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ABSTRACT Homomorphic encryption (HE) enables third-party servers to perform computations on
encrypted user data while preserving privacy. Although conceptually attractive, the speed of software
implementations of HE is almost impractical. To address this challenge, various domain-specific
architectures have been proposed to accelerate homomorphic evaluation, but efficiency remains a bottleneck.
In this paper, we propose a homomorphic evaluation accelerator with heterogeneous reconfigurable
modular computing units (RCUs) for the Brakerski/Fan-Vercauteren (BFV) scheme. RCUs leverage
operator abstraction to efficiently perform basic sub-operations of homomorphic evaluation such as residue
number system (RNS) conversion, number theoretic transform (NTT), and other modular computations.
By combining these sub-operations, complex homomorphic evaluation operations like multiplication,
rotation, and addition are efficiently executed. To address the high demand for data access and improve
memory efficiency, we design a coordinate-based address encoding strategy that enables in-place and
conflict-free data access. Furthermore, specific optimizations are performed on the core sub-operations such
as NTT and automorphism. The proposed architecture is implemented on Xilinx Virtex-7 and UltraScale+
FPGA platforms and evaluated for polynomials of length 4096. Compared to state-of-the-art accelerators
with the same parameter set, our accelerator achieves the following advantages: 1) 2.04× to 3.33× reduction
in the area-time product (ATP) for the key sub-operation NTT, 2) 1.08× to 7.42× reduction in latency for
homomorphic multiplication with higher area efficiency, and 3) support for a wider range of homomorphic
evaluation operations, including rotation, compared to other BFV-based accelerators.

INDEX TERMS BFV, hardware acceleration, homomorphic encryption, number theoretic transform.

I. INTRODUCTION
Homomorphic encryption (HE), first proposed in 1978 [1],
has gained widespread attention for its ability to perform
computation directly on ciphertexts. The first HE construc-
tion that can execute an unlimited number of homomorphic
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multiplication and addition operations is realized by Gen-
try [2] in 2009. The first-generation scheme suffers from large
ciphertext sizes and high computational costs. Therefore,
multiple present-generation HE schemes such as BFV [3],
[4], BGV [5], CKKS [6], and TFHE [7] have been proposed
with different functionalities and better performance. While
HE schemes remain computationally intensive, the ability
to process private data in a secure environment makes
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them well-suited for cloud computing. Users can upload the
encrypted data to the cloud, allowing the cloud server to
perform computations without gaining access to sensitive
information. Homomorphic evaluation has been extensively
studied and successfully applied to implement neural net-
works and machine learning algorithms [8], [9], [10].
Among the various HE schemes, we specifically target

the Brakerski/Fan-Vercauteren (BFV) scheme due to its
support for integer arithmetic, batch processing, and wide
applicability. The BFV scheme has been broadly imple-
mented in several software libraries, such as SEAL [11],
FV-NFLlib [12], and OpenFHE [13]. The complexity of
the BFV scheme arises from the multiplication of large-
degree polynomials and the computation between large
coefficients. The former challenge can be solved by the
number theoretic transform (NTT), which is a variant of
the fast Fourier transform (FFT) in a finite field [14]. The
latter challenge can be solved by the residue number system
(RNS), which utilizes sets of small bit-width integers to
represent large coefficients [15]. These two methods help
reduce computational complexity by avoiding the need for
expensive multi-precision arithmetic in CPU, but the speed
of software implementation remains unsatisfactory.

Homomorphic evaluation, which is the most complex
part of HE, has been the focus of numerous works. Many
previous works focus on accelerating low-level arithmetic
operations such as modular multiplication [16] and NTT [17],
but neglect the frequent data interaction costs with software-
implemented functions. GPU implementations [18], [19]
and FPGA-based accelerators [20], [21], [22], [23] show
remarkable speedup compared to general-purpose CPUs.
Cheetah [24] is the first ASIC accelerator to support private
inference based on the BFV scheme. As a relatively new
algorithm, homomorphic evaluation still requires further
improvements in processing speed and efficiency to enhance
the practicality of HE-based privacy-preserving applications.

In this paper, we present a heterogeneous reconfigurable
accelerator to further improve the efficiency of homomorphic
evaluation based on an RNS variant of BFV called Halevi-
Polyakov-Shoup (HPS) [25], [26]. We implement and
evaluate the design on Xilinx Virtex-7 and UltraScale+
FPGA platforms using polynomials of degree 4096. The
contributions of this paper are listed as follows.
1) Based on the frequency statistics of common operators

in homomorphic evaluation operations, we discover that
heterogeneous computing is more suitable for accel-
erating the BFV scheme. A reconfigurable computing
unit (RCU) that consists of three types of processing
elements (PEs) is built upon this finding, aiming to
balance resource utilization and computing efficiency.

2) After splitting the homomorphic evaluation into basic
sub-operations such as NTT, RNS conversion, key
switching, and other modular computations, we map
the sub-operations efficiently on the RCU to achieve
lower latency. Besides, to the best of our knowledge, our

accelerator is the first BFV evaluation accelerator that
can support the HE rotation operation.

3) For efficient management of internal data move-
ment, we propose a coordinate-based address encoding
scheme to address the issue of data interleaving within
and between polynomials. The proposed scheme ensures
in-place data storage and conflict-free data access
throughout the entire process.

4) We implement the core sub-operation NTT and the
overall accelerator on Xilinx Virtex-7 and UltraScale+
FPGA platform respectively, to evaluate the perfor-
mance in practice. The implementation results show that
our accelerator achieves the following improvements: 1)
2.04× to 3.33× improvement in the area-time product
(ATP) compared to other NTT designs [17], [23], [27],
[28], [29], 2) 1.08× to 7.42× reduction in latency for
homomorphic multiplication with higher area efficiency
compared to other BFV accelerators [21], [22], [23].

The remainder of this paper is organized as follows.
Section II provides a review of HE based on the BFV
scheme, as well as an overview of the basic operations
involved in homomorphic evaluation. Section III analyzes the
heterogeneous nature of homomorphic evaluation computa-
tions and discusses the specification of the heterogeneous
RCU. The overall architecture and optimization details
of the proposed accelerator are described in Section IV,
and Section V presents the implementation results and
comparisons. Section VI concludes the paper.

II. PRELIMINARIES
A. BFV SCHEME
During homomorphic evaluation, each operation introduces
noise growth, and decryption will fail when the accumulated
noise exceeds the tolerance. The HE scheme that supports a
limited number (‘depth’) of operations is called leveled HE
(LHE), which can be transformed into fully HE (FHE) by
bootstrapping. Nevertheless, the bootstrapping mechanism
requires a large parameter set consuming plenty of resources.
Note that the BFV bootstrapping is seldom used in real-
life applications [24] and is currently not supported in any
open-source HE software library. Therefore, this paper only
introduces the leveled BFV scheme.

For A ≥ 2 (A ∈ Z), the set of integers in the symmetric
interval Z ∩ [−A2 ,

A
2 ) are denoted by ZA, and the operation

x modA is denoted by [x]A. There are three core parameters
{n, t, q} in the BFV scheme. The first parameter n denotes
the degree of the polynomial, and all computations in the
BFV scheme are performed in the polynomial ring R =
Z[x]/(xn + 1), where n is a power of 2. The other two
parameters t, q denote the plaintext (pt) modulus and the
ciphertext (ct) modulus respectively, i.e., the coefficients of
the pt and ct polynomials are elements of the ring Rt and
Rq respectively. The choice of parameter set will determine
the security level and the noise budget for the operations
performed on the ciphertext.
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FIGURE 1. BFV LHE scheme for private computing on the cloud.

The entire BFV-based LHE flow is shown in Fig. 1, and
the detailed description may follow [4]. We denote the public
key and secret key by {pk0, pk1} and sk respectively. For
Alice, the transmitted messages msg0 are first encoded to the
polynomial form m0 ∈ Rt . After encryption, the encoded
polynomials are hidden by three noise polynomials {u, e1, e2}
sampled from discrete Gaussian distribution and uploaded
to the cloud. Combining with the ciphertexts obtained from
other sources such as Bob or the cloud, homomorphic
evaluation operations between ciphertexts can be performed
in the cloud:
• FV.PAdd(pt, ct): pt-ct addition is achieved by {ct[0] +
⌊q/t⌋ · pt, ct0[1]}.

• FV.CAdd(ct0, ct1): ct-ct addition is achieved directly by
{ct0[0]+ ct1[0], ct0[1]+ ct1[1]}.

• FV.PMul(pt, ct): pt-ct multiplication can directly obtain
the results of {pt · ct[0], pt · ct[1]}:

• FV.CMul(ct0, ct1, rlk): ct-ct multiplication operation
consists of two steps:
– First, two ciphertexts are multiplied to obtain

a ciphertext ct ′× containing three ring elements
{ct0[0] ·ct1[0], ct0[0] ·ct1[1]+ct0[1] ·ct1[0], ct0[1] ·
ct1[1]}, and scales it by multiplying t/q.

– Then, ct ′× is reduced from three terms to two
with the relinearization key {rlk0, rlk1}. The
sk2 term is decomposed, then subjected to multiply-
accumulation operations with {rlk0, rlk1} respec-
tively, and finally the obtained results are added to
the other two terms.

• FV.Rot(ct0, rk): the rotation operation is provided to
rotate the ciphertext based on Galois automorphism
[30]. Except for the index mapping operation, the
rotation key rk is employed to make the rotated
ciphertext decryptable by the original sk .

Finally, the client who owns the private key sk can decrypt
the evaluation result.

B. IMPROVED RNS VARIANT OF BFV
To enable parallel computing, a large modulus q is split
into several small primes {q0, . . . , qk−1} which satisfies
q =

∏k−1
i=0 qi using RNS. Based on the decomposition,

arithmetic on Zq could be represented by the same operations
on Zqi . Computations with these smaller moduli can be

performed in parallel using lower bit-width arithmetic. Two
RNS variants named Bajard-Eynard-Hasan-Zucca (BEHZ)
[15] and HPS [25] have been applied to the BFV scheme
recently. Compared to BEHZ, which uses only complicated
integer operations and suffers from larger noise growth, the
HPS scheme adopts a mixture of floating-point and integer
operations, which has nearly the same noise growth as the
original BFV scheme and performs better in practice [31].
To improve the implementation efficiency, we adopt an
improved HPS scheme [26] with reduced computational
complexity.
For the RNS basis {q0, . . . , qk−1}, an integer x ∈ Zq can

be reconstructed from a group of xi (xi = [x]qi ) via Chinese
Remainder Theorem (CRT) by (1).

x = (
k−1∑
i=0

[xi · q̃i]qi · q
∗
i )− v · q, v ∈ Z, (1)

where q∗i =
q
qi
∈ Z, and q̃i = (q∗i )

−1 mod
qi ∈ Zqi . When performing homomorphic evaluation using
CRT, three operations are introduced in [25] and [26] for
conversions between different RNS bases: BaseExtend×→Q,
ModSwitchq→p, and ScaleDownQ→q, where p is a modulus
that is close in value to q and coprime with q (p =

∏k−1
j=0 pj),

and Q is a larger modulus with the value qp.
Definition 1: BaseExtendq→Q denotes the operation that

convert the input x from Rq to Rp.
To extend the RNS basis, [x]p is calculated as follows.

[x]pj =

[(
k−1∑
i=0

[xi · q̃i]qi · [q
∗
i ]pj

)
− v · [q]pj

]
pj

, (2)

v =

⌈
k−1∑
i=0

[xi · q̃i]qi
qi

⌋
. (3)

Definition 2: ModSwitchq→p denotes the process of per-
forming modulus switching on the input x from Rq to Rp.
After adopting Def. 1, the obtained [x̂]p = [⌈ pq · [x]q⌋]p is

calculated as follows.

[x̂]pj =

[
−

(
k−1∑
i=0

[xi · q̃i · p]qi · [q
−1
i ]pj

)
+ u

]
pj

, (4)

u =

⌈
k−1∑
i=0

[xi · q̃i · p]qi
qi

⌋
. (5)

Definition 3: ScaleDownQ→q denotes the process of con-
verting x from RQ back to Rq and scaling it by t/p.

Based on two CRT components xi = [x]qi and x
′
j = [x]pj ,

the scaling operation is computed as shown in (6).[⌈
t
p
· x
⌋]

qi

=


k−1∑
j=0

x ′j ·
tQ̃′jq

pj

+ xi · [tQ̃iq∗i ]qi

qi

, (6)

where Q̃i = [(q∗i p)
−1]qi , and Q̃′j = [(qp∗j )

−1]pj . For ease

of the hardware implementation, the values of
tQ̃′jq
pj

could
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FIGURE 2. Signal flow graph of DIT NTT and DIF INTT algorithms, where n = 16.

be pre-computed and split into the integer part ωj ∈ Zp
and decimal part θi ∈ [− 1

2 ,
1
2 ). For ease of hardware

implementation, the decimal part θi can be represented by
large bit-width fixed-point numbers without any impact on
security [21].

Since all constant values obtained only by q, p,Q can
be pre-computed, the HPS scheme performs as a hardware-
friendly approach without the divide-and-round operations.

C. POLYNOMIAL MULTIPLICATION
The naive approach of polynomial multiplication between
two polynomials of degree n consumes a complexity of
O(n2). Nevertheless, polynomial multiplication over the
ring can be transformed into coefficient-wise multiplication
(◦) by NTT to reduce the computational complexity to
O(n log2 n). To avoid doubling the polynomial length with
zero-padding and reducing modulo (xn + 1), the negative
wrapped convolution (NWC) technique is exploited [32]. Let
wn be a n-th primitive root of unity in Zq that satisfies wnn =
1 mod q, and q should satisfy q ≡ 1 (mod 2n). Before NTT,
the coefficients are weighted by a 2n-th primitive root of unity
ψ ∈ Zq (ψ2

= wn), i.e., {a0, ψ · a1, . . . , ψn−1
· an−1}. After

the inverse transformation INTT, the multiplication between
polynomial a(x) and b(x) with the reduction modulo xn+1 is
given by (7).

a(x) · b(x) mod (xn + 1) = (1, ψ−1, . . . , ψ−(n−1))◦

INTT(NTT(a(x)) ◦ NTT(b(x))). (7)

The polynomial a(x) with coefficients {a0, . . . , an−1} is
transformed to the NTT representation â(x) with coefficients

{â0, . . . , ân−1} by (8).

âi =
n−1∑
j=0

ajwijn mod q, i ∈ [0, n). (8)

Similar to the NTT operation, the INTT operation simply
replaces wn with w−1n and divides the final result by n:

ai =
1
n

n−1∑
j=0

âjw−ijn mod q, i ∈ [0, n). (9)

Similar to FFT, the basic operation of NTT could be
achieved by two types of butterfly: the Cooley-Tukey (CT)
butterfly [33] for the decimation-in-time (DIT) NTT and the
Gentleman-Sande (GS) butterfly [34] for the decimation-
in-frequency (DIF) NTT. NWC-based polynomial multipli-
cation can be further enhanced by combining NTT and
pre-processing together [35], INTT and post-processing
together [36], and performing shift and addition operations
during INTT in place of final multiplication by 1/n [37].
If the CT butterfly with native order to bit-reversed order
is used to perform NTT and the GS butterfly with inverse
order to perform INTT, the bit-reversal operation can be
avoided [36]. Similar to FFT, the radix-4 NTT could achieve
better throughput with the same resources compared to the
radix-2 NTT [38]. The signal flow graph of the radix-4 native
order to bit-reversed order DIT NTT and the inverse order
DIF INTT of a polynomial a(x) with n = 16 is shown
in Fig. 2, where pre-processing and post-processing are
merged into NTT and INTT, respectively. It can be observed
that additional bit-reversal operations on the polynomial

VOLUME 12, 2024 11853
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TABLE 1. Basic sub-operations in homomorphic evaluation operations.

FIGURE 3. Flow of CMul operation.

coefficients can be avoided while the rearrangement of the
twiddle factors between groups is required.

III. DESIGN OF HETEROGENEOUS RECONFIGURABLE
COMPUTING UNIT
A. COMPUTATION HETEROGENEITY OF HOMOMORPHIC
EVALUATION SUB-OPERATIONS
The homomorphic evaluation operations can be split into
several basic sub-operations including RNS conversion,
(i)NTT, modular addition (MA), modular multiplication
(MMUL), and modular multiply-accumulation (MMAC),
as listed in Table 1. Among these operations, the CMul
operation is the most complex in homomorphic encryption.
The flow of the CMul operation is shown in Fig. 3 where the
numbers next to the arrows indicate the number of input or
output polynomials, with each polynomial having a degree of
n. By adopting the improved HPS scheme [26], the number
of extended RNS bases k ′ reduces from k + 1 to k , thus
k ′ is only used to denote that the polynomials are in Rp.
Furthermore, the rotation operation consists of two steps:
polynomial permutation and key switching (KS). The KS
step comprises NTT, INTT, MMAC, andMA sub-operations,
displaying a similar computing flow to the Relinearization.
In the following, we will take these sub-operations as the

FIGURE 4. Occurrence frequency of each operator when n = 4096, k = 6.

foundation to perform operator abstraction and design the
accelerator architecture.

The existing homomorphic evaluation accelerators [21],
[22], [39], [40] tend to implement the sub-operations
directly but neglect the commonalities among sub-operations.
ReMCA [23] shows that the reconfigurable architecture that
implements different sub-operations on the same resource can
achieve better efficiency. Nevertheless, the adopted homo-
geneous architecture increases the mapping complexity of
the non-modular computations involved in RNS conversion.
Inspired by the design idea of domain-specific coarse-
grained reconfigurable architecture (CGRA) [41], we chose
to extract the basic operators from these sub-operations and
form heterogeneous reconfigurable PEs according to the
occurrence frequency of each operator. A typical example
with n = 4096, k = 6 is given in Fig. 4, which presents
the imbalance between different operators. Let fϱ denote the
occurrence frequency of each operator ϱ during the whole
homomorphic evaluation procedure. When the total number
of PEs equalsM , the number of PEs that contain the operator
ϱ should not be less than fϱ ·M .

Before determining the specific number of each operator
to be implemented, we need first to determine the PE archi-
tectures inside the RCU. To reduce the difficulty of mapping
sub-operations on the RCU, operator fusion is employed.
By fusing operators, frequently occurring operators such
as multiply-accumulation and butterfly operators can be
executed within a single PE. Taking into account the moduli
required by eachmodular computing unit (MU), the proposed
design template for the heterogeneous computing unit is
illustrated in Fig. 5, comprising three types of PE. Type-I
PEs include an equal number of modular adders, modular
subtractors, and modular multipliers, which are responsible
for most modular computations and can be reconfigured
as different modes. Several local buffers are implemented
in Type-I PE for the butterfly unit. Type-II PEs are also
composed of basic MUs, but each MU within the PE can
be configured to support multiple moduli. Type-III PEs
only consist of arithmetic multipliers and adders, which
are utilized for implementing sub-operations related to RNS
conversions. The quantity of each type of PEwill be specified
in the subsequent subsection.

11854 VOLUME 12, 2024



W. Song et al.: Heterogeneous Reconfigurable Accelerator for Homomorphic Evaluation

FIGURE 5. Heterogeneous computing unit template.

FIGURE 6. Impact of butterfly unit.

B. RECONFIGURABLE PE SPECIFICATION
From a macro perspective, homomorphic evaluation exhibits
parallelism in two dimensions: within a polynomial (n-
way parallel) and between polynomials(k-way parallel) [21].
Nevertheless, when delving into the sub-operations, certain
sub-operations exhibit data interleave. For instance, there is
an interleave within polynomials within NTT, while RNS
conversion involves an interleave among k polynomials.
Therefore, the accelerator specification needs to consider
both the overall parallel architecture and the specific
optimization within the sub-operations.

1) PARALLELISM BETWEEN PES
Wefirst determine the number of Type-I PEs since they play a
crucial role in leveraging the parallelism introduced by RNS.
Previous accelerators [21], [22], [23] based on the original
HPS scheme maintained (k+1) or (2k+2)-parallel channels
on-chip, resulting in underutilization of the last one or two
channels. With the aid of the improved HPS scheme, we set
the number of Type-I PEs to 2k . Each of the first k PEs
and the last k PEs can support two moduli, either qi or pi
(i ∈ [0, k). Accordingly, two RNS polynomial groups can be
processed simultaneously. The Type-II and Type-III PEs are
only utilized by RNS conversion. To handle the interleaved
computations among different RNS polynomials, two Type-
II PEs are specialized for two sets of k RNS polynomials.
Similarly, two Type-III PEs are employed to support integer
arithmetic.

2) PARALLELISM WITHIN EACH PE
Apart from NTT, the remaining sub-operations only involve
coefficient-wise computations. Therefore, the parallel degree

FIGURE 7. Overall hardware architecture.

within each PE primarily influences the NTT design. As the
basic component of NTT, the butterfly unit significantly
impacts the performance of NTT and the required data
bandwidth, as illustrated in Fig. 6. Compared with other
radix-2-based designs, the radix-4 butterfly unit can achieve
a better trade-off between latency and data bandwidth.
Consequently, a parallelism level of 4 is set within each PE,
allowing the implementation of either a radix-4 butterfly unit
or a 4-way modular computation.

In the following section, we will present the accelerator
design based on the customized heterogeneous computing
unit, which includes defining the overall architecture, design-
ing the internal structure of PEs, determining the storage
scheme, and mapping the sub-operations on the accelerator.

IV. HARDWARE ARCHITECTURE AND OPTIMIZATION
A. OVERALL ARCHITECTURE
The overall architecture of our accelerator is shown in
Fig. 7. The proposed accelerator consists of three major
components: a computing unit to support basic homomorphic
evaluation operations, a memory unit to store the polynomials
and pre-computed parameters, and a controller unit to control
the entire procedure.

1) CONTROL UNIT
The control unit configures the computing unit and the
storage unit through two stages. The finite-state machine
(FSM) is responsible for receiving the external configuration
information and scheduling the whole process. The sub-
controller contains the NTT controller, the RNS conversion
controller, the polynomial coefficient multiplication con-
troller, and the relinearization controller. The duty of the sub-
controller is to configure the computing path and data path to
execute each sub-operation of homomorphic evaluation.

2) COMPUTING UNIT
As introduced in Sec. III-B, the computing unit consists
of 2k Type-I PEs, two Type-II PEs, and two Type-III PEs.
Here, we will focus on introducing the internal structure

VOLUME 12, 2024 11855
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FIGURE 8. Architecture of Type-I PE.

TABLE 2. Six computing modes of the reconfigurable modular computing
unit.

of Type-I PEs, while the internal structure of Type-II and
Type-III PEs will be discussed in the RNS conversion
section. As shown in Fig. 8, each Type-I PE consists of
four modular multipliers which include a multiplier and
a Barrett reduction [42] unit, four modular adders, and
four modular subtractors. The switch is used to parse the
configuration information and transfer data between MUs
and local buffers. Each Type-I PE can be reconfigured
using a separate operation code (OpCode) and supports six
different modes, including four parallel radix-4 NTT or
INTT butterfly units, modularmultiply-accumulators or other
modular operators. The supporting coarse-grained operators
are listed in Table 2, whereP denotes the parallel degree of the
operation. The function polynomial coefficient multiplication
is implemented as coefficient-wise computation of {ct0[0] ·
ct1[0], ct0[0] · ct1[1]+ ct0[1] · ct1[0], ct0[1] · ct1[1]}.

3) MEMORY UNIT
To ensure efficient and conflict-free on-chip data access,
a maximum data bandwidth of 16k · ⌈log2 qi⌉ bits per
clock cycle (CC) should be supported by the accelerator.
Accordingly, we partition the memory units into several bank
groups. One bank group is implemented for the storage
of source and result polynomials, which can communicate
with off-chip via the AXI interface and also participate in
internal operations; another bank group is implemented for
the temporary storage of intermediate results and does not

FIGURE 9. Configuration of Type-I PE for the radix-4 butterfly.

communicate with peripherals. Both of them have a capacity
of 4kn · ⌈log2 qi⌉ bits and are composed of 4k 2-port SRAMs
with a bit-width of ⌈log2 qi⌉ bits and a depth of n/4. Due to
the larger size of the relinearization key, a dedicated bank
group with a capacity of 2k2 · ⌈log2 qi⌉ bits is employed and
connected to the AXI interface, which is composed of 2k
single-port SRAMs with a bit-width of ⌈log2 qi⌉ bits and a
depth of kn. The pre-computed parameters required by NTT
and RNS conversion are stored in a read-only ROM.

B. OPTIMIZATION OF KEY SUB-OPERATIONS
1) SINGLE-STREAM RADIX-4 NTT
To accommodate the limited resources and memory band-
width, we employ a single-stream radix-4 butterfly structure
to perform NTT of a polynomial. Each Type-I PE is
responsible for an NTT/INTT sub-operation at a fixed
modulus. The Type-I PE can be reconfigured into CT and
GS butterflies when performing NTT and INTT respectively.
By configuring Opcode, a Type-I PE can be reconfigured to
perform the radix-4 butterfly operation, as shown in Fig. 9.
Themodular subtractor defaults to subtracting the lower input
from the upper input. To enable the reuse of twiddle factors,
the output values of the lower three modular subtractors need
to be flipped, and the location ofmultiplicationwithw1

4 is also
adjusted. The twiddle factors are precomputed and stored in
the same manner as [38].
As shown in [37], the multiplication with n−1 mod q in

INTT can be achieved by adding a modular multiplication
by 1/2 after every modular addition or modular subtraction.
We further find that this step can be combined with modular
addition and subtraction. We make slight modifications to
the architecture of the modular adder and modular subtractor
in [43]. By adding an additional adder and shifter to
the modular adder and modular subtractor, the modular
multiplication by 1/2 can be directly implemented in the
computation process without the need for an extra stage.
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FIGURE 10. Address encoding scheme of NTT with n = 4096.

Apart from performing butterfly computations, a more
challenging issue to address is the dependent data access
pattern within a polynomial. The pipelined radix-4 but-
terfly unit requires simultaneous reading of four source
data (in0, in1, in2, in3) and writing back of four results
(out0, out1, out2, out3). There are two commonly used data
access patterns: in-place access strategy and out-of-place
access strategy. The in-place access strategy utilizes 2-port
SRAMs with a specific address encoding method to achieve
conflict-free access [38]. The out-of-place access strategy
separates read and write addresses using either dual-port
SRAMs [22] or a double number of single-port SRAMs
for ping-pong [44]. The in-place data access strategy is
more area-efficient than the out-of-place one, but the address
encoding scheme is more complex. The previous in-place
strategy [38] tends to complete the address encoding before
NTT computation, resulting in additional data reordering
time when integrating with preceding sub-operations that
adopt a sequential storage scheme, such as automorphism or
ScaleDownQ→q.
The storage of a polynomial in the accelerator follows the

principle depicted on the left side of Fig. 10, where each
coefficient with index i is stored at position b in bank a. The
coordinates (a, b) are used to represent the storage locations,
where a = ⌊i/(n/4)⌋ and b = [i]n/4. When performing
an n-point radix-4 NTT, the total number of stages stotal is
log4 n. At stage s, four coefficients spaced by 4

stotal−s−1 need
to be simultaneously read (as demonstrated in Fig. 2), and
the four computation results also need to be simultaneously
written back. The initial data storage strategy meets the read
requests of the first stage, but write conflicts occur after
computation. Therefore, we perform address encoding during
the writing phase of the first stage. Our proposed address
encoding scheme groups every 4v elements (v > 0) and
performs rotations between groups, as shown in the right side
of Fig. 10. The coordinate values when each coefficient is
written back at the first stage are calculated by (10), where
ϵ = (log2(n/4))/2. enc_a =

[
a+

[
ϵ∑
δ=0

b[2δ + 1 : 2δ]

]
4

]
4

,

enc_b = b.

(10)

FIGURE 11. Mapping the RNS conversion on computing unit.

In the subsequent stages, both read and write operations
are indexed based on the encoded coordinate values. During
INTT execution, the data access interval within each stage
is 4s, which is reversed compared to NTT. Our proposed
encoding scheme also ensures conflict-free access. The data
storage format is changed back to the one shown on the left
side of Fig. 10 at the last stage when the coefficients are
written back.

2) PIPELINED RNS CONVERSION
Due to the coefficient-wise nature of RNS conversions and
the involvement of k polynomials in computations, the
maximum parallel degree supported by our accelerator is
eight, which means that our accelerator can process two
groups of RNS polynomials simultaneously in a 4-way
parallelism. In the following discussion, we will focus on the
implementation of a single-way configuration using 30-bit qi
and pi.

As shown in Fig. 3, RNS conversions in homomorphic
evaluation involve four sub-operations: ModSwitchq→p,
BaseExtendp→Q, BaseExtendq→Q, and ScaleDownQ→q.
Among these sub-operations, BaseEx. and ModSw. share
similar computational structures with minor differences in
the involved precomputed parameters and whether they
operate on Rq or Rp. Besides, ModSw. does not involve the
computation of v · con2 and requires swapping the positions
of the two inputs during modular subtraction.

Therefore, the above three sub-operations can employ a
common mapping strategy as shown in Fig. 11(a). The inputs
{con0, con1, con2} represent the precomputed parameters
specific to each sub-operation. The ScaleDown sub-operation
is mapped on the computing unit following the configuration
shown in Fig. 11(b). The blocks colored green are mapped
on the Type-I PEs to perform the modular MAC operator.
The blocks colored blue are mapped on the Type-II PE, and
the blocks colored yellow are mapped on the Type-III PEs.
A total of 2 × 4 Type-II PEs and 2 × 4 Type-III PEs are
utilized for 4-way parallel RNS convention operation. In each
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FIGURE 12. Architecture of Type-II & Type-III PE.

Type-II PE, the input value with subscript i and the supported
modulus will be alternated every clock cycle after the block
is initiated, with a cycle of every six CCs. Therefore, the
modular arithmetics are designed to support multi-moduli
(mm). The architecture of a Type-II PE is shown in Fig. 12(a).
Each parallel path supported by the Type-III PE contains

a non-modular MAC unit to perform the multiplication
and accumulation between polynomial coefficients and
60-bit decimals. When executing BaseEx. or ModSw., the
60-bit decimal part does not include the first 29-bit zeros
after the decimal point of 1/qi. The rounded MAC result v
is an integer ranging from 0 to k . Therefore, for BaseEx., the
required value of v · (con2)i can be obtained using a lookup
table (LUT). In the ScaleDown sub-operation, the fractional
range is [−1/2, 1/2), so the 33-bit MAC result is preserved
and then reduced to 30-bit. The architecture of a Type-III PE
is shown in Fig. 12(b).

The entire RNS conversion operation is executed in a fully
pipelined flow. Each parallel path in the sub-operation takes
turns reading data from k banks and then writing back in
place. The utilization of 2-port SRAM guarantees conflict-
free data access.

C. MAPPING OF CMUL OPERATION
The CMul operation is executed on the accelerator following
the flow in Fig. 3. After excluding RNS conversion and
NTT/INTT, the remaining parts include the ct ′× calculation
and the relinearization step.
The ct ′× calculation is utilized to calculate the multi-

plication between polynomial coefficients. The calculation
is achieved using the Polynomial coefficient multiplication
instruction, sent by the PolyMul sub-controller to the Type-I
PEs. With 2k Type-I PEs, all computations involving the 8k
polynomials are carried out in a single sub-operation. Within
each Type-I PE, four modular multipliers and one modular
adder are utilized to complete the pipelined computation of
{ct0[0] · ct1[0], ct0[0] · ct1[1]+ ct0[1] · ct1[0], ct0[1] · ct1[1]}.
The relinearization step can be regarded as an instantiation

of key switching, where the objective is to transform the
sk2 term to sk . First, the sk2 term should be decomposed.
Following the RNS instantiation of BV technique [25],
the radix-based decomposition is changed to residue-based
decomposition. To reduce computational complexity, the
following polynomial multiplication computations need to be
performed by NTT. To broadcast a polynomial x over Rqi to
k Type-I PEs and perform NTT over Rq0 to Rqk−1 , the desired

FIGURE 13. Memory access strategy.

decomposed polynomials of x can be obtained. By employing
2k Type-I PEs in this manner, we can execute the process
⌊k/2⌋ times, obtaining k2 decomposed polynomials denoted
by decompy. The inner product between decomp_y and
rlki[0], rlki[1] is performed after NTT, employing 2k Type-
I PEs reconfigured as MAC mode. Finally, modular addition
between the resulting polynomials and the remaining sk0 and
sk1 terms is performed using 2k Type-I PEs reconfigured as
modular addition mode.

During the homomorphic multiplication procedure, the
in-place access strategy is adopted to maximize memory
utilization. The access strategy is demonstrated in Fig. 13,
where bank groups (Gi) with the same color indicate that
they are accessed simultaneously. It can be observed that the
bank group used for storing source and result polynomials is
efficiently utilized most of the time, and another bank group
implemented for storing the immediate data is accessed when
the source polynomials require extension or decomposition.
This efficient data access strategy maximizes the utilization
of memory and contributes to the overall area efficiency
improvement of the accelerator.

D. MAPPING OF ROTATION OPERATION
The rotation operation consists of two steps: automorphism
and key switching, as detailed in Algorithm 1. To reduce
the number of automorphisms, we choose to perform
automorphism (denoted by auto()) before the key switching
sub-operation, rather than after word decomposition as in
Gazelle [8]. The purpose of automorphism is to rearrange
the positions of the slots within a polynomial. Each original
slot indexed i is transformed into a new slot indexed by I
through the transformation I = [i · 5r ]n where r denotes
the rotation amount. The sign bit of each slot is changed
according to (11). Nevertheless, the possibility of arbitrary
position permutation is not favorable for conflict-free access.
To achieve better throughput, we choose to perform the index
transformation using row and column transformations based
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Algorithm 1 Rotation Operation
Input: Input polynomials {x0, . . . xk−1}, i ∈ [0, k),

polynomial length n, RNS basis {q0, . . . qk−1},
rotation amount r , rotation key rk

Output: Rotated polynomials {y0, . . . yk−1}
1 //Step 1: automorphism
2 for i← 0 to k − 1 do
3 auto_y[0][i]← ntt(auto(xi[0], r), qi);
4 auto_y[1][i]← auto(xi[1], r);
5 yi[0]← auto_y[0][i];
6 yi[1]← {0, . . . , 0};

7 //Step 2: key switching
8 for i← 0 to k − 1 do
9 for j← 0 to k − 1 do
10 decomp_y[i][j]← ntt(auto_y[1][i], qj);

11 for α← 0 to k − 1 do
12 //RNS-based decomposition

13 yα[0]← [yα[0]+
k−1∑
j=0

rk0[j][α]·decomp_y[j][α]]qi ;

14 yα[1]← [yα[1]+
k−1∑
j=0

rk1[j][α]·decomp_y[j][α]]qi ;

15 return yi;

on the coefficient storage format. The transformation process
is completed during data transmission.

sgn =

{
−1, [i · 5r ]2n > n,
1, [i · 5r ]2n < n.

(11)

Based on the storage strategy proposed in this paper,
each polynomial to be rotated is stored sequentially in
four banks according to the left side of Fig. 10. Following
the coordinate representation in Sec. IV-B1, the original
index i is represented by coordinates (a, b), and the index
I after rotation is represented by coordinates (A,B). The
transformation from i to I can be computed as I = A· n4+B =
[(a · n4 + b) · 5r ]n. Let S = n

4 , using the lemma in [40], the
computation of the new coordinates (A,B) is performed as
described in (12).A =

⌊
I
S

⌋
=

[
a+

⌊
b · [5r ]n

S

⌋]
4
,

B = [I ]S = [b · [5r ]n]S .
(12)

The vertical coordinate B is solely dependent on b, and the
horizontal coordinate A is obtained by adding a bias related
to b to the original a. Furthermore, the computation of the
sign bit decision condition [i · 5r ]2n can be transformed
into the computation of [(a · S + b) · 5r ]2n. Notably, all
operations, except for the computation of b · 5r , can be easily
accomplished using shifting operations. In the pipelined data
access process, where b increases every CC, the result of
b · 5r can be obtained through accumulation. Therefore,

the automorphism sub-operation can be efficiently integrated
into the pipelined data access process, with only a negligible
increase in pipeline setup time.

After automorphism, the key switching is performed.
Following Step 2 in Algorithm 1, the key switching step
involves k/2 NTT sub-operations, one MAC sub-operation,
one INTT sub-operation, and one polynomial addition sub-
operation, which is consistent with the relinearization step.
Both the key switching step and the relinearization step
utilize the same memory space, enabling efficient utilization
of resources.

E. MAPPING OF OTHER OPERATIONS
Except for the computationally intensive operations men-
tioned earlier, other sub-operations supported by our accel-
erator are implemented as follows.

1) PMUL OPERATION
The pt-ct multiplication needs to perform {pt ·ct[0], pt ·ct[1]},
i.e., two multiplications between k sets of polynomials. The
calculation can be seen as a variant of step 1 in the CMul
operation. First, the three input polynomials are transformed
into NTT form by invoking the NTT sub-operation twice.
Then, the coefficient-wise multiplication is performed using
the modular multiplication instruction. Finally, the result is
obtained by executing the INTT sub-operation once.

2) CADD/PADD OPERATION
Homomorphic addition, which includes the CAdd and the
PAdd operations, requires only coefficient-wise addition
between two polynomials. The way is consistent with the
addition operation in the last step of key switching. Therefore,
no separate control logic and storage resources are needed
when configuring homomorphic addition. The FSM can
directly jump to the last step of key switching to implement
homomorphic addition.

V. IMPLEMENTATION AND EVALUATION
A. IMPLEMENTATION RESULTS
In this paper, we adopt a parameter set with specifications
similar to those in [22] for the implementation of our
proposed accelerator. The ciphertext modulus q has a bit-
width of 180-bit and is represented as the product of six
30-bit primes. The degree of the polynomial n is set to
4096. The difference between our design and [22] lies in the
construction of the extended modulus Q, which is formed
by q and an additional six 30-bit primes (instead of seven)
whose product is denoted by p. The bit-width of the modular
computing units and the memory banks is fixed as 30-bit.
The twelve required primes are obtained from NFLlib [12]
and follow the form 230 − m · 214 + 1 (m ∈ Z). The given
parameter set ensures an acceptable multiplication depth to
support privacy-friendly applications as demonstrated in [22].
The components of our accelerator are verified and

implemented on the Xilinx Virtex-7 and UltraScale+
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TABLE 3. Implementation results of ntt and polynomial multiplication operations on FPGA platform.

TABLE 4. Implementation results.

FPGA platforms for comparison with state-of-the-art works.
To evaluate the performance of the accelerator, we select
several key operations and homomorphic multiplication as
benchmarks.

The complete implementation of our accelerator on the
Virtex UltraScale+ MPSoC ZCU102 platform achieves a
maximum clock frequency of 185 MHz. The resource
consumption of key components is presented in Table 4.
It is observed that the computing units and sub-controllers
consume the majority of the resources. Additionally, the
data fabric is responsible for facilitating the data distribution
between the memory and the computing unit based on
the instructions from the sub-controllers, therefore also
consumes a relatively large amount of LUTs.

B. PERFORMANCE OF KEY OPERATIONS
1) NTT ACCELERATION
NTT is not only the most frequently invoked sub-operation
in homomorphic evaluation but also a core operation in
other lattice-based cryptographic (LBC) schemes. Therefore,
there have been many studies focusing on optimizing the

hardware implementation of NTT. To better demonstrate the
improvement achieved by the proposed NTT implementation
approach, we implement an NTT design for a single
polynomial that includes the NTT controller, one Type-I
PE, and corresponding storage units on the Virtex-7 FPGA
platform. The comparison of our work and the state-of-
the-art works [17], [23], [27], [28], [29] in terms of area
and performance is given in Table 3. Although there are
other works [38], [43] that have demonstrated significant
performance improvements in NTT, they mainly focus on
fixed and smaller q, such as 12289, where the modular
multiplier inside can be optimized specifically. For a fair
comparison, these works have not been included in Table 3.
In addition to evaluating the NTT latency, we also provide
the latency of NTT-based polynomial multiplication, which
involves two NTT operations, one INTT operation, and one
coefficient-wise multiplication, which is provided in Table 3.
The reduced implementation complexity allows the NTT
design to achieve a higher maximum frequency of up to 230
MHz, surpassing the frequency of the entire accelerator.

We implement the NTT design to support two different
polynomial degrees, n = 1024, 4096. The theoretical laten-
cies of our design for NTT and polynomial multiplication are
given by n/4 · log4 n and 3n/4 · log4 n + n/4, respectively.
This design approach based on radix-4 butterfly units
offers inherent advantages in terms of throughput and area
efficiency when compared to other single-way designs [17].
To provide a clearer comparison, we introduce the concept of
area-time product (ATP). Since the optimization of memory
access strategy plays a crucial role in NTT optimization,

11860 VOLUME 12, 2024



W. Song et al.: Heterogeneous Reconfigurable Accelerator for Homomorphic Evaluation

we evaluate NTT designs using LUT ATP and BRAM ATP,
which denotes the number of occupied LUTs and BRAM
usage × the latency (µs) respectively.

For n = 1024, the work [28] adopts the radix-32 butterfly
unit, which provides a notable advantage in latency. However,
it is limited in that it can only support polynomial degrees
that are powers of 32 and has a more complicated data
access pattern, as reflected in the BRAM ATP. The recent
in-place NTT design [27] employs an 8-way parallel radix-
2 butterfly unit, which results in a higher data requirement per
CC compared to our design. Therefore, the control logic of
design [27] is more complex than ours, which leads to higher
LUT ATP and BRAM ATP.

As n increased to 4096, AC-PM [29] saves the DSP
resources by optimizing the modular multiplication for cer-
tain types of moduli, but the 8-way parallelism leads to higher
LUT and BRAM consumption. Since the resource of 4-way
radix-2 butterfly unit is comparable to a radix-4 butterfly
unit, our implementation results are close to ReMCA [23]
but achieve lower LUT and BRAM consumption. The latency
of ReMCA presented in [23] excludes the time for reading
or storing data and pipeline establishment, giving ReMCA
a slight advantage in terms of latency. Overall, our design
achieves 2.04×-3.33× and 1.47×-153.2× improvements in
LUT and BRAM efficiency compared to the latest designs,
respectively.

2) AUTOMORPHISM ACCELERATION
The rotation operation plays a crucial role in homomorphic
encrypted applications such as private-preserving machine
learning [8]. However, the automorphism operation involved
in rotation introduces irregular permutations among n
coefficients, which increases the implementation complexity.
To the best knowledge of the authors, most existing BFV-
based homomorphic evaluation accelerators [21], [22], [23]
exclude the implementation of rotation. The BFV-based
homomorphic convolution accelerator [45], which pipeline
implements automorphism for the non-RNS-form polyno-
mials based on the same scheme as Gazelle, can efficiently
reduce rotation time. Nevertheless, the crossbar network size
in the address mapper grows squarely with the increase in
residues. Optimized implementations of automorphism are
explored more in the CKKS-based homomorphic evaluation
accelerators. Among the recent CKKS-based homomorphic
evaluation accelerators, Poseidon [40] and FAB [46] designed
a 4-stage automorphism unit with extra memory, while
BTS [47] supported index transformation using a network-
on-chip architecture between processing elements. Compared
with the previous strategies, we aim to minimize implemen-
tation overhead.

We extract the automorphism unit from our accelerator
and implement it using the same parameter sets as Poseidon
(q = 32 bit, n = 65536). The resource usage comparison
is listed in Table 5. The straightforward design, referred
to as Auto, has the lowest resource consumption but can

TABLE 5. Resource usage comparison of automorphism unit.

TABLE 6. Performance of each sub-operation.

only process one index in a single CC. Poseidon proposes
an improved design called HFAuto, which utilizes a large
first-in-first-out (FIFO) buffer to store intermediate results
during coordinate transformation, resulting in significant
performance improvement. In our work, we perform the
coordinate transformation during data transmission, allowing
the latency of automorphism to be hidden within the data
transmission latency between SRAM and the computing
unit. Since the loading operation is pipelined and the
automorphism unit introduces only 4 levels of pipeline, the
arrival of data is only delayed by 4 CCs. Furthermore,
our approach leads to a significant decrease in resource
consumption.

C. PERFORMANCE OF HOMOMORPHIC EVALUATION
This experiment evaluates the performance of the full
system when executing the homomorphic evaluation. The
performance of basic sub-operations that constitute complex
homomorphic evaluation computations is shown in Table 6,
where the Max. Input denotes the maximum number of
polynomials supported by a single sub-operation.

By reusing basic operations, our accelerator is able to
perform complex homomorphic evaluation computations,
and the resulting performance is illustrated in Fig. 14.
The overall latency excludes the time required for off-chip
data transmission but includes all time required for on-chip
data transmission. Specifically, the homomorphic multi-
plication operation takes 111, 240 CCs, the homomorphic
addition operation takes 1, 031 CCs, and the homomorphic
rotation operation takes 32, 287 CCs. The evaluation also
indicates that the NTT and INTT sub-operations are the
most frequently invoked sub-operations during homomorphic
evaluation.
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FIGURE 14. Performance of homomorphic evaluation operations.

TABLE 7. Implementation results of homomorphic multiplication
operation on FPGA platform.

In Table 7, we compare our accelerator with other existing
BFV-based HE accelerators under the same parameter set
when performing homomorphic multiplication. We include
the implementation results of a coprocessor from the
literatures [21] and [22] for reference. The comparisons with
another BFV-based HE accelerator [23] are excluded in this
subsection as only synthesis results were provided in [23].

The HEAWS accelerator [22] is an extended version of the
work [21], utilizing the same architecture, which consists of
seven residue polynomial arithmetic units, a 2-core NTT, and
an RNS conversion unit in a single coprocessor. Since we
adopt twelve Type-I PEs, the peak computing performance
of our accelerator is nearly doubled, which is also reflected
in resource consumption. Nevertheless, benefiting from the
proposed efficiency reconfigurable architecture, our acceler-
ator could achieve better area efficiency. When comparing
the ATPs measured by LUT, REG, DSP, and BRAM, our
accelerator achieves reductions of 3.1×, 2.6×, 2.5× and
6.9×, respectively, compared to HEAWS. Furthermore, to the
best knowledge of the authors, our accelerator is the first BFV
evaluation accelerator to support the HE rotation operation,
offering possibilities for implementing a wider range of
homomorphic applications.

D. COMPARISON WITH THE OTHER RECONFIGURABLE
ACCELERATOR
Both our accelerator and ReMCA [23] employ reconfigurable
architectures to improve resource utilization. However, there
are differences in the design approach. ReMCA utilizes a

TABLE 8. Resource usage comparison of different reconfigurable
architecture.

homogeneous 7×8 computing array, which simplifies control
logic but may not be optimal for specific operations. In con-
trast, our accelerator designs a heterogeneous computing
unit consisting of twelve Type-I PEs and other specialized
arithmetic units, tailored to the characteristics of different
operations. Table 8 presents the resource consumption of
two accelerators. The resource consumption of RCUs in
ReMCA is obtained by multiplying the synthesis results
of a single PE by 56. Note that ReMCA only reports the
theoretical latency, excluding the latency associated with
data and instruction transmission, and the control logic is
simpler than ours. To make a fair comparison, we mainly
compare the resource consumption of RCUs. With similar
LUT/DSP resource consumption, our accelerator achieves
an 8% reduction in latency and an 18% reduction in REG
consumption compared to ReMCA. Moreover, the decimal
pre-computed parameters stored as constant reciprocals are
kept to a precision of 89-bit after the decimal point, which
is 24-bit larger than ReMCA. The area of Type-III PEs that
perform the integer arithmetic could be further reduced when
adopting the 65-bit parameters. Furthermore, benefiting from
the efficient memory access strategy, our design consumes
57.6% fewer BRAMs than ReMCA.

VI. CONCLUSION
In this paper, we present a heterogeneous reconfigurable
accelerator for homomorphic evaluation on encrypted data
based on the RNS variant of the BFV scheme. The flexible
and reconfigurable modular computing units greatly improve
the resource utilization of the accelerator. Specialized opti-
mizations for key operations and memory access strategy
reduce the processing latency. When n = 4096, our design
achieves 1.08 to 7.42 times reduction in latency with higher
area efficiency compared to other BFV accelerators when
performing homomorphic multiplication. The low-latency
and area-efficient features can enhance the viability of
privacy computing. In the future, we will continue to explore
the deployment of privacy computing applications in the
cloud.
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