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ABSTRACT UAVs have entered various fields of life, and object tracking is one of the key technologies
for UAV applications. However, there are various challenges in practical applications, such as the scale
change of video images, motion blur and too high shooting angle leading to the tracked objects being too
small, resulting in poor tracking accuracy. To cope with the problem that small targets are poorly tracked by
UAVs due to less effective information output from the deep residual network, a SiamMFF tracking method
that introduces an efficient multi-scale feature fusion strategy is proposed. The method aggregates features
at different scales, and at the same time, replaces the ordinary convolution with deformable convolution
to increase the sense field of convolution operation to enhance the feature extraction capability. The
experimental results show that the proposed algorithm improves the success rate and accuracy of small target
tracking.

INDEX TERMS Siamese network, object tracking, unmanned aerial vehicle(UAV), deformable convolution,
multi-scale feature fusion.

I. INTRODUCTION
In recent years, with the rapid development of the civilian
unmanned aerial vehicle (UAV) industry, the application
areas of UAV expand from traditional mapping and agricul-
ture to express delivery, security, and other livelihood areas.
Its barrier of entry is also decreasing, and many photography
enthusiasts also use UAVs to assist in tracking photography.

Currently, the object tracking algorithms [1], [2], [3] can be
classified into generative and discriminative algorithms. Dis-
criminative object tracking algorithms are further divided into
correlation filtering class algorithms and deep learning class
algorithms. The original correlation filter-like object tracking
algorithm is MOSSE (Minimum Output Sum of Squared
Error), proposed by Valmadre et al. [4]. It learns a stable
tracker from the first frame of the video. It multiplies the
tracker with subsequent frames in the frequency domain, and
then converts the result into a score response map in the time
domain. This map helps to discern the object’s location based
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on the score. Henriques et al. [5] proposed CSK (Circulant
Structure Kernels) to introduce kernel functions to the tracker
for the first time. Instead of employing the traditional
particle sampling method, it utilizes a circular matrix-based
sampling approach. Henriques et al. [6] proposed KCF
(Kernel Correlation Filter) algorithm. It introduces HOG
features to extend the single channel features based on
CSK. Li et al. [7] proposed the SAMF (Scale Adaptive
with Multiple Features Tracker) algorithm. It integrates scale
adaptive and kernel correlation filtering techniques to solve
the problem caused by using fixed scales of KCF, which
can result in decreased accuracy when the object experiences
deformation, occlusion, or other challenging scenarios.

In deep learning class algorithms, the object tracking
algorithms based on the Siamese network perform well [7],
[8], [9], [10], [11], [12], [13], [14]. In 2016 Li et al. [8]
proposed SiamFC (Fully-Convolutional Siamese Networks),
an object tracking algorithm based on Siamese network
structure, which has two network structures with the same
template branch and search branch. After extracting video
frame features from these two branches, template features
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are employed as the convolution kernel to correlate with the
search features. This process generates a response score map,
and the position with the highest score is highly likely to be
the center of the object. In 2018, SiamRPN (Siamese Region
Proposal Network) [15] integrated the RPN (Region Proposal
Network) detection head from the Fast RCNN [13] detection
algorithm into SiamFC. It determined whether each anchor
box contained the object and conducted position regression
when needed. DaSiamRPN [16] improved the training data
for SiamRPN to address the problem of imbalanced training
samples and allowed the SiamRPN network to adapt to long-
term tracking. On the other hand, SiamMask [17]integrated
both tracking and segmentation, leading to greater tracking
accuracy than DaSiamRPN, albeit with a slightly reduced
speed to 55fps. Li et al. [18] summarized the reason why the
Siamese network cannot use deep convolutional networks.
The lack of translational invariance invited the network to
learn a positional bias, causing the network to believe that
the object must exist at the center of the image. Based on
this, Li et al. proposed a strategy of uniform sampling around
the center point of the image, and proposed the SiamRPN++

(Siamese Region Proposal With Very Deep Networks).
Guo et al. [19] proposed SiamDW (Deeper And Wider
Siamese Networks) using a novel residual structure. GradNet
[20] employed gradient descent to adjust the template,
addressing the issue of the template’s inapplicability when
the object experiences significant deformation or severe
occlusion. In contrast, the above Siamese network tracking
algorithm relies on a fixed anchor frame to handle changes
in object scale and aspect ratio. However, configuring the
anchor frame’s parameters requires manual tuning, which
increases the algorithm’s complexity. Therefore, Siamese
tracking algorithms with anchorless frame mechanisms have
gradually become popular recently. Mueller et al. [21]
proposed SiamCAR (Siamese-Based Classification And
Regression Network), which is a tracking framework that
does not require anchor frames. They also introduced central
branches, which are characterized by a simple structure and
can effectively reduce the number of parameters.

While SiamCAR demonstrates excellent performance,
as other Siamese object tracking algorithms [22], it typically
conducts basic operations like feature concatenation and
dimensionality reduction to combine output features from
various network layers. It often does not fully integrate infor-
mation from each layer, leading to a suboptimal utilization of
available data. To address this problem, this paper introduces
SiamMFF, featuring an efficient multi-scale feature fusion
strategy. SiamMFF employs a novel multi-scale feature
fusion method to comprehensively integrate information
from various scales. It replaces the standard convolution in
the feature extraction network with deformable convolution,
thereby expands the receptive field of the convolution
process. The proposed algorithm is tested on the UAV
object tracking dataset UAV123 and the common datasets
OTB2015 andVOT2018, and it is experimentally verified that
SiamMFF has a better performance than SiamCAR.

II. SIAMMFF
SiamMFF is based on SiamCAR and consists of three
parts: a feature extraction subnetwork with a deformable
convolutional network as its backbone, an Efficient Multi-
scale Feature Fusion Network (EMSNet), and a region
regression subnetwork. The specific structure is shown in
Figure 1.
The feature extraction subnetwork aims at matching the

object template with the search region to facilitate global
inter-correlation and obtain the response within the search
region. The EMSNet is responsible for integrating response
feature maps from different levels of the search area,
which are obtained from the feature extraction subnetwork.
This integration is achieved through a cross-scale feature
fusion strategy from top to bottom and from left to right,
to maximize the relationships between different object
features. The region regression subnetwork is responsible for
binary classification, distinguishing background and objects,
and performing location regression based on the global
information feature maps generated by the EMSNet.

A. FEATURE EXTRACTION SUBNET
The input image for the template branch is 127 × 127 ×

3 and the input image for the search branch is 255 ×

255 × 3. Both branches use a deformable convolutional
residual network, which introduces deformable convolutions
embedded in ResNet50 instead of normal convolutions so that
the region of convolution always covers around the object.
During the inter-correlation matching process, the 3rd, 4th,
and 5th convolutional modules of SiamCAR are replaced
by the 2nd, 3rd, and 4th modules. This modification retains
a shallower network that holds more information related to
smaller objects, and eliminates the deeper network layer
which yields greater semantic information and involves a
significant number of parameters. This adjustment is more
suitable for UAV object tracking.

1) DEFORMABLE CONVOLUTION
Normal convolution operation [23] is implemented by fixed
size convolution kernel, and the perceptual field on the feature
map is fixed.When an object deforms due to the limitations of
the perceptual field, it is often difficult to fully extract object
features, so a method of adjusting the convolutional field is
needed.

2) OFFSET LEARNING
The output offset of H ×W × 2H is obtained by performing
normal convolution of the input H ×W feature map with the
convolution kernel, where 2N denotes the offsets in both X
and Y directions.

Set x as a feature map, t0 represents a point in the feature
map, tn represent the offset of the feature points in the
feature map, 1tn is the learning offset, usually a decimal,
and the sampling coordinates are located by means of bilinear
difference, and the output is the position x(n) of the point
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FIGURE 1. SiamMFF Network Architecture.

FIGURE 2. Illustration of deformable convolution samplings. Deformable convolution differs from normal convolution in
that it can dynamically adjust the convolution field according to the shape of the object. Figure 2 (a) shows the normal
convolution, and Figure 2 (b), (c), and (d) shows the deformable convolution learning a perceptual field that is more
adapted to the object shape by the offset when the object has deformation, scale change, or rotation.

FIGURE 3. Deformable convolution. As an example, feature maps are subjected to 3 ×

3 deformable convolution, which is divided into two parts: offset learning and deformable
convolution based on input feature maps and offsets.
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within one pixel of the horizontal and vertical coordinates
from point t , The details are as follows:

x(n) = x(t0 + tn + 1tn) (1)

G(q, t) = g(qx , tx) · g(qy, ty) (2)

g(qi, tj) = max(0, 1 − |qi − tj|) i ∈ x, y j ∈ x, y (3)

where G(q, t) is the learned weight, q is the reference point,
qx and qy denote the x, y coordinates of reference point q, t
is the feature point, tx and ty denote the x, y coordinates of
feature point t .

3) DEFORMABLE CONVOLUTION BASED ON OFFSETS
Based on the feature map with offsets, normal convolution is
performed to obtain a deformable convolution based on the
original feature map. It can be expressed as:

y(t0) =

∑
tn∈R

w(t0) · x(t0 + tn + 1tn) (4)

wherew is the convolution kernel and R is the sampling space
for the convolution operation.

During the training process, the convolution kernel for
generating output features and the convolution kernel for
generating offsets are learned simultaneously.

B. EMSNET
Lower-level features with higher resolution contain more
detailed positional information, but have less semantic and
often have more noise due to fewer convolutions. In contrast,
higher-level features offer stronger semantic information, but
with lower resolution, their ability to perceive fine details is
poor. SiamCAR combines mutual correlation feature maps
produced by the last three network layers of ResNet50.
Initially, it concatenates three mutual correlation feature
maps, each with a dimension of 256, to create a single feature
map with a dimension of 256 × 3. Then, it downscales this
combined feature map to 256 to achieve fusion. This fusion
process involves continuous weight adjustments through
training to optimize the fusion results. However, it’s worth
noting that this fusion method may impact tracking speed.

To tackle the aforementioned challenges, this paper intro-
duces a straightforward and effective feature fusion network
called EMSNet. EMSNet combines learnable weights to
consider the significance of various input features, while
implementing multi-scale feature fusion strategies from top
to bottom and from left to right.

The structure of EMSNet is shown in Figure 4. To enhance
the acquisition of shallow information, the top-down features
of F2, F3, and F4 are first downscaled by 1 × 1 convolution
and then fused with the next layer of features, and outputs the
fused features. Three adaptive feature maps F(2,3), F(2,4),
and F(3,4) are obtained through Add, and then stitched
together by Concat. The process can be expressed as follows:

F(i, j) = R[F(i)] ∗ F(j) i, j ∈ 2, 3, 4 (5)

where F(i) and F(j) denote the three cross-correlation feature
maps of F2, F3, and F4, R denotes the ReSize operation used
to adjust the feature maps at different levels to one scale, ∗

is Add feature aggregation. The association of information
in the close-by feature maps is achieved by two-by-two
aggregation of features at different scales, thus retaining
more small object information. Further, the three cross-scale
aggregated feature maps are fused together in a Concat
manner, which can be expressed as:

M = Cat(F(2, 3),F(2, 4),F(3, 4)) (6)

whereM is the multiscale features output from EMSNet and
Cat is the Concat feature fusion operation.

III. TRACKING PROCESS
One frame of the tracking video sequence is used as the
template image Z1, the manual boxed object box is used as
the position l1 of the first frame, and the subsequent video
sequences are used as the search images, and the SiamMFF
algorithm process is shown in Table 1.

(1) The model is loaded and the template image ϕ(Z1)
and search images are input into the template branch and the
search branch.

(2) The deformable convolutional network extracts tem-
plate features ϕ(Z1) and search image features ϕ(X1) from
the output of the 2nd, 3rd and 4th convolutional modules
of ResNet50, and outputs the intercorrelation response
maps of objects in the search image at different levels by
means of Eq.(4) intercorrelation, respectively.

(3) EMSNet fuses the response maps together top-down
two-by-two by Eq. (5) and outputs three neighboring feature
fusion maps. Aggregates of global features by Eq. (6).

(4) Regional regression subnet is used to classify, calculate
centrality, and perform position regression on the global
fusion feature map, obtains the classified feature map
Aclsw×h×2, centrality feature map Acenw×h×4 and regression
feature map Aregw×h×4, respectively.

(5) Aclsw×h×2 locates the object in the search image, Aregw×h×4
gets the prediction frame, and Acenw×h×4 constrains the position
away from the center point.

(6) The object position is optimized by scale penalty, aspect
ratio penalty, and cosine window penalty. Aclsw×h×2 outputs the
final object prediction frame.

(7) Repeat steps (2) to (6) until the last frame of tracking
video is completed.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
The experimental environments for training and testing are
shown in Table 2.
To improve the convergence speed of the model and the

accuracy of the gradient estimation, the proposed model
is trained by mini-batch gradient descent on the UAV123
dataset. A total of 60 epochs are trained, with a learning rate
of 0.001 for the first 15 epochs, and 0.005 to 0.0005 for the
last 45 epochs with exponential decay.
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FIGURE 4. EMSNet. F2, F3, and F4 represent the mutual correlation feature maps of Res2, Res3,
and Res4, respectively.

TABLE 1. SiamMFF tracking process.

TABLE 2. Experimental environment.

B. DATASET
The training dataset uses UAV123. The test datasets include
UAV123, VOT2018 [24], and OTB2015 [25].
The UAV123 dataset contains 91 video sequences captured

by UAVs. This dataset has many challenging scenarios that
ordinary tracking datasets do not have, such as out of field
of view, scale changes, and changes in perspective. The
UAV123 dataset can be divided into three subsets: The first
subset contains 103 video sequences captured by professional
UAVs equipped with stable and controllable cameras. These
sequences were shot at heights of 5 to 25 meters, with
a frame rate of up to 96fps and resolutions ranging from
720p to 4K. All videos have been manually annotated and

provided at a 720p resolution of 30fps. The second subset
includes 12 video sequences captured by lower-cost UAVs
using unstable cameras. These sequences have lower quality
and resolution, as well as reasonable levels of noise. Like the
first subset, they are alsomanually annotated. The third subset
includes 8 synthesized video sequences generated using the
proposed UAV simulator. In these sequences, objects follow
predefined trajectories and are rendered using the Unreal
Game Engine. They are automatically annotated at 30fps and
include target masks/segmentation information.

TheVOT2018 dataset contains 60 video sequences ranging
from 2,000 to 20,000 frames each. Its evaluation metrics
are EAO (Expect Average Overlaprate), Accuracy, and
Robustness which are used to evaluate the stability of the
tracker, and the Robustness value is inversely proportional to
the stability. EAO categorizes all sequences based on their
length and averages the measurement accuracy of sequences
with the same length. It reflects the relationship between the
length and average accuracy. The OTB2015 dataset contains
11 common challenge attributes in object tracking tasks, such
as illumination change, viewpoint variation, camera shaking,
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FIGURE 5. Comparison of algorithms for the UAV123 dataset: (a) Shows the success rate and accuracy of SiamMFF on UAV123.
(b) Demonstrates the performance of each algorithm when dealing with out-of-field-of-view challenges. Out-of-field-of-view
indicates that some or all of the object’s features are not in the image. (c) Contrasts for the challenge of perspective variation.
Perspective change is a change in the appearance of the object in the video caused by a change in the posture of the UAV or an
adjustment in the angle of the camera. (d) Shows the performance of each algorithm under scale variation.

TABLE 3. Comparison of algorithms for the UAV123 dataset.

and low resolution, and it uses success rate and accuracy as
evaluation metrics just like the UAV123 dataset.

C. COMPARISON EXPERIMENT
1) UAV123 DATASET
The SiamMFF algorithm is compared with the seven
algorithms on UAV123, namely SiamCAR [21], SiamBAN
[26], SiamRPN [9], DaSiamRPN [16], SiamDW [19], ECO
[20], and C-COT [27] on UAV123. The experimental results
are shown in Figure 5 and Table 3.
Figure 5 (a) shows that the success rate and accuracy of

SiamMFF on UAV123 are 0.655 and 0.833, respectively,
which are 4% and 2.9% higher than SiamCAR.

Figure 5 (b) shows that compared with SiamCAR, the
success rate and accuracy of SiamMFF have been improved
by 3% and 2.2% respectively, demonstrating the effectiveness
of the proposed multiscale feature aggregation network
EMSNet combined with the deformable convolution method
when objects exceed the field of view.

Figure 5 (c) shows that compared with the SiamCAR
benchmark algorithm, the success rate and accuracy have
been improved by 2.5% and 4.1% respectively, ranking
first among all comparison algorithms, indicating that the
SiamMFF algorithm can cope with the problem of passive
deformation of objects caused by UAVs.

Figure 5 (d) shows that SiamMFF can better cope with
scale variations. The success rate and accuracy have been
improved by 4.3% and 3.2%, respectively, compared with
SiamCAR, and are superior to other comparison algorithms.

The results demostrate the SiamMFF can better deal with
challenging out-of-field-of-view, perspective variation and
scale changes, which benefit from our EMSNet.

2) OTB2015 DATASET
To further verify the tracking performance of SiamMFF in
general scenario, nine comparison algorithms SiamRPN++

[28], SiamCAR [21], MDNet [29], DaSiamRPN [16],
SiamRPN [9], GradNet [18], DeepSRDCF [30], SRDCF
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FIGURE 6. Comparison of algorithms for the OTB2015 dataset.

[29], and SiamFC [8] were tested on the OTB2015 dataset.
The performance of the ten algorithms was analyzed in
terms of two metrics, success rate and accuracy, as well as
five different challenge attributes of out-of-plane rotation,
viewpoint change, fast motion, scale change, andmotion blur.
The experimental results are shown in Figure 6 and Table 4.
It can be seen from Figure 6 (a) that SiamMFF improves by
4% and 1.4%, respectively, compared with SiamCAR.

From Figure 6 (b), it can be seen that the success
rate and accuracy of SiamMFF are improved by 2.7%
and 0.7%, respectively, compared with SiamCAR, and it
performs the best among all the comparison algorithms.
Figure 6 (c) to (f) shows the experimental results under other
challenge attributes, and it can be seen that SiamMFF also
performs better than the other nine algorithms.

3) VOT2018 DATASET
Based on the fact that VOT2018 has richer evaluation
metrics, SiamMFF was quantitatively analyzed with different
comparison algorithms on the VOT2018 dataset to verify its
performance. Table 5 shows the performance of SiamMFF
and four comparison algorithms, including SiamCAR [21],
SiamVGG [30], C-COT [27], and SiamFC [8].

From Table 5, it can be seen that compared with the
benchmark algorithm SiamCAR, the accuracy improvement
is more significant, reaching 17.7%, and it also outperforms
the comparison algorithms in terms of robustness and EAO.

The results on OTB2015 and VOT2018 datasets
demostrate that the SiamMFF is also valid to deal with the
tracking chanllengings in the two datasets, which illustrates
our proposed SiamMFF has a good generalizability.

D. ANALYSIS OF VISUAL TRACKING
In order to test the tracking performance of SiamMFF more
intuitively, it was tested with SiamBAN [26], SiamCAR [21],
and SiamVGG [30] on four video sequences of group1_2,
boat6, bike3, and car2_s from the UAV123 dataset, and the
actual tracking effect of the four algorithms was compared
by visual images, as shown in Figure 8.

From Figure 8 (a), it can be seen when the UAV is tracking
the crowd, the crowd is in a dispersed state at the beginning
and the all used algorithms can track the object accurately.
At frame 124, the crowd gathers together and the SiamCAR
and SiamVGG algorithms have drifts, mistaking some other
features as objects, while SiamMFF still maintains stable
tracking. At frames 485 and 515, the crowd disperses again,
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TABLE 4. Comparison of algorithms for the OTB2015 dataset.

FIGURE 7. Contrast algorithm challenge attribute radar map: The figure shows the
EAO values of the five algorithms on the VOT2018 dataset under the five
challenging attributes of illumination change, motion change, camera motion, size
change and occlusion, the closer to the periphery, the larger the EAO value, the
better the performance, and unsassigned denotes the video frames without the
above five chanllenging attributes.

TABLE 5. Performance comparison of five algorithms on VOT2018 dataset.

and SiamBAN follows the wrong object completely, while
SiamMFF still maintains normal tracking.

From Figure 8 (b), it can be seen that during the process of
tracking ships at sea, the object scale changes greatly, there
are few features of the ship in the image at frame 106, and
the ship gradually becomes larger at frames 636 and 761.
The prediction frames of SiamCAR and SiamVGG have poor
quality and fail to surround the ship well, while SiamMFF
using EMSNet can always track the ship more accurately.

From Figure 8 (c) it can be seen that when tracking the
crowd, the illumination is dark and the crowd is far away
from the UAV. When the object overlaps with others at frame
73, the prediction boxes of the three comparison algorithms
drift with different degrees. At frame 429, SiamBAN is
disturbed by similarities to treat mistakenly other pedestrians
as objects. At frame 497, SiamCAR drifts more severely,
while SiamMFF is more stable in tracking objects.

From Figure 8 (d), it can be seen that the UAV is
tracking the car, and there is a challenge of dramatic
changes in illumination in this scene, from the first frame
to frame 323. The illumination changes from bright to dim
and SiamCAR is the first to shift until the object is lost,
SiamBAN and SiamVGG also lose the tracking object when
the car enters a completely dim area. The proposed algorithm
SiamMFF maintains tracking the object even in dim
light.
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FIGURE 8. Comparison of UAV123 dataset visualization.

V. CONCLUSION
In this paper, we introduce a UAV object tracking algorithm
called SiamMFF, which utilizes an efficient multi-scale fea-
ture fusion strategy and deformable convolution. We present
the overall network architecture of the SiamMFF algorithm,
which employs deformable convolution to enhance the
perceptual field during the convolution process, allowing
for global perception of object features in the feature
map. This effectively accommodates changes in object scale
and captures detailed information, particularly for small
objects. Additionally, we integrate an efficient multi-scale
feature fusion network EMSNet, which combines deep-level
semantic information with shallow-level detailed features.

Our experiments involve both qualitative and quantitative
analyses of SiamMFF, and compare it with benchmark
algorithm using UAV123, OTB2015, and VOT2018 datasets.

The results demonstrate that compared to SiamCAR and
other comparison algorithms, SiamMFF has improved in
terms of accuracy, success rate, robustness, and other key
metrics. The visualization of tracking results further confirms
the effectiveness of SiamMFF.

With the popularisation of UAV technology, the use of
UAVs for object tracking will penetrate into various fields
and play an important role in production, life and disaster
prevention. The research and improvement of UAV target
tracking algorithms will further expand its application scope,
so the results of this article have strong practical value.
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