
Received 2 December 2023, accepted 2 January 2024, date of publication 15 January 2024, date of current version 1 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3354720

SIMD-Constrained Lookup Table for Accelerating
Variable-Weighted Convolution on x86/64 CPUs
YUKI NAGANAWA 1, (Graduate Student Member, IEEE), HIROKAZU KAMEI1,
YAMATO KANETAKA 1, (Graduate Student Member, IEEE),
HARUKI NOGAMI 1, (Graduate Student Member, IEEE),
YOSHIHIRO MAEDA 2, (Member, IEEE),
AND NORISHIGE FUKUSHIMA 1, (Member, IEEE)
1Department of Engineering, Faculty of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
2Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

Corresponding author: Norishige Fukushima (fukushima@nitech.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 21H03465 and
Grant 21K17768, and in part by the Environment Research and Technology Development Fund of the Environmental Restoration
and Conservation Agency of Japan under Grant JPMEERF20222M01.

ABSTRACT Convolution is the inner product of the neighborhood signal and weights and plays a
fundamental role in image processing; thus, acceleration of convolution is essential. Among convolutions,
variable-weighted convolution is used in adaptive filters and edge-preserving smoothing to realize various
applications. Some weights are replaced with lookup tables (LUTs) to accelerate these filters. LUT reference
is a classical acceleration method. However, the difference between the growth rate in computing speed
and memory I/O speed has limited the scope of utilization of LUT references. Speedup would be possible
if registers could be used as LUTs, but their small size makes them difficult to utilize. Therefore, this
study proposes a downsampling method to fit LUTs into SIMD registers, which are relatively large and
an efficient reference method for register-LUTs. Experimental results show that the proposed method can
reproduce an accuracy in PSNR of 65.52 (+25.11) dB, while a simple full-size LUT in the register size can
only reproduce 40.41 dB. Using a wider register width, the PSNR was 78.63 (+38.22) dB with AVX-512
and 84.5 (+44.09) dB with bfloat16. The fastest proposed method was on average 4.82/3.72 times faster
than direct vector computing, 2.99/3.10 times faster than vector addressing, and 3.79/7.80 times faster than
scalar addressing on the AVX2/AVX-512 computers while exceeding the display limit of 60 dB for 8-bit
displays. Taking into account these speed/accuracy trade-offs, the performance of the proposed method was
superior. This paper shows that LUT references can be realized with small SIMD registers in convolution.
The proposed method is expected to be extended to adaptive filters, convolutional neural networks, and
other image processing applications by accelerating the approximation with this register-LUT. Our code is
available at https://fukushimalab.github.io/registerLUT4conv/.

INDEX TERMS Approximate computing, bilateral filtering, high-dimensional kernel filtering, high-
performance computing, image filtering, nonlinear filters, parallel processing, SIMD, table lookup.

I. INTRODUCTION
Convolution is at the core of image processing and is used
in various ways. For example, convolution is used in spatial
invariant convolution (e.g., Gaussian and Laplacian filters),

The associate editor coordinating the review of this manuscript and

approving it for publication was Tomas F. Pena .

block spatial variation convolution (e.g., convolutional
neural networks (CNN)), and variable-weighted convolu-
tion (e.g., adaptive filters and edge-preserving smoothing).
These convolutions are essential tools for image processing
applications.

The precomputed weights of spatial invariant and block
variation convolutions are often prepared as lookup tables

15800

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-8941-7146
https://orcid.org/0009-0000-8489-263X
https://orcid.org/0009-0004-4477-2667
https://orcid.org/0000-0001-6919-637X
https://orcid.org/0000-0001-8320-6407
https://orcid.org/0000-0002-7622-4698

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 1. Overview of vector computing of weights between pixels: the conventional method by computation and by LUT with vector addressing
(gather), the proposed method realizes a table that fits into a SIMD register size with SWIZZLE instructions.

(LUTs). Whereas variable-weight convolution is determined
on a pixel-by-pixel basis and thus incurs an overhead if
kept as weights; this overhead cannot be ignored like in
CNN’s im2col [1] due to the large convolution radius [2].
Therefore, weights are often computed numerically online,
or only a portion is converted to LUTs offline to reduce
overhead [3]. However, table lookups are becoming obsolete
with the evolution of computer architecture by Moore’s law
because of the growth gap between computing performance
and the memory I/O speed, and recalculation is becoming
more efficient than LUTs. Although there are specific circuits
that improve LUT efficiency, such as vector addressing with
single instruction/multiple data (SIMD), the gap still needs
to be fully closed. Cycles per instruction (CPI) of vector
addressing is less than that of arithmetic computing, since
vector addressing places the LUTs in memory (L1,2,3 cache
or DRAM). The difference is especially noticeable when
using instructions with long vector lengths, such as AVX-
512, and the speedup is suppressed. This makes the choice
between direct numerical and LUT calculations difficult [4].

While the gap widens, the memory devices that maintain
speed are the registers equipped on the CPU. The registers
are small, but the SIMD registers are dozens of times larger
than the regular registers. In addition, they have high-speed
SIMD instructions for register replacement. Therefore, it can
also hold a certain amount of values as LUTs. However, its
size is not large enough.

In this paper, we propose an approximate acceleration
method to realize a partial LUT for variable-weighted
convolution using SIMD registers. This paper focuses mainly
on high-dimensional kernel filters (HDKF) [5], [6], [7], [8],
which is a variable-weighted convolution for edge-preserving
filtering [9]. HDKF are generalized forms for bilateral

filters [10], joint bilateral filters [11], [12], multilateral fil-
ters [13], [14], joint bilateral upsampling [15], and non-local
mean filters [16]. HDKF has various image processing
applications. HDKFs are used in various image processing
applications, such as denoising [17], deblurring [18], detail
enhancement [19] and manipulation [20], high-dynamic-
range imaging [21], [22], haze removal [23], low-light image
manipulation [24], alpha matting [25], stereo matching [26],
and optical flow estimation [27].

Typically, LUT for HDKF requires several KB in size.
That is much smaller than the several GB required by im2col
but still far less than the register size (e.g., 32B for AVX
and 64B for AVX-512). Therefore, the paper proposes a
LUT quantization method to keep it within the register size,
maintaining high accuracy. In addition, we propose a fast
LUT manipulation method using swizzle instructions.

The contributions of this paper are the following.
We propose three lookup methods for the register-LUT
and six techniques for their generation. The proposed
lookup register-LUTs includes permute (Sec. IV-A), shuffle
(Sec. IV-B), and permute with bfloat16 (Sec. IV-C). The
proposed generating LUT techniques are LUT quantiza-
tion (Sec. IV-D1), truncation (Sec. IV-D2), pre-division
(Sec. IV-D3), LUT downsampling with Gauss integral
(Sec. IV-E1), LUT tail specialization (Sec. IV-E2), and
optimization method for quantization step (Sec. IV-F). Fig. 1
shows the flow of vector computing of weights, including
the conventional computing and LUT approaches and the
proposed register-LUT approach.

II. HIGH-DIMENSIONAL KERNEL FILTER
This section introduces HDKF as a variable-weighted
convolution, which includes bilateral filtering and non-local

VOLUME 12, 2024 15801

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

mean filtering and is effectively implemented in this paper.
Let the input and output images be I and O: � → [0,R]c,
where � ⊂ N2 is the spatial domain and [0,R]c is the range
domain. Usually, R = 255 for unsigned char data, c = 1 for
grayscale images, and c = 3 for color images. In addition,
let the guidance image be G : � → [0,R]d , which is
used to calculate the convolutional weight. For gray and color
processing, d = 1, 3; for non-local mean filtering, d is a patch
size. The values of pixels in a position vector p, q ∈ � (that
is, p = (x, y)) are represented by Ip,Op and Gp. The HDKF
output at p is defined as follows:

Op = 1/ηp
∑
q∈Sp

ws(p, q)wr (Gp,Gq)Iq, (1)

ηp =

∑
q∈Sp

ws(p, q)wr (Gp,Gq), (2)

where Sp ∈ � is neighboring pixels around p. Weight
functions ws : N2

× N2
→ R and wr : Rd

× Rd
→ R

are spatial and range domain weights, and these are typically
defined as the Gaussian distribution:

ws(p, q) = exp

(
−∥p− q∥22

2σ 2
s

)
, (3)

wr (Gp,Gq) = exp

(
−∥Gp − Gq∥

2
2

2σ 2
r

)
, (4)

where σs and σr are the distribution parameters. The set of
space weights of (3) in Sp are constant for each pixel p, while
the set of range weights of (4) are variable depending on the
state of the imageG. The kernel weights are not limited to the
Gaussian, but decay weights are usually used (e.g., Laplacian
distribution and Hamming window). The following papers
introduce the various forms for HDKF [5], [6], [7], [8].

HDKFs have various acceleration algorithms for gray [21],
color [28], and more high-dimensional cases [5]. However,
this paper focuses on the naïve algorithm, which is suitable
for small and medium kernel sizes with parallel computers.

III. IMPLEMENTATION PATTERNS OF HDKF
We present design patterns for high-performance convolution
codes using parallelization and vectorization. Sec. III-A
introduces a plain code for parallelized and vectorized
computing. Sec. III-B shows its vectorized code. Sec. III-C
introduce the LUT approach instead of using computation.
Sec. III-D shows the vector addressing for the SIMD LUT
processing.

A. PARALLELIZED PATTERNS
SIMD and multi-thread parallelization are essential for
high-performance image processing on CPUs. Convolution
in image processing has various parallelization patterns. The
most efficient pattern is to split the height loop of the image
for parallelization and to unroll the width loop of the image
for vectorization [2]. PROGRAM 1. Bilateral filtering code for vectorization.

15802 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

PROGRAM 2. SIMD convolution with exp computing.

Program 1 is an example of this optimization for bilateral
filtering (i.e., grayscale HDKF). Sometimes, the code is
auto-vectorized as is code by compilers, but this paper
manually tunes the code by SIMD intrinsics. If we use
OpenMP to explicitly vectorize the code, then we can use
the comment out line in Program 1’s line 28, #pragma omp
simd simdlen(8). Note that the OpenMP directive parallelizes
the j-loop in the code in Program 1’s line 25. In Program 1’s
lines 15–22, the spatial weights are constant for each kernel
position; thus, the weights can be precomputed without any
loss. The variable factor is limited for range weights. In this
paper, we focus on the variable part.

B. NUMERICAL COMPUTING FOR CONVOLUTION
The exponential function is required for the range weight
computation (Program 1, lines 39–55). Intel Short Vector
Mathematical Library (SVML) provides the SIMD expo-
nential function, but no dedicated circuit exists. It is now
supported by gcc, icc, and cl (Visual Studio). For vectorizing
lines 39-55 in Program 1, we use _mm256_exp_ps function
for range weight. The SIMD code for these parts is shown
in Program 2. We can replace the _mm256_exp_ps intrinsics
by the other library such as fmath library1 and Agner Fog’s
Vector Class Library.2 This paper used fmath for additional
usage.

C. LUT-BASED CONVOLUTION
We introduce LUT-based convolution instead of numerical
computing. In this section, we omit the spatial weight for
readability.

Here, we define the operator that refers to LUT. The set of
distance candidates (i.e., index) is I = {0, 1, . . .} ⊂ N and
the set of elements of the LUT is L ⊂ R. Each element in
these set, i ∈ I and l ∈ L, are mapped as follows:

i 7→ l = LUT[i], (5)

1https://github.com/herumi/fmath
2https://github.com/vectorclass/version2

where the operator LUT : I → L, the size of set |I| and |L|

are the same, and the max value of I is |L| − 1 denoted as
υ. Let an input vector be x. The distance operator d(·) ∈ L,
such as the ℓ2 norm, computed the index value.

i = round(d(x)) (6)

where round(·) : R → N is rounding operator.
Using (1), (5) and (6), the LUT-based convolution is

defined by replacing wr function with LUT operator:

Op =

∑
q∈Sp

LUT[round(d(Gp − Gq))]Iq. (7)

Here, we omit the spatial weight ws and the normalization
factor 1/ηp in (1) to focus on the range weight. The LUT
approaches can include pre-computation in arguments of the
exponential function. We introduce two types of distance
function d : linear mapping and root mapping.

The first is linear mapping, which includes the normaliza-
tion in the argument and is defined as follows:

LUT[i] := exp
(

−
i

2σ 2

)
, d(x) := ∥x∥22 (8)

The argument in linear mapping is square distance; thus, the
value tends to be significant. For the gray case, the LUT size is
2552 = 65535. For the color case, r2+g2+b2 = (2552)∗3 =

195, 075.
The second is root mapping, which additionally includes

the square operator in the argument.

LUT[i] := exp
(

−
i2

2σ 2

)
, d(x) := ∥x∥2. (9)

The linear mapping must compute the ℓ2 norm, computed by
the distance computation in the root operator. If an input for
the distance function is scalar (i.e., grayscale), the distance
function becomes absolute difference;

d(x) := |x|. (10)

Since the argument of a Gaussian function grows as the
square of its size, linear mapping has a finer grading of the
larger portions. Therefore, we first take the root and linearize
the arguments to reduce the LUT size without quantization.
The LUT size becomes 256 for the grayscale case and 442
(⌈

√
195, 075 = 441.67 . . .⌉) for the color case.

Color processing involves this linearization process, which
adds a root operation to the distance calculation and increases
the cost. On the other hand, direct calculation, such as calling
_mm256_exp_ps, does not require a root operation because
the square can be directly entered as an argument.

Note that subnormal numbers should be avoided for LUT
values such that the small value does not contribute to
accuracy, but significantly reduces speed [3].

VOLUME 12, 2024 15803

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

D. VECTOR ADDRESSING IMPLEMENTATION
Vector addressing is the SIMD operation for referring
to LUTs. Program 3 is part of a convolution that uses
vector addressing for range weights. The intrinsic vgatherdps
(_mm256_i32gather_ps) is for the vector addressing. Instead
of computing range weights by _mm256_exp_ps, the table
reference reduces its computational cost. Scalar addressing
is also possible using the mm256_set_ps intrinsic, a macro
for insert and extract instructions. Scalar addressing resolves
table lookup for SIMD register element by element In
Program 3 line 25, the function of scalar addressing is
commented out. The performance of vector addressing
depends on computer architectures; thus, scalar addressing is
sometimes effective.

PROGRAM 3. Vector addressing.

Vector addressing is used for various applications, such
as the SIMD lookup table library for the global navigation
satellite system (GNSS) correlator [29], a biological signal
processing of heart simulation [30], a simplification of a
real-world system of hydrologic model [31] (e.g., surface
water, soil water, wetland, groundwater, estuary), and image
and tensor processing [2], [32], [33].

IV. PROPOSED QUANTIZED LUT
The SIMD swizzle instructions rearrange the elements in
registers according to specified rules. The category of the
swizzle instructions include blend, broadcast, compress,
expand, extract, insert, permute, shuffle, and unpack in Intel
Intrinsics Guide.3 This reordering can be used to refer to
LUTs in SIMD registers. The problems of the register-LUT

3https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.
html

PROGRAM 4. Register-LUT functions (AVX2).

are how to refer to the register-LUT, and the number of
elements in the LUT is limited to the number of elements in
the SIMD register. First, we introduce two types of register-
LUT reference: permute and shuffle. Second, we explain how
to fit a larger LUT into the register-LUT size.

Before a detailed explanation, the actual permute and
shuffle codes are shown in Program 4 (AVX2) and Program 5
(AVX-512). These functions can be used in place of the gather
intrinsic in Program 3 for the approximated acceleration.
Table 1 is a datasheet of Intel Skylake microarchitecture
for the intrinsics used. The permute and shuffle intrinsics
are faster than the gather vector addressing. The other
microarchitecture information can be obtained at the uops
site [34].4

TABLE 1. Datasheet of intrinsics. L: latency and T: throughput of intel
cascade lake microarchitecture.

A. INSTRUCTION: PERMUTE
Using AVX2, the vpermps (permutevar8 × 32ps) instruction
can reorder 8 float-type elements by 8 int-type elements,
where the int-type indices are within 0-7, and each reorder
element can be specified arbitrarily, including duplica-
tions. Using AVX-512, 16 elements can be reordered
by the vpermps (permutexvar_ps) instruction. In addition,

4https://uops.info/

15804 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 2. Register-LUT approach using permute (vpermps) intrinsic for 32-bit LUT (AVX2).

FIGURE 3. Register-LUT approach using permute (vpermi2ps) intrinsic for two 32-bit LUTs (AVX-512).

PROGRAM 5. Register-LUT functions (AVX-512).

vpermi2ps (permutex2var_ps) instruction can refer to two
register tables by a single register index with 0-31 values.

In other words, looking up 32-element tables can be
achieved by a single instruction. These instructions have a
latency of 3 and a throughput of 1; thus, changing AVX2
to AVX-512 quadruples the table size at the same CPI.
Usually, performance scalability from AVX2 to AVX-512 is
double [35], but the size scalability is quadruple.

Figures 2 and 3 present visual examples for AVX2 and
AVX-512 cases, respectively. The processing of AVX2 has
three processing chains:

1) Convert float type to int type for index
2) Truncate index with an integer value of 7
3) Permute a LUT with an index

In addition, the AVX-512 case is as follows:

1) Convert float type to int type for index
2) Truncate index with an integer value of 31
3) Permute two LUTs with an index

If we use more register tables to refer to a larger
LUT, we can combine the results of multiple register table
lookups. The practical implementation is as follows. First,
the permute instruction references the register tables 1 and 2,
ignoring that the index value is greater than 8. The swizzle
instruction’s index value is the remainder of the number of
register elements. For example, index=0 and index=8 in the
vpermps instruction have the same semantics. Next, a mask
is created to indicate whether the index value exceeds 8 or
16, respectively. Finally, the results are blended according

VOLUME 12, 2024 15805

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 4. Register-LUT approach using shuffle intrinsic for 8-bit LUTs (AVX2).

to the masks to enable multi-register table lookups. This
implementation requires a permute instruction for the number
of tables. In addition, compare and blend instructions for the
number of tables minus one. This paper combines up to three
register tables (i.e., 8, 16, and 24 elements for AVX2 and 32,
64, and 96 for AVX-512).

PROGRAM 6. Merging three register-LUTs (AVX2 permute).

Program 6 shows the case of merging three register-LUTs
by the permute intrinsics on AVX2 CPUs. The program
performs three permutes and two compares and blends. The
registers m7, m15, and m23 contain constant values for each
register.

B. INSTRUCTION: SHUFFLE
The shuffle instruction can also refer to register-LUTs.
The shuffle instruction can move elements within a 128-bit
register lane. In other words, it can move only the same
number of elements as the SSE instructions. Even if AVX2
or AVX-512 is used, the range of movement is not increased,

but the throughput is 2 or 4 times higher. In addition, only
the 8-bit element moving instruction, vpshufb (shuffle_epi8),
can be used, and it is impossible to move a float array
dynamically. Therefore, the 32-bit float table should be
converted to an 8-bit integer table to make it a 16-element
LUT reference. The type conversion is defined as follows:

LUT8u[i] = round(255 · LUT[i]), (11)

where · is the scalar multiply operator.
More elements (16 elements) can be referenced in the

8-bit table (8 elements) than permuting the 32-bit table
in the AVX2 case. However, there is an overhead of type
conversion from integer to floating point after the LUT
reference. In addition, the quantization reduces accuracy.
Therefore, it depends on the computer architecture whether
it is better to perform a two-element LUT or this approach.

Figure 4 shows the process steps. As a preprocessing,
the float-type LUT is converted to 8-bit integers. In the
AVX2 case, we replicate the register-LUTs to the first and
second half lanes; in the AVX-512 case, we replicate them to
four lanes. In the case of SSE, no replication is required (i.e.,
only one lane, 128-bit, is required). The processing flow has
five processing chains:

1) Convert float type to int type for index
2) Truncate index with a 32-bit integer value of 15 and

regard the index as 8-bit char type (not cast)
3) Perform shuffle_epi8 to a LUT with index
4) Bitmask to clear unnecessary values to 0
5) Return to float type

The shuffle instruction can apply to SSE-only computers
(e.g., Intel Atom), but SSE CPUs do not have pemute

15806 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 5. Floating-point value representations for 32-bit float, bfloat16
and fp16.

instructions, which were introduced from AVX. In addition,
SSE CPUs do not have the gather intrinsic.

Similarly, the shuffle can superimpose multiple register-
LUTs with the compare and blend instructions, such as the
permute.

C. INSTRUCTION: PERMUTE WITH BFLOAT16
In AVX-512, we can use the 16-bit permute intrinsic,
permi2w (permutex2var_epi16), but the intrinsic is used for
16-bit integer registers. However, the bitwise movement of
elements is not affected by type, as long as the number of bits
is consistent.

There are two well-known 16-bit floating-point types:
bfloat16 and fp16. Fig. 5 shows each type. The difference
between a float and a bfloat16 is the number of fraction bits,
whereas the difference between a float and a bfloat16 is both
the exponent and fraction bits. The bfloat16-type can be used
in AVX512BF16-supported CPUs: Cooper Lake, Alder Lake,
Sapphire Rapid, and Zen 4. The AVX512BF16 category
only contains type conversion and dot-product arithmetics
for bfloat16. The fp16-type can be used in AVX512FP16-
supported CPUs: Alder Lake and Sapphire Rapid. The
AVX512FP16 category contains almost all 16-bit instructions
with the same functions as those supported by 32-bit floats.
However, only a limited number of CPUs support these 16-bit
floating-point instructions.

Therefore, in this paper, we propose an effective software
implementation of bfloat16 for LUT reference. This imple-
mentation can be used for all AVX-512CPUs. The conversion
of the type from 32-bit float to bfloat16 is just truncating
the lower-bit part, whereas fp16 requires complex operations.
The fraction bits range from 23 bits to 7 bits, with 16 bits in
the fraction bits. By this conversion, we can store 32 elements
of 16-bit floating-point value in 512-bit AVX-512 registers.
Then, we refer to register-LUTs using permutex2var_epi16.
A 16-bit shift to the left is needed to return to a 32-bit float
by padding the lower bits to 0 while clearing the dirty flags
in the upper bits.

Figure 6 shows the process steps. The processing flow has
four processing chains:

1) Convert float type to int type for index
2) Truncate index with a 32-bit integer value of 63 and

regard the index as 16-bit short type (not cast)

3) Perform permutex2var_epi16 to two bfloat16 register-
LUTs with the index

4) Left bit-shift to move sign and exponent bits to higher
bit with zero-padding for lower-bit (resulting data can
be regarded as 32-bit float).

D. QUANTIZATION, TRUNCATION, AND PRE-DIVISION
When we refer to a table, the index does not always fit within
the upper limit of the number of LUT elements. For example,
the absolute value of the difference of luminance values is
within 0-255, whereas the size of a register table is 8 in the
permute on AVX2. Therefore, we need additional processes
if the difference is larger than the table size.

1) QUANTIZATION
A simple way to keep it within the number of LUT elements is
to divide and round the index by the number of LUT elements
for quantization. The index quantization function q is defined
as follows:

q(i, τ) = round(i/τ), (12)

where τ is a division step. The number of LUT elements can
be small enough to fit in the register size by adjusting tau.
The most straightforward approach for the LUT quantiza-

tion is the nearest neighbor quantization. Note that advanced
quantization will be presented in the following subsection.
The nearest neighbor approach quantizes the input LUT by τ :

LUTq[i] = LUT[τ ∗ i] = exp
(

(iτ)2

−2σ 2

)
. (13)

For example, we convert an LUT with 256 elements to
8 elements by setting τ = 64. The index is then divided by
τ , and the value always falls within 0-7. Using (12) and (13),
the LUT-based convolution is as follows:

Op =

∑
q∈Sp

LUTq[q(d(Gp − Gq), τ)]Iq. (14)

However, this method quantizes LUTs by a large τ , reducing
precision.

2) TRUNCATED QUANTIZATION
To overcome the problem of large quantization, we quantize
LUTs with truncation, named truncated quantization. Gaus-
sian distribution has long tails, and the responses in the tail
are almost zero. Therefore, we ignore the tail regions by
truncating the index argument. Here, let the upper limit of the
index value be υ = |L|−1. The index value for the truncated
quantization is defined as follows:

tq(i, τ, υ) = min(round(i/τ), υ), (15)

Using (15), the LUT-based convolution is as follows:

Op =

∑
q∈Sp

LUTq[tq(d(Gp − Gq), τ, υ)]Iq. (16)

This approach can suppress the large tau value by ignoring
the distribution tails. Both approaches of (14) and (16) require

VOLUME 12, 2024 15807

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 6. Register-LUT approach using permute (vpermi2w) intrinsic with bfloat16 for 16-bit LUTs (AVX-512).

FIGURE 7. LUT quantization (τ = 2.9).

division (reciprocal multiplication) for each computing index
in (12) and (15).

3) PRE-DIVISION
For acceleration, we can remove the division factor in q and
tq by dividing the guidance image G by τ to shrink the range
domain, G′

= G/τ : [0 : 255] → [0 : 255/τ]. This pre-
division removes division operators in the kernel processing
for indexing;

t(i, υ) = min(round(i), υ). (17)

Finally, the LUT-based convolution is defined as follows:

Op =

∑
q∈Sp

LUTq[t(d(G′
p − G′

q), υ)]Iq, (18)

E. GAUSS INTEGRAL AND TAIL SPECIALIZATION
Quantizing full LUT with the nearest neighbor method
ignores many skipped elements. Additionally, most tail ele-
ments are ignored. Fig. 7 visualizes the access. We consider
the skipped elements byGauss integral and tail specialization.

1) GAUSS INTEGRAL
We can use the Gauss integral to improve the accuracy of the
quantized LUT instead of the nearest neighbor method. The

definition of the Gauss integral is as follows:

LUTqg[i] =
1

ti+1 − ti

∫ ti+1

ti
exp

(
−x2

2σ 2

)
dx

=

√
πσ 2

2

{
erf
(
ti+1

√

2σ 2

)
−erf

(
ti

√

2σ 2

)}
, (19)

where ti and ti+1 are lower and upper limits for subsampled
index i that covers full sample LUT. The function erf(·) is
the error function. When we use round off, ti is defined as
follows:

ti =

0 (i = 0)
0.5τ (i = 1)
t1 + (i− 1)τ else.

(20)

The number ti is denoted in Fig. 7 under the full LUT boxes.
The method covers skipped elements.

2) TAIL SPECIALIZATION
We specialize the operation for the last element in the register
table because the tail values are almost zero and the element
supports the broader range of non-subsampled LUT. For the
last index υ, we consider three cases. The first is direct setting
using (19), named last-direct. The second is the last mean
setting, named last-mean, which is defined as follows:

LUTqg[υ] :=
1

ti+1 − ti

∫ t∞

tυ
exp

(
−x2

2σ 2

)
dx (21)

=

√
πσ 2

2

{
erf
(

t∞
√

2σ 2

)
−erf

(
tυ

√

2σ 2

)}
, (22)

The third is the zero setting, named last-zero.

LUTqg[υ] := 0 (23)

F. OPTIMIZING QUANTIZATION STEP
We propose an optimization method for the quantization
parameter τ . For small values of τ , the LUT resolution

15808 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 8. Kernel shapes and their ×5 boosted errors with permute-32 when τ is varied (32 elements on AVX-512 for σ = 30).

FIGURE 9. Error in linear search for the parameter τ (32 elements on
AVX-512, σ = 30).

near zero is higher, while the values near the tail of the
LUT drop sharply to 0. For large values of τ , the resolution
near 0 is lower, but the tail approaches zero smoothly. The
proposed method minimizes the difference between the full
sample LUT and the quantized and truncated LUT.We define
the error function as follows and find the minimization
argument τ :

τ = arg min
t

∑
i∈L

(LUT[i] − LUTX[tq(i, t, υ)])2 , (24)

where LUTX represents arbitrary quantized LUTs (e.g.,
LUTq and LUTqg). Figure 8 shows the kernel shapes and
errors for each parameter τ . A smaller τ results in a
larger tail error, and a larger τ results in a larger overall
error. The optimum τ is the one that balances these
two.

The parameter τ was optimized with a golden search.
Actual errors oscillate due to quantization errors; hence, they
can only be found if a full search is performed. However,
τ is a real number, and a continuous linear search is too
costly. Therefore, we used the golden search method, which
has been experimentally successful. Figure 9(a) shows the
linear search result, and the error is almost differential.
Figure 9(b) shows the close of the linear search results
around optimal, and the error oscillates, but the difference is
small.

TABLE 2. Architecture used. *E-cores are disabled for using AVX-512.

V. EXPERIMENTAL RESULTS
We conducted three experiments. The first evaluated the
performance of quantization methods for LUTs. Second,
we investigated the effect of filtering parameters on accuracy.
The third evaluated the accuracy-speed trade-off among
different computer architectures. Tab. 2 shows the com-
puters used for each experiment. We used Visual Studio
2022 on Windows and OpenMP (/openmp:llvm option) for
parallelization for each experiment. We used σ = 3.0 and
σr = 30 as default parameters. We used peak-signal-noise-
ratio (PSNR) as a metric and direct computing of exponential
functions with r = 6σs convolution as a ground truth for
accuracy evaluation.

A. QUANTIZE LUT METHOD
Fig. 10 shows the effect of the proposed features enabled
one by one. The label ‘‘442 clip’’ is the τ = 442/8 =

55.25 with the nearest neighbor sampling with the last-direct
case that is the simplest method just considering quantization
(Sec. IV-D1). The label ‘‘180 or 90 clip’’ is the τ = 180/8 =

22.5 or τ = 90/8 = 11.25 with the nearest neighbor
sampling with the last-direct case considering truncation
(Sec. IV-D2). The label ‘‘opt. NN-direct’’ is the optimal
τ case using the optimization step (Sec. IV-F). The label
‘‘opt. Gauss-direct’’ changes downsampling from the nearest
neighbor to the Gauss integral (Sec. IV-E1) and ‘‘the opt.
Gauss-mean’’ changes tail handling from direct to last-mean

VOLUME 12, 2024 15809

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 10. Performance improvement when each feature is enabled.
Color filtering (σr = 30, σs = 3.0) with permute.

(Sec. IV-E2). The label ‘‘AVX-512’’ switches AVX2 to AVX-
512 so that the register size is from 8 to 32 (Sec. IV-A), and
the label ‘‘bfloat-16’’ is 64 (Sec. IV-C). From the simplest to
the entire proposed method case, PSNR is improving from
40.41 dB to 65.52 (+25.11) dB in AVX2. Using AVX-512,
PSNR is 78.63 (+38.22) dB and 84.5 (+44.09) dB with
bloat-16.

Figs. 11 to 14 evaluate the downsampling methods for
the register-LUTs using various lookup methods. The Gauss
integral is superior to the nearest neighbor method in all
cases. When the number of LUT elements is large, there
is little difference between the methods (see the permute-bf
192 case). The last-integral is the best when the number of
elements is small.

B. FILTERING PARAMETER DEPENDENCY
Fig. 15 shows the parameter dependency of σr and σs for each
register-LUT method in color images. The LUT quantization
method is Gauss integral with last-mean. We omit the AVX-
512 shuffle because the response is the same as its AVX2 case.

The higher the number of register elements, the higher the
approximation accuracy. In addition, PSNR tends to be higher
when σr is large, but no parameter causes an extreme drop in
PSNR. Even in the case of permute-8, which has the lowest
number of LUT elements, the PSNR never falls below 60 dB.

Figure 16 shows PSNR for σr with various register-LUT
methods that are profile plots in Fig. 15 on σs = 3.0. The
performance of each method improves with the number of
LUTs processed. The number of LUTs for shuffle-16 and
permute-16 are the same, so they are almost on the same
plot, but shuffle-16 is slightly worse due to quantization.
In addition, the pairs (permute-32, shuffle-32) and (permute-
64, permute-bf-64) have the same tendency. The PSNR is
higher for the wide σ than for the narrow σ , but the difference
is insignificant.

Figure 16 shows PSNR for σs with various register-LUT
methods that are profile plots in Fig. 15 on σr = 30.0. The
trend is almost the same as in the σr case, but the lack of LUT
quantization makes it less jagged.

C. ARCHITECTURE DEPENDENCY
This section shows the trade-off between PSNR and
time for various methods for each CPU architecture.
Figs 17, 18, 19, 20, and 21 show AVX2 cases and
Figs 22, 23, 24, 25, and 26 showAVX-512 cases. We evaluate
four competitive methods with the proposed methods:
direct weight computing with SVML(exp) and with fmath
library (fmath), LUT vector addressing (gather), and scalar
addressing (set).

In AVX2 implementation on x86/64 CPUs, register-LUT
implementations of the permute and shuffle are faster than
all competitive methods. Among the register-LUT methods,
the shuffle approach has better trade-off performance than the
permute approach in all cases. However, permute is faster
and exceeds the display limit of 60 dB for 8-bit displays;
thus, it depends on the case in which one is used. In Intel
CPU, the gather is faster than the set, and computing (exp
and fmath) is relatively slower than the gather. Blending three
permutes or shuffles is slower than the gather in Intel CPUs.
In AMD CPU, the gather is slower than the set in Zen+,
Zen2, and Zen3, but Zen3 improves the gather performance.
The fmath implementation also uses gather intrinsic; thus, the
performance is slow. In AMD CPUs register-LUT methods
are relatively faster than the competitive methods because the
shuffle and permute are higher CPI and computing and vector
addressing is slower CPI than Intel CPU; thus, three merges
are effective.

In AVX-512 implementation on x86/64 CPUs in the
register-LUT methods, conversely, the permute has better
trade-off performance than the shuffle in all cases because
AVX-512 permute can handle substantially longer vector
lengths than shuffle, and IPC is superior. In the case of
AVX-512, a register-LUT technique with bfloat16 is added,
and a single-stage bfloat16 instruction has the same number
of registers as a stacked two-stage permute instruction.
In all cases except for the Rocket Lake architecture, the
bfloat16 implementation is slightly better than the float
implementation indicating that the choice of implementation
should be based on the architecture. The computation and
vector addressing implementations vary by architecture, but
the register-LUT method is superior in all cases.

Tab. 3 and 4 show normalized time by the fastest permute
method for each architecture on AVX2 and AVX-512. Even
the fastest permute exceeds 60 dB, so the difference is not
noticeable on an 8-bit display. In AVX2, gather is the second
fastest on Intel CPUs and set is the second fastest on AMD
CPUs. In AVX-512, gather is the second fastest on Intel CPUs
and exp is the second fastest on AMD CPUs. The fastest
proposed method was on average 4.82/3.72 times faster than
direct vector computing, 2.99/3.10 times faster than vector

15810 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 11. PSNR for each LUT quantization method in AVX2 (gray).

FIGURE 12. PSNR for each LUT quantization method in AVX2 (color).

FIGURE 13. PSNR for each LUT quantization method in AVX-512 (gray).

FIGURE 14. PSNR for each LUT quantization method in AVX-512 (color).

addressing, and 3.79/7.80 times faster than scalar addressing
on the AVX2/AVX-512 computers.

VI. RELATED WORK
This paper focuses on accelerating HDKF convolution on
x86/64CPUs using SIMDandLUT. In this section, we review
mathematical functions for alternative LUT computing,
acceleration of convolutions, and acceleration of HDKFs.

A. MATHEMATICAL FUNCTIONS
Knowing how to speed up numerical computing is important,
not refering to LUTs. This paper uses an exponential function
for numerical computing.

The libm library is the standard mathematical library
used in C, which includes an exponential function. The
algorithms described by Gal [36] and Crlibm [37] achieved

very accurate results by reducing rounding errors. The GNU
C Library (glibc)5 is the most widely used implementation of
libm and includes Freely Distributable LIBM (FDLIBM).6

OpenLibm7 is an effort to have a high quality, portable,
standalone libm derived from FDLIBM. Intel oneAPI Math
Kernel Library (oneMKL)8 is a math library for numerical
computing on Intel’s CPUs and GPUs, and Intel Short Vector
Math Library (SVML) is one of them. AOCL-LibM9 is a
set of numerical libraries optimized for AMD processors
and is part of AMD Optimizing CPU Libraries (AOCL), the

5https://www.gnu.org/software/libc/manual/
6https://www.netlib.org/fdlibm/
7https://openlibm.org/
8https://www.intel.com/content/www/us/en/developer/tools/oneapi/

onemkl.html
9https://github.com/amd/aocl-libm-ose

VOLUME 12, 2024 15811

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 15. Approximation accuracy for each parameter σs and σr .

FIGURE 16. σr and σs to PSNR for various register-LUT methods. One of the parameters is fixed at the following value: σs = 3.0 and σr = 30.0.

successor to AMD Core Math Library (ACML). Libmvec,10

Yeppp! [38] and Vector-libm [39] are the other vectorized

10https://sourceware.org/glibc/wiki/libmvec

implementations of libm. SLEEF [40]11 is a vectorized libm
that achieved excellent performance and portability. Agner

11https://sleef.org/

15812 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 17. Intel alder lake (AVX2).

FIGURE 18. Intel coffee lake refresh (AVX2).

FIGURE 19. AMD Zen3 (AVX2).

FIGURE 20. AMD Zen2 (AVX2).

Fog’s Vector Class Library12 is a C++ class library for
using SIMD instructions to improve performance on modern
microprocessors with the x86 or x86/64 instruction set.

There are various optimizations for specific functions.
Yamamoto et al. tested various approximations of the
exponential function from the viewpoint of computational

12https://github.com/vectorclass/version2

efficiency [41]. The fmath library13 utilizes the computation
of exponential functions with vector addressing to achieve
higher speed. de Lassus Saint-Geniés et al. reported accurate
LUTs for trigonometric and hyperbolic functions [42].
Shen et al. proposed effective vectorizations of trigonometric
functions [43].

13https://github.com/herumi/fmath

VOLUME 12, 2024 15813

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 21. AMD Zen+ (AVX2).

FIGURE 22. Intel sapphire rapids (AVX-512).

FIGURE 23. Intel cascade lake (AVX-512).

FIGURE 24. Intel alder lake (AVX-512).

Currently, compiler-based math functions are utilized.
Zhang et al. proposed a special-purpose compiler that is
capable of generating LUTs that use Taylor series interpolants
based on accuracy and memory constraints [44]. Anand and
Kahl [45] proposed a domain-specific language (DSL) for
libm functions tuned for Cell/B.E. SPU compute engine.
VDT Mathematical Library [46] leverages the capability of

compilers to emit machine instructions optimized for the tar-
get architecture. FunC [4]14(for Function Comparetor) eval-
uates the performance of direct evaluation relative to various
implementation LUTs. MegaLibm [47] is a DSL for imple-
menting, testing, and tuning math library implementations.

14https://github.com/uofs-simlab/func

15814 VOLUME 12, 2024

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

FIGURE 25. Intel rocket lake (AVX-512).

FIGURE 26. AMD Zen4 (AVX-512).

TABLE 3. Time ratio of each method to permute-8 (63.6 dB) on AVX2 with
512 × 512 grayscale.

TABLE 4. Time ratio of each method to permute-32 (77.83 dB) on
AVX-512 with 512 × 512 grayscale.

B. OPTIMIZATION FOR CONVOLUTION
FIR filtering with spatial invariant convolution was deployed
in various architectures, such as MMX [48], SSE [49],
PowerPC and Cell/B.E. [50], AVX [2], AVX-512 with loop
unrolling [51], ARM [52]. WebAssembly [53], GPU [54],

[55], [56], and integrated CPU-GPU, and FPGA [57]. In addi-
tion, integer convolution was proposed on x86/64 CPUs [58],
[59], [60], [61], [62]. Vectorization of image processing
pipelines that include spatial invariant convolution had also
been proposed, such as Harris corner detection [63], which
uses Gaussian filtering for structure tensor images, [64], [65],
edge detection with Sobel filtering [66], morphological filter
on ARM CPU [67], and wavelet transforms [68], [69].

Variable-weighted convolution of edge-preserving filter-
ing and adaptive weighted filtering using LUTwas vectorized
on x86/64 CPUs [2], [3], [70] and GPUs [71]. This paper is
one of this type.

Halide [72] is a DSL for image processing, and the
language can easily vectorize codeswith a simple description.
There are various effective implementations in Halide, such
as interpolation [73], FIR [74], recursive [75], median [76],
and variable-weighted [77] convolutions.
For CNN accelerations, we can use four algorithms:

direct, lowering, FFT, and Winograd. Direct algorithms
are implemented as six nested loops with a multiply-
add instruction, and various CPU optimization approaches
are proposed [78], [79], [80], [81], [82]. The lowering
(im2col) approach [1] transforms image structure followed by
general matrix-matrix multiplications [83], [84], [85], [86].
FFT accelerates convolution [87], [88] and Winograd-based
convolution [89] to decrease arithmetic operations [87], [90],
[91], [92].

C. APPROXIMATED HDKF FOR ACCELERATION
Durand and Dorsey [21] proposed early work to accelerate
grayscale bilateral filtering (BF). This approach decomposed

VOLUME 12, 2024 15815

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

BF into multiple Gaussian filters (GFs) with FFT accel-
erations. Paris and Durand [93] extended Durand’s work
by representing BF as HDKF with downsampling accelera-
tion. Subsequent studies have proposed higher-performance
approximations by refining the range kernel representa-
tion [94], [95], [96], [97], [98], [99], [100], [101]. Recently,
constant-time Gaussian filter approximations have been used
to speed up the process [102], [103].

For the color case, Paris and Durand [28] and Yang et al.
[104] proposed an extension of the gray BF, and the method
was O(K 3). Recent approaches reduced the number of range
kernel convolutions by random subsampling [105], [106],
[107]. Adams et al. proposed an HDKF data structure
for efficient processing, the Gaussian KD-tree [5] and
permutohedral lattice [6]. Additionally, clustering [108] can
acclerate HDKFs [7], [8], [109], [110], [111].
These methods are independent of kernel size and work

better when the convolution radius is large. In contrast, this
paper approximates HDFK of the range kernel in the naïve
implementation.

VII. CONCLUSION
In this paper, we propose a method to perform LUT refer-
ence by vectorized computation using swizzle instructions
for high-dimensional kernel filtering, a variable-weighted
convolution. Experimental results show that the proposed
method can reproduce a PSNR of 65.52 (+25.11) dB, while
a simple full-size LUT in the register size can only reproduce
a PSNR of 40.41 dB. Using a wider register width, the
PSNR was 78.63 (+38.22) dB; using the bfloat16 type,
it could be improved to 84.5 (+44.09) dB. Speed was also
tested on various architectures. The fastest proposed method
was on average 4.82/3.72 times faster than direct vector
computing, 2.99/3.10 times faster than vector addressing,
and 3.79/7.80 times faster than scalar addressing on the
AVX2/AVX-512 computers while exceeding the display limit
of 60 dB for 8-bit displays. Considering these speed/accuracy
trade-offs, the performance of the proposed method was
superior. Moreover, using various LUT generation methods,
it was possible to operate with an approximation accuracy of
60 dB or better (the limit of an 8-bit display).

REFERENCES
[1] K. Chellapilla, S. Puri, and P. Simard, ‘‘High performance convolutional

neural networks for document processing,’’ in Proc. Int. Workshop
Frontiers Handwriting Recognit., 2006, pp. 1–7. [Online]. Available:
https://inria.hal.science/inria-00112631

[2] Y. Maeda, N. Fukushima, and H. Matsuo, ‘‘Taxonomy of vectorization
patterns of programming for FIR image filters using kernel subsampling
and new one,’’ Appl. Sci., vol. 8, no. 8, p. 1235, Jul. 2018, doi:
10.3390/app8081235.

[3] Y. Maeda, N. Fukushima, and H. Matsuo, ‘‘Effective implementation of
edge-preserving filtering on CPU microarchitectures,’’ Appl. Sci., vol. 8,
no. 10, p. 1985, Oct. 2018, doi: 10.3390/app8101985.

[4] K. R. Green, T. A. Bohn, and R. J. Spiteri, ‘‘Direct function evaluation
versus lookup tables:When to use which?’’ SIAM J. Sci. Comput., vol. 41,
no. 3, pp. C194–C218, Jan. 2019, doi: 10.1137/18m1201421.

[5] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, ‘‘Gaussian KD-trees
for fast high-dimensional filtering,’’ ACM Trans. Graph., vol. 28, no. 3,
pp. 1–12, Jul. 2009, doi: 10.1145/1531326.1531327.

[6] A. Adams, J. Baek, and M. A. Davis, ‘‘Fast high-dimensional filtering
using the permutohedral lattice,’’ Comput. Graph. Forum, vol. 29, no. 2,
pp. 753–762, May 2010, doi: 10.1111/j.1467-8659.2009.01645.x.

[7] P. Nair and K. N. Chaudhury, ‘‘Fast high-dimensional kernel filtering,’’
IEEE Signal Process. Lett., vol. 26, no. 2, pp. 377–381, Feb. 2019, doi:
10.1109/LSP.2019.2891879.

[8] S. Oishi and N. Fukushima, ‘‘Tiling and PCA strategy for clustering-
based high-dimensional Gaussian filtering,’’ Social Netw. Comput. Sci.,
vol. 5, no. 1, p. 40, Nov. 2023, doi: 10.1007/s42979-023-02319-6.

[9] P.Milanfar, ‘‘A tour ofmodern image filtering: New insights andmethods,
both practical and theoretical,’’ IEEE Signal Process. Mag., vol. 30, no. 1,
pp. 106–128, Jan. 2013, doi: 10.1109/MSP.2011.2179329.

[10] C. Tomasi and R. Manduchi, ‘‘Bilateral filtering for gray and color
images,’’ in Proc. 6th Int. Conf. Comput. Vis., Jan. 1998, pp. 839–846,
doi: 10.1109/ICCV.1998.710815.

[11] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, ‘‘Digital photography with flash and no-flash image pairs,’’
ACM Trans. Graph., vol. 23, no. 3, pp. 664–672, Aug. 2004, doi:
10.1145/1015706.1015777.

[12] E. Eisemann and F. Durand, ‘‘Flash photography enhancement via
intrinsic relighting,’’ ACM Trans. Graph., vol. 23, no. 3, pp. 673–678,
Aug. 2004, doi: 10.1145/1015706.1015778.

[13] E. P. Bennett, J. L. Mason, and L. Mcmillan, ‘‘Multispectral bilateral
video fusion,’’ IEEE Trans. Image Process., vol. 16, no. 5, pp. 1185–1194,
May 2007, doi: 10.1109/TIP.2007.894236.

[14] T. Matsuo, N. Fukushima, and Y. Ishibashi, ‘‘Weighted joint bilateral
filter with slope depth compensation filter for depth map refinement,’’
in Proc. Int. Conf. Comput. Vis. Theory Appl., vol. 2, 2013, pp. 300–309,
doi: 10.5220/0004292203000309.

[15] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, ‘‘Joint bilateral
upsampling,’’ ACM Trans. Graph., vol. 26, no. 3, p. 96, Jul. 2007, doi:
10.1145/1276377.1276497.

[16] A. Buades, B. Coll, and J.-M. Morel, ‘‘A non-local algorithm for image
denoising,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2005, pp. 60–65, doi: 10.1109/CVPR.2005.38.

[17] M. Zhang and B. K. Gunturk, ‘‘Multiresolution bilateral filtering
for image denoising,’’ IEEE Trans. Image Process., vol. 17, no. 12,
pp. 2324–2333, Dec. 2008, doi: 10.1109/TIP.2008.2006658.

[18] S. Dai, M. Han, Y.Wu, and Y. Gong, ‘‘Bilateral back-projection for single
image super resolution,’’ in Proc. IEEE Multimedia Expo. Int. Conf.,
Jul. 2007, pp. 1039–1042, doi: 10.1109/ICME.2007.4284831.

[19] K. Hayashi, Y. Maeda, and N. Fukushima, ‘‘Local contrast enhancement
with multiscale filtering,’’ in Proc. Asia–Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf. (APSIPA ASC), Oct. 2023, pp. 765–770, doi:
10.1109/apsipaasc58517.2023.10317242.

[20] Y. Sumiya, T. Otsuka, Y. Maeda, and N. Fukushima, ‘‘Gaussian Fourier
pyramid for local Laplacian filter,’’ IEEE Signal Process. Lett., vol. 29,
pp. 11–15, 2022, doi: 10.1109/LSP.2021.3121198.

[21] F. Durand and J. Dorsey, ‘‘Fast bilateral filtering for the display of high-
dynamic-range images,’’ ACMTrans. Graph., vol. 21, no. 3, pp. 257–266,
Jul. 2002, doi: 10.1145/566654.566574.

[22] V. Ramakrishnan and D. J. Pete, ‘‘Savitzky–Golay filtering-based fusion
of multiple exposure images for high dynamic range imaging,’’ Social
Netw. Comput. Sci., vol. 2, no. 3, p. 191, May 2021, doi: 10.1007/s42979-
021-00594-9.

[23] N. Fukushima, K. Sugimoto, and S.-I. Kamata, ‘‘Guided image filtering
with arbitrary window function,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Apr. 2018, pp. 1523–1527, doi:
10.1109/ICASSP.2018.8462016.

[24] S. Oishi and N. Fukushima, ‘‘Retinex-based relighting for night
photography,’’ Appl. Sci., vol. 13, no. 3, p. 1719, Jan. 2023, doi:
10.3390/app13031719.

[25] E. S. L. Gastal and M. M. Oliveira, ‘‘Shared sampling for real-time alpha
matting,’’Comput. Graph. Forum, vol. 29, no. 2, pp. 575–584, May 2010,
doi: 10.1111/j.1467-8659.2009.01627.x.

[26] T. Matsuo, S. Fujita, N. Fukushima, and Y. Ishibashi, ‘‘Efficient edge-
awareness propagation via single-map filtering for edge-preserving stereo
matching,’’ Proc. SPIE, vol. 9393, Mar. 2015, Art. no. 93930S, doi:
10.1117/12.2083087.

[27] S. Fujita, T. Matsuo, N. Fukushima, and Y. Ishibashi, ‘‘Cost volume
refinement filter for post filtering of visual corresponding,’’ Proc. SPIE,
vol. 9399, Mar. 2015, Art. no. 93990Q, doi: 10.1117/12.2083086.

15816 VOLUME 12, 2024

http://dx.doi.org/10.3390/app8081235
http://dx.doi.org/10.3390/app8101985
http://dx.doi.org/10.1137/18m1201421
http://dx.doi.org/10.1145/1531326.1531327
http://dx.doi.org/10.1111/j.1467-8659.2009.01645.x
http://dx.doi.org/10.1109/LSP.2019.2891879
http://dx.doi.org/10.1007/s42979-023-02319-6
http://dx.doi.org/10.1109/MSP.2011.2179329
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1145/1015706.1015777
http://dx.doi.org/10.1145/1015706.1015778
http://dx.doi.org/10.1109/TIP.2007.894236
http://dx.doi.org/10.5220/0004292203000309
http://dx.doi.org/10.1145/1276377.1276497
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/TIP.2008.2006658
http://dx.doi.org/10.1109/ICME.2007.4284831
http://dx.doi.org/10.1109/apsipaasc58517.2023.10317242
http://dx.doi.org/10.1109/LSP.2021.3121198
http://dx.doi.org/10.1145/566654.566574
http://dx.doi.org/10.1007/s42979-021-00594-9
http://dx.doi.org/10.1007/s42979-021-00594-9
http://dx.doi.org/10.1109/ICASSP.2018.8462016
http://dx.doi.org/10.3390/app13031719
http://dx.doi.org/10.1111/j.1467-8659.2009.01627.x
http://dx.doi.org/10.1117/12.2083087
http://dx.doi.org/10.1117/12.2083086

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

[28] S. Paris and F. Durand, ‘‘A fast approximation of the bilateral filter
using a signal processing approach,’’ Int. J. Comput. Vis., vol. 81, no. 1,
pp. 24–52, Jan. 2009, doi: 10.1007/s11263-007-0110-8.

[29] D. Miralles and D. M. Akos, ‘‘A SIMD intrinsic correlator library for
GNSS software receivers,’’GPS Solutions, vol. 23, no. 3, p. 72, Jul. 2019,
doi: 10.1007/s10291-019-0865-8.

[30] J. Cooper, S.McKeever, andA. Garny, ‘‘On the application of partial eval-
uation to the optimisation of cardiac electrophysiological simulations,’’
in Proc. ACM SIGPLAN Symp. Partial Eval. Semantics-Based Program
Manipulation, Jan. 2006, pp. 12–20, doi: 10.1145/1111542.1111546.

[31] C. B. Marsh, K. R. Green, B. Wang, and R. J. Spiteri, ‘‘Performance
improvements to modern hydrological models via lookup table optimiza-
tions,’’ Environ. Model. Softw., vol. 139, May 2021, Art. no. 105018, doi:
10.1016/j.envsoft.2021.105018.

[32] R. Cypher and J. L. C. Sanz, ‘‘SIMD architectures and algorithms
for image processing and computer vision,’’ IEEE Trans. Acoust.,
Speech, Signal Process., vol. 37, no. 12, pp. 2158–2174, 1989, doi:
10.1109/29.45558.

[33] T. Tsubokawa, H. Tajima, Y. Maeda, and N. Fukushima, ‘‘Local look-up
table upsampling for accelerating image processing,’’ Multimedia Tools
Appl., Aug. 2023, doi: 10.1007/s11042-023-16405-7.

[34] A. Abel and J. Reineke, ‘‘Uops.Info: Characterizing latency, throughput,
and port usage of instructions on Intel microarchitectures,’’ in Proc.
24th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
Apr. 2019, pp. 673–686, doi: 10.1145/3297858.3304062.

[35] J. M. Cebrian, L. Natvig, andM. Jahre, ‘‘Scalability analysis of AVX-512
extensions,’’ J. Supercomput., vol. 76, no. 3, pp. 2082–2097, Mar. 2020,
doi: 10.1007/s11227-019-02840-7.

[36] S. Gal, ‘‘An accurate elementary mathematical library for the IEEE
floating point standard,’’ ACM Trans. Math. Softw., vol. 17, no. 1,
pp. 26–45, Mar. 1991, doi: 10.1145/103147.103151.

[37] C. Daramy, D. Defour, F. Dinechin, and J.-M. Müller, ‘‘CR-LIBM: A
correctly rounded elementary function library,’’ Proc. SPIE, vol. 5205,
pp. 458–464, Dec. 2003, doi: 10.1117/12.505591.

[38] M. Dukhan and R. Vuduc, ‘‘Methods for high-throughput computation
of elementary functions,’’ in Proc. Parallel Process. Appl. Math., 2014,
pp. 86–95, doi: 10.1007/978-3-642-55224-3_9.

[39] C. Lauter, ‘‘A new open-source SIMD vector libm fully implemented with
high-level scalar c,’’ in Proc. 50th Asilomar Conf. Signals, Syst. Comput.,
Nov. 2016, pp. 407–411, doi: 10.1109/ACSSC.2016.7869070.

[40] N. Shibata and F. Petrogalli, ‘‘SLEEF: A portable vectorized library
of c standard mathematical functions,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1316–1327, Jun. 2020, doi:
10.1109/TPDS.2019.2960333.

[41] A. Yamamoto, Y. Kitamura, and Y. Yamane, ‘‘Computational efficien-
cies of approximated exponential functions for transport calculations
of the characteristics method,’’ Ann. Nucl. Energy, vol. 31, no. 9,
pp. 1027–1037, Jun. 2004, doi: 10.1016/j.anucene.2004.01.003.

[42] H. de Lassus Saint-Geniès, D. Defour, and G. Revy, ‘‘Exact lookup
tables for the evaluation of trigonometric and hyperbolic functions,’’
IEEE Trans. Comput., vol. 66, no. 12, pp. 2058–2071, Dec. 2017, doi:
10.1109/TC.2017.2703870.

[43] J. Shen, B. Long, and C. Huang, ‘‘Optimizing fast trigonometric functions
on modern CPUs,’’ in Proc. IEEE 24th Int. Conf. High Perform.
Comput. Commun.; 8th Int. Conf. Data Sci. Syst.; 20th Int. Conf.
Smart City; 8th Int. Conf. Dependability Sensor, Cloud Big Data Syst.
Appl. (HPCC/DSS/SmartCity/DependSys), Dec. 2022, pp. 1022–1029,
doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00162.

[44] Y. Zhang, L. Deng, P. Yedlapalli, S. P. Muralidhara, H. Zhao,
M. Kandemir, C. Chakrabarti, N. Pitsianis, and X. Sun, ‘‘A special-
purpose compiler for look-up table and code generation for function
evaluation,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2010, pp. 1130–1135, doi: 10.1109/DATE.2010.5456978.

[45] C. K. Anand and W. Kahl, ‘‘An optimized cell BE special function
library generated by coconut,’’ IEEE Trans. Comput., vol. 58, no. 8,
pp. 1126–1138, Aug. 2009, doi: 10.1109/TC.2008.223.

[46] D. Piparo, V. Innocente, and T. Hauth, ‘‘Speeding up HEP experiment
software with a library of fast and auto-vectorisable mathematical func-
tions,’’ J. Phys., Conf. Ser., vol. 513, no. 5, Jun. 2014, Art. no. 052027,
doi: 10.1088/1742-6596/513/5/052027.

[47] I. Briggs, Y. Lad, and P. Panchekha, ‘‘Implementation and synthesis of
math library functions,’’ in Proc. ACM Symp. Princ. Program. Lang.
(POPL), 2024, pp. 942–969.

[48] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, ‘‘Efficient vectorization
of the fir filter,’’ in Proc. Annu. Workshop Circuits, Syst. Signal Process.
(ProRISC), 2005, pp. 432–437.

[49] J. G. A. Barbedo and A. Lopes, ‘‘On the vectorization of FIR filterbanks,’’
EURASIP J. Adv. Signal Process., vol. 2007, no. 1, pp. 1–10, Dec. 2006,
doi: 10.1155/2007/91741.

[50] D. Nuzman and A. Zaks, ‘‘Outer-loop vectorization–revisited for short
SIMD architectures,’’ in Proc. Int. Conf. Parallel Archit. Compilation
Techn. (PACT), Oct. 2008, pp. 2–11, doi: 10.1145/1454115.1454119.

[51] I. Masamae and P. Chaikan, ‘‘High performance 2D convolution utilizing
the AVX512 on a multi-core architecture,’’ Songklanakarin J. Sci.
Technol., vol. 43, no. 4, pp. 1230–1236, 2021, doi: 10.14456/sjst-
psu.2021.160.

[52] A. Shevchenko, P. Prystavka, and V. Tymchyshyn, ‘‘Research on possible
convolution operation speed enhancement via AArch64 SIMD,’’ in
Proc. Int. Conf. Comput. Sci., Eng. Educ. Appl., 2022, pp. 61–75, doi:
10.1007/978-3-031-04812-8_6.

[53] S. Oishi, K. Ishikawa, H. Nogami, and N. Fukushima, ‘‘Performance
evaluation of image convolution with WebAssembly,’’ in Proc. Int.
Workshop Adv. Imag. Technol. (IWAIT), Mar. 2023, Art. no. 125922, doi:
10.1117/12.2667004.

[54] B. van Werkhoven, J. Maassen, H. E. Bal, and F. J. Seinstra, ‘‘Optimizing
convolution operations on GPUs using adaptive tiling,’’ Future Gener.
Comput. Syst., vol. 30, pp. 14–26, Jan. 2014.

[55] K. Preethi and K. S. Vishvaksenan, ‘‘Gaussian filtering implemen-
tation and performance analysis on GPU,’’ in Proc. Int. Conf.
Inventive Res. Comput. Appl. (ICIRCA), Jul. 2018, pp. 936–939, doi:
10.1109/ICIRCA.2018.8597299.

[56] Y. Zhou, F. He, and Y. Qiu, ‘‘Accelerating image convolution
filtering algorithms on integrated CPU–GPU architectures,’’
J. Electron. Imag., vol. 27, no. 3, May 2018, Art. no. 033002, doi:
10.1117/1.jei.27.3.033002.

[57] L. Rao, B. Zhang, and J. Zhao, ‘‘Hardware implementation of reconfig-
urable 1D convolution,’’ J. Signal Process. Syst., vol. 82, no. 1, pp. 1–16,
Jan. 2016, doi: 10.1007/s11265-015-0969-5.

[58] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, ‘‘Convolution engine: Balancing efficiency & flexibility
in specialized computing,’’ in Proc. 40th Annu. Int. Symp. Comput.
Archit., Jun. 2013, pp. 24–35, doi: 10.1145/2485922.2485925.

[59] H. Amiri and A. Shahbahrami, ‘‘High performance implementation
of 2-D convolution using AVX2,’’ in Proc. 19th Int. Symp.
Comput. Archit. Digit. Syst. (CADS), Dec. 2017, pp. 1–4, doi:
10.1109/CADS.2017.8310675.

[60] A. Frickenstein, M. R. Vemparala, C. Unger, F. Ayar, and W. Stechele,
‘‘DSC: Dense-sparse convolution for vectorized inference of convo-
lutional neural networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2019, pp. 1353–1360, doi:
10.1109/CVPRW.2019.00175.

[61] M. Moradifar and A. Shahbahrami, ‘‘Performance improvement
of Gaussian filter using SIMD technology,’’ in Proc. Int. Conf.
Mach. Vis. Image Process. (MVIP), Feb. 2020, pp. 1–6, doi:
10.1109/MVIP49855.2020.9116883.

[62] V. Kelefouras and G. Keramidas, ‘‘Design and implementation of
2D convolution on x86/x64 processors,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 12, pp. 3800–3815, Dec. 2022, doi:
10.1109/TPDS.2022.3171471.

[63] C. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’ in
Proc. Alvey Vis. Conf., 1988, pp. 147–151.

[64] L. Lacassagne, D. Etiemble, A. H. Zahraee, A. Dominguez, and
P. Vezolle, ‘‘High level transforms for SIMD and low-level computer
vision algorithms,’’ in Proc. Workshop Program. Models SIMD/Vector
Process., Feb. 2014, pp. 49–56, doi: 10.1145/2568058.2568067.

[65] O. Haggui, C. Tadonki, L. Lacassagne, F. Sayadi, and B. Ouni, ‘‘Harris
corner detection on a numa manycore,’’ Future Gener. Comput. Syst.,
vol. 88, pp. 442–452, 2018, doi: 10.1016/j.future.2018.01.048.

[66] A. S. Zekri, ‘‘Optimizing image spatial filtering on single CPU core,’’
Multimedia Tools Appl., vol. 77, no. 1, pp. 251–281, Jan. 2018, doi:
10.1007/s11042-016-4266-5.

[67] E. Limonova, A. Terekhin, D. Nikolaev, and V. Arlazarov, ‘‘Fast imple-
mentation of morphological filtering using ARM NEON extension,’’
2020, arXiv:2002.09474.

[68] Y. Sumiya, H. Kamei, K. Ishikawa, and N. Fukushima, ‘‘Vectorized
computing for edge-avoiding wavelet,’’ in Proc. Int. Workshop Adv. Imag.
Technol. (IWAIT), May 2022, pp. 23–28, doi: 10.1117/12.2626109.

VOLUME 12, 2024 15817

http://dx.doi.org/10.1007/s11263-007-0110-8
http://dx.doi.org/10.1007/s10291-019-0865-8
http://dx.doi.org/10.1145/1111542.1111546
http://dx.doi.org/10.1016/j.envsoft.2021.105018
http://dx.doi.org/10.1109/29.45558
http://dx.doi.org/10.1007/s11042-023-16405-7
http://dx.doi.org/10.1145/3297858.3304062
http://dx.doi.org/10.1007/s11227-019-02840-7
http://dx.doi.org/10.1145/103147.103151
http://dx.doi.org/10.1117/12.505591
http://dx.doi.org/10.1007/978-3-642-55224-3_9
http://dx.doi.org/10.1109/ACSSC.2016.7869070
http://dx.doi.org/10.1109/TPDS.2019.2960333
http://dx.doi.org/10.1016/j.anucene.2004.01.003
http://dx.doi.org/10.1109/TC.2017.2703870
http://dx.doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00162
http://dx.doi.org/10.1109/DATE.2010.5456978
http://dx.doi.org/10.1109/TC.2008.223
http://dx.doi.org/10.1088/1742-6596/513/5/052027
http://dx.doi.org/10.1155/2007/91741
http://dx.doi.org/10.1145/1454115.1454119
http://dx.doi.org/10.14456/sjst-psu.2021.160
http://dx.doi.org/10.14456/sjst-psu.2021.160
http://dx.doi.org/10.1007/978-3-031-04812-8_6
http://dx.doi.org/10.1117/12.2667004
http://dx.doi.org/10.1109/ICIRCA.2018.8597299
http://dx.doi.org/10.1117/1.jei.27.3.033002
http://dx.doi.org/10.1007/s11265-015-0969-5
http://dx.doi.org/10.1145/2485922.2485925
http://dx.doi.org/10.1109/CADS.2017.8310675
http://dx.doi.org/10.1109/CVPRW.2019.00175
http://dx.doi.org/10.1109/MVIP49855.2020.9116883
http://dx.doi.org/10.1109/TPDS.2022.3171471
http://dx.doi.org/10.1145/2568058.2568067
http://dx.doi.org/10.1016/j.future.2018.01.048
http://dx.doi.org/10.1007/s11042-016-4266-5
http://dx.doi.org/10.1117/12.2626109

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

[69] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, ‘‘Implementing the 2-
D wavelet transform on SIMD-enhanced general-purpose processors,’’
IEEE Trans. Multimedia, vol. 10, no. 1, pp. 43–51, Jan. 2008, doi:
10.1109/TMM.2007.911195.

[70] N. Fukushima, T. Tsubokawa, and Y. Maeda, ‘‘Vector addressing
for non-sequential sampling in fir image filtering,’’ in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 4185–4189, doi:
10.1109/ICIP.2019.8803565.

[71] T. Kondo, Y. Maeda, and N. Fukushima, ‘‘Accelerating finite
impulse response filtering using tensor cores,’’ in Proc. Asia–Pacific
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC),
Dec. 2021, pp. 74–79. [Online]. Available: https://ieeexplore.ieee.
org/document/9689358

[72] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, ‘‘Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,’’
in Proc. 34th ACM SIGPLAN Conf. Program. Lang. Design Implement.
New York, NY, USA: Association for Computing Machinery, Jun. 2013,
pp. 519–530, doi: 10.1145/2491956.2462176.

[73] H. Nogami, S. Oishi, T. Sasaki, Y. Maeda, and N. Fukushima,
‘‘Performance evaluation of halide auto-scheduler with directional cubic
convolution interpolation,’’ in Proc. Int. Workshop Adv. Imag. Technol.
(IWAIT), Mar. 2023, Art. no. 125922, doi: 10.1117/12.2666979.

[74] H. Takagi and N. Fukushima, ‘‘Domain specific description in halide for
randomized image convolution,’’ in Proc. Asia–Pacific Signal Inf. Pro-
cess. Assoc. Annu. Summit Conf. (APSIPA ASC), Dec. 2021, pp. 63–69.
[Online]. Available: https://ieeexplore.ieee.org/document/9689317

[75] H. Takagi and N. Fukushima, ‘‘An efficient description with halide for
iir Gaussian filter,’’ in Proc. Asia–Pacific Signal Inf. Process. Assoc.
Annu. Summit Conf. (APSIPA ASC), 2020, pp. 28–35. [Online]. Available:
https://ieeexplore.ieee.org/document/9306460

[76] A. Ishikawa, H. Tajima, and N. Fukushima, ‘‘Halide implementation
of weighted median filter,’’ in Proc. Int. Workshop Adv. Imag. Technol.
(IWAIT), Jun. 2020, pp. 535–539, doi: 10.1117/12.2566536.

[77] A. Ishikawa, N. Fukushima, A. Maruoka, and T. Iizuka, ‘‘Halide and
GENESIS for generating domain-specific architecture of guided image
filtering,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,
pp. 1–5, doi: 10.1109/ISCAS.2019.8702260.

[78] J. Zhang, F. Franchetti, and T. M. Low, ‘‘High performance zero-
memory overhead direct convolutions,’’ in Proc. Int. Conf. Mach. Learn.
(ICML), 2018, pp. 5776–5785. [Online]. Available: https://proceedings.
mlr.press/v80/zhang18d.html?ref=https://githubhelp.com

[79] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry,
H. Pabst, and A. Heinecke, ‘‘Anatomy of high-performance deep learning
convolutions on SIMD architectures,’’ in Proc. SC Int. Conf. High
Perform. Comput., Netw., Storage Anal., Nov. 2018, pp. 830–841, doi:
10.1109/SC.2018.00069.

[80] H. Kataoka, K. Yamashita, Y. Ito, K. Nakano, A. Kasagi, and
T. Tabaru, ‘‘An efficient multicore CPU implementation for convolution-
pooling computation in CNNs,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2020, pp. 548–556, doi:
10.1109/IPDPSW50202.2020.00097.

[81] V. Ferrari, R. Sousa, M. Pereira, J. P. L. De Carvalho, J. N. Amaral,
J. Moreira, and G. Araujo, ‘‘Advancing direct convolution using convolu-
tion slicing optimization and ISA extensions,’’ ACM Trans. Archit. Code
Optim., vol. 20, no. 4, pp. 1–26, Dec. 2023, doi: 10.1145/3625004.

[82] V. Kelefouras and G. Keramidas, ‘‘Design and implementation of
deep learning 2D convolutions on modern CPUs,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 34, no. 12, pp. 3104–3116, Dec. 2023, doi:
10.1109/TPDS.2023.3322037.

[83] P. San Juan, A. Castelló, M. F. Dolz, P. Alonso-Jordá, and
E. S. Quintana-Ortí, ‘‘High performance and portable convolution
operators for multicore processors,’’ in Proc. IEEE 32nd Int. Symp.
Comput. Archit. High Perform. Comput. (SBAC-PAD), Sep. 2020,
pp. 91–98, doi: 10.1109/SBAC-PAD49847.2020.00023.

[84] S. Barrachina,M. F. Dolz, P. San Juan, and E. S. Quintana-Ortí, ‘‘Efficient
and portable GEMM-based convolution operators for deep neural
network training on multicore processors,’’ J. Parallel Distrib. Comput.,
vol. 167, pp. 240–254, Sep. 2022, doi: 10.1016/j.jpdc.2022.05.009.

[85] M. Seznec, N. Gac, F. Orieux, and A. Sashala Naik, ‘‘Computing large 2D
convolutions on GPU efficiently with the im2tensor algorithm,’’ J. Real-
Time Image Process., vol. 19, no. 6, pp. 1035–1047, Dec. 2022, doi:
10.1007/s11554-022-01240-0.

[86] S. Lu, J. Chu, and X. T. Liu, ‘‘Im2win: Memory efficient con-
volution on SIMD architectures,’’ in Proc. IEEE High Perform.
Extreme Comput. Conf. (HPEC), Sep. 2022, pp. 1–7, doi: 10.1109/
HPEC55821.2022.9926408.

[87] A. Zlateski, Z. Jia, K. Li, and F. Durand, ‘‘The anatomy of
efficient FFT and Winograd convolutions on modern CPUs,’’ in
Proc. ACM Int. Conf. Supercomputing, Jun. 2019, pp. 414–424, doi:
10.1145/3330345.3330382.

[88] Q. Wang, D. Li, X. Huang, S. Shen, S. Mei, and J. Liu, ‘‘Optimizing FFT-
based convolution on ARMV8 multi-core CPUs,’’ in Proc. Eur. Conf.
Parallel Process., 2020, pp. 248–262, doi: 10.1007/978-3-030-57675-
2_16.

[89] S. Winograd, Arithmetic Complexity of Computations, vol. 33.
Philadelphia, PA, USA: SIAM, 1980, doi: 10.1137/1.9781611970364.

[90] A. Lavin and S. Gray, ‘‘Fast algorithms for convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 4013–4021, doi: 10.1109/CVPR.2016.435.

[91] M. F. Dolz, A. Castelló, and E. S. Quintana-Ortí, ‘‘Towards
portable realizations of Winograd-based convolution with vector
intrinsics and OpenMP,’’ in Proc. 30th Euromicro Int. Conf. Parallel,
Distrib. Netw.-Based Process. (PDP), Mar. 2022, pp. 39–46, doi:
10.1109/PDP55904.2022.00015.

[92] M. F. Dolz, H. Martínez, A. Castelló, P. Alonso-Jordá, and E. S.
Quintana-Ortí, ‘‘Efficient and portable Winograd convolutions for multi-
core processors,’’ J. Supercomput., vol. 79, no. 10, pp. 10589–10610,
Jul. 2023, doi: 10.1007/s11227-023-05088-4.

[93] S. Paris and F. Durand, ‘‘A fast approximation of the bilateral filter using
a signal processing approach,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2006, pp. 568–580, doi: 10.1007/11744085_44.

[94] F. Porikli, ‘‘Constant time O(1) bilateral filtering,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–2, doi:
10.1109/CVPR.2008.4587843.

[95] Q. Yang, K.-H. Tan, and N. Ahuja, ‘‘Real-time O(1) bilateral filtering,’’ in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 557–564,
doi: 10.1109/CVPR.2009.5206542.

[96] K. N. Chaudhury, D. Sage, and M. Unser, ‘‘Fast O(1) bilateral filtering
using trigonometric range kernels,’’ IEEE Trans. Image Process., vol. 20,
no. 12, pp. 3376–3382, Dec. 2011, doi: 10.1109/TIP.2011.2159234.

[97] K. N. Chaudhury, ‘‘Acceleration of the shiftable O(1) algorithm for bilat-
eral filtering and nonlocal means,’’ IEEE Trans. Image Process., vol. 22,
no. 4, pp. 1291–1300, Apr. 2013, doi: 10.1109/TIP.2012.2222903.

[98] K. Sugimoto and S.-I. Kamata, ‘‘Compressive bilateral filtering,’’ IEEE
Trans. Image Process., vol. 24, no. 11, pp. 3357–3369, Nov. 2015, doi:
10.1109/TIP.2015.2442916.

[99] N. Fukushima, K. Sugimoto, and S.-I. Kamata, ‘‘Complex
coefficient representation for IIR bilateral filter,’’ in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2017, pp. 2458–2462, doi:
10.1109/ICIP.2017.8296724.

[100] K. Sugimotoy, N. Fukushimazy, and S.-I. Kamatay, ‘‘200 FPS constant-
time bilateral filter using SVD and tiling strategy,’’ in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 190–194, doi:
10.1109/ICIP.2019.8802927.

[101] Y. Sumiya, N. Fukushima, K. Sugimoto, and S.-I. Kamata, ‘‘Extending
compressive bilateral filtering for arbitrary range kernel,’’ in Proc.
IEEE Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 1018–1022, doi:
10.1109/ICIP40778.2020.9191123.

[102] K. Sugimoto and S.-I. Kamata, ‘‘Fast image filtering by DCT-
based kernel decomposition and sequential sum update,’’ in Proc.
19th IEEE Int. Conf. Image Process., Sep. 2012, pp. 125–128, doi:
10.1109/ICIP.2012.6466811.

[103] T. Otsuka, N. Fukushima, Y. Maeda, K. Sugimoto, and
S.-I. Kamata, ‘‘Optimization of sliding-DCT based Gaussian
filtering for hardware accelerator,’’ in Proc. IEEE Int. Conf. Vis.
Commun. Image Process. (VCIP), Dec. 2020, pp. 423–426, doi:
10.1109/VCIP49819.2020.9301775.

[104] Q. Yang, N. Ahuja, and K.-H. Tan, ‘‘Constant time median and bilateral
filtering,’’ Int. J. Comput. Vis., vol. 112, no. 3, pp. 307–318, May 2015,
doi: 10.1007/s11263-014-0764-y.

[105] C. Karam, C. Chen, and K. Hirakawa, ‘‘Stochastic bilateral filter for high-
dimensional images,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2015, pp. 192–196, doi: 10.1109/ICIP.2015.7350786.

[106] S. Ghosh and K. N. Chaudhury, ‘‘Fast bilateral filtering of vector-valued
images,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2016,
pp. 1823–1827, doi: 10.1109/ICIP.2016.7532673.

15818 VOLUME 12, 2024

http://dx.doi.org/10.1109/TMM.2007.911195
http://dx.doi.org/10.1109/ICIP.2019.8803565
http://dx.doi.org/10.1145/2491956.2462176
http://dx.doi.org/10.1117/12.2666979
http://dx.doi.org/10.1117/12.2566536
http://dx.doi.org/10.1109/ISCAS.2019.8702260
http://dx.doi.org/10.1109/SC.2018.00069
http://dx.doi.org/10.1109/IPDPSW50202.2020.00097
http://dx.doi.org/10.1145/3625004
http://dx.doi.org/10.1109/TPDS.2023.3322037
http://dx.doi.org/10.1109/SBAC-PAD49847.2020.00023
http://dx.doi.org/10.1016/j.jpdc.2022.05.009
http://dx.doi.org/10.1007/s11554-022-01240-0
http://dx.doi.org/10.1109/HPEC55821.2022.9926408
http://dx.doi.org/10.1109/HPEC55821.2022.9926408
http://dx.doi.org/10.1145/3330345.3330382
http://dx.doi.org/10.1007/978-3-030-57675-2_16
http://dx.doi.org/10.1007/978-3-030-57675-2_16
http://dx.doi.org/10.1137/1.9781611970364
http://dx.doi.org/10.1109/CVPR.2016.435
http://dx.doi.org/10.1109/PDP55904.2022.00015
http://dx.doi.org/10.1007/s11227-023-05088-4
http://dx.doi.org/10.1007/11744085_44
http://dx.doi.org/10.1109/CVPR.2008.4587843
http://dx.doi.org/10.1109/CVPR.2009.5206542
http://dx.doi.org/10.1109/TIP.2011.2159234
http://dx.doi.org/10.1109/TIP.2012.2222903
http://dx.doi.org/10.1109/TIP.2015.2442916
http://dx.doi.org/10.1109/ICIP.2017.8296724
http://dx.doi.org/10.1109/ICIP.2019.8802927
http://dx.doi.org/10.1109/ICIP40778.2020.9191123
http://dx.doi.org/10.1109/ICIP.2012.6466811
http://dx.doi.org/10.1109/VCIP49819.2020.9301775
http://dx.doi.org/10.1007/s11263-014-0764-y
http://dx.doi.org/10.1109/ICIP.2015.7350786
http://dx.doi.org/10.1109/ICIP.2016.7532673

Y. Naganawa et al.: SIMD-Constrained LUT for Accelerating Variable-Weighted Convolution

[107] W.-C. Tu, Y.-A. Lai, and S.-Y. Chien, ‘‘Constant time bilateral filtering for
color images,’’ inProc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2016,
pp. 3309–3313, doi: 10.1109/ICIP.2016.7532972.

[108] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of careful
seeding,’’ in Proc. Annu. ACM-SIAM Symp. Discrete Algorithms (SODA),
2007, pp. 1027–1035, doi: 10.1145/1283383.1283494.

[109] M. G. Mozerov and J. van de Weijer, ‘‘Global color sparseness
and a local statistics prior for fast bilateral filtering,’’ IEEE Trans.
Image Process., vol. 24, no. 12, pp. 5842–5853, Dec. 2015, doi:
10.1109/TIP.2015.2492822.

[110] K. Sugimoto, N. Fukushima, and S.-I. Kamata, ‘‘Fast bilateral filter for
multichannel images via soft-assignment coding,’’ in Proc. Asia–Pacific
Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA), Dec. 2016,
pp. 1–4, doi: 10.1109/APSIPA.2016.7820813.

[111] T. Miyamura, N. Fukushima, M. Waqas, K. Sugimoto, and S.-I. Kamata,
‘‘Image tiling for clustering to improve stability of constant-time color
bilateral filtering,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Oct. 2020, pp. 1038–1042, doi: 10.1109/ICIP40778.2020.9191059.

YUKI NAGANAWA (Graduate Student Member,
IEEE) received the B.E. degree from the Nagoya
Institute of Technology, in 2022, where he is
currently pursuing the master’s degree in computer
science. His research interests include computer
vision and image processing.

HIROKAZU KAMEI received the B.E. degree
from the Nagoya Institute of Technology, in 2022,
where he is currently pursuing the master’s degree
in computer science. His research interests include
image processing and programming languages.

YAMATO KANETAKA (Graduate Student Mem-
ber, IEEE) received the B.E. degree from the
Nagoya Institute of Technology, in 2022, where
he is currently pursuing the master’s degree in
computer science. His research interests include
image processing, programming languages, and
iOS.

HARUKI NOGAMI (Graduate Student Member,
IEEE) received the B.E. degree from the Nagoya
Institute of Technology, in 2022, where he is
currently pursuing the master’s degree in computer
science. His research interests include image
processing and programming languages.

YOSHIHIRO MAEDA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in information
engineering from the Nagoya Institute of Technol-
ogy, Japan, in 2013, 2015, and 2019, respectively.
He became an Assistant Professor with the Tokyo
University of Science, Japan, in 2019. His research
interests include image signal processing, parallel
image processing, and multispectral sensing. He is
a member of IEICE.

NORISHIGE FUKUSHIMA (Member, IEEE)
received the B.E., M.E., and Ph.D. degrees from
Nagoya University, Japan, in 2004, 2006, and
2009, respectively. He became an Assistant Pro-
fessor and an Associate Professor with the Nagoya
Institute of Technology, Japan, in 2009 and 2015,
respectively. His research interests include image
signal processing, parallel image processing, and
compilers. He is a member of IEEE CAS, IEEE
SPS, IEICE, and IPSJ.

VOLUME 12, 2024 15819

http://dx.doi.org/10.1109/ICIP.2016.7532972
http://dx.doi.org/10.1145/1283383.1283494
http://dx.doi.org/10.1109/TIP.2015.2492822
http://dx.doi.org/10.1109/APSIPA.2016.7820813
http://dx.doi.org/10.1109/ICIP40778.2020.9191059

