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ABSTRACT The use of watermarking techniques, which incorporate invisible information into multimedia
files, is crucial for securing digital content. Watermarking research still faces difficulties in striking a balance
between speed, robustness, and imperceptibility. This research suggests a novel method for improving
the speed and imperceptibility of watermarking systems that makes use of Galois Field (GF) tables. The
advantage of creating GF tables is that they implement GF operations well, which greatly accelerates
the watermarking processes. It is possible to reduce computational complexity and speed up execution
times by previously calculating and storing GF tables. The proposed method is ideal for applications with
strict time limitations since this performance improvement allows real-time watermarking. Additionally,
imperceptibility is enhanced by the use of well-chosen irreducible polynomials in GF-based watermarking
algorithms. The distribution and modulation of watermark bits are influenced by the selection of irreducible
polynomials, allowing for optimal embedding with the least amount of visual distortions. By using this
selection technique, the host media’s quality and integrity are preserved because the embedded watermark is
kept transparent or undetectable to human observers. In conclusion, this study provides a novel approach
that makes use of Galois Field tables and selective irreducible polynomials to improve the speed and
imperceptibility of watermarking systems. GF tables are used to increase computing effectiveness and
enable real-time processing, whereas irreducible polynomials are selected tomaximize imperceptibility. This
strategy creates new opportunities for the creation of watermarking methods that effectively safeguard digital
content without reducing user experience or system performance.

INDEX TERMS Security, Galois field, irreducible polynomial, robustness, addition table, multiplication
table, inverse table, image watermark.

I. INTRODUCTION
In recent years, the rapid advancements in science and
technology, particularly in the realm of the Internet andmulti-
media technology, have revolutionized the way of exchanging
and disseminating information. These technological advance-
ments have significantly impacted daily lives. However, with
the widespread use of the Internet, concerns about unau-
thorized alterations and illegal copying of digital content
during online transmission have escalated. Consequently,
safeguarding copyright and preserving information security
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have become paramount [1], [2]. Digital image watermark-
ing is a technique employed to embed information, often in
the form of imperceptible marks or signatures, directly into
an image [3]. The primary goal is to augment the image
with additional data without significantly altering its visual
appearance. This process holds immense significance in var-
ious domains, including copyright protection, authentication,
and content integrity verification. The imperceptible nature
of these digital marks, often invisible to the human eye,
transforms them into powerful tools, serving as digital sig-
natures or identifiers within the image. This imperceptibility
enhances their efficacy, particularly in applications requiring
copyright enforcement and content authentication [4]. The
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significance of image watermarking becomes even more pro-
nounced in the age of widespread digital distribution and
sharing, where safeguarding digital content is of paramount
importance. In the realm of image watermarking, despite
notable advancements, there are persistent challenges [5].
Robustness against various attacks and the delicate balance
between preserving perceptual quality and meeting stringent
time constraints remain key hurdles. To address this issue,
significant advancements have been made in the field of
digital watermarking. Thus, digital watermarking stands as a
crucial tool in the ongoing efforts to secure digital content and
mitigate the risks associated with unauthorized use and copy-
right infringement [6]. The practice of safeguarding media
content frequently involves the inconspicuous embedding of
hidden marks within the host media, a technique commonly
known as color image watermarking [3], [7]. Galois Field
with 2n elements, is a finite mathematical construct with
distinctive properties that make it well-suited for watermark-
ing applications. This field can be represented as a n-bit
binary system and offers a structured framework for encoding
and embedding information into digital media [8]. The core
concept of using GF(2n) multiplication tables in watermark-
ing lies in exploiting the mathematical relationships within
this finite field for the watermarking process. This approach
provides a robust and secure means of protecting digital
content, allowing content owners to assert their ownership
and deter unauthorized use [9]. In a related study, a blind
color image watermarking system with great performance
in the spatial domain has been given in [10] by blending
the benefits of a spatial-domain watermarking scheme and
a frequency-domain one. The colored photos in [11] on the
Raspberry Pi (RPi) platform, a parallel robust watermarking
approach that uses the Quaternion Legendre-Fourier Moment
(QLFM) in polar coordinates is built. A binary Arnold scram-
bled picture is placed in the host image. The Raspberry Pi
model 4B is used to implement and test the watermarking
algorithm. [12] describes a brand-new digital watermarking
method for color photographs that relies on the discrete
cosine transform (DCT) and a triple-byte nonlinear block
cipher. Further [13] proposed a new digital watermarking
method for color images based on a triple-byte nonlinear
block cipher and the discrete cosine transform (DCT). Based
on the Galois ring (GR 23,8), a triple-byte nonlinear part
of a block cipher, specifically a 24 × 24 substitution box
(S-box), was created. Then, this encryption was used in the
watermarking procedure by being divided into three bytes and
applying each byte separately to the red (R), green (G), and
blue (B) channels.

Critical limitations observed in current watermarking tech-
niques include: vulnerability to common image processing
attacks, speed, image quality degradation, and insufficient
imperceptibility.

These limitations have impeded the practical application
of watermarking in real-world scenarios. In light of these
problems, in this research we developed a novel algorithm
that leverages the power of GF tables for pixel value manipu-

lation, ensuring a rapid embedding process. This algorithm
represents a significant enhancement in terms of speed,
imperceptibility, and robustness for embedded watermarks,
successfully overcoming the limitations discussed earlier.
The evaluation results underscore its efficacy, with a peak
signal-to-noise ratio (PSNR) reaching 56.82. Additionally,
the algorithm achieves an embedding time of just 0.03 sec-
onds. The normalized correlation (NC) of the extracted
watermark is 0.995.

The remainder of this paper is organized in the following
manner: Section I-A describes the finite field fundamentals
and their operations. Section I-B discusses image watermark-
ing using the Galois Field tables (GF). Section II illustrates
the methodology and the proposed system. Section III
presents the results and discussions. Finally, section IV
presents the conclusion and future works in the field of
watermarking.

A. AN OVERVIEW OF THE FINITE FIELD
Finite fields, also known as Galois fields (GF), are mathemat-
ical structures that have important properties and applications
in various fields, including cryptography, error correction
codes, and digital signal processing [13]. Finite fields play
a crucial role in modern cryptography algorithms. Public
key cryptography algorithms like elliptic curve cryptogra-
phy (ECC) and RSA utilize finite fields for key generation,
encryption, and decryption operations. The algebraic proper-
ties of finite fields contribute to the security and efficiency
of these cryptographic schemes [14]. GF (pn) is a common
abbreviation for the finite field of order pn. In honor of the
mathematician who first explored finite fields, GFs are so
termed. The set of numbers (0, 1,. . . , p-1) and the arithmetic
operations modulo p are known as the finite field of order
p, or GF(p). As a result, arithmetic mod p can be used to
define the finite fields of order p. When n is greater than 1,
arithmetic over polynomials can be used to define the finite
fields of order pn [15]. Employing largerGF tables leads to an
increase in the number of possible combinations or elements
in the field. This leads to the creation of a larger key space,
thereby making it more challenging for attackers to break the
encryption or uncover the original data; this implies enhanced
security.

Further, the use of larger GF tables also improves resis-
tance to attacks [16]. These tables add complexity and
non-linearity to cryptographic operations. This enhances
resistance attacks, such as differential and linear cryptanal-
ysis, algebraic attacks, and brute-force attacks [17]. GF
arithmetic enables efficient operations such as addition, sub-
traction, multiplication, and division. This property leads to
efficient arithmetic operations, as it enables the selection of
appropriate GF tables. Moreover, cryptographic algorithms
can be optimized to achieve faster computations while main-
taining security [18].

A set of elements with the binary operations addition
and multiplication make up a field F, sometimes written as
‘‘F, +, ∗’’ [19]. If operations such as addition, subtraction,
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multiplication, and division can be performed without desert-
ing the set, then the field is a set [1].

When prime (p) = 2, the finite field with GF elements is
known as GF(pn) and is also referred to as the GF. It is com-
mon to write the elements of GF(2n) as binary numbers [20].
Standard integer arithmetic and arithmetic in a finite field

are two separate things. The finite field has a finite number
of elements, and every action carried out there produces an
element of that field [1].

1) ADDITION
The coefficients of the corresponding powers in the poly-
nomial representations of the field elements are added to
accomplish addition in a finite field. This addition takes place
in GF(2), which this also known as modulo 2, where the sum
of 1 and 1 equals 0. Thus, addition and subtraction operations
in a finite field GF(2n) can be equivalently represented as
exclusive–or operations on the n-bit representations of field
elements [10].

2) MULTIPLICATION
In a finite field, multiplication is more difficult than addi-
tion since it includes multiplying the two polynomials that
represent the elements and adding like powers of x to the out-
come. It is reduced modulo an irreducible polynomial m(x)
of degree n if the multiplication produces a polynomial with
a degree higher than n-1. In this reduction, the polynomial is
divided by m(x), and the remainder is kept. An irreducible
polynomial m(x) over a field F cannot be expressed as the
product of two polynomials, both over F, and both of lower
degrees thanm(x) (neither of which has a degree of zero) [11].

B. IMAGE WATERMARKING USING GALOIS FIELDS
Image watermarking using GFs is a technique that enables
the embedding of hidden information, known as a watermark,
into digital images.GF provides amathematical structure that
enables secure and efficient data manipulation within a finite
set of elements [12], [15]. In image watermarking, the GF
is used to divide the watermark data into smaller elements,
which are then embedded into the image pixels. A variety
of operations, including addition, multiplication, and inver-
sion, can be carried out on the image and watermark data
by modeling it as elements of the GF [21]. Computational
efficiency in Galois field arithmetic arises from reduced
operand size, simplified operations within a restricted set,
utilization of bitwise operations, potential for parallelism, and
resource optimization. The finite field structure allows for
faster and more compact computations, particularly benefi-
cial in watermarking applications where speed and resource
efficiency are paramount. Quantitative assessment involves
comparing execution times of key operations in Galois field
arithmetic against standard arithmetic, providing insights into
efficiency gains [15], [22], [23]. Using GFs, image water-
marking entails adjusting image pixels to include awatermark
while balancing resilience and imperceptibility. In order to

achieve this balance, GF operations are essential. It has
used for tamper detection in digital images, content authen-
tication, and copyright protection [24]. It is important to
note that the specific implementation and techniques used
in image watermarking using GF may vary depending on
the irreducible polynomial used to construct the tables and
algorithms employed. Researchers and practitioners often
tailor the watermarking process to meet specific requirements
such as robustness, imperceptibility, capacity, security and
optimize performance [19].

II. METHODOLOGY
In this section, a comprehensive account of the research
methodology is presented. Subsections include the selection
of the dataset, the application of evaluation metrics, and a
thorough exploration of the proposed watermarking system.

A. DATASET
For our experiments, well-established standard test images
widely recognized within the field of image processing have
been selected. Specifically, Lena, Pepper, and Parrot, which
have a history of use in evaluating various image processing
techniques and they are widely used in this field to be as
benchmark for comparison purpose. These images, the cover
image (1000× 1000 resolution) were chosen for their diverse
content, making them valuable benchmarks for assessing
watermarking algorithms, and two watermark images (64 ×

64 resolution) and (225×225 resolution), of type (.png). The
watermark images were black-and-white and colored image.
The inclusion of these standard images is vital as it allows
us to gauge our algorithm’s performance against established
references.

Additionally, the utilization of the Break Our Water-
marking System (BOWS) dataset, comprising 10,000 high-
resolution cover images. The choice of this dataset for
evaluation aligns with our research’s focus on real-world
applicability, allowing us to assess the watermarking process
under conditions relevant to practical scenarios.

B. EVALUATION METRICS
Our selection of evaluation metrics, including Peak Signal-
to-Noise Ratio (PSNR) and Normalized Correlation (NC),
is based on their relevance in quantifying the quality of water-
marked images. PSNR, expressed in decibels (dB), provides a
measure of the fidelity of watermarked images in comparison
to their original counterparts. It quantifies the ratio between
the maximum pixel value and the noise level introduced dur-
ing watermarking, providing insight into the image quality.
The PSNR formula is defined as:

PSNR = 10 × log10

(
MAX2

MSE

)
(1)

where:
• MAX represents the maximum pixel value (e.g., 255 for
8-bit images).
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• MSE stands for Mean Squared Error, which quantifies
the difference between the original and watermarked
images pixel by pixel.

Furthermore, Normalized Correlation (NC) is employed to
assess the degree of similarity or correlation between the
original and watermarked images. With NC values ranging
from -1 (perfect negative correlation) to 1 (perfect positive
correlation) and 0 indicating no correlation, it serves as a
valuable metric for evaluating watermarking quality.

The formula for NC calculation is as follows:

NC =

∑
(I1 − I ′1)(I2 − I ′2)

√
(
∑

(I1 − I ′1)2
∑

(I2 − I ′2)2
(2)

where:
• I1 and I2 are the two signals or images being compared.
• I ′1 and I ′2 are the means (averages) of I1 and I2 respec-
tively.

The Structural Similarity Index (SSIM) is a metric used to
measure the similarity between two images. It is designed
to assess the perceived quality of the images by taking into
account various aspects of human visual perception. SSIM
considers three main components: luminance, contrast, and
structure. The resulting index ranges from -1 to 1, where
1 indicates perfect similarity.

C. THE PROPOSED SYSTEM
To calculate the addition of two numbers in finite fields,
specific addition tables must be used, and to calculate the
product of two numbers using the multiplication function
of polynomials—which differ from algebraic multiplication
operation—the irreducible polynomial of specified GF (2n)
must be used.

First, the addition table is constructed by performing addi-
tion operations on all possible combinations of elements in
GF(2n). Each element in the field is represented by a polyno-
mial with coefficients in GF(2), and the addition operation is
implemented by adding the coefficients for the correspond-
ing powers of the polynomials. The resulting addition table
showcases the outcomes of these additional operations.

Similarly, themultiplication table is generated bymultiply-
ing the polynomials representing the elements inGF(24). The
outcome of the multiplication operation is reduced modulo a
degree four irreducible polynomial by grouping like powers
of the polynomial together. As a result, the degree of the
resulting polynomial is guaranteed to stay within the limits
of the field. The results of these multiplication operations
are explained by the multiplication table. There are numerous
irreducible polynomials used as modulus values and each one
produces a different table. This may thwart the attempts of
unauthorized user attacks and increase the level of security.
The generated multiplication table for multiplying values
in the range of 1 to n-1 exclude zero (the first row and
first column in the generated multiplication table). The main
reason for using the addition and multiplication tables is to
reduce the time of execution. The algorithms of addition and
multiplication using GF(2n) are provided below.

D. ADDITION TABLE CONSTRUCTION IN GF (2n)

Algorithm: Addition Table Construction on GF(2n)
Input: n (degree of GF), field_size (2n)
Output: Addition table in GF(2n) of size

field_size x field_size

1. Begin
2. Initialize an empty 2D array ‘‘addition_table’’ of size
field_size x field_size.
3. Initialize an array ‘‘element’’ with values [0, 1, 2, . . . ,
field_size-1].
4. Create an array ‘‘bit_masks’’ to represent all possible bit
masks of size n.
5. For each element x in elements:

5.1. For each bit_mask in bit_masks:
5.1.1. Compute the sum result as x XOR

bit_mask.
5.1.2. Assign the result to

addition_table[x][result].
6. Return the addition_table.
7. End.

E. MULTIPLICATION TABLE CONSTRUCTION IN GF (2n)

Algorithm:Multiplication Table Construction on GF(2n)
Input: n (degree of GF), field_size (2n)
Output:Multiplication table in GF(2n) of size

field_size × field_size

1. Begin
2. Initialize an empty 2D array ‘‘multiplication_table’’ of size
field_size x field_size.
3. Initialize an array ‘‘elements’’ with values [0, 1, 2, . . . ,
field_size-1].
4. For each element x in elements:

4.1. For each element y in elements:
4.1.1. Compute the product result as the

product of x and y in GF(2n) using
the GF multiplication operation,
which involves polynomial
multiplication.

4.1.2. Perform a modulo operation with
respect to an irreducible polynomial
g(x) specific to the GF(2n) field.
This ensures that the result stays
within the field and conforms to
its properties.

4.1.3. Assign the result to
multiplication_table[x][y].

5. Return the multiplication_table.
6. End.
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F. ADDITION AND MULTIPLICATIVE INVERSE TABLE IN GF
(2n)
The function of addition and multiplicative inverse tables
in GFs, more specifically in the field of GF(2n), is crucial.
The addition and multiplicative inverse operations inside the
GF are fully represented in these tables. The watermarking
process is made more robust against attacks such geometric
changes, cropping, filtering, and compression thanks to the
addition and multiplicative inverse tables, which increase
complexity and non-linearity. The procedures carried out
utilizing the tables make sure that the watermark is securely
embedded and that it is challenging to remove or tamper with
without causing obvious artifacts. The additive inverse of a
GF is shown as zeroes in the addition table. This suggests
that the result will be 0 if you combine an element in the field
with its equivalent additive inverse. Given that subtracting
from the GF is identical to adding with the additive inverse,
this characteristic is essential. Similarly, the multiplicative
inverse of a GF is shown as one in the multiplicative table.
The identity element, which is generally represented as one,
is obtained by multiplying each element in the table by its
corresponding multiplicative inverse. Due to the fact that
division is the same as multiplication with the multiplicative
inverse, this characteristic permit division within the GF.
By utilizing the zeroes in the addition table and the ones
in the multiplicative table, operations within the GF can be
efficiently performed, thereby enabling various applications,
such as error correction codes, cryptography, and image
watermarking. These applications make it easier to imple-
ment operations withinGFs and to do calculations efficiently,
which helps to create safe and reliable systems. The following
is a general algorithm for computing the addition and multi-
plicative inverses in different GFs (GF(23), GF(24), GF(25),
and GF(26)) tables.

G. THE WATERMARK EMBEDDING PROCESS USING THE
GF (24) MULTIPLICATION TABLE
The watermark can withstand common image alterations
thanks to the use of GF(2n) as a transform, and it is imper-
ceptible because the watermarked image maintains its visual
quality. However, it is important to consider the trade-off
between the strength of the watermark and its visibility in
order to maintain a balance between effective protection and
preserving the integrity of the image. The created GF(24)
field is additionally used to put a watermark on an image.
The watermarking approach divides the watermark into three
bytes, each of which corresponds to the red (R), green (G),
and blue (B) channels of the image. This division is made
possible by the features of GF(24) and effectively insert the
watermark data within the image.

The outcomes of these operations show how GF(24) can
be used to build tables, carry out arithmetic calculations,
and insert watermarks in digital images, among other cryp-
tographic and data manipulation activities. The findings
analysis offers important insights into the capabilities and

Algorithm: Compute the addition and multiplicative inverse
tables in different Galois fields
Input:Addition and multiplication tables inGF(23),GF(24),
GF(25), and GF(26)
Output: addition and multiplicative inverse tables inGF(23),
GF(24), GF(25), and GF(26)

1. Begin
2. Define the Galois field tables for addition and multiplica-
tion.
3. Create a function to compute the multiplicative inverse
table:

a. Initialize an empty dictionary for the
multiplicative inverse table.
b. Iterate each element in the multiplication table.
c. Find the index of the element’s multiplicative
inverse (i.e., the element multiplied by its inverse
equals 1).
d. Add the element and its inverse to the
multiplicative inverse table dictionary.
e. Return the multiplicative inverse table.

4. Create a function to compute the addition inverse table:
a. Initialize an empty dictionary for the addition
inverse table.
b. Iterate over each element in the addition table.
c. Find the index of the element’s addition inverse
(i.e., the element added to its inverse equals 0).
d. Add the element and its inverse to the addition
inverse table dictionary.
e. Return the addition inverse table.

5. Call the function in step (3) for each multiplication Galois
field table to get the multiplicative inverse tables.
6. Call the function in step (4) for the addition Galois field
table to get the addition inverse table.
7. Print the computed inverses for each Galois field.
8. End.

performance of GF(24) in applications for image watermark-
ing.

The watermarking algorithm used in the proposed scheme
is based on Galois Field (GF(2n)) arithmetic. This algorithm
converts a watermark image into values corresponding to the
elements of the GF(2n) table and embeds these values into a
cover image using XOR operations. This approach is often
used in watermarking to enhance the security and robustness
of the embedded watermark. A GF(24) was utilized in this
study as an example of transformation to insert a watermark
in the corners of the cover image while maintaining the
original cover image’s quality. Bitwise XOR operations are
used to combine the watermark’s matching bits with the
pixel values to include it as a copyright indicator or unique
identifier. Because the watermark is integrated into the image
during this process, it cannot be removed or altered. The
GF(24) table can be used to map each pixel to a numeri-
cal value within the field, which can then be converted to
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binary. This binary representation is utilized for performing
watermarking operations via XOR operation. This enables
the seamless integration of a watermark, typically in the form
of a binary sequence, into the image while minimizing visual
distortion.

Algorithm:Watermark Embedding Process

Input: multiplication table of GF (24), cover image,
watermark image

Output:Watermarked image

1. Begin
2.Load the cover image and watermark image.
3.Define the GF(24) table containing the values for the
desired mapping.
4.Create a copy of the cover image as the watermarked
image.
5.Resize the watermark image to match the desired size
if needed.
6.Convert the pixel values of the watermark image to
their corresponding values in the GF(24) table:
-Iterate over the pixels of the watermark image.
-Extract the lower 4 bits (y) and upper 4 bits (x) of
each pixel value.
-Map the values x and y to their corresponding
values in the GF(24) table using gf_table[x][y].
-Update the corresponding pixels in the converted
watermark image with the mapped values.

7.Embed the converted watermark in the corners of the
cover image:
-Iterate over the pixels of the converted watermark
image.
-For each pixel in the converted watermark image:
-Retrieve the corresponding pixel in the
watermarked image.
-Perform a blending operation using XOR
between the watermarked image pixel and the
converted watermark pixel using the GF(24)
table.
-Update the corresponding pixel in the
watermarked image with the blended value.

8.The watermarked image now contains the embedded
watermark in the corners.

9.Display or save the watermarked image.
12. End.

This algorithm ensures that the watermark is embedded
in a manner that minimizes its visibility to the human eye
while utilizing the GF (24) table for robustness against
image processing operations. A GF (24) multiplication table
has been employed in this investigation along with the
irreducible polynomial (x4 + x+1). Another multiplica-
tion table will be produced when this irreducible polyno-
mial is changed to (x4 + x3+1), which will improve the
outcomes.

H. THE WATERMARK EXTRACTION PROCESS USING THE
GF (24) MULTIPLICATIVE INVERSE TABLE
In this section, the process of extracting watermarks embed-
ded within an image using the Galois Field GF(24) multi-
plicative inverse table has been presented. The use of Galois
field arithmetic provides a structured mathematical frame-
work, and the inverse table becomes a crucial element in
efficiently reversing the watermark embedding process. The
input is the watermarked image and the multiplicative inverse
table, to obtain the extracted watermark image.

Algorithm:Watermark Extraction Process

Input: Watermarked Image, Cover Image, GF (24) Multi-
plicative Inverse Table
Output: Extracted Watermark Image

1- Begin
2-load the watermarked image and the cover image
2- XOR the two images to obtain the watermark (the values
after converting to GF (24) multiplication table)
3- Convert the resulted extracted watermark to GF (24) mul-
tiplicative inverse table
4- Shift the values to the left 4 bits (as opposite as the
converting to GF multiplication table)
5- Save the resulted watermark image
6-End

In summary, the algorithm focuses on reversing the oper-
ations applied during the embedding process, including
XOR operations, conversion to GF(24) table values, and bit-
shifting. The final result is the extracted watermark.

III. RESULTS AND DISCUSSIONS
The following account presents the results obtained from
constructing the addition and multiplication tables in the GF,
specifically GF(24), and utilizing this field for embedding a
watermark on an image. The other addition andmultiplication
tables are in the appendix section. The GF arithmetic enables
secure and efficient data manipulation within a finite field
structure. The experiments were conducted using Python
version 3.8 on a Windows 10 system with a Core i7 CPU
and 16 GB of RAM. This setup was chosen to ensure effi-
ciency and accuracy in our experimentation process.

Table 1 displays the multiplication tables for GF(24).
To enhance accessibility and readability, addition and multi-
plication tables forGF(23),GF(25), andGF(26) are provided
in the appendix section.

A. MULTIPLICATION TABLE IN GF (24) WITH IRREDUCIBLE
POLYNOMIAL X4 + X + 1
See Table 1.

B. IMAGE WATERMARK USING GF (24) MULTIPLICATION
TABLE
An invisible mark or signal is embedded into digital images
using the image watermarking process in order to protect
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TABLE 1. Multiplication table in GF (24).

TABLE 2. The PSNR, SSIM, and execution time with irreducible
polynomial x4 + x+1 and black-and-white watermark image.

intellectual property, authenticate users, and identify the con-
tent of the image. Utilizing GF(24), one of the mathematical
characteristics of GFs, as a transformation mechanism is one
way to accomplish this. TheGF(24) table with the irreducible
polynomial x4 + x+1 has been used in this experiment.

The application of the proposed method to a colored
watermark is feasible, and the corresponding outcomes are
delineated in Table 3.

TABLE 3. The PSNR, SSIM, and execution time with irreducible
polynomial x4 + x+1 and colored watermark image.

TABLE 4. Multiplication table in GF (24).

Table 4 illustrates the results of image watermarking when
using multiplication table ofGF(24) observed by table 4 with
the second irreducible polynomial (x4 + x3+1)

C. MULTIPLICATION TABLE IN GF (24) WITH IRREDUCIBLE
POLYNOMIAL X4 + X3 +1
The results obtained with colored images as watermarks
demonstrate superior performance compared to black and
white counterparts. This improvement is attributed to the
enhanced complexity and information content present in
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TABLE 5. the PSNR, SSIM, and execution time with irreducible
polynomial x4 + x3+1 and black and white watermark image.

TABLE 6. The PSNR, SSIM, and execution time with irreducible
polynomial x4 + x3+1 and colored watermark image.

colored images, contributing to a more robust and effective
watermarking process.

Table 2 demonstrates that when employing the irreducible
polynomial x4 + x + 1, the watermarking algorithm yielded
its most notable PSNR result, reaching 50.8, while main-
taining an efficient execution time of 0.0313 seconds. This
achievement was observed specifically for the standard
‘‘Lena’’ image. In Table 4, the utilization of the irreducible
polynomial x4 + x3 + 1 to construct a multiplication table
has led to notable improvements in both execution speed and

image quality. Specifically, for the ‘‘Lena’’ image, the PSNR
has significantly increased to 58.8, while the execution time
has been reduced to 0.0304 seconds.

To compute the improvement percentage, the following
formula has been used:

Improvement Percentage =
Newvalue − Oldvalue

oldvalue
× 100%

(3)

[25]
As a result, the performance is improved when using the

second irreducible polynomial x4 + x3 + 1, with the PSNR
increasing by 15.75%, and the execution time improving by
2.88% according to the formula mentioned as (3).

D. WATERMARK EXTRACTION USING MULTIPLICATIVE
INVERSE TABLE
The extraction process involves recovering a hidden water-
mark from a watermarked image by utilizing the information
from the original cover image. Initially, the watermarked
image and the cover image are loaded into the system.
Through a bitwise XOR operation between these two images,
the embedded watermark is revealed. This extracted water-
mark, represented in GF(24) multiplicative inverse table
values, undergoes a transformation where the values are
shifted to the left by 4 bits. This step is crucial as it counteracts
the previous conversion to the GF(24) multiplication table
during the embedding process. The resulting values are then
saved, constituting the extracted watermark image. This intri-
cate process ensures the retrieval of the original watermark,
allowing for authentication or verification purposes in various
applications such as digital watermarking and image integrity
verification. Figur1. illustrates theNC of extractedwatermark
image.

E. ROBUSTNESS MEASUREMENTS
The robustness of a watermarking scheme, which is essential
for evaluating its performance, is quantified by its ability
to withstand deliberate attacks. A benchmark known as the
Normalized Cross-Correlation (NC) has been introduced to
facilitate the assessment of the robustness of the presented
watermarking technique in a fair and effective manner. With
a range spanning from 0 to 1, the NC value is employed
to provide a clear indication of the watermarking system’s
robustness. Importantly, a stronger resistance to attacks is
indicated by a higher NC value, thereby demonstrating the
robustness of the approach. Conversely, a reduced ability to
withstand attacks is implied by a lower NC value, highlight-
ing the vulnerability of the watermarking algorithm.

The NC value ranges from -1 (perfect negative correlation)
to 1 (perfect positive correlation). A value of 0 indicates no
correlation between the two signals or images.

In the context of watermarking, the NC is often used to
measure the similarity or correlation between the original
watermark and the extracted watermark from a watermarked
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TABLE 7. The applied attacks with extracted watermark.

TABLE 8. The NC values after applying different attacks for robustness
measurements.

image. Higher NC values indicate a stronger correlation and
better watermark retrieval performance.

TABLE 5 offers a concise overview of the watermarking
system’s performance across different attacks. Specifically,
it assesses the system’s robustness in the face of com-
mon challenges. The ‘‘Compression’’ column indicates the
system’s ability to maintain watermark integrity after com-
pression, with higher values signifying better performance.
Similarly, the ‘‘Gaussian Noise’’ and ‘‘Salt & Pepper Noise’’
columns gauge its resilience against noise, where higher
scores like 0.952 for Pepper indicate stronger noise resis-
tance. Lastly, the ‘‘Rotation’’ column evaluates how well the
watermark withstands image rotation, with values such as
0.811 for Pepper reflecting its performance.

A comprehensive comparison of the proposed scheme
with other related works is presented in Table 6, showcasing
the superiority of the proposed method in terms of water-
marked image quality, imperceptibility, and execution time.
Notably, a substantial 35% improvement in image quality is

TABLE 9. Comparison of the proposed method with other schemes.

FIGURE 1. The NC of extracted Watermark image.

FIGURE 2. PSNR comparison of the proposed method with other
schemes.

demonstrated when compared to the studies included in the
comparison. Furthermore, the execution time for the water-
mark embedding process has been significantly enhanced,
revealing 98% improvement. These findings underscore the
remarkable advancements achieved by the proposed method,
positioning it as an effective solution in the field of water-
marking. Figures 1 and 2 visually depict the comparison with
alternative watermarking techniques.
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FIGURE 3. Execution time comparison of the proposed method with
other schemes.

TABLE 10. PSNR values when utilizing the bows dataset.

TABLE 11. Addition table of GF (23).

TABLE 12. Addition table of GF (24).

When utilizing the BOWS dataset [26], comprising 10,000
standard images, with watermark1 (64×64) and watermark2
(225 × 225), the following results were obtained:
This comparison suggests that the choice of the irreducible

polynomial has a substantial impact on the PSNR, which is
an indicator of image quality in watermarking. The second

TABLE 13. Addition table of GF(25).

TABLE 14. Addition table of GF(26).

TABLE 15. Multiplication table in GF (23).

TABLE 16. Multiplication table in GF (25).

polynomial, x4 + x3 +1, yielded a notably higher PSNR, indi-
cating better image quality and imperceptibility compared to
the first polynomial, x4 + x + 1.
These results demonstrate the importance of carefully

selecting the irreducible polynomial when implementing
watermarking algorithms, as it can significantly affect the
quality and robustness of the watermarked images. The
second polynomial, x4 + x3 +1, appears to be a more
suitable choice for this particular watermarking task based
on the higher PSNR achieved. The method exhibits a bal-
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TABLE 17. Multiplication table in GF (26).

TABLE 18. GF (23).

TABLE 19. GF (24).

anced performance across different watermark sizes, offering
versatility and adaptability for various applications with vary-
ing requirements for payload size and perceptual quality.
Researchers and practitioners can leverage this flexibility
based on the specific demands of their use cases.

IV. CONCLUSION
In conclusion, the research was motivated by the goal of
advancing watermarking techniques for the protection of
digital content. Through the experiments conducted, it was
demonstrated that the choice of irreducible polynomials sig-
nificantly influenced watermarking quality. Specifically, the

TABLE 20. GF (25).

TABLE 21. GF (26).

use of the irreducible polynomial x4 + x3 + 1 resulted in a
15% improvement when compared to x4 + x + 1.
Furthermore, the method excelled in comparison to other

studies, showcasing a remarkable 35% enhancement in image
quality and a 98% reduction in execution time. These findings
underscore the substantial progress achieved in watermarking
technology. However, it should be noted that the scalability of
the approach may vary depending on multimedia file size and
complexity.

Regarding future work, efforts will be made to investigate
techniques aimed at further optimizing watermarking sys-
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tems, with a particular emphasis on real-time applications
such as live streaming and video conferencing.

APPENDIX
A. ADDITION TABLE OF GF (23)
See Table 11.

B. ADDITION TABLE OF GF (24)
See Table 12.

C. ADDITION TABLE OF GF (25)
See Table 13.

D. ADDITION TABLE OF GF (26)
See Table 14.

E. MULTIPLICATION TABLE IN GF (23)
See Table 15.

F. MULTIPLICATION TABLE IN GF (25)
See Table 16.

G. MULTIPLICATION TABLE IN GF (26)
See Table 17.

H. ADDITION AND MULTIPLICATIVE INVERSE TABLE IN GF
(2n)
See Tables 18–21.
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