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ABSTRACT Delaunay triangulation is an effective way to build a triangulation of a cloud of points, i.e.,
a partitioning of the points into simplices (triangles in 2D, tetrahedra in 3D, and so on), such that no two
simplices overlap and every point in the set is a vertex of at least one simplex. Such a triangulation has
been shown to have several interesting properties in terms of the structure of the simplices it constructs
(e.g., maximising the minimum angle of the triangles in the bi-dimensional case) and has several critical
applications in the contexts of computer graphics, computational geometry, mobile robotics or indoor
localisation, to name a few application domains. This review paper revolves around three main pillars:
(I) algorithms, (II) implementations over central processing units (CPUS), graphics processing units (GPUs),
and field programmable gate arrays (FPGAs), and (III) applications. Specifically, the paper provides
a comprehensive review of the main state-of-the-art algorithmic approaches to compute the Delaunay
Triangulation. Subsequently, it delivers a critical review of implementations of Delaunay triangulation
over CPUs, GPUs, and FPGAs. Finally, the paper covers a broad and multi-disciplinary range of possible
applications of this technique.

INDEX TERMS Delaunay triangulation, applications of Delaunay triangulation, algorithmic approaches to
Delaunay triangulation, CPU implementation of Delaunay triangulation, GPU implementation of Delaunay
triangulation, FPGA implementation of Delaunay triangulation, Voronoi diagram, CPU, GPU, FPGA.

I. INTRODUCTION

Given a set of data points, there are several ways to arrange
them into a triangulated mesh as in Fig. 1, but not all
possible triangle combinations can result in a favourable
representation of the spatial relationships between points.
In 1934, Boris Delaunay published his work titled ““Sur
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la sphere vide: A la mémoire de Georges Voronoi” [2],
in which he proposed a geometric algorithm for constructing
a triangulated mesh from a set of points. The resulting
triangulation is unique and has several useful properties
that make it attractive for a wide variety of applications.
For instance, it offers both an angle guarantee and a low
latency during implementation, which gives it much potential
in different fields [3] [4]. As a consequence, aided by the
rapid development of technology, the method became one
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FIGURE 1. Point cloud (Panel 1a) to Mesh (Panel 1b). Adapted from
Wikimedia commons [1].

of the essential algorithms in computational geometry [5].
Since then, Delaunay triangulation has become extremely
popular, with numerous applications in computer vision [6],
[7], medical imagining [8], [9], mobile robotics [10], [11]
or indoor localisation [12], [13], to name a few scenarios.
Such a tool essentially amounts to the triangulation of a set
of points such that no point is inside the circumcircle of
any triangle. In the literature, several algorithms have been
developed in order to compute Delaunay triangulations, e.g.,
[14], [15], and [16]. Moreover, in the last few years, the
increasing demand for high-performance computing has led
to the implementation of Delaunay triangulation algorithms
on different hardware platforms, including CPUs [17], [18],
[19], [20], [21], GPUs [22], [23], [24], [25], and FPGAs [26],
[271, [28], [29], [30], [31]. These implementations aim to
improve the computational efficiency and reduce the running
time of triangulation algorithms, especially for large data sets.
In particular, the parallelisation of Delaunay triangulation
algorithms on GPUs and FPGAs has shown promising
results, providing a significant speedup compared to the
traditional CPU implementation.

A. CONTRIBUTION

In the literature, there have been attempts to survey the
different approaches for computing Delaunay Triangula-
tion [32], [33], [34], [35], [36], [37], [38], [39], [40].
Table 1 compares the present survey with respect to previous
attempts, including also the most significant textbooks, Ph.D.
theses, and reports. Notably, only a few works provide an
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exhaustive discussion on the algorithms [34], [35], [36],
[38] (e.g., by providing a pseudocode and/or by discussing
its computational complexity and properties), while most
surveys only briefly discuss the mechanisms underlying the
different algorithms, while focusing on different aspects such
as the refinement of an existing triangulation [35], [37].
Also, only [36] focuses on the implementation over CPUs
and GPUs. Finally, most of the above surveys do not cover
applications, while only a few of them consider a single
application domain (i.e., [39] focuses on computer vision
and [33] on multibeam echosounding).

TABLE 1. Comparison with previous survey papers on Delaunay
triangulation.
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Fortune, 2017 [40]
Dinas and Banon, 2014 [39]
Aurenhammer et al., 2013 [38]
Gonzaga de Oliveira, 2012 [37]
Nanjappa, 2012 [36]
Cheng et al., 2012 [35]
Hjelle and Daehlen, 2006 [34]
Brouns et al., 2003 [33]
Maur, 2002 [32]
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Unlike other works in the literature, the present survey
paper aims at providing a holistic overview of Delaunay
Triangulation, presenting:

e A comprehensive review and a tutorial-like presentation
of all the main algorithms. Connections with Voronoi
tessellation are also made.

e The state-of-the-art regarding the implementation of such
algorithms over CPUs, GPUs, and FPGAs (note that this
is the first survey paper to present an implementation on
FPGAs).

e A wide variety of applications, in fields such as, in the
context of distributed coverage, security, medical imaging,
and Virtual/Augmented Reality.

B. OUTLINE OF THE PAPER

The paper is structured as follows: Section II provides some
preliminary concepts and definitions; Section III reviews the
different algorithmic approaches to compute the Delaunay
triangulation; Section IV is divided into three sub-sections
discussing the implementation on CPUs, GPUs, and FPGAs,
respectively. In Section V, the paper discusses the main
applications of the Delaunay triangulation. Finally, the last
section presents the conclusions of the paper, as well as
prospect challenges.

Il. PRELIMINARY CONCEPTS AND DEFINITIONS

A. NOTATION AND DEFINITIONS

We denote vectors by boldface lowercase letters and matrices
with uppercase letters. We refer to the (i, j)-th entry of a
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matrix A by A;;. We represent by 0, and 1, vectors with n
entries, all equal to zero and to one, respectively. We use
|| - |l to denote the Euclidean norm. Let G = {V, E} be
a graph with n nodes V = {vi,v2,...,v,} and e edges
E C V x V, where (v;,vj;) € E captures the existence
of a link from node v; to node v;. A graph is said to
be undirected if the existence of an edge (v;,v;)) € E
implies the presence of (v;,v;) € E, while it is said to
be directed otherwise. In this paper, we consider undirected
graphs. In fact, in the context of Delaunay Triangulations,
graphs are used as a convenient framework for representing
adjacent points in the triangulation. In this view, an edge only
models the connection of two points; hence, no orientation is
required [41]. An undirected graph is connected if each node
can be reached by each other node via the edges.

Let the neighbourhood V; of a node v; be the set of nodes v
such that (v;, v;) € E. The degree d; of a node v; is the number
of its incident edges, i.e., d; = |N;|.

B. CPU, GPU AND FPGA

The three primary forms of hardware that can be used to
implement algorithms are CPUs, GPUs, and FPGAs. Each
form of hardware has its own advantages and disadvantages
when it comes to using algorithms. Today, the most popular
type of processor used in computers is the CPU. Such a
processor can be used for a wide range of tasks and is
designed to carry out general-purpose instructions. Typically,
CPUs are proficient at swiftly and effectively executing
sequential instructions. However, parallel processing tasks
that typically occur in machine learning or image processing
problems might be not well-suited for them.

On the other hand, GPUs are specialised computers
designed for graphically demanding tasks such as gaming and
3D rendering. GPUs are the best choice for activities such as
machine learning and image processing, since they feature
hundreds or thousands of parallel computing cores. GPUs
can quickly access massive datasets stored in memory, thanks
to their high memory bandwidth. Despite their outstanding
performance on graphics-intensive applications, GPUs lack
support for several software libraries and have a limited set
of instructions, making them unsuitable for general-purpose
computing operations like web browsing or word processing.

FPGAs are programmable devices that can be configured
to perform specific functions. FPGAs can be programmed
with custom logic circuits that enable them to swiftly and
effectively carry out complex computations, in contrast to
CPUs and GPUs that have preset instruction sets. In addition,
FPGAs typically consume less power than other processors,
making them perfect for embedded applications where
power efficiency is crucial. However, using FPGAs for
general-purpose computing activities is more challenging
than resorting to CPUs or GPUs, since programming them
requires specialised skills and equipment.

In conclusion, each type of processor is characterised
by both benefits and drawbacks. CPUs are efficient at
quickly executing sequential instructions but are not suitable
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for parallel processing workloads. GPUs are ideal for
graphics-intensive applications and parallel processing tasks
but lack support for specific software libraries and are
not suitable for general-purpose computing. FPGAs are
highly customisable and energy-efficient, but using them
for general-purpose computing activities is more challenging
than using CPUs or GPUs since programming them requires
specialised skills and equipment.

C. THE DELAUNAY TRIANGULATION CONCEPT

FIGURE 2. Delaunay triangulation with the circumcircles of each triangle
and their centres.

Let a set of points P C R? be given (e.g., the gray dots
with a black boundary in Fig. 2). A triangulation T (P) is
a partitioning of the points into simplices (triangles in 2D,
tetrahedra in 3D, and so on), such that no two simplices
overlap and every point in the set is a vertex of at least one
simplex [42] (e.g., the blue triangles in Fig. 2). In particular,
the Delaunay triangulation D7 (P) is a triangulation that
satisfies the Delaunay Condition, i.e., such that no point in
P is inside the circum-hypersphere of any simplex in D7 (P)
[2], [43] (e.g., in 2-D, no point is inside the circumcircle
of any triangle in D7 (P), an example of such circles is
shown in yellow in Fig. 2). Interestingly, as stated in [2],
if a set of points P C R? satisfies the condition that the
affine hull of P is d-dimensional and no set of d + 2 points
in P lie on the boundary of a ball whose interior does
not intersect P, then the Delaunay triangulation for P is
unique. Another important property is that each Delaunay
triangulation is strongly related to convex hulls. In fact, the
Delaunay triangulation of P C R? is the projection of
the downward-facing faces of the convex hull of the set of
points belonging to a paraboloid living in R?*!; this property
can be leveraged upon in order to construct the Delaunay
triangulation by first computing the convex hull in R?*! and
then projecting the result in R¥.

The Delaunay triangulation has been shown to have several
interesting properties in terms of optimality. For instance,
it has been proved to minimise the maximum radius of
the hyperspheres containing the simplices, and the weighted
sum of squares of the edge lengths, where the weight
is proportional to the sum of volumes of the triangles
incident on the edge [44], [45]. Moreover, in R? it has been
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TABLE 2. Comparison of the state-of-the-art algorithms.

Algorithm Computational Higher Pros Cons
Complexity Dimensions
Brute-force o(IP1H No Simple to implement Exponentially slower for large data sets
Can optimise quality of triangu- . .
Flip O(|P|?) Yes lation, works well for small data S.IOW for'large ‘data sets, may not terminate in
sets higher-dimensions.
Easy to implement, fast for small | Slow and memory-intensive for large data
Incremental O(|P|?) Yes data sets, can be updated as new | sets, may suffer numerical stability issues
points are added to the dataset. when points are nearly collinear or cocircular.
Efficient for large data sets,
gell_sint?d for bp arilllellsactllon. More complex to implement, slower than in-
Divide and con- omplexity can be lowered to cremental for small data sets, requires addi-
O(|P|log(|P])) Yes O(|P|log(log(P))) for a large | . ’
quer Do . tional storage space to store the subsets of
class of distributions that includes oints and the splitting lines
the uniform distribution in the | P p & ’
unit square.
O(IP[?)
(experimental,
DeWall on giverage), Yes Works in any dimension. Can be computationally expensive.
o(|p|'=1+T)
worst case
Sweep-Hull O(|P|log(|P])) No Fast, efficient, simple to imple- Requ1r§s sorting and is limited to planar tri-
ment angulations
Can handle non-uniform point
Fortune O(|P|log(|P])) No distributions; handles input with | Requires sorting of the input points.
duplicate points well.
gff;ren; agﬁltsgzl:l?l?;neigizl?isi Requires a predetermined jump distance;
Jump flood O(|P|log(|P])) Yes gep > Smp . may produce slightly different results due to
plement and parallelise; works in . .
. . floating-point error
any number of dimensions

FIGURE 3. The centres of the circumcircles in Fig. 2 determine the vertices
of a convex polygon, which is the Voronoi diagram.

shown to be the triangulation that maximises the minimum
angle of all the triangles [46]. In particular, this property
guarantees to avoid triangles with one or two highly acute
angles (silver triangles') during interpolation or rasterisation
processes [48]. It is also important to note that connecting
the centres of the circumcircles of the Delaunay triangulation

LA silver triangle is a triangle whose area is so thin that its interior does
not contain a distinct span for each scan line. In other words, instead of each
scan line having a beginning and an ending pixel, each of which defines
one side of the triangle, each scan line has only one pixel that may be the
beginning or ending pixel [47], the convex hull of P is the union of the
simplices of the triangulation.
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produce the Voronoi diagram (see the red diagrams in
Figs. 2 and 3), i.e., a dual structure that amounts to the
partition of the space R? in regions such that each point in
aregion is closest to one of the points in P [49].

lll. ALGORITHMS

This section provides an overview of the different algorithmic
approaches developed in the literature for computing the
Delaunay triangulation. In particular, we discuss algo-
rithms based on triangulation (subsec. III-A) and meth-
ods that rely on Voronoi tessellation (subsec. III-B). For
each algorithm, we discuss the main technical aspects,
we provide a pseudocode and a critical discussion. The
key aspects of the different methods are compared in
Table 2.

A. DELAUNAY TRIANGULATION METHODS

Delaunay triangulation methods can be classified into the
following main algorithms: Brute Force [50], Flip [15],
Incremental [14], Divide and conquer [14], and
Sweep-hull [16].

These algorithms will be discussed in turn in the sequel.
There is also the possibility of having combinations of
the above algorithms, offering improved performance with
respect to the initial algorithms. Some combinations will be
discussed later.
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1) BRUTE-FORCE METHOD

The brute force algorithm for Delaunay triangulation is a
simple approach to finding the Delaunay triangulation of
a set of points in a two-dimensional plane. It works by
checking all possible combinations of three points to see if
they form a valid Delaunay triangle. The algorithm begins by
selecting a point from the dataset and forming all possible
combinations of three other points. For each combination
of three points, the algorithm checks if the points form a
valid Delaunay triangle. If so, the triangle is added to the
triangulation. This process is repeated for every point in
the dataset, resulting in a complete Delaunay triangulation
of the dataset. The computational complexity of the brute
force algorithm for Delaunay triangulation is O(|P|*); this is
because, for each point in the dataset, the algorithm needs to
check all possible combinations of three points, resulting in a
total of |P|*/6 computations.

One advantage of the brute force algorithm is its simplicity
and ease of implementation. It also works well for small
datasets with low dimensionality. However, the algorithm is
computationally expensive and impractical for large datasets
or high-dimensional data. To optimise the triangulation,
we can perform list fusion, prune as soon as possible, and
remove adjoining lines at the end. These steps can help
streamline the algorithm and improve its performance. This
variant of the Delaunay triangulation algorithm is cited from
the git project [50].

Algorithm 1 Brute Force Algorithm
1: procedure BruteForceDelaunayTriangulation(P)
Initialise empty set D7 (P) of Delaunay triangles
: for each point p; in P do
for each pair of points p;, pr in P do
if the circle through p;, p;, and p; contains no
other points in P then
6: Add the triangle p;, pj, px to DT (P)
7: end if
8
9

EANE S

end for
: end for
10: return DT (P)
11: end procedure

The pseudocode of the algorithm is given in Algorithm 1.

2) FLIP ALGORITHM

The main idea of the flip algorithm [51] is summarised in
Figure 4. Consider a quadrilateral in R%, and assume the
four points have been associated with two triangles with
a common edge, as in Figure. 4.a. In particular, it can be
shown that if the sum of the angles « and y is larger than
or equal to /2, then the two triangles fail to satisfy the
Delaunay condition (see Figure. 4.b), meaning that one of
the points is contained in the circumcircle of the remaining
ones [15]. In this case, by replacing the common edge with
the one joining the other two endpoints, the result is still
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FIGURE 4. Flip algorithm in a nutshell: (a) quadrilateral decomposed in
two triangles with a common edge and such that the sum of the angles o
and y is larger than = /2, (b) the two triangles do not fulfil the Delaunay
condition, i.e., one of the points lies within the circumcircle of the others,
(c) after flipping the common edge the two triangles satisfy the Delaunay
condition.

a triangulation and satisfies the Delaunay condition [52]
(i.e., the fact that the circle passing through the vertices of
a triangle contains no other vertex, see Figure. 4.c); this
procedure is commonly referred to as “‘edge flip”” or Lawson
flip. In this view, the flip algorithm starts by building any
triangulation and then iteratively inspects pairs of triangles,
eventually performing edge flips when the condition that no
point lies within the circumcircle of the triangles is not met.
Notably, in R?, this algorithm is guaranteed to converge in
O(IP%) edge flips in the worst case [53]. Notice that any
triangulation with |P| points has at least L%J edges that
can be flipped [54]. Although the flipping procedure can
be extended to higher dimensional spaces [42], applying the
overall algorithm to RY with d > 3 is not straightforward,
as the algorithm might get stuck before reaching a Delaunay
triangulation [53]. Algorithm 2 summarises the procedure.

Algorithm 2 Flip Algorithm (in R?)
1: procedure Flip(P)

Build any initial triangulation 7 (P)

while 7 (P) not Delaunay do
Choose quadrilateral with o 4y > 7/2
flip common edge

end while

return 7 (P)

end procedure

R ;N A RN

The flip algorithm is a simple and efficient method for
computing the Delaunay triangulation. One of its main
advantages is that it can be applied to higher dimensions,
even though there might be instances that fail to converge.
Moreover, the flip algorithm can handle non-uniform point
distributions without needing to modify the algorithm or
add any extra steps. However, the flip algorithm can get
stuck in an infinite loop if it encounters a bad input or if
the triangulation has a “Bowtie” structure, which occurs
when four points lie on the same circle. Additionally, the flip
algorithm can produce a triangulation with a higher number
of flips than other algorithms, making it less efficient in terms
of computational cost. Nevertheless, the flip algorithm is still

VOLUME 12, 2024



Y. S. Elshakhs et al.: Comprehensive Survey on Delaunay Triangulation

IEEE Access

a popular method for computing the Delaunay triangulation
due to its simplicity and versatility.

3) INCREMENTAL ALGORITHM

4

(b)

@

(d

H&E
&

(e) ®

FIGURE 5. Incremental Delaunay triangulation.

The incremental search or incremental construction
algorithm [14], [55] (see also the Bowyer-Watson algorithm
[56], [57], which is similar) has the main goal of constructing
a Delaunay triangulation in R? of a set of points by inserting
points one at a time and updating the existing triangulation
to maintain the Delaunay property. To start the incremental
Delaunay triangulation algorithm, a triangle is formed that
is big enough to cover all the given points.”> Then, the
algorithm proceeds to include the remaining points into
the triangulation, one after another, while preserving the
Delaunay property throughout the process. To add a new point
p, the algorithm first checks which existing triangle in the
triangulation contains p. Then, its three vertices are connected
to p, and the three edges of the triangle are inspected. For
each such edge, the algorithm checks if they need to be
flipped (i.e., replaced by the other diagonal of the surrounding
quadrilateral) in order to maintain the Delaunay property.
If an edge is flipped, then the other two edges that form
a triangle with it become candidates for inspection. This

2Since the original points lie in a bounded region in R2, such an
enclosing triangle always exists.
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process is repeated until all affected triangles have been
updated.

Figure 5 shows an example of this procedure. In particular,
inin Fig. 5a anew point p is added to an existing triangulation.
Then, the algorithm splits the triangle that contains p into
three triangles (as in Fig. 5b). Once these triangles have been
identified, the algorithm runs a check to determine whether
any of their edges need to be flipped (Fig. 5c-5e). Finally,
every newly formed triangle that fails to satisfy the Delaunay
Condition is flipped [58] (i.e., the triangles featuring a dashed
yellow edge in Fig. 5f).

The pseudocode for the incremental algorithm is reported
in Algorithm 3.

Algorithm 3 Incremental Algorithm (in R?)
1: procedure IncrementalDT(P)
2: Create initial triangle containing all points in P
3: forallp € P do
4 Find triangle containing p
5 Add edges of the triangle to set E
6: Add edges from p to the three vertices of the triangle
7
8
9

while E is not empty do
choose e € E
Consider triangle obtained from e and p

10: if triangle is not Delaunay then

11: Flip edge e and remove e from E

12: put edges ¢’ forming a triangle with p in E
13: end if

14: end while

15: end for

16: return Delaunay triangulation of P
17: end procedure

The overall runtime of the incremental algorithm is
O(|P|?), as in the worst case O(|P|) edges might need to be
flipped with each new point. However, if vertices are inserted
in random order, then on average, only O(1) flips will be
performed with each insertion [59].

The incremental algorithm has several advantages. Firstly,
it is a simple and intuitive algorithm that can handle
large datasets with good efficiency. Secondly, it allows
for incremental updates, meaning that the triangulation
can be updated as new points are added to the dataset.
Additionally, the algorithm guarantees the Delaunay property
at each step of the triangulation process. However, one of
the main disadvantages of the incremental algorithm is its
worst-case time complexity of O(|P|?), which can make it
impractical for very large datasets. Moreover, the algorithm
may also suffer from numerical stability issues when points
are nearly collinear or cocircular, leading to the creation
of poorly-shaped triangles. Interestingly, the algorithm was
generalised” to three and higher dimensions in [60].

3Although presenting a divide-and-conquer approach, in [60] a *“‘sim-
plex wall” is constructed by resorting to a generalisation of the insertion
algorithm to higher dimension spaces.

12567



IEEE Access

Y. S. Elshakhs et al.: Comprehensive Survey on Delaunay Triangulation

4) DIVIDE AND CONQUER APPROACHES IN R2 AND R3
The divide-and-conquer algorithm for Delaunay triangulation
is an efficient approach for solving problems by breaking
them down into smaller subproblems [14], [61], [62].
Based on this general idea, different approaches have been
developed in the literature to address the bi-dimensional or
three-dimensional cases. In R2, the main idea is to recursively
separate the points into groups via a line, until each group
contains three or less points. Every time the set of points is
partitioned in two, the algorithm is recursively executed on
each of the two subsets. Then, once the sets contain at most
three points, the Delaunay triangulation is simply computed,
and the results for the two sets are recursively merged along
the previously identified splitting lines. This algorithm can be
divided into three steps:

1) Dividing the frame into parts: The algorithm first
divides the set of points P into smaller subsets. One
way to achieve this is to use the median of the
x-coordinates of the points as the splitting line. The
points on one side of the line form one subset, while
the points on the other side form another subset. This
process is then recursively applied to each subset until
a subset only contains three or fewer points.

2) Computing the triangulations: The Delaunay triangu-
lation is computed for each subset of points. This can
be done using any method such as the incremental
algorithm or the flip algorithm.

3) Merging the results: Finally, the computed triangula-
tions for each subset are merged along the previously
drawn splitting lines.

The most important aspect of this method is how to merge
two triangulations. Next, we describe the approach in [14],
assuming the points are deployed in a bi-dimensional space;
Fig. 6 provides an example of this procedure.

As a first step, the points in the left and right triangulations
to be merged are sorted by increasing the x-coordinate (in
the case of ties, the y-coordinate can be used). Let us refer
to the Delaunay edges in the left and right triangulations as
L-L edges and R-R edges, respectively. The merge operation
requires the insertion of some edges between sites belonging
to different triangulations (i.e., L-R or cross edges) and,
consequently, the deletion of some L-L and/or R-R edges.
Notice that, as demonstrated in [14], the merging procedure
cannot add new L-L or R-R edges. Let us consider the line
parallel to the y-axis that separates the left and right subsets
of sites; notably, with respect to this line, the set of all possible
L-R edges can be ordered (i.e., by increasing the value of the
y-coordinate of the point that crosses the line). Based on this
ordering, the merging algorithm in [14] selects cross edges
incrementally, in ascending y-order.

At the beginning, the algorithm selects the lowermost L-R
edge in the ordering and evaluates the next candidate (called
basel). The algorithm considers the circle that passes through
the three endpoints that define the current L-R edge and the
basel; then, the circle continuously rises and changes size in
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order to maintain the basel as one of its chords. Interestingly,
the centre of the circle is constrained to lie on the bisector of
the basel. The circle will be point-free for a while, but unless
basel is the last L-R edge, at some point, the circumference
of the transforming circle will meet a new site, belonging
either to L or R. The resulting triangle (i.e., the endpoints
of the basel and of the newly met site) will be point-free.
At this point, unless the edge thus found is the last one in
the ordering, the algorithm will continue by considering an
expanding circle having the new L-R edge as the basel, until
a new point is found. As they are identified, the L-R edges
thus selected are added to the overall triangulation. Upon
addition of any of such edges, previous edges in the left and
right triangulation that fail to meet the Delaunay condition
are removed.

The overall time complexity of the divide-and-conquer
algorithm is O(|P|log(P)), which is faster than the incre-
mental algorithm’s time complexity of O(|P|?). However,
this algorithm requires additional storage space to store the
subsets of points and the splitting lines. Notably, in [63] an
extension is provided with a guaranteed O(|P|log(log(P)))
complexity for a large class of distributions that includes the
uniform distribution in the unit square.

Algorithm 4 reports the pseudocode for the divide-and-
conquer method.

Algorithm 4 Divide-and-Conquer Algorithm for Computing
the Delaunay Triangulation

1: function Divide-and-conquer(P)

2: if |P| < 3 then

return Compute D7 (P) using any method

end if
Compute m median of the x-coordinates of P
Pr C P with x-coordinate < m
Pr C P with x-coordinate > m
DT 1 (Pr) = Divide-and-conquer(Pr)
DT r(Pg) = Divide-and-conquer(Pg)
10 Merge D7 1 (Pr) and DT g(Pr)
11: return the merged Delaunay triangulation
12: end function

R A

Notice that the above divide-and-conquer algorithm cannot
be applied in RY for d > 2. However, in the literature,
divide-and-conquer approaches for the three-dimensional
case have been developed, e.g., the Delaunay Wall (DeWall)
algorithm [64]. The algorithm iteratively subdivides the
points in two subsets via a hyperplane, then it constructs a
part of the triangulation, namely simplex wall, that involves
the simplices that intersect the hyperplane. Iterating the
procedure over the subset new simplices are added to the
triangulation. Overall, in R3, the DeWall algorithm has an
average complexity that has been experimentally assessed
to be O(|P|?), although there may be degenerate instances
where the complexity rises to O(IPP?); in general, the
theoretical worst-case complexity in R? is O(|P|'21+1) [64].

VOLUME 12, 2024



Y. S. Elshakhs et al.: Comprehensive Survey on Delaunay Triangulation

IEEE Access

Base LR edge >

(a)

( New base LR edge

(b)

(©

FIGURE 6. Example of rising bubble in divide and conquer algorithm.

(d

50 T - T 50
+ + +
* * + +
. N + + 4ol
40 RS + 4 o, 0
+ + 7
+ o+ +
30 ++ + 30
" oty +F 4+ 4
+ + +
+ +
20 4 20
+ +
+ +
10 + n 10
s+
4
+ +
of * 0
++ *
10 + 4 -0
* b
+ + -
+ 1 ool
20 . 4 20
+ + +
+ oy
30+ + T -80f
+
+ +
H +
—40f + + + 4 -4of
+ + 1
" +
50 . . . . . . . . . 50
250 40 30 20 10 0 0 20 30 40 50 50
(a)

FIGURE 7. Example of the sweep-hull algorithm [16]: Panel 7a shows the initial seed; Panel 7b shows the evolution of the convex hull; Panel 7¢

shows the resulting Delaunay triangulation.

5) SWEEP-HULL

The Sweep-Hull algorithm [16] is a technique for efficiently
computing the Delaunay triangulation in R2. This algorithm
combines a sweeping technique with a flipping algorithm
to generate a convex hull and subsequently, the Delaunay
triangulation. First, the algorithm sorts the points p; in the
dataset P by their x-coordinates p; , in ascending order with
respect to a point pg y, i.e., according to |p; x — po’xlz. The
algorithm then sweeps a line from left to right across the
points, creating a convex hull around the points encountered
so far. The point that creates the smallest circumcircle with pg
and p; is identified as p¢, and its centre ¢, is recorded. Points
Po, pi, and ¢y are then ordered to form a right-handed system,
which serves as the initial seed convex hull.

Next, the remaining points are sorted by their distance
from ¢y and sequentially added to the convex hull seeded
with the initial triangle. As each new point is added, the
visible facets of the convex hull form new triangles. This
process continues until all points have been processed and
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the convex hull is complete. Once the convex hull has been
constructed, the Sweep-Hull algorithm uses it to construct
the Delaunay triangulation by connecting each point on the
convex hull to its nearest neighbours on either side, creating
triangles between them. This process continues until all
points have been connected, resulting in a complete Delaunay
triangulation of the point set. The algorithm is illustrated in
Fig. 7.

The time complexity of the Sweep-Hull algorithm is
O(|P|log(I'P])), and thus scales well with the size of the
input dataset [16]. Moreover, the memory complexity of the
Sweep-Hull algorithm depends on the implementation. In the
worst case, where all the input points lie on the convex
hull, the algorithm needs to store O(|P|) points. However,
in practice, the number of points on the convex hull is usually
much smaller than |P|. The memory usage also depends on
the choice of data structures used in the implementation, such
as the priority queue and the data structures for storing the
convex hull and the Delaunay triangulation.
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Itis also robust and can handle input datasets with duplicate
points or collinear points [65].

Algorithm 5 Sweep-Hull Algorithm for Computing the
Delaunay Triangulation (in R?)
1: procedure SweepHull(P)
2: Choose pg € P
3: Sort P by x-coordinate in ascending order according to
Ipi = pol®
4: Initialise a stack S and add pog, p1, p2 to S in clockwise
order to form the initial seed convex hull (Fig. 7)
5: fori =3tondo
Let p; be the next point in P sorted order
while the angle formed by the last two points on §
and p; is not convex do
: Pop the top point p from §
9: Add the triangle formed by p, the last point on S,
and p; to the Delaunay triangulation
10: end while
11: Push p; onto S
12: end for
13: return Delaunay triangulation constructed from the
convex hull in P
14: end procedure

The pseudocode of the Sweep-Hull algorithm is given in
Algorithm 5; note that the pseudocode assumes that the input
points P have already been preprocessed, such as removing
duplicates and ensuring that no three points are collinear.

B. VORONOI BASED METHODS

The Voronoi diagram is a powerful tool for analysing and
visualising data. It is a mathematical construct that divides
a space into regions based on the distance from a set of points
(an example is given in Fig. 3).

Let P be a set of points, and {p, ¢, r} be three non-collinear
points in P that do not have any other points inside the circle
C passing through p, g, and r. The centre of C is a Voronoi
node of the Voronoi diagram V(P) of P.

Note that V(P) is the dual graph of the Delaunay
triangulation D7 (P) of P (in this view, the triangle formed
by {p, g, r} corresponds to the Voronoi node). This means
that every Voronoi node belongs to a Delaunay triangle
(and vice versa). Voronoi diagrams are also the dual of
Delaunay triangulations and can be generated from Delaunay
triangulation and vice versa [14], [49]. The remainder of this
subsection is devoted to reviewing such approaches.

1) FORTUNE'S ALGORITHM

Fortune’s algorithm is based on a sweep line and a beach line
that move through the plane as the algorithm progresses [67].
More in detail, the sweep line is a vertical line that moves
through the plane from left to right, while the beach line is
the set of points that are equidistant to the sweep line and
the points in the Voronoi diagram that have already been
constructed.
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The input to the algorithm is a set of points in the plane,
as shown in Fig. 8. The algorithm starts by sorting the points
by their x-coordinate and introducing a sweep line that moves
from left to right through the plane. As the sweep line arrives
at each point, it creates a beach line that grows as the sweep
line moves forward.

Notably, the beach line is composed of pieces of parabolas.
As the sweep line continues to move, the points at which two
parabolas cross, i.e., the vertices of the beach line, become
the points where two or more edges of the Voronoi diagram
are adjacent. In this way, the Voronoi diagram is constructed
incrementally. Once the Voronoi diagram is constructed,
it can be easily converted into a Delaunay triangulation [68],
[69].

In particular, two types of events can occur during the
algorithm’s execution, site events and circle events. Site
events occur when a new point is added to the set of points
being processed by the algorithm. When a site event occurs,
the algorithm needs to update the structure representing the
beach line (i.e., the set of parabolic arcs defined by the
Voronoi diagram). Specifically, the algorithm needs to insert
a new parabolic arc into the beach line to represent the new
site and adjust the intersection points between neighbouring
arcs as needed. Circle events occur when the sweep line
passes over a point where three or more sites’ Voronoi regions
intersect. At this point, the parabolic arcs representing the
Voronoi regions around those sites all meet at a common
point, and this point is a Voronoi vertex. The circle event
is the point in time when the sweep line reaches the lowest
point of the circle that passes through the three sites that
define the Voronoi vertex. When a circle event occurs, the
algorithm needs to remove the three parabolic arcs that meet
at the Voronoi vertex from the beach line and replace them
with a new arc representing the edge of the Voronoi diagram
that connects the two adjacent sites that are not involved in the
circle event. The algorithm also needs to check for new circle
events that might be triggered by the removal and insertion
of new edges. In summary, site events correspond to the
addition of new points to the Voronoi diagram, while circle
events correspond to the intersection of three or more points’
Voronoi regions, which results in the creation of new Voronoi
nodes and edges. The algorithm handles each type of event
differently, but both types are necessary to fully construct the
Voronoi diagram.

Algorithm 6 contains the pseudocode of Fortune’s
algorithm (while site and circle events are handled as reported
in Algorithms 7 and 8, respectively).

Fortune’s algorithm has a computational complexity of
O(|'P|log(|P])), making it an efficient algorithm for planar
point sets. However, it is not efficient for point sets in higher
dimensions.

2) JUMP FLOOD

The Jump Flood method is an effective approximated
approach for computing Voronoi diagrams [70], [71]. In the
beginning, the algorithm creates an M x M grid such that
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FIGURE 8. Example of usage of Fortune’s algorithm. Adapted from Wikimedia commons [66].

each cell only contains one point p € P (M is assumed to
be a power of two); then, each point p € P is declared to be
the seed of the cell it belongs to. At this point the algorithm
iterates a series of rounds each characterised by a parameter r,
which is initialised to M /2 and is halved at each iteration,
stopping when r < 1. During each round, all cells ¢ and all
its “neighbour” cells g at distance r are evaluated. If ¢ has no
seed and the seed of ¢ is s, then s is declared to be the seed
of ¢. If ¢ has a seed s and g a seed s/, and if p is closer to s’
than to s, then the seed of g becomes s'.

The pseudocode of the algorithm is given in Algorithm 9,
while an example with |P| = 6 and M = 128 is given in
Fig. 9.

The computational complexity of the Jump Flood method
for Delaunay triangulation is O(|P|log(|P[)). This complex-
ity is due to the sorting operation used to compute the
neighbouring points in each round.

One advantage of the Jump Flood method is that it
is easy to implement and can handle non-uniform point
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distributions. Additionally, the algorithm is memory-efficient
as it only stores the coordinates of the vertices and a small
amount of metadata. On the other hand, one potential issue
with the Jump Flood algorithm is that the use of discrete
grid-based representations can introduce quantisation errors,
particularly when the grid resolution is not fine enough to
accurately represent the input point set. These errors can
result in a loss of precision in the computed Delaunay
triangulation and potentially affect its quality. However,
this issue can be mitigated by carefully selecting the grid
resolution and employing appropriate error analysis and
correction techniques.

The Jump Flood algorithm can be extended to higher
dimensions than 2 by essentially following the same pro-
cedure as in 2D (e.g., see [70] and references therein). In
3D, for example, the algorithm works by dividing the space
into a grid of cubes of a certain size and then performing
the flooding process within each cube. The jump distance
is defined as the length of the cube edge, and the process
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Algorithm 6 Fortune’s Algorithm

Algorithm 9 Jump Flood

1: procedure Fortune(P)

: Create empty priority queue Q

: for all p; € P do
Event(p;) <— Create new site event at p;
Insert Event(p;) into Q

end for

: Create empty beach line B

: while Q is not empty do

e < Extract minimum event from Q

if e is a site event then
HandleSiteEvent(e, B)

else
HandleCircleEvent(e, 3, Q)

end if

: end while

: return Delaunay triangulation of P

: end procedure

e e e e
~N N R WD = O

Algorithm 7 HandleSiteEvent(e, B)
1: Insert new edge « associated with site e into B
. ey <— edge to the left of o
: Oright <— edge to the right of «
o if ajefe and auighe converge at a point p then
Create new circle event ¢ at p
Associate ¢ with ajefe and apighe
Insert ¢ into Q
. end if

Algorithm 8 HandleCircleEvent(q, Q, 7, B)
1: let p be the point associated with the event
: let n; be the node in B directly above p
: let np be the node in B directly below p
: let n3 be the node in B directly below n;
: let e1 be the edge associated with n1 and n3
: let e; be the edge associated with np and n3
if ¢; and e; intersect at point v then
create new edge e from p to v
delete e and e, from 7
add new edges e and e] to 7
if p is below the segment of e in B then
12: add new node n to B with p as associated point
13: set e and e as edges associated with n
14: else
15: add new node n to B with p as associated point
16: set e and e, as edges associated with n
17: end if
18: check circle events for ny, ny, nin Q
19: end if

—_ =
—_ o

of updating the closest vertices is done in a similar way as
in 2D, but considering the 3D coordinates of the vertices.
In general, the algorithm can be applied in any number of
dimensions by dividing the space into a grid of hypercubes
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1: procedure JumpFlood(P)
2: Create M x M grid with M power of 2
3: for all cells ¢ in grid do

4 if ¢ contains p € P then
5 seed(c)=p
6: else
7 seed(c)= 0
8 end if
9: end for
0: r=4
11: whiler > 1do
12: for all cells c in grid do
13: for all cells ¢ with distance r from ¢ do
14: s =seed(c);
15: s’ =seed(q);
16: if s = ¥ and s’ # ¢ then
17: seed(c)= s
18: end if
19: ifs 40,5 #@%andd(c,s) > d(c, s') then
20: seed(c)= ¢
21: end if
22: end for
23: end for
24: k=k/2

25: end while
26: Construct D7 (P) from seed information
27: return D7 (P)

and performing the flooding process within each hypercube.
The jump distance is defined as the length of the hypercube
edge, and the process of updating the closest vertices is
done by considering the coordinates of the vertices in the
appropriate dimension.

IV. IMPLEMENTATIONS ON DIFFERENT HARDWARE
PLATFORMS

Central Processing Units (CPUs), Graphic Processing Units
(GPUs), and Field-Programmable Gate Arrays (FPGAs) are
all types of silicon mediums used for different purposes
in computing. CPUs are the most common type of silicon
medium and are designed for general-purpose computing.
GPUs (Graphics Processing Units) are specialised hardware
components that were originally designed for handling
graphical computations but have evolved to become highly
parallelised and efficient computing engines for a wide
range of applications beyond graphics. GPUs have a high
number of processing cores, typically in the hundreds or even
thousands, that can work in parallel to execute multiple tasks
simultaneously. This allows GPUs to perform complex com-
putations quickly and efficiently. FPGAs are programmable
chips that can be tailored to specific tasks. They are
designed to be highly configurable, with logic blocks that
can be programmed to perform different operations. This
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FIGURE 9. lllustration of the Jump Flood algorithm for |P| = 6 points and M = 128. Panels 9a-9h show the different iterations of the method (the
cells’ colours correspond to their currently associated seed). The nodes are shown by white circles in Panels 9a and 9h, while the resulting Delaunay

triangulation is shown in Panel 9h via red segments.

flexibility allows developers to tailor the FPGA to a specific
workload, which can result in higher performance than
a GPU. In addition, FPGAs can be optimised for power
consumption, making them more energy-efficient than GPUs
for certain tasks. However, it’s important to note that FPGAs
are not always the best choice for all workloads. They can be
more difficult to program than GPUs, requiring specialised
knowledge and expertise in hardware design and hardware
description languages like Verilog and VHDL. In addition,
FPGAs can be more expensive than GPUs, which can be a
barrier to adoption for some applications. Overall, FPGAs
can provide higher performance than GPUs for specific
workloads because they are more flexible and customisable.
However, the decision to use an FPGA over a GPU should
be based on the specific requirements of the application,
including the complexity of the workload, power constraints,
and cost considerations. Each type of silicon medium has its
own strengths and weaknesses, and the best option depends
on the specific requirements of the application. In brief, the
main differences are listed below:
e CPUs are versatile and cost-effective but are less powerful
than GPUs and FPGAs in terms of raw computing power.
e GPUs are more powerful than CPUs, but they are also
more expensive and consume more power.

e Unlike CPUs and GPUs, which are fixed-function devices
optimised for general-purpose computing or graphics
processing respectively, FPGAs can be reconfigured to
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perform specific functions. This means that an FPGA
can be optimised for a specific workload, allowing it to
perform that workload more efficiently than a GPU, which
is not tailored for that specific function.

e Additionally, FPGAs have a more parallel architecture
than GPUs, which can result in lower latency and higher
performance for certain applications. FPGAs can also
perform more operations per clock cycle than CPUs and
GPUs, which also contributes to higher performance.

The remainder of this section is dedicated on understanding
the merits by each type of silicon medium for the specific
application of Delaunay Triangulations. More specifically,
it focuses on comparing the different implementations of the
aforementioned algorithms used for computing the Delaunay
triangulation on CPUs, GPUs, and FPGAs.

A. IMPLEMENTATION ON CPU

Over time, several CPU implementations have been devel-
oped. In this section, we will review some of the most notable
CPU implementations.

1) STUDY OF PARALLEL DELAUNAY TRIANGULATION USING
MANY-CORE PROCESSOR IN 3D

To improve the performance of Voronoi diagram partition
in [18], the researchers implemented and optimised Delaunay
triangulation on the Xeon Phi SE7110p processor with
61 cores, each able to execute four threads, and with a
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frequency of 1.091 GHz. Specifically, the authors developed
a parallel implementation of the flipping algorithm (e.g.,
see Algorithm 2 in Section III-A2). In particular, the
algorithm develops parallel implementations of the insertion
and flipping subroutines. In particular, the parallel approach
in [18] aims to insert multiple points at once and then flipping
can improve the quality of the mesh.

5.5

‘— Grid - - Sphe‘re Ball Unifo‘rm

0 500 1000 1500
Points &

FIGURE 10. Parallel vs CGAL speed-up comparison, considering
three-dimensional data points (Source data: [18]).

Figure 10 shows the speed-up with respect to CGAL for
large-scale problems with a large number of points sampled
in 3D from different distributions, such as the Uniform,
Grid, Ball, Sphere, and Gaussian ones.* According to the
figure, the parallel algorithm showed significant performance
acceleration, i.e., it exhibited a speed-up that was always
above a factor of two and, except for the Grid distribution,
it reached a factor of about 5.5 for a large number of points.

2) SCALING UP TO A BILLION POINTS

In [72] the authors demonstrate how a parallel implementa-
tion of the incremental algorithm is able to handle up to one
billion points, even when there is not enough RAM to handle
all the points at the same time. In particular, the authors
demonstrate this over a machine with an Intel, CoreTM,
i7 CPU, 870@2.93 GHz with 16 GB RAM, and show that
their algorithm exhibits a linear complexity in the number of
points. In particular, triangulations with one billion points in
3D only require about 2000 s for uniformly distributed points
and 25000 s for non-uniformly distributed points.

4The uniform distribution considered points sampled uniformly at
random from a cube in 3D. The Gaussian one was such that the points were
sampled in [0, 1] via a Gaussian function. The Grid distribution was sampled
uniformly at random from the range [0, 1024]. The Ball distribution was a
point set evenly distributed within a sphere with a radius of 0.5. The Sphere
distribution encompassed evenly distributed points on the surface of a sphere
with a thickness of 0.05.
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3) DISTRIBUTED AND PARALLEL DELAUNAY
TRIANGULATION ON CLUSTER/CLOUD IN 2D

Generating unstructured meshes for extremely large point
sets is still a major challenge for scientists working with
large-scale or high-resolution data sets. To tackle this
problem, several hybrid algorithms that combine parallel
and incremental approaches have been developed. These
algorithms have been implemented on clusters, as described
in [19], or on the cloud, as demonstrated in [17] and [20].
In the latter work, the authors compared the performance
of a hybrid cloud-based algorithm with that of a sequential
implementation on a single machine.

In particular, the algorithm in [17] considers points in
2D and combines the divide and conquer approach and the
incremental method. Specifically, if the number of points of
the problem at hand is below a threshold, then triangulation is
directly computed via the incremental algorithm. Conversely,
if the problem features more points than the threshold, it is
broken down in two subproblems with approximately equal
size, and each problem is solved recursively.

In [17] a comparison is provided for the hybrid algorithm in
two different environments: a sequential implementation on
a single machine (shown in Fig. 11a) and a distributed D-TIN
service deployed on the GeoKSCloud platform (shown in
Fig. 11b). The experiments were conducted using various
problem sizes, with a threshold ranging from |P|/8 to |P|/4.
The figures also report theoretical times that were estimated
by the authors via a cost model (see [17] for details).
According to the figure, in the single machine case, the
theoretical and experimental execution times are quite in
accordance (the discrepancies are due to system activities in
the background). As for the cloud case, it can be noted that
the time required for communication is not negligible, but
in any case, the latter implementation allows a relevant time
reduction (e.g., a speedup of about 3.5 times is observed).

B. IMPLEMENTATION ON GPU

CPUs are obviously the first choice for implementing algo-
rithms and testing them; however, when big data is considered
or when there are real-time constraints, approaches based on
CPUs might not be sufficient. In this view, in the literature
several approaches have been adopted to take advantage of
the large computational capabilities of GPUs.

1) CGAL LIBRARY

In 1996, eight European research institutions teamed up
to create the Computational Geometry Algorithms Library
(CGAL) [21], an open-source software library of compu-
tational geometry algorithms. Figure 12 shows the results
of using CGAL’s Delaunay triangulation in 3D (using a
3D version of the Bowyer-Watson algorithm [56], [57])
on a control data-set. Specifically, the figure reports the
computational time (red stars) over a machine with an Intel
i7 26000K 3.4 GHz processor, 16GB DDR3 RAM, and
an NVIDIA GTX 580 Fermi graphics card with 3GB of
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FIGURE 11. Comparison of the execution time of the hybrid algorithm developed in [17] over: (a) a single machine, or (b) a parallel cloud.
For each curve, a theoretical computational time is also provided. Panel (b) also explicitly breaks down the overall experimental time into

computation and communication times (data source: [17]).

video memory, considering datasets with different sizes; for
each dataset, the average over ten runs is reported [36].
Notably, such numerical results (and datasets) are often
regarded as a standard for comparison with newer results
in several papers. For comparison, we report a linear and a
nonlinear fitting of the data in Figure 12, with a blue dashed
line and a black dotted line, respectively. In particular, the
linear fitting amounts to «|P|, where we estimated (using
MATLAB’s fit1m function) @ ~ 1.20 x 1073, while the
nonlinear fitting is B|P|log(|P]), where we estimated (using
MATLAB’s 1sqcurvefit function) 8 = 8.93 x 107,
Interestingly, the linear fitting appears to be more accurate
than the nonlinear one, suggesting that the library exhibits (at
least experimentally) a complexity that is linear in the number
of points.

2) DELAUNAY TRIANGULATION IN 3D ON THE GPU

In [36], among other approaches, the author presents the so-
called gFlip3D algorithm. The algorithm is based on parallel
point insertion and flipping and is implemented on GPUs,
based on the CUDA parallel computing platform.

Also in this case, experiments are undertaken on a personal
computer with an Intel 7 26000K 3.4 GHz processor, 16GB
DDR3 RAM, and an NVIDIA GTX 580 Fermi graphics card
with 3GB of video memory [36].

Figure 13 shows the running time of the gFlip3d algorithm
while considering synthetic random data sampled from
different distributions, while Table 3 shows the results for real
datasets with different sizes.

According to Figure 13, the algorithm exhibits a linear
convergence rate and all distributions yield comparable
results, except for the grid distribution which has the worst
performance. Notably, for synthetic data, the speedup of
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FIGURE 12. CGAL computational time over a machine with an Intel i7
2600K 3.4 GHz CPU and 16GB of DDR3 RAM, and an NVIDIA GTX 580 Fermi
graphics card with 3GB of video memory, considering datasets with
different sizes (data source: [36]). Results are the average over 10 runs
(red stars). A linear and nonlinear fitting are reported for comparison.

TABLE 3. Computational time of the gFlip3d algorithm, speedup with
respect to CGAL, and fraction of non-flippable facets for real datasets
(Source data: [36]).

#points | CGAL [s] | gFlip3d[s] | Speedup | Non-flippable
facet ratio
172974 2.01 0.87 2.16 0.00050
294012 3.45 0.90 3.87 0.00040
437645 5.335 1.75 3.2 0.00082
543652 6.65 2.19 3.02 0.00035
882954 10.47 5.44 1.91 0.00062

gFlip3D over CGAL was estimated to be above a factor of 6.5,
except for the grid distribution, which reached a maximum
speedup of 3. Moreover, as shown in Table 3, for real
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FIGURE 13. Running time of the gFlip3d algorithm, plotted against the
number of points while considering synthetic data sampled from
different distributions (Source data: [36]).

data, the gFlip3D algorithm showed a speedup ranging from
1.91 to 3.87.

However, a drawback of this approach is that the result
does not always guarantee that all facets satisfy the Delaunay
condition. In particular, the experimental results in [36]
showed that the fraction of such facets over the total was less
than 0.0001 for synthetic data, while in the case of real data,
it ranged from 0.00035 to 0.00082.

3) 3D DELAUNAY TRIANGULATION BASED ON A GPU

ACCELERATED ALGORITHM
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FIGURE 14. Accelerated DT running time - speedup/CGAL (source data:
[22]).

In [22] a GPU implementation of the Delaunay triangula-
tion is developed, where points are inserted in parallel and
then a procedure called splaying is used to identify edges that
locally violate the Delaunay condition; such edges are then
flipped in order to obtain a valid triangulation.

A version of this algorithm using the CUDA programming
model was implemented on a personal computer with an
Intel 17 26000K 3.4 GHz processor, 16GB DDR3 RAM,
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and an NVIDIA GTX 580 Fermi graphics card with
3GB of video memory. The performance of the algorithm
implemented using the CUDA programming model was
evaluated using input sizes ranging from 103 to 15 x 10°.
Fig. 14 shows the running time and speedup of the algorithm
compared to CGAL, considering random points obtained
from different distributions.” Interestingly, the algorithm
achieved a speedup of about 4-6 times for smaller instances
and quickly increased to about 8-10 times as the number of
points increased.

To complement the analysis, in [22] the algorithm was
tested with respect to real-world datasets with a number of
points ranging from about 180.000 up to 3.600.000. Notably,
also in this case, the algorithm exhibited a speedup of a
factor ranging from 6.1 to 9.2, i.e., the algorithm exhibited
comparable speed-up factors for both synthetic and realistic
datasets.

In [22], the authors also provide a breakdown of the
time requirements for the different subroutines that compose
this approach. Interestingly, except for a particular random
distribution (i.e., the sphere, where splaying took about 60%
of time, the most time-consuming operation was flipping
(above 60% of time), while the insertion of points ranked
second (taking about 20 — 30% of time).

4) A FLIPPING APPROACH IN 2D AND 3D

Reference [24] presents an in-depth study of flip algorithms
in low dimensions, specifically for regular triangulation and
convex hull in 2D and 3D. The authors propose a series of
provably correct flip algorithms that allow for non-restrictive
execution order. The algorithms are implemented for both
CPUs and GPUs. Experimental results show that the GPU
implementation achieves significant speedup over existing
single-threaded CPU implementations.

The GPU implementation follows the CUDA program-
ming model and utilises a parallel workflow. The geometric
structures are represented as arrays, and flipping is done
in multiple iterations using checking and flipping kernels.
To prevent simultaneous flipping of edges whose affecting
regions overlap, two kernels® are utilised in every itera-
tion: a checking kernel and a flipping kernel. Within the
checking kernel, a single thread assesses the validity of a
given candidate. Should candidate r require flipping, the
responsible thread assigns the index of r to all the facets
within the induced sub-complex of r. Within the flipping
kernel, r undergoes flipping solely if all these facets retain
the consistent labeling of the same index. The paper also
describes the incremental insertion approach for constructing
inputs on the GPU.

The experiments compare the CPU and GPU imple-
mentations for constructing 2D regular triangulations. The
GPU implementation achieves significant speedup over

5In particular, within the thin sphere distribution, points lie in between
the surface of two balls of slightly different radii (see [22]).

6 A function that is meant to be executed in parallel on an attached GPU
is called a kernel.

VOLUME 12, 2024



Y. S. Elshakhs et al.: Comprehensive Survey on Delaunay Triangulation

IEEE Access

the CPU implementation, especially when the number of
non-redundant points is small. The time breakdown analysis
reveals that the flipping phase becomes more time-consuming
as the number of non-redundant points increases.

The paper acknowledges that GPU implementations may
require more memory due to the need for auxiliary buffers.
The experiments demonstrate that the GPU implementation
can handle a certain number of points depending on the
available GPU memory and the point distribution.

Itis also noted that the parallel workflow for flip algorithms
does not explicitly handle load balancing, which may lead to
inefficiency in cases of very non-uniform point distributions.
However, such cases are rare in practice.

5) QUASI-DELAUNAY TRIANGULATIONS USING GPU-BASED
EDGE-FLIPS

In [23], an iterative GPU-based algorithm for enhancing tri-
angulations based on the Delaunay criterion is proposed. The
algorithm incorporates a threshold value to handle co-circular
or close to co-circular point configurations, resulting in a
small fraction of triangles that do not satisfy the Delaunay
condition. Comparative evaluations were performed against
the Triangle software’ [73] and the CGAL library to assess
the quality of the generated triangulations. The results
indicate that the algorithm produces less than 0.05% different
triangles for fully random meshes and less than 1% for noise-
based meshes.

The algorithm’s implementation leverages GPU process-
ing and demonstrates compatibility with OpenGL,? effective
handling of co-circular point configurations, and avoidance
of deadlocks. The behaviour of the algorithm is analysed,
revealing a rapid decrease in the number of edge-flips per
iteration, emphasising the significance of the initial iterations.
Furthermore, the algorithm exhibits a low exclusion rate of
threads, indicating the usefulness of parallelism. The number
of iterations as a function of mesh size follows an asymptotic
growth of O(log(|P)), indicating its suitability for large-scale
problems and enhanced parallelism.

The performance evaluation of the algorithm encompasses
different input scenarios, including bad-quality random 2D
triangulations, noise-based 2D triangulations, and popular
3D surface meshes. The experimental results demonstrate
that the percentage of missed triangles in the algorithm’s
triangulations compared to CGAL is less than 0.1% for both
random and noise-based meshes. The algorithm outperforms
Lawson’s O(|P|?) edge-flip method on CPU by achieving
speedups of up to 50 times on bad-quality random meshes
and 3 times compared to the 2D O(|P|log(|P|)) algorithms in

7Triangle produces precise Delaunay triangulations, constrained Delau-
nay triangulations, conforming Delaunay triangulations, Voronoi diagrams,
and top-notch triangular meshes. The latter can be crafted devoid of acute or
obtuse angles, making them apt for finite element analysis.

SOpenGL, known as Open Graphics Library, serves as a cross-language,
cross-platform API for creating 2D and 3D vector graphics. This interface is
commonly employed to interact with GPUs, enabling accelerated graphic
rendering. OpenGL finds widespread use in CAD, virtual reality, scientific
visualisation, and gaming.

VOLUME 12, 2024

CGAL and Triangle. Although the comparison involves GPU
versus CPU implementations and quasi-Delaunay versus
exact triangulations, the authors argue that the algorithm’s
sensitivity to input triangulation topology distinguishes it
from the constructive methods employed by CGAL and
Triangle. This claim is supported by noise-based tests, which
demonstrate speedups of up to 36 and 27 over CGAL and
Triangle, respectively, and 55 times over Lawson’s method.

6) PARALLEL CONSTRAINED DELAUNAY TRIANGULATION
ON THE GPU
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—PCDT
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FIGURE 15. Running time versus number of vertices (Source data: [25]).

In [25], a method is presented for calculating the 2D-
constrained Delaunay triangulation (CDT) of a planar
straight-line graph (PSLG) composed of points and segments.
This method involves the simultaneous insertion of points
and segments into the triangulation while carefully handling
conflicts that may arise from the concurrent insertion of
points or edge flips. The implementation makes use of
NVIDIA GPUs.

The approach follows an iterative process that terminates
when all elements of the PSLG (points and segments)
are inserted into the Delaunay triangulation (DT) without
requiring any further edge flips. Each iteration consists
of four steps: (1) locating the triangle containing each
non-inserted point through a walking process, (2) inserting at
most one point per triangle into the triangulation, (3) marking
specific edges as segments or for flipping due to segment
crossings or violation of local Delaunay conditions, and (4)
flipping at most one marked edge per triangle.

Figure 15 presents a plot showing the running time as
a function of the number of vertices. It can be observed
that the proposed approach (PC-DT) outperforms other
input models. Notably, the performance of GPU-DT is
significantly influenced by the distribution of input points,
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and interestingly, the expected running time of this parallel
approach exhibits linear growth relative to the input size.

C. IMPLEMENTATION ON FPGA

To the best of our knowledge, there are only a few instances
in the literature where Delaunay triangulation has been
implemented on an FPGA.

For instance, Gao et al. [30] and Rahnama et al. [29],
have implemented Delaunay blocks on FPGA as part of
more complex algorithms, but in both cases, the Delaunay
triangulation itself was developed on the CPU block.

In [27], a 2D Delaunay triangulation core for surface
reconstruction was implemented on a Field Programmable
Gate Array (FPGA) chip using a high-level synthesis.’ In
particular, the FPGA implemented the Incremental Algorithm
(see Algorithm 3).

Fig. 16 provides a comparison of the FPGA implemen-
tation against a software implementation over a machine
with an Intel(R) Core(TM) i3-3220 CPU at 3.30 GHz.
In particular, the figure considers a popular dataset (i.e., the
“Stanford Bunny” [75]), sampled at 477, 953, 1906, and
3811 points. Notably, regardless of the size of the dataset,
the FPGA implementation exhibited an overall improvement
of about 19 times with respect to the CPU implementation.
In particular, Fig. 16a shows the execution time of the
software algorithm versus the FPGA core implementation,
and Fig. 16b shows the corresponding speedup.
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FIGURE 16. Comparison between the FPGA implementation (labelled as
HW for hardware) and a software implementation of the incremental
algorithm (labelled as SW) for Delaunay triangulation, considering 2D
examples with 477, 953, 1906, and 3811 points. Panel (a) shows the
execution time, while panel (b) shows the speedup of the FPGA
implementation with respect to the software implementation (Source
data: [27]).

Finally, although not based on Delaunay, it is worth
mentioning the FPGA implementation of a triangulation

9High—level synthesis is the process of transforming a high abstraction
level design description into a register transfer level (RTL) description for
input into conventional ASIC and FPGA implementation workflows (e.g.,
see [74]).
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function in [26], where the authors propose an architecture
that employs linear triangulation with an inhomogeneous
solution to the equation system. Specifically, [26] involved
a comparison between an FPGA implementation and a
software counterpart utilising MATLAB, C++, and OpenCV.
Notably, the FPGA implementation was able to process about
572 times more points per second with respect to the C++
software implementation and about 2122 times more than
the MATLAB one. This supports the conclusion that FPGA
implementation, although challenging, has the potential to
greatly outperform software implementations.

D. DISCUSSION

The performance of CPU, GPU, and FPGA implementations
of Delaunay triangulation differs in various aspects. While
CPU implementation may be slower overall, it excels in the
sorting part of the algorithm, making it the most effective for
this particular task. On the other hand, GPU implementation
is well-suited for parallel processing, enabling it to handle
large amounts of data quickly. Its ability to perform multiple
calculations simultaneously makes it highly suitable for tasks
that require high-speed processing.

FPGA implementation, although less discussed in existing
literature, offers significant advantages. It provides a high
level of customisation and allows for both parallelisation and
concurrency, making it a powerful alternative to CPU and
GPU implementations. Moreover, FPGAs often demonstrate
superior power efficiency compared to CPUs or GPUs, which
holds great promise for achieving impressive results and
further advancements in the future.

V. DELAUNAY TRIANGULATION APPLICATIONS

Practical applications of Delaunay triangulation include a
plethora of cases. In what follows, we provide several
examples to highlight its practical nature.

A. LLOYD'S ALGORITHM

The first application considered is the use of Delaunay
triangulation in an algorithm with many applications; namely,
Lloyd’s algorithm [76]. It is an iterative optimisation method
(which corresponds to a gradient descent algorithm [77])
used for finding evenly spaced sets of points in subsets
of Euclidean spaces and partitions of these subsets into
well-shaped and uniformly sized convex cells, thus improv-
ing the quality of a mesh or grid [78].

The algorithm starts by selecting an initial set of £ points
(e.g., by using a Monte Carlo method) as the centres and then
repeatedly executes the following steps:

1. computes the Voronoi diagram of the £ points;
2. computes the centroid of each cell of the Voronoi diagram;
3. updates the centres to be the centroids of their respective

Voronoi cells.

4. If this new set of centroids meets some convergence

criterion, terminate; otherwise, return to step 1.
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This process is repeated until some convergence cri-
terion is met (since, in principle, the method converges
asymptotically), and then a good approximation of the
Delaunay triangulation has been obtained. Mathematically,
the algorithm can be expressed as finding a set of £ centres C
that minimises the sum of squared distances between each
point p; in the set P and its assigned centre, as shown in
Equation (1), i.e.,

L(P,C) := min > [Ip; — A(p:, O, M

i=1

where
A(p;, C) = argmin ||p; —¢]| . 2
ceC

At each iteration, the closest centre to each point is found
by considering A;(p;, C;), where C; is the estimate of the
centroids at iteration ¢.

Algorithm 10 summarises the above procedure.

Algorithm 10 Lloyd’s Algorithm for Delaunay Triangulation
1: procedure Lloyd(P, £)

2: Choose initial centres Cy C P
3: Settr=0
4
5

: repeat
Assign each point in P to the nearest centre:

A((pi, C;) = argmin [|p; —¢[; , 3)
ceC,
6: Update the centers for all j € {1, ..., ¢}:
1
¢t = DR T C))
] . 3 _ . EER ]
HilA:(pi, Cr) = ¢} A (G,
7: Incrementt < ¢ + 1

8: until Convergence is reached or a maximum number of
iterations is exceeded
9: return DT (P), where DT (P) is the Delaunay Triangu-
lation of P
10: end procedure

By iterating through the steps described in Algorithm 10,
the point set gradually converges towards a more uniform
distribution within the region.!®>!! This can improve the

1OLloyd’s algorithm has a time complexity of O(k|P|), where k is
the number of iterations required for convergence. Each iteration of
the algorithm requires calculating the Voronoi diagram, which can be
done in O(|P|log(|P]) + |73|[d/2]) time using_ efficient algorithms [79]
(i.e., O(P|log(P])) in RZ and O(|P|%) in R3). However, the centroid
computation can take O(|P|) time, making the overall time complexity
O(k|P|). Notice that the worst-case time complexity of Lloyd’s algorithm
can be superpolynomial [80] if the algorithm is performed until convergence,
as the number of iterations required for convergence in the worst case can be
of the order of 2V1PI.

Un terms of memory complexity, the Lloyd algorithm requires storing
the point cloud and the set of centres, which each require O(d|P|)
memory, where d is the dimensionality of the points. Moreover, the Voronoi
diagram computation may require additional memory to store auxiliary data
structures, which can be up to O(|P]) in size.
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quality of the Delaunay triangulation by reducing the
occurrence of elongated or overly acute triangles, which is
the source of numerical instability or other issues in certain
applications. This algorithm was first proposed in 1957 by
Stuart P. Lloyd at Bell Labs as a technique for pulse code
modulation [81]. Lloyd’s algorithm has been extensively
used for (scalar and vector) quantisation [82] and other
applications, such as smoothing of triangle meshes in the
finite element method (discussed in Section V-J).

An interesting application of Lloyd’s algorithm is the so-
called coverage control problem, where agents belonging
to a multi-agent system are required to be optimally (with
respect to some coverage metric) dispersed over a designated
area [83], [84]. Specifically, each agent moves towards the
centroid of its cell and re-calculates its Voronoi cell based on
the centroid until the whole area is covered [85], [86], [87].
Applications of distributed coverage include, among others,
surveillance or search and rescue.

B. SPATIAL CLUSTERING

Spatial clustering refers to the segregation of geographic
regions with distinct features into non-overlapping subsets
(clusters). Such clustering can help the extraction of mean-
ingful spatial patterns that are useful in several applications,
such as, earthquake analysis [88], [89], [90], epidemics [91],
traffic incident analysis [92], urban hot-spot detection [93],
and climate analysis [94]. One such spatial clustering method
is the adaptive spatial clustering algorithm based on Delaunay
triangulation, called ASCDT [95]. ASCDT utilises statistical
features of the edges of Delaunay triangulation and a unique
spatial proximity definition based on Delaunay triangulation
to detect spatial clusters. This algorithm has the ability
to automatically identify clusters with complex shapes and
non-uniform densities in a spatial database, without requiring
the setting of parameters or prior knowledge. Users can also
adjust parameters to suit specific applications. Additionally,
ASCDT is robust to noise, making it reliable in real-
world scenarios. Experiments conducted on simulated and
real-world spatial databases, such as an earthquake dataset
in China, showcase the effectiveness and advantages of the
ASCDT algorithm.

C. BEHAVIOUR MONITORING AND CLASSIFICATION

Similar to spatial clustering, Delaunay triangulation has
potential application uses in monitoring and classification.
An example of its use is given in [96], in which a machine
vision-based monitoring method was developed for studying
pig lying behaviour. More specifically, in a study conducted
at a commercial pig farm, top-view cameras were used to
monitor four pens with 22 pigs each for 15 days. Delaunay
triangulation (DT) was employed as an image-processing
technique to analyse the lying patterns of pigs in different
thermal categories relative to room setpoint temperature.
Different lying patterns, such as close, normal, and far, were
defined based on the perimeter of each DT triangle, and
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the percentages of each lying pattern were calculated for
each thermal category. To automatically classify the group
lying behaviour of pigs into the three thermal categories,
amultilayer perceptron (MLP) neural network was developed
and tested. The DT features, including the mean value
of perimeters, maximum and minimum length of sides of
triangles, were used as inputs for the MLP classifier. The
results showed that the MLP classifier could accurately
classify lying features into the three thermal categories with
a high overall accuracy of 95.6%. This study demonstrates
the potential of using Delaunay triangulation in combination
with MLP classification and mathematical modelling as a
precise method for quantifying pig lying behaviour in welfare
investigations.

D. FORMATION CONTROL

Distance-based formation control has been studied exten-
sively; see, e.g., survey paper [97] and references therein.
A gradient-based control scheme utilising artificial potential
fields is employed to guide the agents into a distance-
based formation. During the movement of agents into the
formation, their relative position often changes, and as
a consequence the communication links vary (some are
removed and new ones are introduced), resulting to a
switching communication topology. The authors in [11] apply
the Delaunay triangulation as a switching communication
graph. Specifically, a distributed Delaunay triangulation
algorithm to maintain a proximity communication network
among mobile agents proposed in [98] is deployed in order
to maintain the switching Delaunay triangulation in real-
time. The deployment of a distributed Delaunay algorithm
comes as a natural selection in this case, since i) it has
always a spanning tree, which guarantees that the Delaunay
triangulation is maintained with distributed algorithms [98],
and ii) the pairwise closest agents are always connected,
which is a valuable property of the Delaunay triangulation
concerning the collision avoidance.

E. PRIVACY AND SECURITY
Delaunay triangulation holds potential application uses in
privacy and security. In what follows, we provide two
examples, one for privacy [99] and one for security [100].
The objective of the privacy problem is to transfer
a message using an image without changing the image
itself. Thus, a potential attacker does not notice the hidden
message in the picture. Specifically, in [99] a new method
of steganography!? is presented based on a combination
of Catalan objects (cryptomorphic descriptions of the same
thing) and Delaunay triangulation. Specifically, in the
encryption process of the steganography algorithm proposed
in [99], an image is encoded into a binary record, converting
the hidden information into a binary record, and creating
a Delaunay triangulation of a binary record of an image

12Steganography is the technique of hiding data within an ordinary,
nonsecret file or message to avoid detection.
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whose vertices are the carriers of the secret message bit.
Then, by applying an encryption technique (in this case,
the stack permutation method and Catalan objects) over
the coordinates of the Delaunay vertex, a new encrypted
triangulation emerges whose vertex coordinates are placed in
a sequence.

The second example uses Delaunay triangulation for
fingerprint identification, as presented in [100]. The proposed
approach utilises Delaunay triangulation to associate a unique
topological structure with fingerprint minutiae, allowing
for more meaningful minutiae grouping during indexing.
This approach preserves index selectivity, reduces memory
requirements without compromising recognition accuracy,
and improves recognition time. Unlike other approaches that
consider O(|P|?) triangles, the proposed approach (assuming
N minutiae per fingerprint on average) considers only O(|P|)
minutiae triangles, resulting in significant memory savings
and improved recognition time. The minutiae triangles used
for indexing are particularly effective in discrimination since
they satisfy the properties of Delaunay triangulation. The
unique characteristics of Delaunay triangulation, such as its
efficiency in computation and local resilience to noise or
distortions, make it a suitable choice for fingerprint identifi-
cation. Experimental results on a database of 300 fingerprints
demonstrate the effectiveness of the proposed approach.

F. MODELLING AND DESCRIBING OF STOCHASTIC
SYSTEMS

Poisson Voronoi diagrams (PVDs) are diagrams in which
the centres are randomly and uncorrelated distributed
(correspondingly, one can define the Poisson Delaunay
triangulation). Its stochastic nature extends the traditional
Voronoi diagram to a random point process, called a
Poisson process. Analytically, the PVDs can be described
using concepts from stochastic geometry and computational
geometry.

Such diagrams facilitate the analysis of spatial patterns
and distributions in a stochastic setting. They find appli-
cations in modelling and describing several natural/social
phenomena and stochastic systems in various scientific and
engineering disciplines; for example, for telecommunication
networks [101], for biology [102], for evaluating the actual
galaxy distribution [103], and for constructing random
lattices in quantum field theory [104].

G. WIRELESS SENSORS

The trade-offs between sensing and communication coverage
are crucial in the design of Wireless Sensor Networks
(WSNs). Establishing a minimum bound for sensing cover-
age is essential in scheduling, target tracking, redeployment,
and communication coverage. However, existing methods
that measure coverage as a percentage value often lack
detailed information, resulting in varying Quality of Cover-
age (QoC) for scenarios with equal coverage percentages.
To address this limitation, [105] proposes a new coverage
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measurement method utilising Delaunay Triangulation (DT).
This DT-based approach provides coverage values that are
compatible with all coverage measurement tools. Further-
more, it categorises sensors as ‘fat’, ‘healthy’, or ‘thin’,
indicating areas with dense, optimal, or scattered sen-
sor deployments, respectively. Additionally, the proposed
method can identify the largest empty area without any
sensors in the field. Simulation results demonstrate that the
proposed DT method achieves accurate coverage information
and offers multiple tools for comparing QoC across different
scenarios.

H. MEDICAL IMAGING

In the field of medical imaging, specifically in the context
of developing automatic diagnostic tools for early detection
of skin cancer lesions in dermoscopic images, a fast and fully
automatic algorithm for skin lesion segmentation is presented
in [9]. The algorithm utilises Delaunay Triangulation to
extract a binary mask of the lesion region, eliminating the
need for any training stage. A quantitative experimental
evaluation is conducted on a publicly available database,
comparing the proposed algorithm with six well-known
state-of-the-art segmentation methods. The results of the
experimental analysis reveal that the proposed approach
exhibits high accuracy in segmenting benign lesions, while
the segmentation accuracy decreases significantly when
processing melanoma images. This observation prompts the
consideration of geometrical and colour features extracted
from the binary masks generated by the algorithm for
classification, resulting in promising results for melanoma
detection.

I. GEOGRAPHIC INFORMATION SYSTEMS (GIS)

In geographic information systems (GIS), the Delaunay
triangulation is a commonly employed technique for creating
triangulated irregular network (TIN) models, which accu-
rately represent surface morphology in various applications.
The research paper in [43] introduces a novel linear-time
Convex Hull Insertion algorithm designed to construct TIN
models for a given set of points, including specific features
such as constraint break lines and exclusion boundaries.
Empirical results obtained from experiments conducted on
personal computers using diverse point datasets, ranging
in size up to 50,000 points, demonstrate the efficiency of
the proposed algorithm. It achieves expedited TIN model
construction, operating approximately in O(N) time com-
plexity for randomly distributed points, where N represents
the number of points.

J. FINITE ELEMENT ANALYSIS (FEA)

Finite element analysis (FEA) is a computer-aided method
for predicting how a product behaves under various physical
effects, such as mechanical stress, vibration, forces, heat,
electrostatic, and fatigue. Such an analysis allows the
designers to investigate whether their product will work the
way it is supposed to. Finite element mesh generation is a
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crucial step in FEA and while there exist several methods to
create a mesh, Delaunay is the most commonly used.

In [106] the application of adaptive Delaunay triangulation
in finite element modelling for two-dimensional crack
propagation problems is studied. It provides a comprehensive
description of the proposed procedure, which combines the
Delaunay triangulation algorithm with an adaptive remesh-
ing technique. This technique generates smaller elements
around crack tips and larger elements in other regions. The
effectiveness of the procedure is evaluated by analysing
the resulting stress intensity factors and simulated crack
propagation behaviour. To assess its performance, [106]
presents three sample problems: a centre cracked plate,
a single edge cracked plate, and a compact tension specimen.
The results of these simulations are thoroughly examined and
analysed.

There exist several commercial software tools that serve
as FEA solvers available in the market; most of them use
Delaunay triangulation and offer customised and automated
solutions for analysing various design scenarios.

K. VIRTUAL REALITY AND AUGMENTED REALITY

The paper in [107] introduces a method for constructing
the Delaunay triangulation, which is essential for creating
polygon patch models used in computer graphics and virtual
reality (VR) applications. The method builds upon the con-
ventional incremental approach used to construct the Voronoi
diagram but incorporates two key characteristics specifically
suited for three-dimensional geometric modelling.

Firstly, the method allows for the removal of points
from the mesh, which is particularly useful for interactive
modelling in VR, where points are frequently added,
removed, or manipulated. Secondly, it enables the constraint
of lines between two points to serve as mesh edges, ensuring
the creation of accurate three-dimensional models. Without
this feature, the resulting mesh often deviates significantly
from the actual object’s three-dimensional structure.

Additionally, it also provides insights into applying this
method to radial range images and offers detailed expla-
nations of the technique itself. Additionally, experimental
results and evaluations of this method are presented, demon-
strating its effectiveness in VR applications.

L. COSMIC STRUCTURE FORMATION

Delaunay triangulation is also the building block for a
mathematical tool for reconstructing a continuous density
or intensity field covering a volume from a set of discrete
points, called the Delaunay tessellation field estimator
(DTFE) [108], in order to determine the density or intensity
of point samplings. It is based on the stochastic geometric
concept of the Delaunay triangulation generated by the
point set. A salient feature of DTFE is that it automatically
adjusts to changes in density and shape. The fact that
multi-dimensional discrete data sets are a major source
of astrophysical information makes DTFE suitable for
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studying astrophysical applications, such as cosmic structure
formation and large-scale galaxy distribution.

VI. CONCLUSION AND PROSPECT CHALLENGES
Delaunay triangulation is a critical computational geometry
algorithm that has a wide range of applications, including
mesh generation, image processing, and geographic informa-
tion systems.

This paper provides a comprehensive overview of the
Delaunay Triangulation, presenting the main algorithms,
reviewing the state of the art with respect to the implemen-
tation approaches based on CPUs, GPUs, and FPGAs, and
discussing the most important applications.

Although Delaunay triangulation is a well-studied prob-
lem, significant challenges still exist. Below are some of the
most important ones:

1) Robustness: Delaunay triangulation algorithms can be
sensitive to input data with degeneracies or numerical
issues, such as floating-point roundoff errors. Ensuring
the robustness of Delaunay triangulation is an ongoing
challenge in computational geometry. To address this
issue, various techniques can be used, including the use
of exact arithmetic or adaptive precision techniques [73],
[109].

2) Scalability: Computing the Delaunay triangulation can
be computationally expensive and memory-intensive for
large datasets. There are several techniques to address
scalability, such as incremental algorithms, parallel algo-
rithms, and hierarchical techniques [110].

3) Quality: Delaunay triangulation can produce low-quality
triangles in certain cases, such as when the input data is
highly non-uniform or when there are sharp features in
the data. To address this issue, several techniques can be
used, such as mesh optimisation or constrained Delaunay
triangulation algorithms [111].

4) Dimensionality: Computing Delaunay triangulation in
high-dimensional spaces presents a significant challenge,
as the runtime and memory requirements grow exponen-
tially with the dimension. To address this issue, several
techniques can be used, such as randomised algorithms or
approximation algorithms [112].

5) Constraints: Certain applications require specific con-
straints to be imposed on the Delaunay triangulation,
such as avoiding particular regions or satisfying specific
boundary conditions. Several techniques can address this
issue, such as using constrained Delaunay triangulation
algorithms or adding constraints to the optimisation
objective [113].
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