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ABSTRACT Wireless capsule endoscopy (WCE) is a minimally invasive procedure that allows for the
examination of the gastrointestinal tract using a small, swallowable capsule equipped with a camera.
Accurate localization of wireless capsule endoscopes within the gastrointestinal (GI) tract is pivotal for
effectivemedical interventions.We propose a novel hybrid localizationmethod, combining one-shot learning
and trilateration, addressing challenges in the complex in-body wireless channel. Results indicate improved
accuracy, surpassing traditional methods. Using a modified Laura model with increased organ sizes, a shift
to a 4-zone configuration reveals altered electromagnetic interactions in the GI tract. This modification
allows us to simulate scenarios involving larger individuals, providing insights into the adaptability of
our proposed technique to diverse anatomical conditions. Despite the shift, our method excels, showing
adaptability with superior performance in 4 and 5 zones across diverse locations. Sensitivity to environmental
conditions is emphasized, impacted by factors like organ size. Similarity in results between 4 and 5 zones
underscores adaptability, extending to 45o and 90o scenarios. In summary, our hybrid approach represents a
promising advancement, enhancing accuracy for wireless capsule endoscope localization in varied GI tract
environments.

INDEX TERMS Gastrointestinal tract examination, deep neural network, Siamese neural network (SNN),
minimally invasive procedure, zone parameterization.

I. INTRODUCTION
Location-based services have become increasingly prevalent
in various industries and daily life, finding applications
in asset tracking [1], [2], [3], intruder detection [4], [5],
and wireless capsule endoscope localization [6], [7], [8].
These services rely on wireless localization methods, which
can be broadly categorized into range-based and range-free
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approaches. Range-based methods, such as trilateration
and triangulation, utilize geometric interpretations, while
range-free methods, like fingerprinting, rely on pattern
matching. Traditional diagnosis of the gastrointestinal (GI)
tract involves inserting a long, flexible tube into the patient’s
body through oral or rectal openings. This method has two
main downsides: limited access to the entire GI tract and
discomfort faced by the patient [9].

Wireless capsule endoscopy (WCE) presents a non-
invasive, portable alternative for examining the
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gastrointestinal tract. It employs a small capsule equipped
with a camera that wirelessly transmits images to an
external receiver. Accurate location information is crucial
for successful follow-up treatment methods, including
surgical procedures and targeted drug delivery. Precise
positioning of the capsule is vital for both diagnosis and
treatment. Radio frequency (RF)-based localization, due to
its cost-effectiveness and utilization in data communications,
is widely preferred. However, RF-based localization within
the body is challenging due to the complex, multipath nature
of the in-body wireless channel. Deep learning, a machine
learning technique capable of learning the relationship
between measured signals and the target’s location, has the
potential to improve the accuracy of wireless localization.
Nevertheless, the use of deep learning in wireless in-body
capsule endoscope localization remains largely unexplored.

In this paper, we contribute by investigating the use of
deep learning for WCE localization. We propose a novel
hybrid one-shot learning/trilateration method that combines
the strengths of range-based and range-free localization
techniques. Our method leverages the benefits of trilater-
ation, a commonly used range-based method, while also
incorporating elements of one-shot learning to enhance
accuracy. Through experiments, we demonstrate that the
proposed method yields a lower average distance error in
all capsule locations, indicating its potential to improve
the precision of WCE localization. Specifically, our results
show that employing zone-specific path loss parameters
in trilateration leads to better performance compared to
conventional trilateration methods. Additionally, we find
that antenna selection plays a crucial role in enhancing
localization accuracy, as careful antenna selection can reduce
themaximumdistance error by 114.56mm.Overall, our work
contributes to the field by demonstrating the efficacy of deep
learning in WCE localization and presenting a promising
hybrid approach that combines the advantages of different
localization techniques.

The paper is organized as follows. In Section I, we provide
an overview of WCE and a review of the existing relevant
localization methods. In Section II, we present our proposed
hybrid one-shot learning/trilateration localization method.
In Section III, we discuss the experiments and results of the
proposed method. Finally, in Section IV, we conclude the
study and suggest future directions for research.

A. RELATED WORKS
In this literature review, we provide an overview of the
WCE localization, including a discussion of the channel
models used for in-body wireless localization. WCE serves
as a non-invasive and portable diagnostic method for the
gastrointestinal tract. In this technique, a capsule, equipped
with cameras, is ingested, and the captured data is wirelessly
transmitted to an external receiver for processing. Ensuring
accurate capsule positioning is crucial for precise diagnosis
and treatment. Various methods, such as image processing,
magnetic sensing, and RF sensing, are employed for capsule

localization. Among these, RF sensing is favored for its
cost-effectiveness in hardware and widespread utilization in
data communication [10]. The data collected by the capsule’s
cameras is transmittedwirelessly using RF sensing, providing
a reliable and efficient means of transmitting information
over short distances without the need for complex and
expensive hardware. This enables seamless communication
between the capsule and the external receiver, ensuring that
the diagnostic data is transmitted in real-time for prompt
medical analysis.

WCE has become a favorable method for the diagnosis
of the human GI tract because it is a non-invasive, portable,
and highly accurate procedure [11]. In traditional endoscopy,
a tube has to be inserted into the patient’s body, which is an
uncomfortable process. In WCE, the patient is only required
to swallow a tiny capsule, which can capture images of the
GI tract and wirelessly transmit the data to external receiver
for further processing.

Accurate capsule positioning is critical for diagnosis and
treatments. Currently, there are many approaches to locate
the capsule including techniques that are based on image
processing [12], [13], [14], magnetic sensing [15], [16], [17],
and RF sensing [10], [18], [19].

To execute RF-based WCE localization, two types of
devices are necessary: the body-mounted or wearable on-
body antenna, which is physically attached to and worn
by the user, and the in-body capsule [19]. RF based WCE
localization methods often borrow techniques from wireless
indoor localization. These methods can be broadly classified
into range-based and range-free approaches. Range-based
techniques, such as trilateration and triangulation, rely on
geometric interpretations, while range-free methods, such as
fingerprinting, utilize pattern matching for localization [20],
[21], [22].

Fingerprinting is a well-established technique for local-
ization, but it relies on a database of reference fingerprints
or a pre-existing radio map. Collecting this data can be
challenging, particularly in the complex environment of the
GI tract. Still, there are some attempts that are based on
fingerprinting. For example, [19] proposed a simple received
signal strength (RSS) fingerprinting for WCE localization.
In their work, 4 on-body antennas are placed on the body.
During the training phase, the RSS values from four on-body
antennas and the corresponding capsule location are recorded
in a database. In the online phase, the real-time RSS values
are compared to those in the database to find the best match.
The authors suggested that using data from more training
locations can improve accuracy, but this can be difficult to
achieve in the complex environment of the GI tract.

Range-free localization methods, such as fingerprinting,
tend to perform well in non-line-of-sight (NLOS) environ-
ments. However, there are several challenges to consider
when using these methods for in-body localization. First,
a large number of training data points are needed for high
accuracy, but it may not be practical or possible to generate
a comprehensive radio map of the GI tract. Second, the

VOLUME 12, 2024 29699



J. Wisanmongkol et al.: UWB Wireless Capsule Endoscope Localization

anatomy of the GI tract varies from person to person, meaning
that a separate radiomapwould be needed for each individual.
As a result, many WCE localization methods rely on range-
based techniques.

For the range-based approach, the measured RSS has to be
converted into range information. Typically, the log-distance
path loss model is used in free-space setting. However, the
authors in [23] suggested that the log-distance model is not a
good fit for in-body environment, and proposed a power law
function path loss model, which is described by

L(d) (dB) = L0 (dB) + a
(
d
d0

)n

+N (µ, σ ), (1)

where L(d) is the measured path loss at distance d from the
skin, L0 is the path loss at the reference distance d0, a is a
fitting constant, n is the path loss exponent, and N (µ, σ ) is
the Gaussian noise with mean µ and standard deviation σ .
Another work by [24] proposed another path loss model,

a slightly modified version of the model in Equation (1),
which is described by

L(d) (dB) = L0 (dB) + m
(
d
d0

)
+N (µ, σ ), (2)

where m is the gradient fitting constant.
A more recent work by [18] uses a simple trilateration

based on the channel frequency response (CFR) measure-
ments. The measured CFR can be used to derive the path loss,
and its corresponding range as

L(dB) = −10 log10
(
mean(|Hf |2)

)
, (3)

where L is the path loss, and Hf is the CFR, which represents
the ratio between the power received at the on-body antenna
and the power transmitted by the in-body capsule antenna.
To relate path loss to range, we use

L(dB) = L0 (dB) + 10γ log10

(
d
d0

)
, (4)

where d is the range between the capsule and the on-body
antenna, L0 is the path loss at the reference distance d0, and
γ is the average path loss exponent. From Equation (4), the
estimated range dest is

dest = 10
L−L0
10γ d0. (5)

Based on the estimated range information, the capsule is
located using the linear LS method, similar to the one
presented in the wireless indoor localization. The authors
in [25] made an extension of this work by considering a three-
layer (skin, fat, andmuscle) phantom in their experiment. The
same localization method is used.

Based on the previous works, we can see that there are
some challenges for the current WCE localization methods.
For the trilateration methods, LOS path is needed for accurate
positioning; however, the in-body channel is characterized by
severe multipath. For the fingerprinting methods, generating
a dense radio map of the GI tract is impractical if not
impossible. In conclusion, the use of deep learning for WCE

localization and the development of hybrid methods that
combine the advantages of different localization techniques
are promising avenues for future research in this field.

B. OUR MAIN CONTRIBUTION
In this study, we propose a novel hybrid WCE localization
method that combines the trilateration method with a
fingerprinting method to enhance localization accuracy. Our
approach utilizes channel data obtained through electromag-
netic simulations that utilize anatomically realistic voxel
models, with a range of capsule locations that mimic various
propagation environments within the human intestinal region,
as described in [26]. Our study is the most extensive
examination of WCE localization to date, with the inclusion
of capsule locations in a diverse range of propagation
environments, not seen in previous studies.

Unlike previous methods, our approach utilizes a
zone-specific path loss parameter in the trilateration process,
which takes into account the varying tissue types and
thicknesses found in the gastrointestinal tract. We also
employ one-shot learning, implemented with a Siamese
neural network [27], [28] to create a classification model
for coarse-level zone identification using the fingerprinting
method. This is the first study to propose such a hybrid
method for WCE localization. After the zone is determined,
trilateration using zone-specific parameters is used to
determine the fine-level capsule’s location. By generating
a radio map in terms of zones instead of dense location
points, the burden of data collection is greatly reduced.
Additionally, antenna selection plays an important role in
improving localization accuracy, as it can significantly reduce
the maximum distance error.

II. PROPOSED METHOD
In this study, our focus lies in exploring the application
of ultra-wideband (UWB) technology in WCE [29]. UWB,
a wireless communication technology, stands out for its
ability to transmit signals across a wide frequency band,
encompassing several gigahertz [29]. Unlike conventional
narrowband systems, UWB employs a significantly broader
spectrum, enabling the transmission of short pulses with low
power spectral density. This unique characteristic of UWB
empowers us with advantages such as high data rates, precise
time-domain positioning, and resilience against multipath
fading [10], [29].

UWB-based transmission brings forth numerous benefits
within the realm of WCE. Firstly, its high data rates facilitate
the efficient transmission of substantial volumes of data,
including high-resolution images and video streams captured
by the wireless capsule. This capability enhances the detailed
visualization and examination of the gastrointestinal (GI)
tract, leading to more accurate diagnoses and effective
treatment planning [26].

Although UWB offers unique advantages it has challenges
in the context of WCE. One of the primary challenges
is the high propagation loss experienced by UWB signals
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when propagating through tissues. This loss can significantly
degrade the signal strength and quality, impacting the
reliability of communication between the in-body and on-
body devices [26].

To address this challenge, we propose employing
directional on-body antennas that focus radiation toward
the body while meeting specific absorption ratio (SAR)
criteria–measuring the rate at which the human body absorbs
electromagnetic energy in radio-frequency fields, with SAR
limits set by regulatory bodies to maintain safe exposure
levels [26], [30]. These antennas are engineeredwith a precise
radiation pattern, directing electromagnetic waves primarily
to the user’s body and minimizing energy dispersion into
surrounding space.

The antenna engineering involves meticulous considera-
tion of elements and their arrangement, configuring them to
concentrate emitted radio-frequency signals within a defined
spatial region, ensuring efficient absorption by the user’s
body and alignment with SAR criteria. Additionally, the
designmay incorporate beamforming techniques for dynamic
adjustment of the radiation pattern based on the user’s
position and orientation, optimizing energy transfer and
maintaining SAR levels within safety limits, irrespective of
the user’s movement.

Moreover, directional on-body antennas may include
shielding elements to limit radiation in undesired directions,
preventing excess exposure to individuals nearby and enhanc-
ing precision in maintaining SAR compliance.

In summary, the utilization of directional on-body antennas
combines careful antenna design, beamforming technologies,
and shielding elements. These elements work together to
focus emitted radiation toward the user’s body, consistently
meeting SAR safe levels and addressing the need for a more
detailed demonstration in our discussion.

Generally, in environments with severe non-line-of-
sight (NLOS) conditions, localization methods based on
fingerprinting can achieve higher accuracy compared to
trilateration, provided that sufficient training samples are
available. However, in the in-body environment, generating
a detailed radio map of the GI tract proves impractical, if not
impossible. As a result, most previous works in this field rely
on trilateration as the primary localization method.

The proposed method strategically combines trilateration
and fingerprinting methodologies to enhance localization
accuracy within the GI tract. Central to this innovation is the
recognition of dynamic path loss parameters, describing radio
signal attenuation across diverse tissue types and thicknesses
within the GI tract. These parameters exhibit variations
across the tract, prompting the subdivision of the GI tract
into distinct zones, each characterized by a unique set of
path loss parameters. This zoning optimizes the application
of trilateration, contributing to heightened precision in
localization. Importantly, this approach efficiently addresses
challenges in data collection by adopting a zone-based
radio map, reducing the overall burden while maintaining
localization accuracy.

The trilateration process, a core element of this localization
method, employs sophisticated mathematical techniques to
precisely determine the wireless capsule’s location within the
GI tract. This is especially critical for medical applications
where accurate positioning is crucial. Fundamentally based
on triangulation principles extended to three-dimensional
spaces, trilateration considers distances between the capsule
and known reference points, typically acquired through
received radio signals. These distances, termed ranges, define
spheres centered around each reference point, where the radii
correspond to measured distances.

In an ideal scenario with three reference points, the
intersection of these spheres indicates potential capsule
locations. However, real-world complexities introduce mea-
surement errors and uncertainties, necessitating trilateration
algorithms, like the least squares method. These algorithms
compute the optimal capsule position by minimizing errors
associated with the intersection points.

Mathematically, the trilateration algorithm solves a system
of nonlinear equations, where each equation represents
the equation of a sphere in three-dimensional space. The
objective is to find capsule coordinates (x, y, z) satisfying
all these equations simultaneously. These equations take the
form of the general sphere equation as

(x − x1)2 + (y− y1)2 + (z− z1)2 = r21 ,

(x − x2)2 + (y− y2)2 + (z− z2)2 = r22 ,

...

(x − xn)2 + (y− yn)2 + (z− zn)2 = r2n , (6)

where (xi, yi, zi) are the known coordinates of the i-th
reference point and ri is the measured distance between the
capsule and the i-th reference point.

The trilateration algorithm follows an iterative refinement
process, continually enhancing the accuracy of estimat-
ing the wireless capsule’s coordinates within the intricate
three-dimensional environment of the gastrointestinal tract.
Initially, it derives an estimate based on the intersection of
spheres formed by measured distances from the capsule to
known reference points, referred to as ranges. These ranges
are encapsulated in a system of equations, with each equation
representing the sphere’s equation and characterizing the
relationship between the capsule and a specific reference
point. To optimize this process, the algorithm formulates an
objective function using techniques like the least squares
method, aiming to minimize the error between computed
and measured distances. Through successive iterations, the
algorithm dynamically adjusts the capsule’s coordinates,
progressively refining its estimates. This iterative refinement
persists until a predefined convergence criterion is met,
signaling the achievement of an optimal solution where
computed distances align closely with measured distances.
The resulting estimates for the capsule’s coordinates offer
precise localization within the three-dimensional complexity
of the gastrointestinal tract. This meticulous refinement

VOLUME 12, 2024 29701



J. Wisanmongkol et al.: UWB Wireless Capsule Endoscope Localization

FIGURE 1. Process flow of the proposed method.

continues until the algorithm reaches the optimal solution,
providing accurate and precise localization crucial for
medical diagnostic applications.

The proposed method operates through a two-phase
process flow, outlined in Figure 1. The training phase
comprises four interconnected modules: data collection
(DC), zone formulation (ZF), zone classification (ZC), and
zone parameterization (ZP), collaboratively initializing the
localization process. In the DC module, CFRs are collected
from various training locations. Subsequently, the ZF module
categorizes these locations into distinct zones based on the
collected CFRs. The ZP and ZC modules then extract path
loss parameters and construct a zone classification model,
respectively.

During the training phase, the capsule is strategically
positioned at multiple reference locations, and the CFR
is measured by on-body antennas. Utilizing simulations
conducted in the Dassault Simulia CST Studio Suite, the
Zone Formulation module delineates the reference locations
into different zones. Simultaneously, the Zone Classification
module generates a one-shot learning model to classify
new CFRs into these zones. Meanwhile, the Zone Param-
eterization module calculates the required parameters for
trilateration in each zone and stores them in a lookup table.

Transitioning to the testing phase, real-time CFR values
(H (f )) are input into the Zone Classification module. Once
the zone is identified, the H (f ) values and corresponding
zone-specific parameters from the lookup table are utilized
in the Location Estimation module to execute trilateration.
Detailed operations of each module are elucidated below.

A. DATA COLLECTION
Quantifying the efficiency of power transmission between
antennas often relies on the S21 parameter, which represents
the ratio of output power to input power at the receiving
antenna. In the case of on-body antennas, the received power
(Pr ) can be expressed as a function of the transmitted power
(Pt ) and the S21 parameter. The magnitude squared of the

S21 parameter (|S21|2) reflects the power transfer efficiency
between the antennas, and its calculation is mathematically
related to the complex reflection coefficient (0) of the
antenna system, where |S21| = |1 − 0|. The reflection
coefficient (0) characterizes the proportion of incident power
that is reflected by the antenna system.

The S21 parameter’s relationship with frequency is
established indirectly through the antenna’s impedance and
radiation pattern. Impedance matching between the antenna
and the transmission line or medium impacts the reflection
coefficient (0), thereby influencing the S21 parameter and
power transmission efficiency. In contrast, the CFR (H (f ))
serves to analyze the frequency-dependent behavior of the
communication channel itself, encompassing phenomena
such as attenuation, amplification, fading, and distortion
effects. In our study, the CFR assumes a significant role
and is extensively employed to understand the channel’s
characteristics.

While both the S21 parameter and the CFR are linked
to the frequency response of a system, they serve distinct
purposes. The S21 parameter focuses on evaluating the
efficiency of power transmission between antennas, tak-
ing into account impedance matching and the reflection
coefficient. On the other hand, the CFR provides insights
into the frequency-dependent characteristics of the commu-
nication channel, capturing various effects that influence
signal propagation. Consequently, our research heavily relies
on the CFR to comprehend and analyze the channel’s
behavior, enabling informed decision-making regarding the
design and implementation of our wireless communica-
tion system, particularly for machine learning-based WCE
localization.

Regarding the specific transmit power of a WCE system,
it is contingent upon factors such as design, implementation,
and regulatory compliance requirements. Determining the
appropriate transmit power necessitates careful consideration
during the system’s design phase to ensure compliance with
SAR limits imposed by regulatory bodies. However, the
precise transmit power value cannot be provided without
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comprehensive details about the system and applicable com-
pliance standards. Compliance with SAR limits specified by
regulatory authorities in the respective regions of operation,
such as the Federal Communications Commission (FCC)
in the United States or the International Commission on
Non-Ionizing Radiation Protection (ICNIRP) guidelines in
the United Kingdom and European Union, is paramount.

In our study, the Data Collection module captures the
CFR during both the training and testing phases. The CFR is
instrumental in locating the capsule, as it forms the basis for
computing path loss parameters for trilateration and serves
as the complete fingerprint in our hybrid trilateration and
fingerprint matching approach. Functioning as a transmitter,
the capsule interacts with body-mounted or wearable on-body
antennas acting as receivers. Considering the presence of N
on-body antennas, we collect Hf values as an N × L matrix,
denoted as H f , where L corresponds to the length of an Hf
measurement.

B. ZONE FORMULATION
Zone Formulation partitions the reference locations into
zones based on the measured CFRs. Let us assume that the
CFRs are initially collected by placing the capsule at M
reference locations using N on-body antennas. Then the mth

reference location can be characterized by a vector of path
losses Lm as

Lm = [Lm,1,Lm,2, . . . ,Lm,n]⊤, (7)

where Lm,n is the path loss between themth reference location
and the nth on-body antenna, which is defined as

Lm,n (dB) = −10 log10

[
mean

(
|Hm,n(f )|2

)]
, (8)

where Hm,n(f ) is the CFR between the mth reference location
and the nth on-body antenna.

Based on the vectors Lm, for m ∈ {1, . . . ,M}, the
reference locations are partitioned into K zones using
k-means clustering algorithm, such that the square distances
between the k th zone members and the centroid µ(k) are
minimized as

min
{r (k)m },{µ(k)}

K∑
k=1

M∑
m=1

r (k)m ||Lm − µ(k)
||
2 (9)

subject to
K∑
k=1

r (k)m = 1, ∀m ∈ {1, . . . ,M} (10)

r (k)m ∈ {0, 1} (11)

µ(k)
∈ RN (12)

where r (k)m indicates whether the mth reference location is a
member of the k th zone. The constraints are given so that a
reference location can only be assigned to one zone.

C. ZONE PARAMETERIZATION
After the zones and their members are defined, a lookup
table consisting of the zone identification number and the

TABLE 1. Zone parameters lookup table.

corresponding zone parameters is generated. For any k th

zone, let n(k) be the path loss exponent, d (0)0 be the smallest
distance between the members and the on-body antennas,
and L(k)0 be the path loss experienced at d0. To obtain the
parameters, the log-distance propagation model, as defined
in Equation (13), is fitted to the data of the zone members.

L(dB) = L(k)0 (dB) + 10n(k) log10

(
d

d (k)0

)
, (13)

where L is the path loss at an arbitrary distance d . In addition
to zone k = 1, . . . ,K , we define zone k = 0, where the
parameters are computed using the data over all reference
locations. Finally, the lookup table is created in the format
shown in Table 1. Here 1M is an 1 ×M vector all of ones.

D. ZONE CLASSIFICATION
In the module dedicated to generating a deep-learning-
based zone classification model, the process involves several
key steps beyond the architectural considerations discussed
earlier. Generally, for a model to work efficiently, a large
amount of training data is required. Unfortunately, acquiring
several samples of the CFR for WCE, especially for in-vivo
measurement or realistic human model simulation, can be
troublesome. To overcome this challenge, one-shot learning
is employed, requiring only one sample per reference location
during training. This machine learning paradigm proves
valuable in situations where collecting extensive datasets is
challenging or resource-intensive. Siamese neural networks
(SNN) are commonly utilized in one-shot learning, featuring
a distinctive architecture with two identical subnetworks
sharing weights and parameters, as illustrated in Figure 2.
During training, the SNN is exposed to pairs of input

samples representing distinct reference locations within the
gastrointestinal tract. The network learns to measure the
similarity or dissimilarity between these pairs, with shared
weights facilitating the transformation of inputs into the same
lower-dimensional space. The iterative training refines the
model over multiple epochs, minimizing the gap between
predicted and actual similarities.

Once trained, the SNN undergoes a rigorous testing
phase where real-time CFR values are input to the Zone
Classification module. The SNN classifies these CFR values
into specific zones within the gastrointestinal tract, a crucial
step for subsequent localization using trilateration. The
effectiveness of the SNN is evaluated based on its accurate
classification of CFR values into the correct zones.
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FIGURE 2. Siamese neural network (SNN).

The zone-specific parameters computed during training
are stored in a lookup table. In the testing phase, when
the SNN identifies the zone, these zone-specific parameters
are retrieved for the trilateration process. The integration of
the deep-learning-based zone classification model with tri-
lateration ensures accurate localization within the identified
zone. Overall, one-shot learning with SNN offers a robust
solution for scenarios where acquiring extensive training data
is impractical, addressing challenges specific to WCE.

The SNN consists of two identical subnetworks, where the
weights and parameters are shared among the two. In contrast
to a conventional classification model, where the output is
the predicted class, the SNN model’s output is a similarity
measure between the input pairs. The convolutional layers
are employed to convert the inputs into a lower-dimension
space. Notably, the weights are shared between the two
convolutional layers, ensuring both inputs are transformed
into the same space, allowing their similarity to be accurately
compared.

To classify CFRs into zones, the input CFRH i(f ) is paired
with all the CFRs at the reference locations Hm(f ),m =

1, . . . ,M . The outputs are combined to create anM×1 vector
s = [s1, s2, . . . , sM ]⊤, where each element sm represents
the similarity measure between the inputs H i(f ) and Hm(f ).
Subsequently, a score vector c = [c1, c2, . . . , cM ]⊤ is
generated by comparing sm with a threshold ts, such that

cm =

{
1, if sm ≥ ts,
0, otherwise.

(14)

Finally, the scores are summed among the zone members.
The zone with the highest counts is selected, and its
corresponding parameters in the lookup table, along with the
input H i(f ), are passed to the Location Estimation module.
However, if the scores are zero for all zones, then the
parameters of the zone k = 0 are used.

E. LOCATION ESTIMATION
In this module, the capsule’s location is determined. From
the input CFRs, and parameters from the lookup table,
an estimated distance between the capsule and each on-body

antenna d̃n is calculated from

d̃n = d (k)0 10
Ln−L(0)0
10n(k) , (15)

where Ln is the path loss with respect to the nth on-body
antenna.

To determine the capsule’s location, nonlinear least square
is performed to minimize the sum of square errors, i.e.,

min
x,y,z

∑
n∈Ns

(dn − d̃n)2, (16)

where

dn =

√
(x − xn)2 + (y− yn)2 + (z− zn)2, (17)

such that dn and d̃n are the true and estimated distance
between the nth on-body antenna and the capsule, and (x, y, z)
and (xn, yn, zn) are the coordinates of the capsule and the nth

on-body antenna, and Ns is a set of on-body antennas used in
the calculation, with |Ns| = Ns. Here Ns consists of top Ns
on-body antennas with lowest path loss values.

III. SIMULATIONS
In our simulations, we employ Dassault Simulia CST
Studio Suite to model the CFR. This software utilizes a
sophisticated human model named Laura, renowned for its
high fidelity and exceptional representation of voxel models
in the abdomen and intestinal areas. Voxel models, in this
context, are three-dimensional representations of biological
tissues, where each voxel (volume pixel) corresponds to a
small, distinct unit. Laura is distinguished among CST’s
voxel models due to its diverse tissue constitution, anatomical
variety, and precise depiction of tissue thickness within the
abdominal and intestinal regions.

Simulating these intricate voxel models requires substan-
tial computational resources in terms of processing power and
memory capacity. Dassault Simulia CST Studio Suite man-
dates a computer systemwith robust specifications.We utilize
a large number of mesh cells, approximately 333,000,000,
to model the torso of Laura-voxel, on-body antennas, and
the capsule model. To handle such a large number of mesh
cells, we employ parallel processing on several cluster nodes,
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consisting of Intel Xeon E5-2640 v4 CPUs. Despite efficient
parallel processing, the simulation time for the implant model
varied between 1 and 6 days, depending on the computational
load on the server computers. These requirements are crucial
to handle the intricate calculations involved in simulating
electromagnetic interactionswithin the human body, ensuring
accuracy and reliability in the results obtained from the
simulations.

The resolution of Laura model is 1.88 mm × 1.88 mm ×

1.88 mm. The initial evaluations also involve the use
of other CST models, namely Hugo, Donna, and Emma
voxel models. However, these models have a significantly
thicker subcutaneous fat layer. Unfortunately, they cannot
be used for capsule endoscopy evaluations due to various
restrictions. These restrictions include an inadequate or
unrealistic shaped muscle layer, inadequate skin layer, and
challenging hand position. Some of these limitations have
already been discussed in the previous publication [31].
In order to overcome the limitations of the CST’s other voxel
models, we have made modifications to the Laura voxel
model by scaling its size dimensions by a factor of 1.25. This
modification provides valuable insights into the success of
localization in a larger individual.

The details of the antennas, antenna locations and the
studied voxel models are summarized in the following
subsections.

A. ANTENNAS
1) ON-BODY ANTENNA
In this study, we utilize a directional on-body antenna
specifically designed for in-body communications within the
low-band UWB frequency range from 3.75 to 4.35 GHz. This
antenna adheres to the IEEE 802.15.6 wireless body area
networks (WBAN) standard, as described in [26]. Figure 3a
illustrates the structure of the antenna, featuring a cavity
(highlighted in grey) to enhance its directivity towards the
body. This antenna, originally introduced in [30], has been
extensively employed in various in-body channel studies,
including [26]. The realized gains of the on-body antenna,
when positioned on the body, are presented in Figures 3b-d
for frequencies of 3.75 GHz, 4 GHz, and 4.25 GHz, which
represent the start, center, and end frequencies of the range of
interest, respectively.

2) CAPSULE ANTENNA
In this study, a simplified capsule model is utilized,
incorporating an omni-directional dipole antenna embedded
within a plastic capsule shell. The dimensions of the capsule
shell closely resemble those of commercially available
capsules [32], measuring 11 mm × 25 mm. Figure 4a depicts
the design of the dipole antenna, while Figure 4b showcases
the capsule shell. The dipole antenna is specifically designed
to operate at the central frequency of 4 GHz within the
intestine. Further details regarding the capsule model can be

FIGURE 3. The on-body antenna and its realized gains [26].

found in [26]. Additionally, Figure 5 presents the simulated
reflection coefficients (S11) for both the on-body antenna
and the capsule antenna. The S11 parameter for the on-body
antenna is obtained by locating it 4 mm away from the skin on
the voxel model’s abdomen. This gap improves the antenna’s
radiation efficiency compared to direct attachment to the skin.
As for the capsule antenna, it is positioned within the capsule
model and placed inside the small intestine of the voxel
model, with the S11 parameter simulated accordingly [26].

B. HUMAN VOXEL MODELS WITH ON-BODY ANTENNA
LOCATIONS AND CAPSULE LOCATIONS
The studied Laura model provides a detailed representation
of the human body, including various organs and tissues.

Regarding the parameters specific to the intestine, such
as its dielectric properties or conductivity, it is essential to
consult relevant literature or specific models used within
the simulation software. The information related to the
parameters of the intestine can vary depending on the specific
context, simulation setup, or desired level of accuracy. Some
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FIGURE 4. Capsule model with subfigures.

FIGURE 5. Antenna reflection coefficients for on-body antenna (as
located on the voxel) and capsule antenna (as located inside the voxel’s
small intestine) [26], [30].

common parameters that can be considered for modeling the
intestine include:

• Dielectric properties:Dielectric properties describe the
ability of a material to store and transmit electrical
energy. These properties are often represented by the
relative permittivity (ϵr ) and the electrical conductivity
(σ ) of the tissue. The dielectric properties of the intestine
can vary depending on factors such as tissue type,

FIGURE 6. On-body antennas placement.

frequency of the electromagnetic field, and individual
characteristics. It has the unit in farads per meter (F/m).

• Conductivity: Conductivity refers to the ability of
a material to conduct electrical current. It is often
quantified by the electrical conductivity (σ ) of the
tissue. The conductivity of the intestine can depend
on factors such as the composition of the tissue and
its physiological state. The unit of conductivity is
siemens per meter (S/m) or, equivalently, ohm per
meter (�−1

· m−1).

1) MODEL MODIFICATION: SCALING THE LAURA MODEL
FOR VARIED ORGAN SIZES
To further elucidate the rationale behind the modification of
the Laura model, it is imperative to consider the diversity
in human anatomy, particularly the substantial variations in
organ sizes among individuals. By scaling up the Laura
model’s organ dimensions, we aimed to create a more
representative simulation of larger anatomies encountered in
real-world scenarios. This adjustment allows us to explore
the impact of varying organ sizes on the performance of our
hybrid localization method, providing valuable insights into
the adaptability of the proposed technique across a spectrum
of anatomical conditions. In essence, this modification serves
as a strategic step toward ensuring the robustness and
generalizability of our approach, reinforcing the credibility of
our findings in the context of WCE in diverse gastrointestinal
environments.

The parameters specific to the intestine, such as its
dielectric properties or conductivity and the sizes of the
organs, of the original Laura model and the modified Laura
model are summarized in Table 2.
We use 7 on-body antennas as the anchors, as shown in

Figure 6. Their locations are listed in Table 3. Our study
focused on the meticulous selection of on-body antennas,
strategically positioned to address two pivotal aspects:
wireless communication and localization.

29706 VOLUME 12, 2024



J. Wisanmongkol et al.: UWB Wireless Capsule Endoscope Localization

TABLE 2. Human voxel model parameter.

TABLE 3. On-body antennas’ locations.

To ensure seamless wireless communication within the
WCE system, we strategically placed multiple on-body
antennas, meticulously chosen to optimize signal coverage
and alleviate issues such as signal loss and fading. This
careful selection significantly enhances communication reli-
ability, thereby improving the data transmission between the
WCE device and its external receiver.

The deliberate choice of specific on-body antenna loca-
tions is informed by the dual objective of addressing both
communication and localization requirements in the WCE
system. The chosen combination of antennas is intricately
designed to provide comprehensive signal coverage over the
target area of interest. This design not only boosts commu-
nication reliability but also facilitates accurate localization
within the gastrointestinal tract. The strategic configuration
leverages the diversity of signal measurements, enabling the
use of localization algorithms for a precise estimation of the
WCE device’s position and orientation.

The position of the on-body antennas is determined by
maximizing coverage over the entire intestinal area and max-
imizing the potential to exploit fat as a propagation channel
between the capsule and on-body antennas. Therefore, the
on-body antennas are located as much as possible in areas
where abdominal muscle tissue is less thick, ensuring that the
strongest lobe of the on-body antennas towards the body is on
tendinous intersections. This location strategy is grounded in
our previous studies, namely: [33], [34], and [35].
Accurate localization of the WCE device within the gas-

trointestinal tract is vital for effective diagnosis. By deploying
a combination of antennas across different positions, we har-
nessed signal diversity and advanced localization algorithms.
This improved accuracy in determining the WCE device’s
position and orientation.

FIGURE 7. Capsule placement: far left (FL), far right (FR), near left (NL),
near right (NR), and colon location A (CA).

FIGURE 8. Additional capsule placement: MI00, MI05, MI10, and MI15.

Our chosen on-body antenna arrangement adeptly
addresses both communication and localization needs.
It ensures thorough signal coverage in the target area,
enabling reliable communication and precise localization
within the gastrointestinal tract.
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TABLE 4. Training and testing data setup.

The training data are collected by placing the capsule in
6 locations, as shown in Figure 7. The different locations are
identified by their relative positions: far left (FL), far right
(FR), near left (NL), near right (NR), and colon location
A (CA). Testing data has been collected from the previous
5 locations, as well as 4 additional locations situated in
the middle, as shown in Figure 7. Figure 8 shows these
additional locations, which are identified as MI00, MI05,
MI10, and MI15, with ‘‘MI’’ standing for middle, and the
suffix numbers representing the distance from the middle.
A summary of the training and testing data is presented in
Table 4.
At each location, the CFR is measured by the 7 on-body

antennas, then the input sample is created by combining the
CFR measurements together to create a dataset.

An input sample for the SNN training and testing is formed
by combining the CFR measurements from the 7 on-body
antennas. The result is a feature with the dimension equal to
101×7, where 101 is the number of the CFR data points from
3.75 to 4.35 GHz frequency range, and 7 is the number of the
on-body antennas.

In our study, we also rotate the capsule and maintain
specific angles (0, 45, and 90 degrees (o)), a virtual control
mechanism is employed within the simulation environment
provided by the CST software. This virtual manipulation
technique allows us to precisely adjust the orientation of
the capsule. Additionally, we use virtual fixtures to ensure
that the capsule remains in the desired positions throughout
the simulation. It is important to note that this manipulation
is performed within the simulation software and not on a
physical capsule device.

To train the SNNmodel, exhaustive pairs of all the training
locations are used. If the pair is generated with the data
from the same location, e.g., (FL, 0o) and (FL, 45o), the
similarity score is set to 1; however, if the pair is generated
with the data from different locations, the similarity score is
set to 0.

In the testing phase, the testing data is paired with all
the data from the training locations. The output similarity
scores of all pairs are stacked to generate the vector s in
Equation (14). The threshold ts = 0.55 is applied to the vector
s to generate the score vector c.
The performance of the proposed method is measured in

terms of distance error, de, which is defined as

de =

√
(x − x̃)2 + (y− ỹ)2 + (z− z̃)2, (18)

where x, y, z and x̃, ỹ, z̃ are the true and estimated x, y, z
coordinates of the capsule, respectively.

FIGURE 9. Comparison of the distance errors when number of zones
k = 1, 2, 3, and 4, and the capsule is at 0o rotation.

IV. RESULTS AND DISCUSSION
In this section, we present the results of our proposed
hybrid WCE localization method using the modified Laura
human voxel model. We investigate two key aspects of the
method: the effects of the number of zones (k) and the
impact of antenna selection on localization accuracy. We also
compare our results with the traditional trilateration method
to highlight the improvements achieved by our approach.

A. EFFECTS OF NUMBER OF ZONES K
We systematically varied the number of zones k from 1 to
4 and carefully examined the associated distance errors. Here
k = 1 represents the traditional trilateration method, where
all training locations are in the same zone, and the path loss
exponent n is computed from all the training locations. The
distance error when the capsule is rotated by 0o, 45o, and
90o are plotted in Figures. 9 - 11, respectively. The vertical
bars indicate the minimum and the maximum distance errors,
and the circle marker on the vertical bar indicates the mean
distance error, respectively.

In Figure 9, as we increase the number of zones k ,
the mean distance error consistently decreases. Using the
traditional trilateration method, the mean distance error starts
at 39.42 mm. When we set k to 2, the error decreases to
33.04 mm, reaching its lowest point of 26.44 mm at k =

3. At k = 4, the error slightly increases to 26.51 mm.
Comparatively, the traditional trilateration method exhibits
minimum and maximum errors at 18.96 mm and 57.52 mm,
while our approach achieves errors ranging from 18.96 mm
to 55.37 mm for k = 2, 7.48 mm to 51.56 mm for k = 3, and
7.48mm to 51.56mm for k = 4. These results underscore the
effectiveness of our proposedmethod in consistently reducing
mean distance errors with increasing zones (k). Notably,
our method achieves a remarkable mean distance error of
26.44mm at k = 3, outperforming the traditional trilateration
method’s mean distance error of 39.42 mm.
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FIGURE 10. Comparison of the distance errors when number of zones
k = 1, 2, 3, and 4, and the capsule is at 45o rotation.

FIGURE 11. Comparison of the distance errors when number of zones
k = 1, 2, 3, and 4, and the capsule is at 90o rotation.

Regarding the implications of distance errors, it is evident
that the mean distance error exhibits a decreasing trend as the
number of zones increases from 1 to 3, signifying enhanced
localization accuracy. This improvement can be attributed to
the method’s adaptability to a more nuanced analysis with
additional zones, resulting in a more accurate estimation of
the capsule’s position. However, a subtle increase in mean
distance error from 26.44 mm to 26.51 mm when moving
from k = 3 to k = 4 warrants careful consideration.

The marginal elevation in error observed during the shift
from k = 3 to k = 4 can be ascribed to multiple contributing
factors. One reason is that it becomes a bit more complicated
when we add another zone. With more zones, the way we
figure out the capsule’s location has to deal with a larger
amount of information. This can make things a bit trickier
andmight lead to some extra uncertainties andmistakes in the
estimation process. So, in simple terms, having more zones

at k = 4 makes the job a little more complex, causing a tiny
increase in errors compared to when we have only k = 3.
Moreover, the rise in error observed when transitioning

from k = 3 to k = 4 may be attributed to distinct
characteristics inherent in the GI tract environment. This
increase could be influenced by factors such as tissue
properties, signal attenuation, or measurement noise, all
of which may impart diverse effects on the accuracy of
trilateration-based localization. These environmental factors
become increasingly pronounced and complex as the number
of zones expands. The additional zone introduces more
intricacies into the localization process, where the algorithm
must contend with an augmented set of measurements,
potentially leading to heightened uncertainties and errors in
the estimation procedure. In essence, the interaction between
the number of zones and the unique attributes of the GI tract
environment plays a pivotal role in shaping the observed
increase in error during the transition from k = 3 to k = 4.
Despite the slight increase in error for k = 4 compared to

k = 3, it is important to highlight that our proposed method
still outperforms the traditional trilateration method, which
yields a mean distance error of 39.42mm. Our achievedmean
distance errors of 26.44 mm for k = 3 and 26.51 mm for k =

4 demonstrate the effectiveness of our approach in improving
localization accuracy in comparison.

Figures 10 and 11 share the same trend as Figure 9, where
the mean distance error decreases as the number of zone
k increases, and slightly increases when k = 4. For the
capsule’s rotation of 45o and 90o, the minimum distance
error of the proposed method can be as low as 5.61 mm and
16.21 mm, whereas they are 21.51 mm and 21.70 mm for the
existing method.

B. EFFECTS OF ANTENNA SELECTION
We compare the distance error when all antennas and only the
top 4 antennas with the lowest path loss values are used in the
calculation. The results are plotted in Figure 12.

Figure 12 shows a comparison of distance error in mm
when the number of antennas used to perform trilateration
is set to 4 and 7. Here the number of zones is set to 3 for all
cases. The results are displayed in 3 sections, where the first
one is the case where the capsule’s orientation is at 0o, and the
other two are when the capsule’s rotations are at 45o and 90o.
Our study found that using 4 antennas resulted in lower mean
and maximum distance errors compared to using 7 antennas.
Trilateration based on 4 on-body antennas also offered the
lower minimum distance error, except when the capsule was
at a 90o rotation. In this case, the error obtained from 4 on-
body antennas was slightly higher than 7 on-body antennas,
with a difference of 1.93mm. This can be attributed to the fact
that while 7 antennas are used for comprehensive coverage
throughout the entire intestinal tract, only the 4 antennas
with the strongest received power are used for calculations.
These 4 antennas are chosen from the 7 based on received
power. Our experiment comparing the use of 4 antennas
versus 7 antennas found that the accuracy was greater when
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FIGURE 12. Comparison of the distance errors when number of antennas
is 4 and 7 when the capsule is at 0o, 45o, and 90o rotation.

using 4 antennas. This is different from indoor localization,
where more data from anchors can improve accuracy. The
multipath in the in-body channel is muchworse than in indoor
environments, so using more antennas may not be beneficial
as data from antennas with weaker received powers is likely
to be inaccurate. Therefore, our finding showed that it is more
effective to exclude data from these antennas in calculations.

For realistic human model, partitioning the GI tract
into zones, and using the zone-specific parameters in the
localization can significantly improve the accuracy when
compared with the traditional trilateration method. Of course,
if more training data are available, the extracted parameters
would be a better representation of the actual environment,
and the accuracy can be further improved.

The choice of antenna plays a crucial role in data
collection. In environments with line-of-sight paths, utilizing
multiple antennas can improve the accuracy of the data.
In non-line-of-sight situations, however, the increased loss of
signal strengthmay not necessarily indicate a greater physical
distance from the on-body antenna, as it could also be caused
by interference from multiple reflections and absorption by
the body’s tissues.

The findings validate the effectiveness of our proposed
method in the context of realistic human models and
underline the importance of incorporating zone-specific
parameters and optimizing antenna selection to enhance
localization accuracy during wireless capsule endoscopy.

In the following subsection, we further evaluate our
proposed method and discuss its performance using the
modified Laura model.

C. EVALUATION OF THE PROPOSED HYBRID WIRELESS
CAPSULE ENDOSCOPY (WCE) LOCALIZATION METHOD
USING THE MODIFIED LAURA MODEL
When assessing the trained classifier model using the
modified Laura model with increased organ sizes, we observe

FIGURE 13. Comparison of the distance errors when number of zones
k = 1, 2, 3, 4, and 5, and the capsule is at 0o rotation for the modified
Laura model.

a significant shift in the optimal number of zones to 4
(k = 4), as depicted in Figure 13. While maintaining an
overall excellent performance that surpasses the traditional
trilateration method, this shift suggests potential alterations
in electromagnetic interactions within the GI tract due
to modified organ sizes, influencing the optimal zone
configuration for accurate localization.

It is noteworthy that, across various locations, the results
reveal that both 4 and 5 zones exhibit superior and compa-
rable performance. This finding underscores the adaptability
of the approach, acknowledging variations across different
locations.

Furthermore, it is crucial to recognize the complexity
of electromagnetic interactions within the body, influenced
by factors such as changes in organ size, tissue properties,
and signal propagation, introducing variations in interaction
patterns that impact localization accuracy.

In summary, the transition from 3 zones to the optimal
configuration of 4 or 5 zones can be attributed to the
modified characteristics of the GI tract environment resulting
from changes in organ sizes. This underscores the method’s
sensitivity to environmental conditions and highlights the
importance of adapting the approach. The observed similarity
in results between 4 and 5 zones underscores the adaptability
of the approach, acknowledging variations across different
locations. It is worth noting that similar trends were observed
for 45o and 90o scenarios, and for brevity, those results are
not presented here.

D. SIMULATION REALISM AND RELEVANCE TO ACTUAL
CAPSULE ENDOSCOPY PROCEDURES
In our study, the simulated results play a crucial role
in providing insights into the challenges and dynamics
inherent in actual capsule endoscopy procedures. While we
acknowledge the inherent limitations of simulations in fully
capturing the complexity of real-world scenarios, they serve
as a valuable tool to assess the performance and feasibility of
our proposed methodology in a controlled environment.
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The challenges encountered in WCE, such as variations
in path loss, shadowing, and fading due to the mobility of
the capsule within the GI tract, are intricately simulated in
our study. By utilizing the Dassault Simulia CST Studio
Suite and realistic voxel models like Laura or the modified
version, we aim to replicate the realistic conditions of the
wireless channel within the abdomen and intestinal areas.
This ensures that our simulation results are grounded in the
known characteristics of the GI tract environment.

While direct empirical comparisons may not be feasible
at this stage, our commitment is to provide a detailed and
comprehensive narrative that effectively bridges the simu-
lated outcomes with the expectations based on the existing
understanding of wireless channel characteristics within the
gastrointestinal tract. We will delve into the intricacies of
our simulation settings, discussing how they align with the
anticipated challenges and dynamics encountered during
actual capsule endoscopy procedures.

E. LIMITATIONS OF THE PROPOSED METHODOLOGY
While our proposed hybrid WCE localization method
demonstrates promising results, certain limitations should be
acknowledged. The shift in the optimal number of zones,
observed from 3 to 4 or 5, is attributed to the modified
characteristics of the GI tract environment resulting from
changes in organ sizes. This sensitivity to environmental
conditions emphasizes the need for adaptability. Furthermore,
the similarity in performance between 4 and 5 zones
across various locations highlights the method’s adaptability
but warrants further investigation into the precise impact
of zone configuration. Additionally, our study relies on
simulated results, and though they provide valuable insights,
empirical validations and clinical trials will be essential
to confirm the methodology’s effectiveness in real-world
scenarios.

V. CONCLUSION
In conclusion, our novel hybrid WCE localization method
demonstrates a superior performance compared to the con-
ventional trilateration technique, underscoring a significant
stride in accuracy. Of particular significance is the pivotal
role of antenna selection, substantively contributing to a
noteworthymaximum distance error reduction of 114.56mm.
Our comprehensive experimentation highlights the optimal
number of zones K as 3, acknowledging potential varia-
tions contingent on the dataset. The intricacies governing
achievable localization accuracy are intricately linked to
factors such as the capsule’s spatial coordinates, proximity
to on-body antennas, and the distinctive patterns of these
antennas.

Moreover, our localization method, incorporating insights
from the modified Laura model featuring enlarged organ
sizes, reveals a marked shift to an optimal configuration
of 4 zones. This shift signifies nuanced alterations in elec-
tromagnetic interactions within the GI tract. Impressively,
notwithstanding this adjustment, our approach consistently

outperforms the traditional trilateration method, affirming its
robust performance.

The adaptability inherent in our methodology is evident
as both 4 and 5 zones exhibit superior and comparable
performance across diverse locations, including scenarios at
45o and 90o. This adaptability, underscored by the observed
consistency in results, attests to the method’s resilience.
Our emphasis on the method’s sensitivity to environmental
conditions, particularly influenced by organ size and tissue
properties, accentuates its capacity to adapt and excel in var-
ied settings, significantly influencing localization accuracy.

In summary, our hybrid approach, informed by insights
from the modified Laura model, stands as a noteworthy
advancement in wireless capsule endoscope localization.
By presenting potential enhancements in accuracy across
diverse GI tract environments, this study contributes substan-
tively to the progressive landscape of medical interventions,
providing a more precise and adaptable methodology for
capsule localization.

In future investigations, we plan to conduct experiments
using physical phantoms developed to model different body
constitutions. Additionally, our close collaboration with Oulu
University Hospital will facilitate the implementation of our
method in patients during the subsequent phases, particularly
aswe progress towards the clinical trial stage. Our exploration
will extend to techniques such as electromagnetic field
mapping or 3D reconstruction, offering promising avenues
for enhancement. These additional techniques not only
contribute to a more comprehensive understanding of signal
behavior within the gastrointestinal tract but also address
computational complexity challenges associated with real-
time localization.

For instance, electromagnetic field mapping can provide
detailed insights into the spatial distribution of electro-
magnetic signals, aiding in refining our hybrid localization
method. Advanced 3D reconstruction techniques, such
as structure-from-motion or multi-view stereo, promise
improved visualization of the capsule’s position while also
considering computational efficiency.

To further optimize our localization method, we will
explore the integration of machine learning algorithms,
sensor fusion, and analysis of wireless signal strength.
These strategies, coupled with edge computing, can enhance
real-time data processing and contribute to the overall
accuracy of the system.

Moreover, incorporating realistic tissue models and
addressing localization in dynamic environments are crucial
aspects of our future investigations. These endeavors will not
only contribute to a more robust validation but also ensure
the adaptability and precision of our method across diverse
conditions, emphasizing its potential applicability in real-
world scenarios.
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