection encoder generating a
3-dimensional latent space with four layers (32, 16, 8, and
3 neurons) using the leaky-ReLU layer activation function.
This encoder was linked to a classifier based on neural
networks composed of three hidden layers (10, 20, and
30 neurons) with the hyperbolic tangent activation function
and a final softmax layer. The complete network was trained
with 70% of the database for training and 30% for testing,
aiming to create low-dimensional embeddings that minimize
classification errors and allow for comparisons of relative
separations among different classes.

The network training process involved extracting features
from all signal segments, conducting the training process
in batches, and calculating results in terms of accuracy
(A), precision (P), and recall (R), given by the following
equations:

A =

N∑
i=1

TP(i)

Ns
(8)

P =
1
N

 TP(1)
N∑
j=1

E(j, 1)

+ . . . +
TP(N )

N∑
j=1

E(j,N )

 (9)

R =
1
N

 TP(1)
N∑
j=1

E(1, j)

+ . . . +
TP(N )

N∑
j=1

E(N , j)

 (10)

where TP(i) is the true positives for class i, E(i, j) is the errors
made when class i is classified as class j,N is the total number
of samples, and Ns is the number of classes.

B. COTOPAXI VOLCANO
Cotopaxi Volcano’s database was initially unbalanced, and
linear features were extracted using the MEL, BARK, and
ERB psychoacoustic scales in 32, 64, 128, and 256 bands.
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FIGURE 4. Embedding spaces represented as three latent variables for (a) t-SNE, (b) PCA, (c) UMAP, and (d) supervised autoencoder,
using 3848 ERB-32 scale features from Cotopaxi Volcano. In blue are LP events, in orange are VT events, and in red are REG events.

However, results were inconsistent for the MEL and BARK
scales. Consequently, we focused on linear psychoacoustic
scales and ERB with 32 bands. Figures 4(a), 4(b), and 4(c)
illustrate the latent spaces obtained for t-SNE, PCA, and
UMAP, respectively, with 3848 features. While separability
among the three types of events is observable, the abundance
of LP events limits the comparison to the other types.
Feature reduction using Mutual Information (MI) was
attempted due to the deterministic nature of t-SNE, PCA,
and UMAP mappings. Table 2 demonstrates that the ERB
psychoacoustic scale outperforms the linear one, reaching
95.45% accuracy with 3848 features and 270 training epochs.
Feature reduction did not enhance results, but relevant
features identified by the MI method included the Spectral
Rolloff Point and Spectral Flux. The imbalance among
Cotopaxi different events primarily influences classification
behavior. Additionally, Figure 2(d) displays the latent space
using autoencoders with the same 3848 features, revealing
clustering of volcanic events similar to t-SNE, PCA, and
UMAP.

The latent spaces presented in this study can be a subjective
form of analysis as the events are represented in three
dimensions, so we calculate the centroids in Table 3, together
with the standard deviation of the Euclidean distance of each
point with respect to the centroid. If we observe the σ values,
the highest values correspond to the PCA technique, which
indicates that the points are more dispersed with respect to
the centroids; in the case of t-SNE, σ is low with respect to
the centroids, but two point clusters can confuse the classifier.
In the case of UMAP and the autoencoders, the σ value is low
and the points with respect to the centroid have reasonable
values, so we considered the most suitable techniques to work
with the classifier.

C. LLAIMA VOLCANO
Following the Cotopaxi results, Llaima Volcano analysis
used only the ERB psychoacoustic scale with 32 bands
and all 3848 features. MI feature reduction was employed,
and results are tabulated in Table 4. Ac can be seen, the
classifier with the best performance used the top 400 features.
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FIGURE 5. Embedding spaces represented as three latent variables for (a) t-SNE, (b) PCA, (c) UMAP, and (d) supervised autoencoder,
using 400 ERB-32 scale features from Llaima Volcano. In black are TEC events, in green LP events, in light blue TR events, and in orange VT events.

Table 5 shows that, unlike Cotopaxi, Llaima required only
400 features, with 99.66% being the Spectral Rolloff Point.
The Spectral Flux was less critical than in Cotopaxi. Latent
spaces using t-SNE, PCA, UMAP, and autoencoders (for
150 training epochs) are shown in Figures 5(a), 5(b), 5(c),
and 5(d), respectively, indicating separability among the four
types of events.

For the Llaima volcano, we also calculated the centroids
and the standard deviation of the Euclidean distance, and
the results are presented in Table 6. If we observe the
results and the σ values as in the Cotopaxi volcano,
we could conclude that the autoencoders and the PCA have
the best performance, but here as the database is better
balanced, we can see that for the PCA case, the centroids
of the 4 events are very close to each other, which could
confuse the events, so as in the case of Cotopaxi, the
autoencoders are repeated considered as the best results for
classification.

D. OTHER TECHNIQUES
To validate the MI results and rule out overfitting, we con-
trasted our feature selection with the random forest tech-
nique [32]. Notable results are summarized in Table 7,
showing a close agreement with MI outcomes. The only
relevant improvement for the linear features of the Cotopaxi
volcano, but it is corroborated that the ERB-32 features have
a better performance. As for which are the most relevant
features selected by the random forest technique for the
Cotopaxi volcano is the Spectral RolloffPoint with 122 out
of 296 corresponding to 41.22%, followed by Spectral Flux
with 31 out of 296 corresponding to 10.47%. For the Llaima
Volcano, it is Spectral RolloffPoint with 198 out of 296,
which corresponds to 66.89%. Continuing with the analysis,
the Cotopaxi database was merged with the Llaima database
to observe how general the characteristics were found for
this. The REG events of Cotopaxi were matched with the
TC of Llaima, obtaining results close to those obtained by
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TABLE 6. Centroids and standard deviation for UMAP, t-SNE, PCA and
autoencoders with 400 LLaima volcano features.

TABLE 7. Classification results using random forest for feature selection
for Cotopaxi and Llaima volcanoes.

TABLE 8. Results of the classification of merging the bases of Cotopaxi
and Llaima volcanoes.

separate databases with an increase in the number of features,
as shown in Table 8.

In order to compare with the best option obtained with the
Llaima volcano, we have decided to set it at 400 to with a
reasonable result. On the other hand, it is maintained that the
main features are Spectral RolloffPoint and Spectral Flux.

E. THE MOST RELEVANT FEATURES
Based on both volcanoes, it is crucial to utilize the Spectral
Rolloff Point for event classification. Furthermore, we can
also observe the presence of the Spectral Flux in both cases.
The Spectral Rolloff Point represents the 95th percentile of
the power spectral distribution, and it serves to differentiate
between voiced and unvoiced speech. Unvoiced speech tends
to have a significant amount of energy in the high-frequency
range of the spectrum, while voiced speech and music
predominantly concentrate their energy in lower-frequency
bands. This measurement quantifies the skewness of the
spectral shape, with higher values indicating a right-skewed
distribution [33].
On the other hand, Spectral Flux (Delta Spectrum

Magnitude) is the 2-norm of the frame-to-frame spectral
amplitude difference vector. Generally, music has a higher
rate of change and goes through more drastic frame-to-frame

TABLE 9. Comparison of techniques for classifying Cotopaxi and Llaima
Volcano events.

changes than speech does. Thus, this value is higher for
music than for speech. Note that speech alternates periods
of transition (consonant – vowel boundaries) and periods of
relative stasis (vowels), where music typically has a more
constant rate of change. This method is similar to Hawley’s,
which attempts to detect harmonic continuity in music [33].

If we make an analogy with the voice and music from
which these two characteristics come, they seek to find
the voiced and unvoiced sounds and the evolution from an
unvoiced sound to a voiced one. Thus, these features are
indispensable for the classification of the events of Cotopaxi
and Llaima Volcanoes, with the hypothesis that the LP events
are considered as voiced, the VT as unvoiced, and the other
events they are considered as an evolution to go from voiced
to unvoiced.

Finally, comparisons with other techniques are presented
in Table 9. Firstly, in [3], the classification of three events
(i.e., LP, VT, and HYB) for Cotopaxi Volcano was performed,
achieving an accuracy percentage of 95.80%, compared
to the 95.45% we have just obtained. It is important to
note that the method we use exhibits lower dimensionality.
Secondly, in [6], the SeismicNet network, a variant of
the SoundNet network [34], is proposed for classifying
the four types of events at Llaima Volcano. This system
obtained a recall of 93.87% and an accuracy of 98.04%,
in contrast to our results of 93.69% and 94.44%, respectively.
Whereas the performance in classification can be considered
as comparable, these results show that they can be obtained
with a highly simplistic network scheme in comparison with
these deep models, assuming that the input space is expressed
in terms of spectral representations.

V. DISCUSSION AND CONCLUSION
The micro-earthquakes produced by the eruptive process of
volcanoes are subject to significantly changing dynamics,
challenging to model, and almost impossible to predict.
In this work, we used the databases of two volcanoes
whose main similarity is strato volcanos. The rest of the
characteristics differ in their sizes, the amount of snow, and
many others. However, their location concerning populated
sites for a possible eruption is essential. We used a variety of
spectral characteristics in both cases based on features that
are well-known in audio digital processing.

Aiming to gain interpretability of the results in the
multi-class classifiers, we scrutinized three different
manifold algorithms for identifying unsupervised and
intrinsic separability among the different classes and
autoencoder-based architectures that were subsequently used
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to yield supervised classifiers. Latent spaces were checked
to be low-dimensional, representing evidence for using these
and other machine-learning schemes with advantage in the
problem of multi-class micro-earthquake classification. Data
from other volcanoes could exhibit this property by following
our methodology.

Other ways of parameterization could be used, for
example, features in the time domain. In [3], we already
established a mixture of time and frequency characteristics,
obtaining reasonable results, but it was observed that the
most relevant were those extracted in the frequency domain,
in addition to the fact that noise affected them less. At the
beginning of the research, certain features were tested in the
time domain, obtaining varied results, and when introducing
infrequent events such as those of the Cotopaxi volcano,
they confused the classifier, obtaining results between 50%
and 60% accuracy. In the end, the linear features were
discarded, and only the ERB-32 was used. These obtained
features conserve certain information in time since they are
the product of a signal windowing over time.

From our results, the extraction of psychoacoustic charac-
teristics, specifically the ERB scale, showed great versatility
in classifying LP, VT, and other events regardless of the
volcano. UsingMI to reduce the number of features improved
the classifier results considerably. Latent spaces were a
helpful tool for visualization and checking for overfitting
in this case. Moreover, the suitability of low-dimensional
latent spaces for supporting multiclass data-driven schemes
shows that transfer learning could be readily done in
this kind of signal, and other machine learning paradigms
will be exploited with advantage in this setting. Finally,
interpretability can also be attained, for instance, in terms of
the inter-class separation among classes that can be observed
in the 3-dimensional maps.

We could determine by using MI that two features are
predominant for the two volcanoes: Spectral Rolloff Point
and Spectral Flux. In audio-digital processing, these mea-
surements allow for characterizing the voiced and unvoiced
sounds and their evolution of passing from one to the
other as used in voice and audio applications. There is the
presumption that the LP events are considered to be voiced
and the VT events are unvoiced. As for the others, they remain
as an evolution towards passing from voiced to unvoiced
and vice versa. In a broader context, when referring to
voiced signals, it is considered that said signals concentrate
more narrow-band energy and tend to be more predictable.
On the other hand, unvoiced signals are more similar to noise,
so their analysis is more complicated when classifying them.

The results obtained demonstrate that various volcanoes
share similarities in their micro-earthquake activities. This
finding paves the way for a new paradigm in volcano
analysis, where a generalized approach can be employed.
Such an approach would facilitate the development of
volcano-independent algorithms capable of improving the
current generation of detection algorithms by leverag-
ing insights from various volcanic sources. In essence,

this article underscores the audio feature similarities in
micro-earthquake signals between different volcanoes, point-
ing toward the potential for a more advanced generation of
algorithms that surpass current methods.

The classification accuracy obtained was high for both
volcanoes. However, improvements need to be addressed
shortly to yield online surveillance systems based on
multi-class classifiers of this kind. The imbalance in the
number of events and their very different duration has
to be considered. Some other events are scarce and were
not considered here, as documented in the experiments.
Nevertheless, the low-dimensional latent spaces exhibited
separability among classes using adequate spectral features,
thus opening new doors to their consideration and adaptation
in studying and monitoring these and other volcanoes.

REFERENCES
[1] B. A. Chouet, ‘‘Long-period volcano seismicity: Its source and use in

eruption forecasting,’’ Nature, vol. 380, no. 6572, pp. 309–316, Mar. 1996.
[2] B. A. Chouet and R. S. Matoza, ‘‘A multi-decadal view of seismic methods

for detecting precursors of magma movement and eruption,’’ J. Volcanol.
Geothermal Res., vol. 252, pp. 108–175, Feb. 2013.

[3] R. Lara-Cueva, P. Bernal, M. G. Saltos, D. S. Benítez, and
J. L. Rojo-Alvarez, ‘‘Time and frequency feature selection for seismic
events from Cotopaxi Volcano,’’ in Proc. Asia–Pacific Conf. Comput.
Aided Syst. Eng., 2015, pp. 129–134.

[4] D. Cárdenas-Peña, M. Orozco-Alzate, and G. Castellanos-Dominguez,
‘‘Selection of time-variant features for earthquake classification at the
Nevado–del–Ruiz Volcano,’’ Comput. Geosci., vol. 51, pp. 293–304,
Feb. 2013.

[5] F. Lara, R. Lara-Cueva, J. C. Larco, E. V. Carrera, and R. León, ‘‘A deep
learning approach for automatic recognition of seismo-volcanic events
at the cotopaxi volcano,’’ J. Volcanology Geothermal Res., vol. 409,
Jan. 2021, Art. no. 107142.

[6] J. P. Canário, R. Mello, M. Curilem, F. Huenupan, and R. Rios, ‘‘In-
depth comparison of deep artificial neural network architectures on seismic
events classification,’’ J. Volcanol. Geothermal Res., vol. 401, Sep. 2020,
Art. no. 106881.

[7] G. Cortés, R. Arámbula, L. A. Gutiérrez, C. Benítez, J. Ibánez, P. Lesage,
I. Alvarez, and L. Garcia, ‘‘Evaluating robustness of a HMM-based
classification system of volcano-seismic events at Colima and popocatepetl
volcanoes,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol. 2,
2009, pp. 1012–1015.

[8] M. Titos, A. Bueno, L. García, and C. Benítez, ‘‘A deep neural networks
approach to automatic recognition systems for volcano-seismic events,’’
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 5,
pp. 1533–1544, May 2018.

[9] A. Bueno, M. Titos, L. García, I. Álvarez, J. Ibañez, and C. Benítez, ‘‘Clas-
sification of volcano-seismic signals with Bayesian neural networks,’’ in
Proc. 26th Eur. Signal Process. Conf. (EUSIPCO), 2018, pp. 2295–2299.

[10] M. Titos, A. Bueno, L. García, M. C. Benítez, and J. Iba nez, ‘‘Detection
and classification of continuous volcano-seismic signals with recurrent
neural networks,’’ IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4,
pp. 1936–1948, Apr. 2019.

[11] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K.-R. Müller, ‘‘A unifying review of deep
and shallow anomaly detection,’’ Proc. IEEE, vol. 109, no. 5, pp. 756–795,
May 2021.

[12] P. Baldi, ‘‘Autoencoders, unsupervised learning, and deep architectures,’’
in Proc. ICML Workshop Unsupervised Transf. Learn., 2012, pp. 37–49.

[13] X.Kong, X. Jiang, B. Zhang, J. Yuan, and Z. Ge, ‘‘Latent variablemodels in
the era of industrial big data: Extension and beyond,’’ Annu. Rev. Control,
vol. 54, pp. 167–199, 2022.

[14] A. Lerch,An Introduction to Audio Content Analysis Applications in Signal
Processing and Music Informatics. Piscataway, NJ, USA: IEEE Press,
2012.

20634 VOLUME 12, 2024



C.-P. Bernal-oñate et al.: Volcanic Micro-Earthquake Classification With Spectral Manifolds

[15] R. Battiti, ‘‘Using mutual information for selecting features in supervised
neural net learning,’’ IEEE Trans. Neural Netw., vol. 5, no. 4, pp. 537–550,
Jul. 1994.

[16] R. Bellman and R. Kalaba, ‘‘On adaptive control processes,’’ IRE Trans.
Autom. Control, vol. 4, no. 2, pp. 1–9, Nov. 1959.

[17] B. Ghojogh, M. Crowley, F. Karray, and A. Ghodsi, Elements of
Dimensionality Reduction and Manifold Learning. Berlin, Germany:
Springer, 2023.

[18] A. J. Izenman, ‘‘Introduction to manifold learning,’’ Wiley Interdiscipl.
Rev., Comput. Statist., vol. 4, no. 5, pp. 439–446, Sep. 2012.

[19] L. McInnes, J. Healy, and J. Melville, ‘‘UMAP: Uniformmanifold approx-
imation and projection for dimension reduction,’’ 2018, arXiv:1802.03426.

[20] W. H. López-Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli,
‘‘Autoencoders,’’ in Machine Learning. Amsterdam, The Netherlands:
Elsevier, 2020, pp. 193–208.

[21] S. E. Chazan, S. Gannot, and J. Goldberger, ‘‘Deep clustering based on a
mixture of autoencoders,’’ in Proc. IEEE 29th Int. Workshop Mach. Learn.
Signal Process. (MLSP), Oct. 2019, pp. 1–6.

[22] C. P. Bernal Oñate, F.-M. Melgarejo Meseguer, E. V. Carrera, J. J. Sánchez
Muñoz, A. García Alberola, and J. L. Rojo Álvarez, ‘‘Different ventricular
fibrillation types in low-dimensional latent spaces,’’ Sensors, vol. 23, no. 5,
p. 2527, Feb. 2023.

[23] C.-P. Bernal-Oñate, E. V. Carrera, F.-M. Melgarejo-Meseguer,
R. Gordillo-Orquera, A. Garcí-A-Alberola, and J. L. Rojo-álvarez,
‘‘Atrial fibrillation detection with spectral manifolds in low-dimensional
latent spaces,’’ IEEE Access, vol. 11, pp. 103364–103376, 2023.

[24] K. Kalgaonkar, R. Hu, and B. Raj, ‘‘Ultrasonic Doppler sensor for
voice activity detection,’’ IEEE Signal Process. Lett., vol. 14, no. 10,
pp. 754–757, Oct. 2007.

[25] L. R. Rabiner andR.W. Schafer,Theory and Applications of Digital Speech
Processing, 1st ed. London, U.K.: Pearson, 2011.

[26] V. Pulkki and M. Karjalainen, Communication Acoustics an Introduction
to Speech, Audio and Psychoacoustics. Hoboken, NJ, USA: Wiley, 2015.

[27] D. O’Shaughnessy, Speech Communications Human andMachine, 2nd ed.
Hoboken, NJ, USA: Wiley, 1999.

[28] H. Traunmüller, ‘‘Analytical expressions for the tonotopic sensory scale,’’
J. Acoust. Soc. Amer., vol. 88, no. 1, pp. 97–100, Jul. 1990.

[29] B. R. Glasberg and B. C. Moore, ‘‘Derivation of auditory filter shapes from
notched-noise data,’’ Hear. Res., vol. 47, nos. 1–2, pp. 103–138, 1990.

[30] J. Pohjalainen, O. Räsänen, and S. Kadioglu, ‘‘Feature selection methods
and their combinations in high-dimensional classification of speaker
likability, intelligibility and personality traits,’’ Comput. Speech Lang.,
vol. 29, no. 1, pp. 145–171, Jan. 2015.

[31] N. Pérez, D. Benítez, F. Grijalva, R. Lara-Cueva, M. Ruiz, and J.
Aguilar, ‘‘ESeismic: Towards an ecuadorian volcano seismic repository,’’
J. Volcanol. Geothermal Res., vol. 396, May 2020, Art. no. 106855.

[32] W.-Y. Loh, ‘‘Regression trees with unbiased variable selection and
interaction detection,’’ Statistica Sinica, vol. 12, pp. 361–386, Apr. 2002.

[33] E. Scheirer and M. Slaney, ‘‘Construction and evaluation of a robust
multifeature speech/music discriminator,’’ in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., Apr. 1997, pp. 1331–1334.

[34] Y. Aytar, C. Vondrick, and A. Torralba, ‘‘SoundNet: Learning sound
representations from unlabeled video,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 892–900.

CARLOS-PAUL BERNAL-OÑATE (Member,
IEEE) received the Graduate degree in electronics
and telecommunications engineering fromEscuela
Politécnica del Ejército (ESPE), Ecuador, in 2000,
and the master’s degree from the Military Institute
of Engineering (IME), Rio de Janeiro, Brazil,
in 2005. He is currently pursuing the Ph.D. degree
in information and communication technologies
with King Juan Carlos University, Spain. He is
also a Principal Professor with the Electric,

Electronics and Telecommunications Department, Universidad de las
Fuerzas Armadas—ESPE. His research interests include digital speech
processing, adaptive filtering, deep learning, and machine learning.

ENRIQUE V. CARRERA (Senior Member, IEEE)
received the bachelor’s degree in electronic engi-
neering from Armed Forces University—ESPE,
Ecuador, in 1992, the master’s degree in elec-
trical engineering from the Pontifical Catholic
University of Rio de Janeiro, Brazil, in 1996,
and the Ph.D. degree in computer engineering
from the Federal University of Rio de Janeiro,
Brazil, in 1999. He was a Visiting Scholar
with the University of Rochester, USA, in 1999.

From 2000 to 2004, he was a Postdoctoral Associate with the Department
of Computer Science, Rutgers University, USA. He was also an Associate
Professor with the University of San Francisco of Quito, Ecuador,
from 2004 to 2011. Since 2011, he has been a Professor with Universidad de
las Fuerzas Armadas—ESPE. He has also been collaborated as an external
Professor with King Juan Carlos University, Spain, since 2015. He has
participated in approximately 20 research projects, and holds more than
100 scientific publications in recognized journals and conferences with more
than 3400 citations. His main research interests include signal processing and
artificial intelligence.

FRANCISCO-MANUEL MELGAREJO-
MESEGUER received the bachelor’s degree in
telecommunication engineering and the master’s
degree from Miguel Hernández University, Elche,
Spain, in 2014 and 2016, respectively, and the
Ph.D. degree in multimedia and communications
from King Juan Carlos University, Madrid,
in 2019. From 2015 to 2019, he was a Predoctoral
Fellow with Hospital Clínico Universitario Virgen
de la Arrixaca, Murcia. In 2019, he was an

Assistant Professor with the University of Murcia. Since 2020, he has
been an Associate Professor with King Juan Carlos University, specializing
in bio-signal processing, deep learning, and machine learning, with over
15 publications and 100 citations. His research interests include statistical
learning methods for signal and image processing, the study of arrhythmia
mechanisms, the development of robust signal processing techniques,
addressing inverse problems in cardiology sensors, and applying data science
to seismic signal processing.

RODOLFO GORDILLO-ORQUERA received the
B.Sc. degree in electronic and telecommunications
engineering and theM.Sc. degree from the Faculty
of Electronic Engineering, Escuela Politécnica del
Ejército, Ecuador, in 1996 and 2002, respectively,
and the Ph.D. degree in information and com-
munication technologies from Universidad Rey
Juan Carlos, Spain, in 2019. He is currently a
Principal Professor with the Electric, Electronics,
and Telecommunications Department, Universi-

dad de las Fuerzas Armadas (ESPE), Sangolquĺ, Ecuador. His research
interests include machine learning, dynamical systems, adaptive systems,
and intelligent control systems.

VOLUME 12, 2024 20635



C.-P. Bernal-oñate et al.: Volcanic Micro-Earthquake Classification With Spectral Manifolds

JOSÉ LUIS ROJO-ÁLVAREZ (Senior Member,
IEEE) received the B.Sc. degree in telecommu-
nication engineering from Universidade de Vigo,
in 1996, and the Ph.D. degree in telecommuni-
cation engineering from Universidad Politécnica
de Madrid, in 2000. He is currently a Full Pro-
fessor with the Department of Signal Theory and
Communications, Universidad Rey Juan Carlos,
Spain. He has coauthored over 160 international
articles and contributed to over 180 conference

proceedings. His research interests include statistical learning methods
for signal and image processing, arrhythmia mechanisms, robust signal
processing methods, inverse problems in cardiology sensors, and data
science for seismic signal processing.

ROMÁN A. LARA-CUEVA (Senior Member,
IEEE) received the B.Eng. degree in electronic
and telecommunications engineering fromEscuela
Politécnica Nacional, Quito, Ecuador, in 2001,
the M.Sc. degree in wireless systems and related
technologies from Politecnico di Torino, Turin,
Italy, in 2005, and the M.Sc. and Ph.D. degrees
in telecommunication networks for developing
countries from Rey Juan Carlos University, Fuen-
labrada, Spain, in 2010 and 2015, respectively.

In 2002, he joined the Departamento de Eléctrica, Electrónica y Telecomuni-
caciones, Universidad de las Fuerzas Armadas—ESPE, Sangolquĺ, Ecuador,
where he has been an Associate Professor, since 2005, and since 2016,
he has been a Full Professor, where he founded and heads the Ad Hoc
Network Research Center (CIRAD) and the Smart Systems Research Group
(WiCOM-Energy), Universidad de las Fuerzas Armadas—ESPE, and also
he has been collaborated as an external Professor with King Juan Carlos
University, Spain, since 2017. He received the Prize to the Best Junior
Researcher from Universidad de las Fuerzas Armadas—ESPE, in 2014, and
a Best Researcher from IEEE Ecuador Section, in 2017. He has authored
more than 50 refereed conference papers on topics related to wireless
communications, signal processing, andmachine learning. He is the author or
coauthor of 13 publicly funded research projects and directed eight. His main
research interests include digital signal processing and machine learning
theory applied to wireless communications systems and volcano seismology,
also in the scope of the Internet of Things by developing smart gadgets for
smart cities. He has served as the Chair of IEEE Communications Society
Ecuador, from 2020 to 2021.

20636 VOLUME 12, 2024


