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ABSTRACT The advancement of sustainable energy sources necessitates the development of robust
forecasting tools for efficient energy management. A prominent player in this domain, solar power, heavily
relies on accurate energy yield predictions to optimize production, minimize costs, and maintain grid
stability. This paper explores an innovative application of tiny machine learning to provide real-time, low-
cost forecasting of solar energy yield on resource-constrained edge internet of things devices, such as micro-
controllers, for improved residential and industrial energy management. To further contribute to the domain,
we conduct a comprehensive evaluation of four prominent machine learning models, namely unidirectional
long short-termmemory, bidirectional gated recurrent unit, bidirectional long short-termmemory, and simple
bidirectional recurrent neural network, for predicting solar farm energy yield. Our analysis delves into the
impacts of tuning the machine learning model hyperparameters on the performance of these models, offering
insights to improve prediction accuracy and stability. Additionally, we elaborate on the challenges and
opportunities presented by the implementation of machine learning on low-cost energy management control
systems, highlighting the benefits of reduced operational expenses and enhanced grid stability. The results
derived from this study offer significant implications for energy management strategies at both household
and industrial scales, contributing to a more sustainable future powered by accurate and efficient solar energy
forecasting.

INDEX TERMS Solar power forecasting, time series forecasting, Internet of Things, deep neural networks.

I. INTRODUCTION
A. MOTIVATION
Solar photovoltaic (PV) integration into global power systems
has increased significantly over the past decade. The majority
of these PV facilities are deployed in low-voltage (LV)
and medium-voltage (MV) networks, presenting distinct
challenges for integrating renewable energy sources (RES)
as distributed generation (DG). In distribution networks
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(DN), these difficulties include reverse power fluxes, voltage
violations, and grid stability [1], [2]. Luis et al. [1] conducted
a study to assess the impact of forecasting on centralised volt-
age control for solar generation in distribution systems. Their
findings emphasised the significance of accurate forecast data
for achieving optimal control settings and highlighted the
need for improvements in forecasting tools for predicting
solar generation in distribution systems. Therefore, Zang et
al. proposed a day-ahead PV power forecasting approach
based on deep learning (DL). Their study demonstrated
the accuracy and reliability of the approach through the
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utilisation of deep convolutional neural network (CNN)
[2]. On the other hand, high levels of PV penetration can
cause power and voltage fluctuations due to cloud shadows,
as well as an increase in energy losses when reversing power
fluxes are significant. In addition, the unpredictable nature
of PV power generation, which is influenced by abrupt
weather changes, ultimately presents a significant challenge
to integrated power infrastructures [3], [4]. Prema et al.
conducted an extensive review of forecast models in the
context of integrating solar and wind power into main power
grids. Their study emphasises the importance of accurate
short-term predictive models for grid operation and planning,
providing critical insights into the duration of data used
and the performance indices of these models [3]. In the
process of determining the scheduling of power generation
plans and short-term dispatches, it is an essential tool for
mitigating the effects of weather-induced power fluctuations.
Dimd et al. [4] presented a comprehensive review of
machine learning (ML)-based PV output power forecasting
models in the context of cold regions such as the Nordic
countries and Canada. Their study focused on the impact
of meteorological parameters and the effect of snow on
prediction model performance, providing important insights
and suggestions for model selection of ML. As a solution
to this problem, accurate PV power forecasting emerges
as a crucial and valuable technology. artificial intelligence
(AI) and modern ML techniques have the potential to tackle
PV power’s limitations. By utilising the capabilities of
modern ML methods, PV usage can be increased, thereby
improving PV power forecasting performance and stochastic
low voltage data at the distribution network application [5].
Therefore, this paper aims to employ and assist various
modern and new ML models, including multi-layer deep
neural networks (DNNs), bidirectional gated recurrent unit
(BiGRU), bidirectional long short-term memory (BiLSTM),
simple bidirectional recurrent neural network (BiRNN), and
unidirectional LSTM in the context of solar power yield time
series forecasting. By evaluating the performance of these
models under different hyperparameter settings and exploring
their strengths and weaknesses, we seek to identify the most
suitable forecasting model for solar energy yield prediction.
This research contributes to the development of effective
forecasting tools for solar energy yield, ultimately promoting
more efficient resource planning and energy management in
the rapidly expanding solar power sector.

Furthermore, the rising interest in edge computing and
implementing ML models on resource-limited devices, such
as micro-controllers unit (MCU) and internet of things
(IoT) devices, has encouraged the investigation of Tiny
ML (TinyML) for solar power forecasting [6]. TinyML
enables the deployment of AI and ML capabilities on
small, low-power devices, allowing them to execute com-
plex tasks without the need for remote servers or high-
performance hardware. This presents numerous benefits,
including reduced latency, enhanced privacy, and energy
efficiency. In this scenario, unidirectional LSTM is partic-

ularly appealing for deployment on edge devices due to
its lower complexity and compatibility with TensorFlow
Lite Micro [7]. This renders it an attractive option for
practical applications requiring on-device processing and
local decision-making capabilities, particularly in remote
locations with limited connectivity or where immediate
responses are crucial [8]. By evaluating the performance of
unidirectional LSTM models for solar power forecasting and
edge inference using TinyML, we aim to identify a robust,
efficient, and computationally viable solution that can be
deployed on resource-constrained devices. This approach not
only contributes to more precise and effective solar power
forecasting but also encourages the adoption of edge AI
solutions in the renewable energy sector, fostering innovative
applications and more efficient energy management [9].

B. LITERATURE REVIEW
In the management of new energy generation and consump-
tion, the accuracy of forecasting models is crucial. The imple-
mentation of smart grid technology [10] facilitates accurate
capacity forecasting, which is essential for such strategies and
distribution power networks [5]. The effectiveness of load
management techniques, coupled with accurate forecasting,
enables DN operators to navigate the challenges presented
by ultimately promoting sustainable energy consumption
practices. In the context of smart grid applications such
as solar generation in low and medium voltage levels [1]
and outputs of photovoltaic panel power [2]. The literature
provides multiple articles on PV power forecasting that
employ techniques such as time series forecasting and neural
networks.

Forecasting methods for PV power can be broadly
classified into three categories: statistical, physical model,
and intelligent methods. Statistical methods or time series
forecasting techniques, such as Auto-regressive moving
average (ARMA), for forecasting PV power rely on historical
data (PV power data), making them suitable for short-term
forecasting. The ARMA model is one of the most common
statistical models used for load demand and PV power
forecasting and does not require meteorological forecasts.
Nevertheless, statistical models rely on inputs with stable
auto-correlations, such as daily and seasonal periodicities
in PV power series, and therefore may exhibit insufficient
prediction accuracy on cloudy or rainy days. This issue
becomes especially severe when forecasting one day in
advance. Recent research, however, has investigated methods
to enhance the prediction accuracy of statistical models by
integrating multiple forecasting models using ensemble and
ML techniques [2], [10]. The meteorological data (weather
prediction) are used as input to predict PV power outputs [2].
To establish the correlation between input data (weather data)
and the future PV power output, there are two common
approaches: analytical equations and soft-computing models
under various ML algorithms. However, analytical equations
can be difficult to compute due to their complexity, resulting
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in high computational costs, especially when the edge deploy-
ment is in mind [2]. As such, soft-computing models are
more commonly used for PV power forecasting, as they offer
a more efficient and effective solution. Ongoing research
in this field is aimed at further improving these models
and increasing their accuracy. Rodríguez et al. developed an
approach for forecasting intra-hour solar photovoltaic energy
by combining wavelet-based time-frequency analysis with
deep-learning neural networks. This study [10] demonstrated
improved accuracy compared to a persistence benchmark
model, achieving a validation deviation below 4% in the
majority of sample days.

In recent years, AI and ML algorithms, such as sup-
port vector machine (SVM), and artificial neural network
(ANN), have become increasingly popular for forecasting PV
output power due to their ability to effectively capture the
highly nonlinear relationship between environmental input
parameters and PV power [11]. These models typically use
both power and weather parameter measurements as inputs
to the forecasting model, although limited high-performing
models have been developed that only require measurements
of PV power for short-term forecast horizons [4]. ANN,
SVM, adaptive neuro-fuzzy (NF) networks and evolutionary
optimisation have been used to forecast PV power output
by using time series data of PV power and weather
forecasting [12], [13]. Semero et al. [12] developed a hybrid
approach for accurate forecasting of electricity production
in micro-grids with solar photovoltaic installations. Their
method combines genetic algorithm, particle swarm optimi-
sation, and adaptive NF inference systems to address the
intermittent and uncertain nature of solar power. In [13],
a forecast model employing LSTM and neural network
(NN) to predict the PV power generation over one step
advance with data resolutions up to one hour. Authors
in [14] have developed a forecast model based on LSTM
and NN for predicting the hourly PV power output over
24 hours. To achieve high performance from SVM or
ANN models, it is necessary to determine suitable model
parameters via optimisation algorithms and cross-validation.
However, when dealing with large-scale samples, the training
efficacy of SVM models tends to decrease, resulting in low
performance [11]. The study [15] examines a long-term PV
power forecast constructed by using feed ANN. However,
the proposed approach disregards the effect of past trends on
prospective PV output. In short-term forecasting, [16] utilised
the extreme learning machine (ELM) to predict PV power
for forecast horizons extending from 15 to 60 minutes. The
researchers utilised particle swarm optimisation to optimise
the ELM. However, ELM with particle swarm optimisation
has a complex structure with many model parameters and
high computational costs. Therefore, a Gated Recurrent
Unit network (GRU) was proposed as an alternative to the
commonly used LSTM architecture in RNNs in a study by
Cho et al. [17]. GRU, as contrasted with LSTM, has only two
gates, resulting in fewer training parameters while preserving
high prediction accuracy. This architecture additionally

addresses the overfitting issue observed in LSTM models.
Although GRU and other DL algorithms have significantly
improved prediction accuracy over ML techniques, they may
not completely exploit the local characteristics and concealed
information present in historical PV data.

DL, with its autonomous feature extraction capabilities,
has transformed ML and AI fields, as evidenced in works
like [4], [12], [13], [15], [16], [17], [18], and [19]. Models
like RNNs, LSTMs, andGRUs have excelled in handling time
series data. Our study builds on this foundation, optimizing
these models for TinyML applications in edge computing
environments [20], [21]. This approach, unique in its focus on
low-cost, resource-constrained edge IoT devices, addresses
a gap in the existing literature, where the full potential
of TinyML for solar energy forecasting remains largely
unexplored.

C. CONTRIBUTIONS AND ORGANISATION
This paper contributes to the field of solar power output
forecasting by introducing the innovative use of TinyML
for real-time, low-cost solar energy yield forecasting on
edge IoT devices. This approach is particularly suitable for
DNs and residential settings due to its cost-effectiveness and
efficiency. Further, we provide a comprehensive comparative
study of various ML techniques to predict and improve the
PV power output forecasting. Our main contributions are as
follows:

• Introduction of the novel use of TinyML on edge
IoT devices for real-time, low-cost solar energy yield
forecasting. This approach significantly contributes to
the field by enabling efficient resource planning and
energy management at both household and industrial
scales.

• Comprehensive evaluation of four prominent ML mod-
els, namely unidirectional LSTM, BiGRU, BiLSTM,
and simple BiRNN, for predicting solar farm energy
yield.

• Systematic comparison of the performance of these ML
models in the context of solar energy yield forecasting,
providing valuable insights into their effectiveness and
areas for potential improvement.

• Detailed analysis of the impact of hyperparameter
selection on the performance of these ML models,
providing practical insights for future research and
applications.

• Thorough investigation into the computational require-
ments and resource constraints of implementing the
proposed TinyML-based solution on edge IoT devices,
emphasising its suitability for real-time, cost-effective
forecasting applications.

• Highlighting the inherent challenges and trade-offs of
implementing complex DNN architectures for solar
power forecasting in the context of edge computing,
and showing how TinyML principles can address
these challenges, making our approach distinct from
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traditional forecasting methods that don’t account for
computational limitations.

The rest of this paper is organised as follows: In Section II,
we describe the methodology employed, including data
preprocessing, model development, and evaluation metrics
used in our study. Section III delves into the implementation
of TinyML for low-cost household power yield prediction,
discussing the benefits and challenges associated with
deploying ML models on resource-constrained devices. The
results and discussion of the performance of various models
are presented in Section IV, highlighting the strengths and
weaknesses of each approach. Section V concludes the paper,
summarising our findings and providing insights into future
research directions in this field. Finally, appendix lists all the
abbreviations and acronyms that we used in this article.

II. METHODOLOGY
A. THE DATASET
The dataset used in our research was collected from on-site
renewable energy facilities located in China, comprising
power generation and weather-related information from
six wind farms and eight solar stations. The dataset was
introduced in [22] and collected at 15-minute intervals over
a two-year period from 2019 to 2020. Our work focuses
primarily on the dataset related to five on-site solar farms.
We use ML models to develop time series forecasting for
solar power generation across these five locations, with the
trained model tested and validated against actual data from
these sites.

The primarily dataset was divided into 70% as a training
dataset 10% for validation and 20% for testing. The division
of the dataset into training, validation, and testing sets is a
common practice in ML. It aims to optimise model perfor-
mance and generalisability. The training set, being the largest
portion, enables the model to learn and capture patterns. The
validation set helps in tuning the model’s hyperparameters
to avoid overfitting and improve its generalisability. The test
set, kept separate, provides a final evaluation of the model’s
performance, simulating real-world scenarios. Our 70/20/10
split is widely accepted in the field as it provides a balance
between maximising learning and evaluating the model’s
generalisability capability. This split can vary depending on
factors such as the dataset’s size and the specific application.

The dataset includes seven features, with the first six
representing weather-related features (i.e., TSI for total solar
irradiance, DNI for direct normal irradiance, GHI for global
horizontal irradiance, AT for air temperature, ATM for
atmospheric pressure, and RH for relative humidity). The last
feature represents the solar farm power yield and is the output
of the latent relations between the first six features and the
power yield [22].

To preprocess the data for our analysis, we first average the
dataset based on specific time intervals instead of the original
15-minute intervals. In this approach, every Navg samples,
corresponding to 15-minute intervals, are averaged together

to obtain the desired interval for forecasting. Next, we prepare
the samples for each forecasting task to look back for LB
look-back steps and predict the LA look-ahead steps. We test
the model configurations for two different grouping setups
for the number of features N = 3 and N = 7.
The choice of Navg and the look-back and look-ahead steps

is crucial as it influences the granularity of our forecast and
the ability of our models to capture temporal dependencies.
For instance, larger Navg would yield coarser time intervals,
potentially smoothing out significant fluctuations. On the
other hand, smaller Navg could capture more detailed
fluctuations but might be more prone to noise and less
generalisable.

For the look-back steps, LB, a higher value allows
the model to take into account a wider window of past
data, helping it identify longer-term patterns or trends.
However, this might also increase themodel’s complexity and
computational requirements. As for the look-ahead steps, LA,
a higher value would mean forecasting further into the future,
which can be more challenging and uncertain.

In this study, the specific values of Navg, LB, and LA were
selected through experimentation, considering the trade-off
between model performance, computational efficiency, and
the specific requirements of solar power forecasting. Further,
the feature selection (N = 3 orN = 7) was determined based
on the relevance and contribution of each feature to the power
yield, aiming to retain the most informative features while
reducing the model’s complexity and potential for overfitting.

B. FEATURES SELECTION
Feature selection constitutes a critical phase in devising
precise ML models. To streamline this procedure, we con-
centrated on the correlation between input features and the
power yield of each solar farm. We employed the normalised
covariance matrix to pinpoint the variables exhibiting a
strong correlation with the power yield, allowing us to
choose a subset of the most predictive features. This strategy
optimises our ML forecasting models by diminishing the
number of features employed and centring on the most
crucial variables, which, in turn, will enhance the model
performance. Furthermore, by recognising the variables
strongly correlated with power yield, we will acquire lucid
insights into the physical and environmental factors that
impact the power generation process [23].

Figure 1 illustrates the normalised covariance matrix
between the input features of the dataset. For our analysis,
we selected the top 5 cleanest datasets (i.e., The datasets
exhibiting high data quality, characterized by accuracy,
consistency, minimal noise or errors, and a lack of significant
gaps or missing values.) from the available options (sites)
listed in [22]. The input features related to solar irradiance
have the most significant impact on the output power yield,
as seen in the highly correlated top left 3×3 dark sub-heatmap
and the correlations with the output power yield in the last
heatmap column.
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Figure 1 further showcases the correlation between the
three input features and the output power yield. In this
investigation, we concentrate on two kinds of forecasting
models. Firstly, we will employ the first three input features
to execute forecasting and examine the impact of altering
the hyperparameters of the ML model on the comprehensive
performance of the forecasting. Secondly, we will utilise
the complete set of features including the time series power
data in the datasets to carry out forecasting and undertake a
comparative analysis between the two chosen input features
grouping models.

C. DATA SCALING
We apply min-max data scaling to minimise errors and aid
the learning process. This technique normalises the dataset
input features to a specific range based on the minimum and
maximum values of the features.

The scaling can be expressed as follows:

ŷi =
yi −min(yi)

max(yi)−min(yi)
, (1)

where ŷi is the normalised vector that contains all the data
for a certain input feature i, and yi is the original vector that
contains all input feature vectors from the specific dataset.

To reverse the data scaling after the inference (time series
forecasting), we use the following equation:

yi = y′i(max (yi)−min (yi))+min (yi), (2)

where y′i is the estimated value after the inference of
the future value in the time series forecasting application.
The min-max scaling technique is efficient and useful in
optimising ML processes such as gradient descent algo-
rithms, leading to faster convergence in the learning process.
Moreover, the scaling ensures that different models are
compared fairly in terms of their performance, especially
when measuring the root mean square error (RMSE).

In the subsequent subsections, we explore the BiRNN,
BiLSTM, and BiGRU models. Additionally, we discuss the
unidirectional LSTM, deferring its discussion to section III
to place it within the context of TinyML for edge inference.
Our objective is to determine the most fitting model for
solar energy yield prediction by analyzing their performance
across diverse configurations and considering multiple input
features.Moreover, wewill evaluate the pros and cons of each
model, offering a thorough understanding of their suitability
for solar power forecasting applications.

D. BiRNN MODEL
The BiRNN model consists of two simple RNN layers, one
processing the input sequence in the forward direction (

−→
H t )

and the other in the reverse direction (
←−
H t ). For a given

time step t , the RNN equations for both directions are as
follows [24]:

−→
H t = tanh(W−→

h
· [
−→
h t−1, xt ]+ b−→h ), (3)

←−
H t = tanh(W←−

h
· [
←−
h t+1, xt ]+ b←−h ) (4)

where xt is the input vector at time step t ,
−→
h t and

←−
h t

are the hidden state vectors in the forward and reverse
directions, respectively, and tanh denotes the hyperbolic
tangent activation function. The weight matrices W−→

h
and

W←−
h

and the bias vectors b−→
h

and b←−
h

are the learnable
parameters of each RNN layer. In the BiRNN model, the
hidden states of both the forward and reverse RNN layers
are combined at each time step, providing a better context
for predictions [25].

While the bidirectional structure of the BiRNN model
allows it to capture both past and future information
effectively, it suffers from certain limitations that can affect
its performance in solar energy yield forecasting. The most
notable drawback of the BiRNN model is its susceptibility to
the vanishing gradient problem, which can hinder the model’s
ability to learn long-range dependencies in the input data.
In the following sections, we will discuss the BiGRU and
BiLSTM models and demonstrate how their unique features
make them ideal candidates for solar energy yield forecasting.

E. BiLSTM MODEL
In this paper, we examine the potential of the LSTM models
for forecasting the energy yield of solar farms, considering
multiple input features. The LSTM model is especially
proficient in managing time series data, owing to its inherent
ability to seize long-range dependencies, which is vital
for precise forecasting. We utilise seven input features to
train our LSTM model, where the last feature signifies the
target variable to be predicted. By adjusting the number
of look-back steps, we aim to discover the optimal LSTM
configuration for effective solar energy yield forecasting.

The Bidirectional LSTM (BiLSTM) model consists of
two LSTM layers, one processing the input sequence in the
forward direction and the other in the reverse direction. Each
LSTM layer is composed of memory cells and three gating
units: the input gate (it ), the forget gate (ft ), and the output
gate (ot ). For a given time step t , the LSTM equations for
both directions are as follows [24]:

ft = σ (Wf · [ht−1, xt ]+ bf ) (5)

it = σ (Wi · [ht−1, xt ]+ bi) (6)

C̃t = tanh(WC · [ht−1, xt ]+ bC ) (7)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (8)

ot = σ (Wo · [ht−1, xt ]+ bo) (9)

ht = ot ⊙ tanh(Ct ) (10)

where it is input gate, ft is the forget gate, and ot is the
output gate, xt is the input vector at time step t , ht is the
hidden state vector, andCt is the cell state vector. The sigmoid
activation function is represented by σ , while element-wise
multiplication is denoted by ⊙. The weight matricesWf ,Wi,
WC , and Wo correspond to the forget, input, cell state, and
output gates, respectively, and the bias vectors bf , bi, bC ,
and bo are the learnable parameters of each LSTM layer. The
gates it , ft , and ot control the flow of information through
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FIGURE 1. (a) Solar station site 1 (Nominal capacity = 30MW), (b) Solar station site 2 (Nominal capacity = 130MW), (c) Solar station site 3 (Nominal
capacity = 30MW), (d) Solar station site 4 (Nominal capacity = 50MW), (e) Solar station site 5 (Nominal capacity = 130MW).

the memory cells, while C̃t is a temporary cell state used for
updating the cell stateCt . The hidden state ht is updated using
the output gate and the cell state [26].

In the BiLSTM model, the hidden states of both the
forward and reverse LSTM layers are combined at each
time step, providing a better context for predictions.
In our study, we train the BiLSTM model with seven
input features, adjusting the number of look-back steps to
optimise the model’s performance for solar energy yield
forecasting.

In our study, we train the BiLSTM model with N = 3 and
N = 7 input features, adjusting the number of look-back (LB)
steps to optimise the model’s performance for solar energy
yield forecasting.

F. BiGRU MODEL
We also explore the applicability of the BiGRU model for
predicting the energy yield of solar farms based on multiple
input features. The BiGRU model, which consists of two
GRU layers processing the input sequence in both forward
and reverse directions, addresses the vanishing gradient
problem commonly encountered in RNNs. This characteristic
makes it a promising candidate for handling time series
data. We utilise seven input features to train our BiGRU
model, where the last feature serves as the target variable to
be predicted. By adjusting the number of look-back steps,
we aim to determine the optimal BiGRU configuration for
effective solar energy yield forecasting.

The BiGRU model consists of two GRU layers, one
processing the input sequence in the forward direction and
the other in the reverse direction. Each GRU layer has two
gating units: the update gate (zt ) and the reset gate (rt ). For a
given time step t , the GRU equations for both directions are
as follows [24]:

zt = σ (Wz · [ht−1, xt ]+ bz) (11)

rt = σ (Wr · [ht−1, xt ]+ br ) (12)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt ]+ bh) (13)

ht = (1− zt )⊙ ht−1 + zt ⊙ h̃t (14)

where xt represents the input vector at time step t , and
ht denotes the hidden state vector. The sigmoid activation
function is denoted by σ . Element-wise multiplication is
represented by the symbol ⊙. The weight matrices Wz,
Wr , and Wh correspond to the update, reset, and candidate
hidden state gates, respectively. The bias vectors bz, br ,
and bh are the learnable parameters associated with these
gates in the GRU layer. zt and rt are the update and reset
gates, which control the flow of information through the
hidden state. h̃t is the candidate hidden state, a temporary
value that helps in updating the hidden state [27]. The
hidden state is updated using a combination of the previous
hidden state and the candidate hidden state, weighted by
the update gate. In the BiGRU model, the hidden states of
both the forward and reverse GRU layers are combined at
each time step, providing a better context for predictions.
In our study, we train the BiGRU model with seven input
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features, adjusting the number of look-back steps to optimise
the model’s performance for solar energy yield forecasting.

G. MODELS COMPARISON FOR SOLAR POWER
FORECASTING
In this section, we discuss the key differences between
the four ML models—BiGRU, BiLSTM, BiRNN, and
Unidirectional LSTM—in the context of power yield time
series forecasting.1 The primary distinctions between these
models lie in their architecture, ability to handle time
dependencies, complexity, and susceptibility to the vanishing
gradient problem as illustrated in Table 1.

BiGRU, an RNN variation, addresses short and long-term
time dependencies. This model, with medium complexity
and lower vulnerability to the vanishing gradient issue, holds
potential for time series forecasting tasks, including power
yield predictions by capturing temporal dynamics.

BiLSTM, another RNN variant, manages short and
long-term time dependencies effectively. Its high complexity
and significantly diminished susceptibility to vanishing
gradient problems make it a preferred choice for time series
forecasting tasks, such as power yield predictions. BiLSTM
efficiently captures complex patterns, enhancing forecasting
performance.

BiRNN, capable of handling short-term time dependen-
cies, struggles with long-term dependencies due to low-
to-medium complexity and severe susceptibility to the
vanishing gradient problem. Though applicable to time series
forecasting tasks, its performance may lag behind BiGRU
and BiLSTM, particularly when long-term dependencies are
crucial.

Unidirectional LSTM, adept at handling short and
long-term time dependencies, lacks BiLSTM’s bidirectional
information flow. Consequently, it might not grasp all rele-
vant patterns, potentially resulting in less accurate forecasts
compared to BiLSTM. However, its lower complexity could
render it suitable for edge devices with limited computational
resources.

In summary, for power yield time series forecasting,
models like BiGRU, BiLSTM, and Unidirectional LSTM
are likely to deliver better performance due to their ability
to capture both short- and long-term dependencies in the
data. While BiRNNs might face limitations in handling long-
term dependencies. The choice between BiGRU, BiLSTM,
and Unidirectional LSTM will depend on the specific
requirements of the forecasting task and the trade-offs
between complexity and performance.

H. PERFORMANCE METRICS
In order to measure the performance of time series fore-
casting, we employ two types of measures. To measure the
accuracy of the prediction, we use the RMSE as a measure of

1The full discussion of Unidirectional LSTM is deferred to section III
to place it within the context of TinyML inference on edge devices, as we
conduct a more in-depth analysis to study its applicability for deployment
on resource-constrained, low-cost devices.

error between the predicted values and the actual values [11].

RMSE(y, ŷ) =

√√√√ 1
Ns

Ns∑
i=1

(
yi − ŷi

)2
, (15)

where y, ŷ are the actual and the predicted vector of readings,
respectively. The vector y = {y1, y2, . . . , yNs} represents the
times series values at time i where i = 1, 2, . . . ,Ns. Ns
is the number of samples in the time series. In subsequent
discussions, we will use ei = yi − ŷi to represent the error in
prediction at a specific time step and e to denote the average
error in the forecast.

In order to capture how well our model can predict
future values, we use the determinant coefficient R2. The
determinant coefficient is the proportion of the variance in the
dependent variable that is predictable from the independent
variable. We can write the determinant coefficient as follows

R2(y, ŷ) = 1−

∑Ns
i=1(yi − ŷi)

2∑Ns
i=1(yi − ȳ)

2
, (16)

where ȳ = 1
n

∑Ns
i=1 yi and

∑Ns
i=1(yi − ŷi)2 =

∑Ns
i=1 ϵ2i is the

residual sum of squares.

III. TinyML FOR LOW-COST HOUSEHOLD POWER YIELD
PREDICTION
TinyML, an emerging field at the intersection of ML and
embedded systems, offers effective tools for executing ML
models on resource-limited devices like MCUs [21]. In the
context of our study, TinyML has been utilised to establish an
optimised, real-time solar power yield prediction mechanism
for low-cost household solar farms. The power of ML
is brought to the edge, directly at the source of data,
thereby enhancing prediction efficiency, reducing latency,
and ensuring data privacy.

The TinyML deployment process commences with data
collection from the hardware where the inference engine is
required. This data is utilised to train the ML model, which
is then implemented directly on the MCU for inference in
subsequent iterations. A notable challenge in unlocking the
full potential of ML for IoT systems is the fragmentation
of the MCU market, and the absence of a unified standard
for TinyML implementation. To address these, we utilize
TensorFlow Lite Micro, which has become synonymous with
TinyML.Most practicalMLmodel implementations now rely
on the TFLite libraries [21].

TFLite Micro provides the necessary features for enabling
ML on IoT devices. It assumes that the model, input data,
and output arrays are already in memory and performs
computations on these arrays directly. The TFLite Micro
framework uses an interpreter to load the data structure that
defines the ML model. This design choice allows for the
model to be easily updated without recompiling the firmware
on the IoT device. Particularly, the use of an LSTM model in
conjunction with TinyML presents an innovative approach in
the realm of low-cost, real-time solar power yield forecasting.
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TABLE 1. Comparison of LSTM, BiGRU, BiLSTM, and BiRNN.

This approach not only serves as a potential solution to
overcome the challenges posed by resource-constrained
settings but also sets a novel precedent in employing ML
techniques for such applications. By deploying the LSTM
model on edge devices via TinyML, we are essentially
bringing the power of ML directly to the source of data,
thereby enhancing the efficiency of prediction tasks, reducing
latency, and ensuring data privacy.

The advancements in TinyML research have demonstrated
its effectiveness across various domains, including human
activity recognition and classification and time series fore-
casting in diverse scenarios [21]. In this context, we believe
that TinyML will be instrumental in shaping the future
of smart grids and solar power time series forecasting.
Consequently, we have developed an evaluation framework
for power yield forecasting in solar farms. However, the
scarcity of household-specific datasets poses a limitation for
implementing our ML models. To overcome this challenge,
this study aims to establish pre-trained models using the
aforementionedML architectures, which can later be adapted
for local household solar farms through transfer learning
(TL) techniques [28], [29]. The application of TL will
ultimately simplify the adoption of such forecasting methods,
streamlining the development operations (DevOps) process
for seamless ML operations (MLOps) [21].
In addition to TL, which enhances the training experience

for forecasting tasks, federated learning (FL) also plays a
vital role, especially when applying forecasting to privacy-
related data. FL provides an advantage in scenarios where
data privacy is concerned and data cannot be moved to
a centralised location due to regulatory restrictions or
security concerns [30]. FL, much like TL, can offer a
streamlined process for the development and implementation
of forecasting models. It allows for the leveraging of
distributed data sources, enabling a more secure view of
the data and thus enhancing the accuracy and robustness
of our forecasting models. Moreover, when combined with
TL, FL can potentially accelerate the learning process as
the models can benefit from previously learned knowledge
and apply it across different yet related tasks. This powerful
combination can bring forth a new era in ML-powered
forecasting, where models are not only effective and efficient
but also respectful of data privacy and security requirements.

A. UNIDIRECTIONAL LSTM MODEL FOR EDGE INFERENCE
The Unidirectional LSTM model is designed to process the
input sequence in the forward direction (

−→
H t) only. This

model is used to compare its performance with the previously
mentioned bidirectional models, as well as to facilitate
inference on edge devices using TinyML and TensorFlow
Lite Micro since TensorFlow Lite Micro only supports
unidirectional LSTM layers [31]. For a given time step t , the
LSTM equations are as follows [24]:

ft = σ (Wf · [ht−1, xt ]+ bf ), (17)

it = σ (Wi · [ht−1, xt ]+ bi), (18)

C̃t = tanh(WC · [ht−1, xt ]+ bC ), (19)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t , (20)

ot = σ (Wo · [ht−1, xt ]+ bo), (21)

ht = ot ⊙ tanh(Ct ), (22)

where xt represents the input vector at time step t . The hidden
state vector is denoted by ht , and the cell state vector is
represented by Ct . The functions σ and tanh are the sigmoid
and hyperbolic tangent activation functions, respectively. ft ,
it , and ot are the forget, input, and output gates of the LSTM
layer, which control the flow of information through the cell
state. C̃t is the candidate cell state, a temporary value that
helps in updating the cell state. The weight matrices Wf ,
Wi, WC , and Wo correspond to the forget, input, output, and
candidate cell state, while the bias vectors bf , bi, bC , and bo
are the learnable parameters associated with these gates in the
LSTM layer.

The unidirectional LSTM model efficiently captures past
information through the cell state vector, which helps
to alleviate the vanishing gradient problem to a certain
degree. However, it doesn’t consider future information like
bidirectional models do. Despite this, unidirectional LSTM’s
lower complexity makes it apt for deployment on edge
devices, and its compatibility with TensorFlow Lite Micro
renders it a compelling choice for real-world applications
needing on-device processing.

B. UNIDIRECTIONAL LSTM NETWORK ARCHITECTURE
Building on a solid foundation, we present a DL model
for forecasting solar power generation using a stacked
unidirectional LSTM architecture. By integrating L2 reg-
ularisation, dropout, and batch normalisation techniques,
the model enhances both performance and generalisation
capabilities. As illustrated in Figure 2 (a), the network
comprises two LSTM layers with (LSTM1) N1 and (LSTM2)
N2 units, capturing temporal relationships in input data. L2
regularisation, with a strength of 0.001, counters overfitting
by penalising large weight values, while dropout layers
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FIGURE 2. (a) Unidirectional LSTM network architecture and (b) BiRNN,
BiLSTM, and BiGRU networks architecture.

with a rate of 0.2 bolster robustness and curb overfitting.
Batch normalisation layers standardise the activations of
the LSTM layers, boosting training efficacy and mitigating
overfitting. A Dense layer with N3 units maps the LSTM
outputs to a lower-dimensional space, and the output
layer produces the final solar power generation forecasts.
In essence, our proposed model smoothly integrates a stacked
unidirectional LSTM architecture with L2 regularisation,
dropout, and batch normalisation techniques, creating a
robust and well-generalised model apt for solar power
generation forecasting.

C. BiRNN, BiLSTM, AND BiGRU NETWORKS
ARCHITECTURE
To make a fair comparison with the Unidirectional LSTM,
the BiRNN, BiLSTM, and BiGRU models adopt the same
DL architecture. As depicted in Figure 2 (b) this consists
of two bidirectional layers, with (BiRNN1 or BiLSTM1
or BiGRU1) N1 and (BiRNN2 or BiLSTM2 or BiGRU2)
N2 number of units. L2 regularisation (with a strength of
0.001) and dropout layers (with a rate of 0.2) are employed
across all three models,2 as well as batch normalisation layers
for normalising the activations of the bidirectional layers.
A Dense layer withN3 number of units maps the bidirectional
layer outputs to a lower-dimensional space, and the output
layer produces the final solar power generation forecasts.

2To further elucidate our choice of parameters, it’s pertinent to note that
the selection of 0.001 for L2 regularization and 0.2 for dropout rate was not
arbitrary. This decision has been formulated after an extensive grid search
process and trial and error for fine tuning the model and training process to
ensure no model overfitting.

FIGURE 3. Simplified TinyML MLOps workflow for solar energy
forecasting.

This configuration enables an equitable comparison of their
performance with the Unidirectional LSTM.

D. TinyML MLOps PIPELINE
To summarise the deployed operations, our approach towards
solar energy forecasting incorporates a comprehensive
MLOps pipeline, specially designed for TinyML applica-
tions. This pipeline is outlined in Figure 3 and consists of
several steps, each contributing to the efficient and accurate
functioning of the forecasting model.

The process initiates with Raw Data Collection from
diverse sources, including solar irradiance sensors and
weather stations. Following this, the collected data is
subjected to Data Preprocessing to ensure data integrity
and consistency. Upon preprocessing, we carry out Feature
Extraction and Engineering, where pertinent features are
selected to be included in the forecasting model. These
features encompass historical solar irradiance data, weather
conditions, and other relevant factors.

The Model Training phase follows, involving the exper-
imentation with various ML architectures. Post model
selection, Hyperparameter Tuning is conducted to refine
the chosen model’s performance. The model then undergoes
Model Optimisation to strike a balance between model
complexity and computational efficiency, a critical step in
the realm of TinyML. Subsequently, the optimised model is
Deployed on Edge Devices via TensorFlow Lite Micro for
real-time inference and predictive analysis.

In addition to this, Over-The-Air (OTA) Updates play a
significant role in ensuring that the edge devices run the
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TABLE 2. Hyperparameters and regularisation parameters used in the
model.

most updated version of the model, permitting remote model
management and updates. The pipeline concludes with a
Continuous Improvement Feedback Loop, facilitating the
continuous collection of new data, evaluation of our model’s
performance, and model updating as needed. This feedback
loop ensures that our model remains current with the latest
data and trends, thereby maintaining its predictive accuracy
and efficiency over time.

IV. RESULTS AND DISCUSSION
This section discusses the results of employing various
ML models and elaborates on the key hyperparameters and
regularisation techniques used in the training process. The
hyperparameters of the different models are summarised
in Table 2. The use of these specific hyperparameters and
regularisation parameters, as discussed earlier, ensures a
robust and stable learning process.

The comparative analysis of the different ML models
addresses the disparities in their performance, and provides
insights into their relative merits and limitations. These
variations in performance are particularly significant when
considering the deployment of these ML models on edge
devices for low-cost domestic applications. A detailed
exploration of this aspect will help us understand the practical
limitations of the chosen models, as well as the potential
enhancements required for future implementations.

A. MODELS PERFORMANCE COMPARISON
Figure 4 presents the results of the effect of the choice of LB
on the overall performance of the system for two performance
metrics, RMSE and R2. The figure displays the performance
of three types of bidirectional models—BiGRU, BiLSTM,
and BiRNN—using both 3 and 7 input features. The first
row of subfigures corresponds to the models using 3 input
features, while the second row represents those using 7 input
features.

A noticeable trend across the subfigures is that the models
tend to perform relatively similarly after 5 look-back time
steps, regardless of the number of input features used. This
suggests that increasing the look-back step size beyond
5 steps may not significantly improve the models’ forecasting
performance. As such, we can optimise the computational
resources by limiting the look-back step size to around

5 steps without compromising the accuracy of the solar power
forecasting.

Figure 5 showcases the outcomes for various ML model
configurations with three input features and a 4-hour look-
back period (i.e., 8 look-back steps with a half-hour step
size for solar power forecasting for half an hour ahead) for
a site with a nominal power of 50MW. The figure includes
six subfigures, illustrating the performance of three kinds
of bidirectional models—BiRNN, BiGRU, and BiLSTM—
in terms of R2 and RMSE, along with their respective error
distributions.

The marked epochs in Figure 5 represent key ‘‘elbow
points’’ during the training of the models. The ‘‘elbow point’’
in a training curve typically signifies the point at which
further training begins to yield diminishing improvements
in the error rate. In other words, this is the point at which
the models start to converge, and training beyond these
epochs leads to relatively minor reductions in the error.
This observation is particularly crucial from a computational
efficiency standpoint, as it indicates an optimal stopping point
that can prevent excessive computational resource usage and
overfitting.

Identifying these ‘‘elbow points’’ is an empirical process
based on monitoring the model’s performance throughout
the training period. The depicted epochs were determined to
be the most effective in our case. This technique is widely
used in the ML community to optimise training and prevent
overfitting, a critical aspect for practical applications.

Our study of the error distribution results, illustrated
in Figure 5, demonstrates that our models’ error patterns
diverge from the conventional characteristics of a normal
distribution. Nevertheless, it’s key to underline that despite
these variations, our models don’t exhibit a considerable bias,
and the error variance stays within permissible boundaries.
Importantly, the mean error is around zero, emphasising that
our models, by and large, avoid over or under fitting.

These findings illustrate that, despite the deviations from
a normal distribution in error patterns, the models can
still deliver precise, unbiased forecasts of solar power
production and almost follows kernel normal distribution.
This understanding stands out as it demonstrates the models’
deftness in dealing with the intrinsic unpredictability tied
to solar power generation. It highlights their capability to
provide trustworthy, data-driven results when interacting
with intricate, real-world datasets. Here, it is essential to
clarify that the objective behind this bias test analysis was
not to show which error distribution is suitable for the
forecasting task but to underscore the models’ unbiased
nature. The results show that, regardless of the observed error
distribution, these models offer unbiased forecasts which
emphasise the robustness and reliability of these models in
solar power yield prediction.

Drawing from these insights, we propose the selection of
the most fitting bidirectional model be guided by a combina-
tion of aspects - predictive accuracy, available computational
resources, and the type and volume of input features. This
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FIGURE 4. RMSE and R2 for time series forecasting for 1/2 hour ahead on site 1 using site 1 dataset trained model. The figures in the first row
correspond to the number of used input features N = 3, and the figures in the second row correspond to the number of used input features N = 7.
From left to right: BiGRU, BiLSTM, and BiRNN models. Hyperparameters: Adam optimiser, ReLu activation functions for the hidden layers, linear
activation function for the output layer, learning rate = 0.001. Dashed line for RMSE (Left red axis) and solid for R2 (Right blue axis).

considered approach aids in more customised optimisation
of solar power forecasting, consequently improving the
proficiency and practicality of renewable energy systems.
Furthermore, recognising and managing the deviations from
normal distribution in error patterns enables a deeper com-
prehension of model performance and promotes a consistent
enhancement of our forecasting models’ robustness.

Figure 6 showcases time series power yield forecasting
outcomes frommultipleMLmodels. Thesemodels, tested for
a site with a 50MW nominal power, utilize either 3 or 7 input
features and adopt an 8-hour look-back period, effectively
meaning 8 steps each of a half-hour interval to forecast the
solar power for the subsequent half-hour. Three bidirectional
models, namely BiRNN, BiGRU, andBiLSTM, form the core
focus of this analysis.

A closer look at Figure 6 brings to light a discernible
trend: models leveraging the full suite of 7 features (N = 7)
tend to have a performance edge over those restricted to just
3 features (N = 3). One critical factor behind this superior
performance is the inclusion of the ‘actual power yield’
feature in the seven-feature setup. These features selection
can be used as evidence of the correlation coefficient analysis
and features selection criterion that we studied before in
Figures 1 and 4. That said, it’s vital to acknowledge the
practical considerations that govern feature selection in real-
world scenarios. Often, the availability of certain features,
especially time-series data for the actual power yield, might
be restricted due to various reasons – from data collection
challenges to resource constraints. The encouraging take-
away from our analysis is the model’s capability to churn out
reliable and relatively accurate forecasts even when it’s fed
with a pared-down feature set. This demonstrates the model’s
resilience and adaptability, and signifies that solar farms,

even those with fewer measurement tools or data constraints,
can still harness robust forecasting models. This adaptability
underscores the model’s value, especially in settings where
resources might be limited or data acquisition might pose
challenges.

Furthermore, the assertions and insights drawn from
Figure 6 find resonance in the comprehensive results that are
presented in Table 3. The table, set for a detailed discussion
in the subsequent table, lays bare the numeric performance
metrics across an array of scenarios – ranging from different
feature inputs to season-based variations. This reinforces the
findings from the figure but also offers a multi-dimensional
understanding of the model’s performance.

Table 3 presents the performance of four different
models—LSTM, BiRNN, BiGRU, and BiLSTM—across
three different seasons’ results (Winter, Summer, and both).
The performance is measured using various metrics, includ-
ing training and test R2, training and test RMSE, error
variance (σ 2

e ), and the expectation of error (E[e]). The results
are shown for two different feature sets (N = 3 and N = 7).
As observed in the table, a more insightful analysis can be as
follows:

1) The BiRNN model demonstrates a comparable perfor-
mance in terms of testR2 to othermore complexmodels
such as BiLSTM, despite its own lower complexity.
This hints towards BiRNN’s effectiveness in learning
from the provided data without requiring complex
architectures. However, one should also bear in mind
the significant vanishing gradient problems associated
with BiRNN, which might limit its ability to learn
long-term dependencies if the data involves intricate
temporal patterns.
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FIGURE 5. Results for various setups of the ML models for three input features and look-back period of 4 hours (i.e., 8 look-back steps with half an
hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of 50MW.

2) The uni-directional LSTM and BiLSTM models have
architectures designed to tackle the vanishing gradient
problem, leading to a significantly reduced effect.
However, their performance does not show a clear
advantage over the simpler BiRNN model. This could
be due to the nature of the solar power yield data, where
the benefits of the more sophisticated architectures
are not as pronounced. It’s also worth noting that
the BiLSTM model has higher complexity, which
might lead to increased computational costs and longer
training times.

3) The BiGRU model strikes a balance between com-
plexity and performance, with diminished vanishing
gradient problems in comparison to BiRNN. Even
though it doesn’t noticeably outperform the BiRNN
model, it offers a competitive performance against
the others. Therefore, if there’s a need to balance
performance with computational efficiency in the
realm of solar power yield forecasting, the BiGRU
model could be an apt choice.

4) All the models show consistent performance improve-
ment when the number of input features increases from
N = 3 toN = 7, suggesting that amore comprehensive
feature set can boost the forecasting performance,
irrespective of the model architecture. This observation
could be harnessed in future researches by including
weather forecasting data as additional input features,

potentially elevating the accuracy of solar power yield
predictions without necessitating prior knowledge of
the exact power yield time series data.

5) The seasonal effect, as reflected in the performance
table, reveals that the models generally perform better
in Summer compared to Winter. This can be attributed
to the differences in weather patterns, cloud coverage,
and solar radiation between these two seasons. There-
fore, when evaluating the performance of different
models and choosing the most suitable one for solar
power yield forecasting, the seasonal effect should be
taken into account.

In conclusion, despite the challenges posed by vanishing
gradients, the BiRNN model’s performance, coupled with
its simplicity, stands out. However, in choosing the most
suitable model for forecasting, it is imperative to consider
other factors, such as model complexity, computational cost,
seasonal impacts, and the specific attributes of the solar
power yield data. The BiGRU model serves as a balanced
alternative, and the augmentation of features can generally
enhance the performance across all architectures.

B. PERFORMANCE ON EDGE DEVICES FOR HOUSEHOLD
FORECASTING
In this section, we present the results associated with
evaluating the unidirectional LSTMmodel. Themodel testing
on edge devices is carried out on an ESP32-S3 MCU,

VOLUME 12, 2024 10857



A. M. Hayajneh et al.: Intelligent Solar Forecasts: Modern ML Models and TinyML Role

FIGURE 6. Results for various setups of the ML models for 3 and 7 input features and look-back period of 4 hours (i.e., 8 look-back steps with half an
hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of 50MW.

TABLE 3. Comparison of LSTM, BiGRU, BiLSTM, and BiRNN architectures and performance for solar power yield forecasting for N = 7 and 3 input features
and a look-back period of 4 hours (i.e., LB = 8 steps with half an hour step size for solar power forecasting for half an hour ahead) for a site with nominal
power of 50MW.

which boasts a dual-core XTensa LX7 processor oper-
ating at 240 MHz and 512 kilobytes of internal Static
random-access memory (SRAM). The choice of the ESP32-
S3 stems from its affordability and IoT-readiness, as it
encompasses built-inWiFi and Bluetooth capabilities, as well
as a dual-core architecture that enables running multiple
threads. This facilitates the collection of footprint mea-

surements of the ML model while isolating background
processes, providing a clearer understanding of the TinyML
performance for cost-effective solar energy yield forecasting.

In Figure 7, the performance of unidirectional LSTM
models with 3 and 7 input features and a 4-hour look-back
period (i.e., 8 look-back steps with an hour step size for solar
power forecasting for half an hour ahead) for a site with
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FIGURE 7. Results for various setups of the unidirectional LSTM ML models for 3 and 7 input features and look-back period of 4 hours (i.e., 8 look-back
steps with an hour step size for solar power forecasting for half an hour ahead) for a site with nominal power of 50MW.

a nominal power of 50MW is displayed. Comparing these
outcomes to the previously discussed bidirectional models
(BiRNN, BiGRU, and BiLSTM), it’s clear that unidirectional
LSTM models exhibit similar performance levels. Yet, one
notable difference is the LSTMs’ tendency to converge more
gradually than other models. This slower convergence can
be a trade-off when considering their use on edge devices.
Although offering comparable accuracy levels, their extended
training times might pose concerns for resource-limited
devices. Nevertheless, the benefits of unidirectional LSTM
models in terms of computational efficiency and edge device
compatibility make them an appealing option for solar power
forecasting.

Table 4 presents the performance comparison of LSTM
models for solar power forecasting on edge IoT devices for
various setups of the unidirectional LSTM ML models for
7 input features and a look-back period of 8 hours (i.e., 8 look-
back steps with an hour step size for solar power forecasting
for half an hour ahead) for a site with a nominal power
of 30 MW. In the table, various hyperparameters, such as the
number of LSTM cells and look-back steps, are adjusted to
understand their impact on forecasting performance, model
flash size, and inference rate. The performance metrics
considered include train and test RMSE, train and test R2,
model flash size (Bytes), and inference rate (Hz).

The selection of optimal hyperparameters is critical in
achieving an effective balance between model performance
and computational efficiency, especially when deploying
these models on edge IoT devices with limited computational
resources. As observed in the table, a more insightful analysis
can be as follows:

1) Look-back steps: This represents the number of pre-
ceding time steps that are considered as input features
for the LSTM model to forecast. In our study, different
look-back periods (8 and 4) are evaluated. Models
using a 4-step look-back consistently outperform those
with an 8-step look-back. This indicates that using a
shorter sequence of historical data effectively captures
the most influential temporal patterns for accurate
forecasting. The performance improvement might be
due to focusing on more recent and hence more
relevant information. Alternatively, it may be the

case that longer look-back steps increase the model’s
complexity, leading to less optimal results.

2) Number of LSTM cells: This refers to the complexity
of the LSTM model, denoting the number of hidden
units or memory cells in the LSTM layers. We test
with different configurations, such as 128 + 64 + 32,
64 + 32 + 24, and so forth. Models with a higher
number of LSTM cells generally exhibit improved
performance, as indicated by lower train and test RMSE
values. However, there is a trade-off. More LSTM
cells necessitate more computations, which result in a
decrease in the inference rate. Hence, for an edge IoT
device with limited computational resources, there’s
a need to select an optimal number of LSTM cells
that balances forecasting accuracy and computational
efficiency.

3) Train and Test Metrics (RMSE and R2): These metrics
evaluate the model’s performance on both the training
and testing datasets. Lower RMSE values and higher
R2 values signify better model performance. The table
reveals that the test R2 values are generally higher than
the corresponding train R2 values, which implies our
models are not overfitting and can generalise well to
unseen data.

4) Model Flash Size: This is the amount of storage the
model requires, a vital factor when deploying ML
models on edge IoT devices, which typically have
limitedmemory. As the complexity of the LSTMmodel
(number of LSTM cells) increases, the model flash size
also expands. Thus, it’s crucial to find a model with the
right level of complexity that fits within the device’s
storage constraints for successful deployment on edge
devices.

5) Inference Rate: This denotes the computational speed
or howmany inferences themodel canmake per second
(Hz). As the LSTM model’s complexity (number of
LSTM cells) increases, the inference rate generally
decreases. Simpler models with fewer LSTM cells and
look-back steps are computationally more efficient and
provide higher inference rates.

In conclusion, based on these results, an LSTM model
with 64 cells and a 4-step look-back period appears to
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TABLE 4. Performance comparison of LSTM models for solar power forecasting on edge IoT devices for various setups of the unidirectional LSTM ML
models for 7 input features and look-back period of 4 and 2 and hours (i.e., 8 and 4 look-back steps with half an hour step size for solar power
forecasting for half an hour ahead) for a site with nominal power of 30MW.

offer the best balance between predictive performance and
computational efficiency. It’s therefore an excellent candidate
for deployment on edge IoT devices for solar power
forecasting. This configuration achieves a test R2 of 0.9590,
demonstrating high predictive accuracy. Simultaneously,
it respects the computational and storage limitations of edge
devices, making it suitable for real-world applications in both
industrial and residential scenarios.

C. PRACTICAL IMPLICATIONS FOR INDUSTRIAL AND
HOUSEHOLD APPLICATIONS
This investigation’s outcomes bear several pragmatic impli-
cations for both industrial and domestic applications. Enhanc-
ing the precision of solar energy forecast through the
proposed LSTMmodels can support the general effectiveness
and solidity of energy networks, diminishing the dependency
on conventional power origins and promoting the incorpora-
tion of renewable energy.

1) INDUSTRIAL APPLICATIONS
In industrial environments, precise solar energy forecasting
is essential for optimising energy utilisation and reducing
operational expenses. By harnessing the studies models,
industries can more effectively arrange their energy-intensive
procedures during periods of heightened solar energy gen-
eration, lessening their reliance on grid-supplied electricity
and minimising their energy expenditures. Furthermore, solar
energy forecasting can assist utilities in managing energy
demandmore proficiently, resulting in enhanced grid stability
and decreased energy squandering.

2) HOUSEHOLD APPLICATIONS
For household users, solar energy forecasting can play a
crucial role in optimising solar panel usage and energy stor-
age systems. Homeowners can employ forecasts to organise
their energy consumption, guaranteeing that they exploit
the solar energy generated by their panels to the greatest
extent with low-cost solutions. For instance, households can
schedule energy-intensive tasks, such as charging electric
vehicles or operating appliances, during times when solar
energy production is anticipated to be high.Moreover, precise

solar energy forecasts can aid homeowners in determining
when to store solar energy in their batteries, enabling them to
utilise stored energy during periods of low solar generation
or elevated electricity prices.

3) EDGE IoT DEVICES
Deploying unidirectional LSTM models on edge IoT devices
for solar power forecasting can cultivate a more decen-
tralised and cost-effective energy management ecosystem.
By performing solar power forecasting directly on edge
devices like smart meters or home energy management
systems, households can reap the benefits of real-time
forecasting without relying on external servers or cloud
services, minimising latency and safeguarding data privacy.
Furthermore, edge devices can interact with other smart
appliances within the residence to fine-tune energy usage
habits, fostering a greener and more energy-conscious living
space.

D. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS
Despite the promising results obtained, we can address
several limitations that should be carefully taken into account,
which also pave the way for future research directions.

1) FEATURE SELECTION
Although the current study considers multiple features for
predicting solar energy yield, additional features or feature
engineering techniques might further improve the prediction
accuracy of the models. Other input features may also
consider wind speed, cloud cover, time of day, seasonal
changes and forecasted weather conditions as they are
commonly used as features in solar panel power forecasting.

2) MODEL SELECTION
The study concentrates on comparing certain types of ML
models. Nonetheless, it merits noting that other ML or DL
models might potentially provide superior performance in
solar energy forecasting. Alternative models, such as hybrid
models that amalgamate different ML or DL algorithms,
or innovative ML or DL architectures explicitly crafted for
time series forecasting, should also be contemplated.
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3) HYPERPARAMETER TUNING
The tuning of hyperparameters is a key facet of our
methodology. It is particularly critical in the context of
TinyML applications and edge inference, where resource
constraints necessitate highly efficient and optimised models.

A careful choice of hyperparameters such as learning rate,
number of hidden layers and units, and look-back steps, can
significantly influence the forecasting model’s performance.
For instance, the learning rate orchestrates the magnitude of
adjustments made to the model’s weights during learning.
An optimally selected rate ensures effective reduction in
training loss, while inappropriate rates can cause unstable
training or slow convergence. Among the hyperparameters,
the learning rate stands out in significance as underscored by
[32] and [33] where the learning rate often emerges as the
most influential hyperparameter, with its fine-tuning being of
paramount importance when employing stochastic gradient
descent.

Furthermore, the model’s complexity, as determined by
the number of hidden layers and units, should be carefully
chosen to effectively capture underlying patterns in the
data without leading to overfitting, a critical concern in
TinyML. The choice of look-back steps impacts the temporal
dependencies the model can learn, striking a balance
between richer historical data integration and computational
load.

In this study, guided by the significance of learning
rate as emphasised in [32] and [33], we employed grid
search and random search for hyperparameter tuning across
the BiGRU, BiLSTM, BiRNN, and unidirectional LSTM
models. Specifically, the learning rate was carefully selected
from a log-scale set of {10−4, 10−3, 10−2, 10−1} during
grid search. The objective was to pinpoint hyperparameter
combinations conducive to optimal solar power yield fore-
casting losses and ensuring the models’ suitability for edge
inference.

While our hyperparameter exploration was thorough,
we acknowledge that advanced optimisation techniques
like genetic algorithms, particle swarm optimisation, and
Bayesian optimisation could further refine model perfor-
mance. By more effectively navigating the hyperparameter
space, these techniques can pinpoint optimal values, and their
integration into future studies could bolster the performance
of our forecasting models.

4) EDGE DEVICES
To ensure that the LSTM model used for low-cost household
forecasting on edge devices is applicable and efficient in
practice, it is necessary to conduct extensive evaluations on
various edge device configurations. Different edge devices
may have different computational capabilities and hardware
specifications, which can affect the performance of the LSTM
model. Moreover, the training and inference times of the
LSTM model may vary depending on the edge device’s
processing power and memory capacity.

5) IMPACT OF SOLAR FARM SIZE ON EDGE-BASED
FORECASTING
The size of solar installations significantly impacts the
predictability of solar power yield and, consequently, the
complexity and performance of forecasting models deployed
on edge devices. The application of TinyML techniques for
these scenarios, considering their inherent constraints and
opportunities, is crucial.

Industrial applications often feature solar farms that span
vast areas, leading to an inherent averaging effect on solar
irradiance due to this extensive coverage. Weather-induced
localised fluctuations in solar power yield are averaged over
the large solar farm area, resulting in relatively stable and
predictable power output. This stability can be effectively
harnessed by TinyML models operating on edge devices
in these setups, simplifying the task of forecasting peak
production periods, typically between 7:00 AM to 11:00 PM
on weekdays, and aligning them with high-energy-demand
operations.

In contrast, household applications typically have limited
areas for solar panel installation, making them more prone
to yield fluctuations due to variable weather conditions. This
situation introduces higher variability and unpredictability
in solar power yield, thereby complicating the task of
forecasting peak and off-peak production hours. Common
residential peak hours are from 5:00 PM to 8:00 PM on
weekdays and on weekends, while off-peak hours are usually
on weekdays before 4:00 PM and after 9:00 PM, with
weekends having a more flexible off-peak schedule. It is
worth mentioning that the off-peak and on-peak periods
specified pertain to average timings in the USA. It’s notable
that the distinction between off-peak and on-peak periods
can vary between summer and winter, the geographical area
as well as the time throughout the year [34], [35]. Such
a challenge necessitates TinyML models to incorporate a
broader and more dynamic range of information, including
real-time weather forecasts and local shading conditions,
among other features, to generate accurate predictions on
edge devices.

In both contexts, our proposed TinyMLmodels are capable
of predicting solar energy yield effectively, accounting
for these distinct dynamics. For industrial applications,
the models can leverage the relative stability of solar
yield to provide reliable forecasts on edge devices, aiding
in optimising energy-intensive processes. In contrast, for
residential settings, our models can adeptly manage the
additional complexities by integrating a wider array of
predictive features, ensuring precise and efficient predictions
even on resource-constrained edge devices.

Moreover, it is essential to evaluate the appropriateness
of the LSTM architecture for implementation on edge
devices. Notably, TensorFlow Lite Micro currently supports
only simple unidirectional LSTMs. This implies that more
intricate LSTM architecture variants, such as BiRNNs,
BiLSTMs, and BiGRUs, might not be compatible with edge
devices utilising TensorFlow Lite Micro. Hence, it becomes
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imperative to consider the constraints and capabilities of
TensorFlow Lite Micro when devising LSTM models for
low-cost household forecasting on edge devices.

Based on the limitations identified, several avenues for
future research can be explored:

6) EXPANDING THE DATASET
It is important to investigate new results based on some new
datasets with different characteristics and climate conditions
and regions. This will give more insight into the applicability
of employing ML on edge devices to improve the design
space of AI-powered smart solar systems and generally smart
grids.

7) ADVANCED FEATURE ENGINEERING IN TinyML
The adoption of advanced feature engineering techniques can
enhance the predictive power of TinyML models for solar
power forecasting on edge devices. These techniques could
include incorporating additional data sources, calculating
derived features like moving averages, standard deviations
over rolling windows, or using time-lagged values to capture
complex temporal patterns. External data such as weather
conditions could also be integrated for enriched context.

However, the introduction of complex features increases
computational demands, which can pose a challenge for
resource-limited edge devices. Balancing the need for model
performance and computational efficiency is therefore cru-
cial. This could involve employing advanced feature selection
methods to retain only the most impactful features, keeping
the model simple and computationally feasible. Thus, the
fine-tuning of feature engineering, in line with hyperparam-
eter tuning, is key to maximizing model performance under
the constraints of edge inference.

8) EXPLORING ALTERNATIVE MODELS
While our study primarily utilized unidirectional LSTM
models for their effectiveness in time-series forecasting and
compatibility with TinyML in edge IoT devices, we also
included bidirectional models like BiGRU and BiLSTM for
a more comprehensive understanding of sequential data.
This diverse model selection not only aligns with current
computational capacities but also sets a benchmark for
future research. As technology progresses, especially in
edge computing, investigating more advanced models, which
could become deployable on such devices, will be a key
area of future work. This approach lays the groundwork for
ongoing advancements in solar energy yield forecasting.

Potential alternatives could include CNNs, valuable for
spatial data patterns, and hybrid models like CNN-LSTM or
Transformer-LSTM, merging the benefits of both architec-
tures. Nevertheless, the increased computational complexity
of these alternatives should be considered, especially in the
context of TinyML applications with resource limitations.
Therefore, model selection should harmonise computational
efficiency and predictive performance. In many instances,
simpler models like the LSTM may offer the best trade-off,

TABLE 5. List of abbreviations.

delivering solid forecasting outcomes without unnecessary
complexity, as exemplified by the models in this study.
Hence, the advantages of more complex models should be
carefully examined against their computational costs.

9) INCORPORATING CLIMATE CHANGE
Moving forward, it’s essential to acknowledge the influence
of changing climate aspects on solar power yield prediction
models. The inescapable progression of climate change is
reshaping weather patterns and solar irradiance, consequently
impacting solar power production. Integrating these shifting
climate factors in future investigations will contribute to a
more durable and reflective forecasting model, accounting
for long-term ecological shifts. This might entail the use
of dynamic models designed to adjust to climate variable
modifications, or introducing climate change projections as
an extra feature in the model.
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V. CONCLUSION
This study underscores the transformative potential of com-
bining advanced ML methodologies with TinyML for solar
energy yield prediction in low-cost, household-level solar
farms. Our research delivered in-depth evaluation of four ML
architectures (BiGRU, BiLSTM, BiRNN, and unidirectional
LSTM), offering valuable guidance on their applicability and
performance under the constraints of edge devices. Our work
broadens the understanding of deploying smart, cost-efficient
solutions in IoT environments and emphasises the necessity
to consider the limitations of edge devices when choosing
suitable ML architectures.

While our models exhibit promising accuracy, it is worth
noting that the efficacy of our solution might vary based on
factors like dataset characteristics, edge device capabilities,
and the specificities of solar installations. For instance, the
size and type of solar installations, whether household or
industrial, significantly influence the predictability of solar
yield. As larger installations can provide averaged, more
stable outputs, edge-device models may find such contexts
easier for prediction. Smaller, household installations, with
their inherent yield variability, pose a more complex forecast-
ing challenge.

Future research directions include exploration of other ML
or DL models, innovative hybrid architectures for time-series
prediction, and the integration of advanced hyperparameter
tuning methods to enhance solar energy yield prediction
accuracy. Ultimately, our work paves the way for improved
resource planning and energy management in solar energy
systems, promoting a more sustainable and efficient energy
landscape at both the household and industrial levels.

APPENDIX
TABLE OF ABBREVIATIONS AND ACRONYMS
See Table 5.
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