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ABSTRACT Internet of Vehicles (IoVs) provides communication and computing resources, which makes
the on-board diagnosis of vehicle faults possible. However, those resources need to be expanded to support
the accurate analysis of the on-board diagnosis. Vehicular Cloud Computing (VCC) can solve the pressure of
local vehicle processing but will cause an unavoidable delay. Thus, the accuracy and timeliness of on-board
diagnosis cannot be guaranteed. To address the issue, we propose a Mobile Edge Caching based Resource
Scheduling (MECRS) mechanism for the on-board diagnosis of vehicle faults. According to the urgency of
vehicle fault diagnosis, we first design a cloud scheduling algorithm to meet the computation requirements
of both the essential business of IoVs and the fault diagnosis. Subsequently, the priority allocation strategy is
made for all four types of requests. Then, the urgent requests can be processed timely. Specifically, a multi-
objective optimization method is proposed to allocate communication and computing resources for the above
requests. In addition, we present a mobile edge caching algorithm in which the large-scale file with high
popularity is offloaded to alleviate the pressure of the cloud. Finally, we carry out comprehensive simulations.
The results reveal that the developed mechanism provides a high service rate for on-board diagnosis with
limited network resources, while the performances of the other three essential services are not compromised.

INDEX TERMS Mobile edge caching, vehicle fault diagnosis, resource scheduling, vehicular cloud
computing.

I. INTRODUCTION
With the increasing utilization of vehicles, various unex-
pected problems arise when the vehicle is in high-intensity
overload operation. By 2023, the top three countries in
terms of vehicle ownership are China, the United States
and Japan. Among them, China ranks first with 430 million
motor vehicles, 520 million drivers and 18.21 million new
energy vehicles. The increase of vehicle ownership brings
traffic problems such as traffic jams, vehicle accidents and
environmental pollution. There are many kinds of problems
in vehicles with long-term load operation. Therefore, efficient
vehicle fault diagnosis is essential. However, the overdue
vehicle fault diagnosis results in abnormal performance, even
bringing security threats. Then, vehicles are damaged, and
public safety is threatened [1], [2]. Accordingly, with a timely
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and accurate operation of vehicle fault diagnosis, a connected
vehicle can receive fault warnings in time and ensure safety
in efficiency.

Depending on the experience of experts, traditional
fault diagnosis technologies could be more efficient and
timely, such as the model-based approaches model-based
approaches, signal-based approaches, and knowledge-based
approaches [3], [4]. Then, with the development of computer
technology, three main methods have gradually formed,
signal processing, reliability statistics, and big data processed
online [5], [6], [7]. Thanks to the development of the big
data technology, vehicle fault diagnosis is currently faster
and more efficient. Based on the big data technology,
a vehicle need to use local computing resources to process
massive data collected by sensors [8], [9]. However, more
than local computing resources of vehicles is required.
As the amount of data increases, the tasks of vehicle fault
diagnosis must be processed promptly. This problem is
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urgently solved to relieve the processing pressure of local
resources.

The Vehicle-to-X(V2X) communication provided by
IoVs [10] and vehicular cloud computing (VCC) technol-
ogy [11] are considered to solve this problem. Utilizing
the V2X communication, those tasks responded not in time
could be offloaded to the vehicular cloud. The cloud platform
has enormous storage capacity and computing power. Then,
by uploading massive data related to those tasks, a vehicle
could download the processed diagnosis results provided
by VCC. The high mobility of IoVs induces intermittent
connectivity, so uploading data and downloading results
become difficult [12], [13]. The requests that the cloud cannot
handle promptly should be discarded. Overall, there are two
challenges to guarantee the timeliness and accuracy of vehicle
fault diagnosis.
• Cloud computing, with its powerful storage and comput-
ing capabilities, has been applied to various researches.
Currently, there is relatively little research in the inter-
section of cloud computing and vehicle fault diagnosis.
How to schedule cloud resources to serve vehicle fault
requests is challenging.

• Most researches on cloud resource allocation only focus
on a single scheduling target and request [14], [15].
However, with diversified services, the cloud platform is
for more than vehicle fault on-board diagnosis. It must
maintain other essential services, such as network
operation requests, emergency requests, and large-scale
file requests. Hence, a scheduling mechanism for
multitasking with comprehensive indicators has positive
research significance [16].

• We hope the cloud platform can reserve more computing
resources to serve vehicle fault requests. Then we need
to reduce the resource footprint of other requests on the
cloud, whichmay affect their services. How tomaximize
the service rate of vehicle fault requests on the premise
of ensuring that other requests can be serviced normally
is the research focus [17].

In this paper, we propose a Mobile Edge Caching based
Resource Scheduling (MECRS) mechanism for vehicle fault
on-board diagnosis. The purpose of this paper is to reserve
more computing resources for handling vehicle fault requests
while ensuring timely processing of the other three types
of business. We first design a priority allocation strategy
for all four types of requests. Next, a mobile edge caching
algorithm is designed to process the large-scale file requests
of the cloud. In addition, a multi-objective optimized resource
scheduling method is proposed to allocate cloud computing
resources. Finally, a comprehensive simulation is carried out
to maximize the vehicle fault diagnosis service rate and
make other requests receive timely responses. The significant
contributions of this paper are as follows.
• A multi-task scheduling mechanism. Applying cloud
computing to vehicle fault diagnosis cannot ignore the
diversity of tasks on cloud platforms. According to
the Quality of Service (QoS) requirements, we classify

requests into four categories, targeting different appli-
cations. This not only ensures sufficient processing
capability for vehicle fault requests, but also ensures
timely response to other tasks.

• A priority allocation strategy. Accordingly, the vehicle
fault diagnosis requests can be spited into two types,
which are the emergence part processed locally, and
delay tolerance part responded by cloud. The fault
diagnosis with high timeliness and accuracy can be
obtained. Moreover, we set an emergency factor for
the emergency request in the cloud that maintains its
priority. Finally, all requests uploaded to the cloud
platform are sorted according to the priority policy.

• A mobile edge caching algorithm. In order to avoid
the large-scale file requests taking up too much
cloud computing resources, we formulate a vehicle
popularity-based mobile caching model to make the
cloud have more resources to serve the vehicle fault
requests and ensure the timely service of large-scale file
requests. In the model, we offload large file requests
to the service vehicle for processing, and the files are
cached in advance by the service vehicle when the
communication channel is idle.

• A global optimization method. Based on the allocation
strategy, a problem of optimizing resource allocation in
the cloud is raised to maximize the system reward and
minimize the large-scale file downloaded data volume
from the cloud. Then, we propose a multi-objective
optimization method to efficiently find sub-optimal
solutions, thereby improving the service rate with low
complexity.

• A comprehensive simulation is conducted, which
validate our results from two aspects, the user side
and the service side. Simulation results show that the
vehicle on-board diagnosis requests serviced interval
in 100 percent was elongated while ensuring the
performances of others network basis services, and
even under the premise of high vehicle density, we can
guarantee the service rate of 50 percent. And for the set
simulation scale, the optimal number of virtual machine
configurations was given, which has practical reference
value in reality.

The remainder of this paper is organized as follows.
Section II reviews related works while Section III presents the
system model. In section IV discuss the resources allocation
for VCC and propose MERCS mechanism. Then, simulation
results are given in Section V. Finally, we conclude the paper
and look forward to future work in Section VI.

II. RELATED WORK
The driving safety of vehicles is highly related to the
protection of life and property, so the fault diagnosis of
vehicles has always been the focus in the industry and
academia. At present, there are many mature algorithms
suitable for fault diagnosis. For instance, in [18], a novel
fault diagnosis procedure based on improved symplectic
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geometry mode decomposition (SGMD) and optimized
support vector machine (SVM) is presented, which is
proved that the method is effective and robust for rotating
machineries fault diagnosis. Aojia et al. design a fault detector
and a fault-tolerant tracking controller. They propose a
delay-dependent stability criterion to deal with the adverse
effects of delay [19]. An active fault tolerant control scheme
for an underwater remotely operated vehicle is proposed
in [20], the authors implemented output control for a rod-
operated vehicle. Literature [21] develops a fault diagnosis
system for electric vehicle charging devices based on Fault
Tree Analysis (FTA), which can accurately locate and quickly
resolve the charging devices faults. Whatŕs more, Paper [22]
proposes a soft SC fault diagnosis method based on the
extended Kalman filter (EKF) for on-board applications in
EVs. In the proposed method, the EKF estimates the faulty
cell’s state of charge (SOC) by adjusting a gain matrix based
on real-time measured voltages. It is practical and robust in
quickly detecting a soft SC fault. However, there are many
types of vehicle faults. Therefore, a vehicle fault diagnosis
mechanism for extensive fault data is urgently needed.

With the emergence of big data technology, scholars
propose effective detection methods that can handle more
data. Online diagnosis can ensure the real-time processing
of vehicular fault tasks. In [2], a novel in-vehicle intelligent
electric power supply network is proposed. This paper reveals
that each device’s power supply process is appropriately
monitored, online faults are detected successfully, and the
fault-tolerant method can realize remediation and protection
in real-time. Zhang et al. [23] utilized BPNN for decision
making and classification after conducting feature analysis
and judgment. Liu et al. [24] designed a three-layer BP neural
network structure to realize efficient fusion of Floating Car
Data (FCD) and Fixed Detector Data (FDD). Tian et al. [25]
presented a bearing fault detectionmethod usingKNN,which
extracts fault features through spectral kurtosis and cross
correlation.

Online diagnosis has the advantage of good timeliness.
Still, the local processing of a large number of faulty services
will put pressure on the local processor, and the processor
also needs to process other IoV services. Barabino et al.
design an offline framework for the diagnosis of time
reliability by automatic vehicle location data. This framework
can be adopted by transit managers for accurate reliability
analysis [26]. Paper [27]introduced an intelligent diagnosis
method based on a data-driven model for sensor intermittent
fault. Paper [28] proposed a speed sensor fault diagnosis
methodology based on a learning-based data-driven principle
in induction motor drive systems. However, it is challenging
to ensure timeliness by only relying on the offline diagnosis.
In response to the need for more local resources, achieving
a multi-objective joint diagnosis is impossible. We want a
multi-objective optimization mechanism to ensure timeliness
and accuracy. Therefore, We apply VCC to upload and
download data by combining online and offline methods.
We put the time-delay-sensitive requests on the local vehicle

for online processing. The time-delay insensitive requests
are uploaded to the cloud for offline processing, and the
processing results are sent back to the vehicle through the
cloud platform.

Many works on cloud computing have been carried out
to enhance the service capabilities of the cloud. Moreover,
reasonable resource scheduling can improve the service
rate. The University of Ottawa scholars do research on
virtual machine migration in cloud computing, thereby
increasing resource utilization [29]. A multiple resource
allocation approach was introduced in [30] that generalizes
max-min fairness to multiple resource types. It formulated
to maximize the minimal energy balance among all users by
jointly optimizing time assignments. Zheng et al. propose an
optimal computing resource allocation scheme to maximize
the total expected reward of the connected vehicular cloud
system. The scheme represents the optimization problem
as an infinite-level semi-Markov decision process, which
obtains significant performance gains within an acceptable
complexity range [16]. Zhao et al. discuss the fair allocation
of multiple resources and propose a new allocation mecha-
nism called Dominant Resource with Bottlenecked Fairness
(DRBF). They divide users into different queues based on
their dominant resources to ensure that users in the same
column receive an allocation according to their fair shares
[31]. In [32], a contract model is adopted to address the cloud
computing resource allocation and pricing problem in the
mobile blockchain. and proposed a adverse selection contract
solution to overcome the information asymmetry problem.

This paper focuses on the VCC architecture, which applies
cloud computing to the IoV and then uploads fault tasks to
the cloud. The volume of vehicle fault data is enormous. But
requests in VCC are diverse, and the performances of other
essential services cannot be compromised. Some common
mechanisms, such as FCFS (First-Come-First-Served) mech-
anism, cause untimely service and huge resource waste. The
vehicle fault diagnosis mechanism orienting towards multiple
requests in VCC is closer to the actual scenario and solves the
problem of poor communication and computing resources.
Hence, an effective cloud resource allocation mechanism
becomes the interest of this paper.

III. SYSTEM MODEL
This section describes the system model in the following sec-
tions. Firstly, we introduce the communication scenario. Then
we describe the traffic model, overall optimization objective,
system reward function model, and vehicle collaborative
transmission model. Vehicles send various types of requests
to the center base station, and base station forwards them
to the cloud platform for processing. The processed results
will be sent back to the vehicles. Due to the high dynamic
topology of IoV, the dotted circles represent the effective
communication range of the base station. Vehicles outside
the range cannot communicate directly with the base station.
Therefore, the V2I (Vehicle to Infrastructure) communication
can be performed within the transmission range of the base
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FIGURE 1. Scenarios model.

station, and the V2V (Vehicle to Vehicle) communication can
be performed outside the transmission range.

We consider a vehicular communication scenario that
occurred within a base station and the cloud platform,
as shown in Fig.1, including the forward driving and reverse
driving vehicles. The user vehicles sends four types of tasks
to the cloud platform and forwards them by the base station.
The flowchart is shown in Figure 2. It represents the process
from the vehicle sending the requests to the cloud platform
processing the requests. Besides, the Table 1 is the list of
important notations in this paper.

A. TRAFFIC MODEL
According to the Quality of Service (QoS) requirements,
we classify requests into four categories, including vehicle
fault requests Eunit (focus on vehicles normal driving),
network operation requests Econ (focus on network stability
between the cloud platform and the vehicle), emergency
requests Eerg (focus on cloud emergency treatment), and
large-scale file requests Efile (focus on driving experience).
The Eunit , the Econ and the Efile are made by the vehicles. The
Eerg are generated by the cloud platform itself. After receiving
the three kinds of requests, the base station transmits them
to the cloud platform. Then the cloud platform computes the
system reward, and the largest reward request has the highest
priority.

B. OVERALL OPTIMIZATION OBJECTIVE
We choose the overall system reward as the optimization
objective. And integrate the computing resources, bandwidth
resources, energy consumption, and time consumption from
the VCC into the reward function:

maxR(S,O) (P1)

minCfile (P2)

s.t. C1 :Cunit + Ccon + Cerg + Cfile < C,

C2 :Cunit > Cfile,

C3 :
Kj∑
i=1

Ei ≤ c ∀j ∈ K , (1)

FIGURE 2. Scenarios flowchart.

TABLE 1. List of important notations.

where R(S,O) is the system reward function. C is the max-
imum computing resource for the cloud. The total capacity
of the four tasks together should be smaller than C . The c
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is the capacity that the vehicle can cache large files. Cunit ,
Ccon, Cerg, Cfile are the computing resources occupied by
vehicle fault requests, network operation requests, emergency
requests, and large-scale file requests respectively. C2 means
Cunit should be as large as possible than Cfile. C3 represents
the per vehicle cache capacity that is limited. K is the set of
vehicles, K = {1, 2, 3, . . . , j . . .}, Kj is the maximum number
of large-scale file requests that the vehicle can hold.

This system aims to get the maximum system reward
and allow more communication and computing resources
for vehicle fault transmission and processing. However,
reducing the Cerg will ignore the network emergencies, and
decreasing the Ccon will have a significant impact on network
stability, which further result in poor communication quality.
Furthermore, users’ satisfaction with the driving experience
droppedwith lowerCfile. However, the response to large-scale
file requests Efile may not necessarily apply cloud resources.
Therefore, we propose a mobile edge caching algorithm in
section IV-B, which specifies that the large-scale file requests
are served by vehicle caching, therebyminimizing large-scale
file service from the cloud.

C. SYSTEM REWARD FUNCTION MODEL
The reward function can be obtained by the difference
between the gain function E(S,O) and the overhead function
P(S,O), as shown in Eq.(2):

R(S,O) = E(S,O)− P(S,O). (2)

S = {s|s =
Ä
ruCom, ruBw, ruPCom, ruPBw, βc, βt ,NQ

ä
} is the

state set of the VCC platform. O = {0, 1, 2, . . . ,NRU } is the
operation set of the VCC platform. B = {Ra,Rl} is the event
set. Ra means request arrivals. Ra means request leaves.

We use E(S,O) represents the gains in time and power
consumption. Taking action O under state S, it can be
expressed as follows:

E(S,O) =
NQ∑
i=1

ei(S,O), (3)

where ei(S,O) means the gain of a single request processed
by the cloud platform. As this paper considered the system,
the benefits of all requests should be synthesized. Further-
more, since the cloud platform has powerful resources and
data storage capacity, the main content of ei(S,O) is caused
by time consumption and energy consumption, as shown in
the following:

ei (S,O) =

®
0 op = 0

[βc(Evi − Piδi)+ βt (Tvi − δi)] op ̸= 0.
(4)

When op = 0, the vehicle does not enjoy the cloud
service, so the gain is zero. When op ̸= 0, the vehicle enjoys
the cloud service. Therefore it avoids the enormous energy
consumption Evi and the time consumption Tvi required
by ordinary internet downloading. But the cloud platform
process makes Pδi and δi consumes added. Additionally, the

consumptions in cloud platform processing are reflected in
overhead function P (S,O).
P (S,O) is the system overhead function for the requests,

including energy consumption, time consumption and energy
consumption caused by the channel fading, which can be
expressed as follows:

P (S,O) = C (S,O) τ (S,O)+
NQ∑
i=1

βc(Pi −�i) · δi, (5)

where C(S,O) means the overhead incurred per unit of
time. τ (S,O) is the time to serve the request by cloud.
NQ∑
i=1

βc(Pi −�i) · δi is the overhead caused by channel fading.

Moreover, since C(S,O) is determined by the number
of virtual machines allocated by the cloud platform, the
following equation can be obtained:

C (S,O) =
NRU∑
i=1

i · ni · (ruBw · ruPCom + ru
P
Bw), (6)

where ni means the number of requests arranged for i

virtual machines, and
NRU∑
i=1

i · ni is the total number of virtual

machines occupied for requestes.
We allocate enough virtual machine resources for requests

which can be processed within the user’s tolerance time,
so the processing time for each request is

τ (S,O) =
Devery
rucom

, (7)

where Devery is the data volume processed by per virtual
machine.

D. VEHICLE COLLABORATIVE TRANSMISSION MODEL
The V2V communication method supplements the V2I com-
munication method, which enables vehicles to get services
outside the transmission range. It reduces the pressure on
communication and computation services. Therefore, V2V
becomes a powerful support for improving cloud services in
VCC.

Here, we focus on the communication between two
vehicles. V2V communication between multiple vehicles
can be achieved by multi hop transmission. If vehicle A
transmits a request from vehicle B by V2V, the vehicles
A and B are the target vehicle and the assisting vehicle,
respectively. According to the vehicle traffic scene, V2V
communication can be divided into three situations: the target
vehicle and the assisting vehicle are relative driving, opposite
driving, and the same direction driving. On the basis of
the IEEE 802.11p agreement, the transmission bandwidth
of V2V is 100kB/s, and the transmission radius of vehicle
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communication equipment transmission is [50m, 500m].

Tv2v =



2rv
vv1 + vv2

vv1 · vv2 ≤ 0

2rv
|vv1 − vv2|

vv1 · vv2 > 0, vv1 ̸= vv2

min{
Ei
λ

,Tchg} vv1 = vv2,

(8)

The first segment indicates the communication duration
when the vehicles are in relative driving, including driving
relative and opposite driving. Furthermore, the communica-
tion range tangent is the maximum communication distance
between two vehicles. The second segment expresses the
communication duration for two vehicles traveling in the
same direction but not relatively stationary, and the com-
munication duration for the relatively stationary vehicles is
showed in the third segment. At this time, the communication
between the two vehicles can be maintained until the request
is completed or the relative motion changes. In addition, this
model is also suitable for vehicles to download large-scale
files from the cloud.

IV. RESOURCE ALLOCATION FOR VCC
To solve the optimization problem of the objective function,
we propose a Mobile Edge Caching based Resource Schedul-
ing (MECRS) mechanism. Its content includes the following
three parts.

A. PRIORITY ALLOCATION STRATEGY
Due to lacking local computing resources, we upload some
vehicle fault requests to the cloud platform. According to the
user tolerance time, data volume, and popularity of requests,
the cloud platform prioritizes the four types of requests. This
method is mainly divided into the following three parts:

(1) Local computing
For the Eunit , according to the relationship between the

service tolerance time Tt and the time threshold Ts, we can
choose local computing or cloud computing.

When Tt < Ts, it belongs to the emergency vehicle fault
request. At this point, the requests should be processed in the
vehicle locally to ensure timely processing.

When Tt > Ts, this request is not time-sensitive.
In this case, it should be uploaded services to the cloud for
processing.

(2) Emergency response
Except for the local computing part, all services must

occupy computing resources. Among the requests, Eerg
should be responded to by cloud firstly due to their urgency.
So, we set an emergency factor ζ for that. When Eerg occur,
ζ = 1, ensuring the preferential processing.

ζ =

®
1 Eerg occurs
0 no Eerg occurs.

(9)

(3) Priority computing
Enough cloud computing resources are required for all

requests uploaded to the cloud. Due to the rapid mobility of

vehicle nodes, if we only follow the principle of first come,
first served, we will miss out on some high reward requests.
Therefore, we design priority rules. The priority equation is
as follows:

Pri = (ω1/Tti + ω2/Ei)× Nri
s.t. ω1 + ω2 = 1, (10)

where ω1 and ω2 are the weights of user tolerance time
and data volume, respectively. Additionally, the resource
requirements for different requests are different. For example,
the computation intensive files require virtual machine mem-
ory capacity and processing speed, and the communication
intensive files focus on the need for network bandwidth
resources. So, ω1 and ω2 are used to adjust the degree of
emphasis on computing or communication resources. It can
be seen from Eq. (17) that under the same conditions,
the shorter user tolerance time, the smaller request data
volume, and the higher request popularity, the higher the
processing priority. This request is highly popular when the
cloud platform receives multiple identical requests (such as
the exact vehicle part fault, downloading the same large
file, etc.). In the three priority considerations, the request
popularity degree Nri is the most important because when the
cloud receives the request, it checks whether there are exact
requests before making the scheduling decision. If the highest
popularity request is selected and served, other identical
requests can be obtained from V2V.

B. MOBILE EDGE CACHING ALGORITHM
As mentioned above, we divide the cloud requests into four
categories. We aim to provide timely service for vehicle
fault diagnosis requests with limited network and computing
resources. In addition to the locally processed requests,
we hope more cloud resources can be used to process the
Eunit . However, the cloud platform cannot target one type of
request. How do we ensure the other three types of requests
response is the problem to solve. Reducing the Cerg will
ignore the network emergencies, and decreasing the Ccon will
have a significant impact on network stability, which further
result in poor communication quality. These two types of
requests have to be handled in the cloud. Therefore, aimed
at Efile, we propose a mobile edge caching algorithm, thereby
minimizing the service of large-scale files from the cloud.

minCfile

s.t.
Kj∑
i=1

Ei ≤ c ∀j ∈ K . (11)

We divide vehicles into requesting vehicles and service
vehicles. Of course, each vehicle can be either a requester
or a server. We cache large-scale files into the service
vehicle in advance based on specific rules. Using the V2V
transmission method, the requesting vehicle can directly
download large-scale files from the service vehicle, reducing
the service of large-scale files from the cloud. This method
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can ensure the service rate of Efile, reduce the computing
pressure of the cloud platform, and leave more computing
resources for Efile.
We choose the edge caching method to serve large-scale

file requests in the resource allocation mechanism [33],
because caching content at the edge of mobile networks is a
promising way to solve data tsunami [29], [34]. It is assumed
that when different vehicles have the same storage content,
the overlap in time is small. This means that vehicles are
storing the same content. The user vehicle only needs to send
a request to a service vehicle until it is interrupted due to the
transmission distance. In the resource buffer pool, this paper
queues according to M/D/1. The service rate is E[rp], the file
playback rate. The transmissive large file data size is E[Y ],
and the arrival rate is λp.

λp = λ · xi, (12)

E[Y ] = E[D] · E[rh], (13)

where E[D] represents the transmission time between user
vehicles and service vehicles, E[rh] represents the download
rate of vehicles, λ represents the communication speed
between the target vehicle and the auxiliary vehicle, that is,
the task arrival rate, and xi represents the number of the same
files downloaded from the collaborative vehicle at the same
time. It can be seen that the service rate of the queue:

ρ = λp ·
E[Y ]
E[rp]

= λ · xi · E[D] ·
E[rh]
E[rp]

, (14)

where ρ is the long term utilization of the queue, E[rp] is the
viewing playout rate of large-scale files

When the large-scale file request i arrives, Pi is the free
probability of the queue.

Pi =
E[Ii]

E[Bi]+ E[Ii]
= 1− ρ, (15)

where E[Ii] represents the free length of the playout buffer
when request i arrives, and E[Bi] represents the busy length
of the playout buffer when request i arrives.
Because our model serves large files, the transfer time is

extended. Then remember thatCfile equals the number of total
bytes downloaded from the cloud. We have that:

lim
Ti→∞

Cfile
Ti
=

E[Ii] · E[rp]
E[Bi]+ E[Ii]

, (16)

Ti =
Ei

E[rp]
. (17)

From the above derivation, we can get the following
formula:

Cfile = Ei · (1− λ · E[D] ·
E[rh]
E[rp]

). (18)

As can be seen from the above formula, when the
other parameters are determined, Cfile mainly depends
on the characteristic of the file itself, which is the Ei.
However, we focus on large-scale file requests, and large
Ei cannot avoid them. Therefore, we research another file

characteristic, the document-popularity. Popularity refers to
the demand for documents. High popularity means multiple
users can download such large-scale files. In section V,
we propose a popularity-based greedy algorithm.

C. GLOBAL OPTIMIZATION METHOD
Based on the allocation strategy, a problem of optimizing
resource allocation in the cloud is raised to maximize the sys-
tem reward andminimize the large-scale file downloaded data
volume from the cloud. Then, we propose a multi-objective
optimizationmethod to efficiently find sub-optimal solutions,
thereby improving the service rate with low complexity.

As shown in algorithm 1, P1 is getting the maximum
system reward. P2 is minimizing computing resources
occupied by large-scale files. Both P1 and P2 have high
computational complexity. Thus, we propose a greedy
two-phase resource allocation algorithm to efficiently find
sub-optimal solutions for Problem 1 and Problem 2 with
low complexity. As depicted in Algorithm 1, Phase 1
(Algorithm 2) and Phase 2 (Algorithm 3) correspond to
solving P1 and P2, respectively, as shown in algorithm 1.

Algorithms 2 and 3 are the decomposition of Algorithm 1.
Algorithm 2 sorts requests based on priority and system
reward functions, and utilizes greedy algorithms to allocate
virtual machine resources to various types of requests.
Algorithm 3 greedily caches the large file requirements of
the user’s vehicle into the service vehicle based on the file
popularity. The sorting method of the algorithm is bubble
sorting, which has a lower time complexity compared to fast
sorting and other methods. In addition, the advantages of the
greedy algorithm are its simplicity and low time complexity.

This paper focuses on effectively allocating the existing
cloud computing resources, so that each optimization result
can simplify the problem to a smaller sub-problem. In addi-
tion, considering the computing load and limited bandwidth
of the cloud platform, and different tolerance time, data
volume and popularity for various requests, if the requests
are served according to the FCFS mechanism, computing
resources can not be effectively utilized.

Given the simplicity and low time complexity of the greedy
algorithm, this paper improves the request priority when
selecting the optimal solution of sub-problems to make the
resource allocation more comprehensive and reasonable. The
algorithm simplifies the cloud platform resource optimization
problem into some sub-selection problems. Simultaneously,
each sub-selection maximizes the current benefit, so we
obtain a local optimal solution. When the cloud platform
has new resources released, the selection is made again to
obtain the optimal local resolution of the new sub-problem.
Furthermore, the repetition process can describe the vehicle
continuously entering the base station communication range
and sending requests in the actual scenario. Therefore, using
a priority-based dynamic greedy algorithm can effectively
optimize the cloud platform’s computing resources and
bandwidth resources to maximize the system reward.
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Algorithm 1 Two-Phase Greedy Resource Allocation
Algorithm

1) For all j ∈ K Do
2) Phase 1: Execute Algorithm 2 to solve P1
3) Phase 2: Execute Algorithm 3 to solve P2
4) Obtain resource allocation solution
5) End For

Algorithm 2 Priority-Based Dynamic Greedy Algorithm
Input: I [num_request]
Output: Sorted I [max_num_request]
Initialization:

1) Begin
2) Initialize parameters, K ={1, 2, 3, . . . , j . . .};
3) For j ∈ K to num_request
4) Calculate corresponding R(S,O), Pri;
5) End For
6) For i = 1 to num_request − 1
7) If R(S,O)i < R(S,O)i+1 Then
8) Exchange I [i] and I [i+ 1];
9) End If
10) If R(S,O)i == R(S,O)i+1 Then
11) If Pri < Pr(i+1) Then
12) Exchange I [i] and I [i+ 1]
13) End If
14) End If
15) End For
16) Allocate VMs in the sequence of I [max_num_request]
17) End

Specifically, the algorithm first calculates the system
rewards for each request the cloud platform receives. Next,
sort by the reward level. If the requests have the same
reward, according to the specified priority from high to low,
thereby forming an overall ordered task queue. Then, starting
from the first position of the task queue, each time trying
to allocate enough virtual machines to meet the demand
quantity in bandwidth and calculation. The allocation is
completed if the optimization measure can be better than
other requests. Otherwise, the next request in the task queue
could be selected. The idea of the algorithm is shown below
in algorithm 2.

The cloud platform collects requests in waiting period,
and makes decisions during the decision period. The pseudo
code represents a single resource scheduling scheme of the
VCC during decision period, and the cloud platform always
provides service to large-reward and high-priority requests.
After collecting the service requests, the process is performed
again in the next decision period. Since the time interval
is small in adjacent periods, a dynamic cloud platform
resource scheduling is formed. In addition, the time span
of both periods is small, therefore forming a dynamic cloud
platform resource scheduling decision process. Furthermore,
we use I [num_request] to indicate the set of requests

Algorithm 3 Popularity-Based Caching Greedy Algorithm
Input:I [file_request], c
Output: Sorted I [file_max_popular]
Initialization:

1) Begin
2) Initialize parameters,;
3) For j ∈ K to file_request
4) If Nr[j] < Nr[j+1] Then
5) Exchange I [j] and I [j+ 1];
6) End If
7) End For
8) Vehicle cache in the sequence of I [file_max_popular]
9) For j = 1 to file_request

10) while
∑j

1 Evi[i] + Evi[most_popular] < c
11) j← j+ 1
12) End For
13) End

collected by the cloud platformwhile waiting for the decision,
I [max_num_request] indicates the arranged request set, K is
the set of vehicles.

To solve the P2, we propose a popularity-based caching
greedy algorithm in Algorithm 3. This algorithm replicates
the most popular content in every service vehicle. Then, the
vehicle’s remaining storage is greedily filled with large-scale
files on the basis of popularity from high to low. This
way, the large-scale file requests are effectively offloaded to
the service vehicle. Therefore, cloud resources’ pressure to
process multiple requests can be alleviated. Consequently,
more computing resources are left forEfile, thereby improving
the Efile service rate. In addition, Nr[i] indicates the Efile
popularity level, Evi[i] indicates the file size, and c is the
capacity that the vehicle can cache large files.

V. SIMULATION AND ANALYSIS
In this section, we carry out comprehensive simulations.
There are four service rates of successful requests as
indicators in the evaluation, and the performance of the
proposed mechanismMECRS is shown from two aspects: the
user side and the service side. We first give the variation of
the four requests service rates with vehicle density and then
compare the rates under different requests proportion. Finally,
the service rate changes with cloud virtual machine density
show MECRS optimality.

A. SIMULATION SETUP
We simulate the communication scenarios as shown in Fig. 1,
where N vehicles are within the coverage area of one cellular
base station, andM vehicles are outside the range of the base
station. The road includes a single lane in two directions,
and vehicles are divided into relative and opposite driving.
The user vehicles sends three types of requests to the cloud
platform and forwards them by the base station. The other
requests Eerg are generated by the cloud platform itself. The
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TABLE 2. Simulation parameters.

simulation analysis work is carried on MATLAB. We build
a simulation tool to simulate the requests for vehicles to
the cloud. We set the road length at 10,000 meters and put
infrastructure at 5,000 meters in the middle. Furthermore,
the effective communication range is 500 meters. The safe
distance between each vehicle is 50 meters. The acceleration
of the vehicle is typically distributed. Besides, real-time speed
adjustment is carried out when the distance between vehicles
is less than the safe distance.

As for the parameters of the network environment,
we apply the IEEE 802.11p protocol, in which the trans-
mission bandwidth of V2V is 100kB/s and the transmission
radius of onboard communication equipment is [50m, 500m].
Here, We assume that large files are rated on a scale of
popularity from 1 to 10, with 10 being the most popular
and 1 being the least popular. Then, We set the scenario
that the cloud platform has yet to reach saturation, which
always remains computing resources. Simulation settings are
shown in Table 2. The price of per virtual machine refers to
Amazon’s public cloud service price.

The simulation experiment is divided into two parts. This
paper uses four request success service rate as evaluation
metrics to demonstrate the performance of the MECRS
mechanism from both the user and server perspectives.
We define the service rate as the proportion of successfully
responded requests to the total number of requests.

In the user-side experiment analysis, we first compare the
trend of successful service ratios for four different services
under different mechanisms as vehicle density increased.
Then, we present the changes in service ratios for four
different requests with different proportions. Finally, through
the collected real data, we verify the effectiveness of the
cloud platform assisted processing of vehicle fault diagnosis.
In the server-side experimental analysis, we compare the
occupancy of virtual machines under different mechanisms
from computing resources, as the vehicle density increased.
The optimal number of virtual machines is provided to avoid
resource waste.

B. COMPARE MECHANISM
We consider and compare the performance with the following
allocation policies:

• MECRS: This mechanism proposed in this paper
divides local processing and cloud processing to use
local resources fully. Then a multi-objective optimized
resources scheduling method is applied.

• Random: All vehicle fault requests are uploaded to the
cloud for processing, and the vehicle randomly caches
large-scale files.

• No-Caching: All vehicle fault requests are uploaded to
the cloud for processing, and the vehicle edge caching
mechanism is not applied.

• FCFS: The cloud responds to all requests using the first
come, first serve rule.

C. ANALYSIS FOR USER SIDE
Wemake each vehicle send requests every 1 second. Vehicles
outside the effective communication range can transmit over
multiple hops by V2V. The number of cloud VMs (Virtual
Machines) is 200, and the proportion of four requests is
5:2:2:5. We assume that Eunit is proportional to Efile, and
Eerg is proportional to Econ, Obviously, Eunit and Efile are
sent more frequently. The objective function of this paper
is to maximize the system reward function, which is mainly
determined by gain function and the overhead function in
Eq.(2). In addition, this paper assumes that the loss caused
by channel fading is not considered.

It can be seen from Fig.3 that while the requests Econ
and Eerg are served timely, the first three mechanisms can
lengthen the interval that Eunit are 100 percent serviced.
However, with the increase of vehicle density, under the
Random andNo-Cachingmechanisms,Eunit are not allocated
enough virtual machines due to the higher priority of category
Eerg and Econ. Therefore, the vehicle fault service rate is
even lower than that in the FCFS mechanism (the reason for
the lower Efile service rate of the No-Caching mechanism
in Fig.3(d) is identical). Then, we propose a priority-based
algorithm and a popularity-based caching greedy algorithm
to solve this problem. Fig.3(a) shows theMECRSmechanism
can effectively improve the service rate of Efile compared to
other mechanisms. Sequentially, even under the premise of
high vehicle density, we can guarantee the service rate of
50 percent.

In Fig.3(b)(c), the emergency factor we set enables Eerg to
be responded preferentially. Under the premise of 100 percent
Eerg service rate, the Econ also has higher service rate to
ensure network stability and security.

From Fig.3(d), we can see the MECRS mechanism
improves the Efile service rate. When N=120 (the number
of vehicles), there is minimum service rate. This is because
the cloud platform numerous resources occupied for other
higher priority requests, and the number of vehicles limits the
capacity of cached files. Therefore, the lowest value appears.
As the vehicle density increases, the total buffer capacity
increases, so the service rate enhances and then level off.
At this point, the service rate of the user getting large-scale
files from the cache vehicles has reached the maximum, and
the limiting factor becomes the cloud resources.
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FIGURE 3. Service rate of four requests vs. number of vehicles, VMs = 200, proportion of four types is 5:2:2:5.

FIGURE 4. Service rate in different proportions vs. number of vehicles, VMs = 200.

Fig.4 shows the service rates of Eunit and Efile at different
ratios. The first is both in the same proportion. The second
is Efile weight ratio. The third is Eunit weight ratio. Under

the 1: 1: 1: 50 ratio, due to the reduction of Eunit , the local
processing capacity is sufficient and can reach a service rate
of 100 percent. At the same time, with the increase in Efile, the
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FIGURE 5. Service rate under different mechanisms.

FIGURE 6. Feature weights.

vehicle cache files have been fully utilized so that the service
rate can reach 99 percent. The remaining 1 percent is because
there is no such file in the surrounding vehicles. This file must
be downloaded from the cloud, which cannot be transmitted
successfully within the tolerable time, resulting in a service
failure. Furthermore, under the ratio of 50: 1: 1: 1, the Eunit
service rate and the successful service rate have increased
due to the increase in the request density. Meanwhile, the
Efile decrease and there is less competition with sufficient
cache capacity, improving the service rate. In summary, the
proposed mechanism can increase the service request rate
under various request ratios.

Traditional vehicle fault diagnosis algorithms mostly
collect fault data and process it online. This can ensure
the timeliness of task processing, however it will lead to
insufficient computing capability of the local processor in
vehicles. Especially when there are many other types of
tasks that require local processing in vehicles, such as road
section warnings, autonomous driving, etc. Therefore, this
paper proposes a fault task offloading mechanism, keeping
part of the vehicle failure tasks locally and offloading part
of them to the cloud platform for processing. Details are
elaborated in Section IV. A.

Literature [37] proposes a vehicle-mounted fault diagnosis
system with low computational complexity and small data

FIGURE 7. Service rate of vehicle features.

storage, for achieving real-time monitoring of vehicle status.
It validates the effectiveness of the proposed diagnosis
system in terms of accuracy, complexity and storage capacity.
This paper obtained 466688 samples through Electronic
Vehicle management, of which 177261 samples are faulty.
In summary, there are 539 original features and the actual
data volume is 6.52 GB. During the dataset collection
process, it is inevitable to encounter some data errors and
omissions. Therefore, it is necessary to preprocess the data
before conducting simulation verification. The experimental
results obtained from effective real data are more valuable
and instructive. It mainly includes the following three steps:
data integration, remove useless attributes and missing value
processing.

When the local computing capacity is insufficient or
largely occupied by other tasks, some fault tasks with high
latency requirements may not be processed in time. At this
point, the vehicle has driven out of the V2I transmission
range, and also fails to transmit by V2V, which results
the waste of resources. As shown in the simulation results
in Fig. 5, assuming that only 20 percent of the vehicle
CPU resources are occupied, it can be seen that when
local resources are insufficient, the MECRS mechanism can
improve the service rate of Efile. And it gradually decreases
as the vehicle density increases. Moreover, the real-time
diagnosis mechanism in [37] is not affected by vehicle
density.

Fig. 6 shows the weight of each feature. we can see that
features related to battery have the highest weights, and the
second most important features are the one related to vehicle
component. The third are the energy features. The remaining
features are collectively referred to as the other features.
We applied these four types of features to validate the
mechanism proposed in this paper. As can be seen fromFig. 7,
all four types of failure data received effective responses.
When the vehicle density is low, 100 percent service rate can
be achieved.

D. ANALYSIS FOR SERVICE SIDE
We make each vehicle send requests every 1s. The number
of vehicles N = 200, and the proportion of four requests:
5:2:2:5.

36106 VOLUME 12, 2024



W. Gu et al.: Framework of Cloud Computing Resource Scheduling for Vehicle Fault Diagnosis

FIGURE 8. Service rate of four requests vs. number of VMs, N = 200, proportion of four requests is 5:2:2:5.

From Fig.8, we can see that as the virtual machine
density increases, the service rates of four requests improve.
When virtual machine resources are insufficient, high priority
Econ and Eerg occupy most virtual machines under the
Random and No-Caching mechanisms, making Efile service
rate even lower than that under FCFS mechanism. However,
it improves significantly when the virtual machine number
increases to 160. Under the Econ and Eerg responded in time,
we effectively increased the service rate of Eunit . On the
one hand, we ensure the requests are 100 percent served
under the premise that the VMs is not saturated (280-400).
On the other hand, when the VMs is insufficient (20-80),
50 percent service rate can also be guaranteed due to the
vehicle local processing. In Fig.8(d), the Efile service rate
under the No-caching mechanism is the lowest because the
other three requests have higher priority than large-scale file
requests. Hence, we use the Popularity-based edge caching
mechanism to solve the problem of low file service rate. The
proposed mechanism MRCRS obviously improves the Efile
service rate, and the other two requests are also responded in
time.

In addition, it can be observed that when all requests
are 100 percent serviced, the optimal number of virtual
machines is 360. However, at 260 units, the first three
types of requests have reached 100 percent service rate.
Between 260 and 360, the Efile service rate does not increase
significantly. Therefore, from an economic perspective,
the optimal number of virtual machines on the cloud
platform is about 260, which has practical reference value in
reality.

VI. CONCLUSION AND FUTURE WORD
In this paper, we proposed a computing resource alloca-
tion mechanism for the on-board vehicle fault diagnosis.
Based on the tolerance time of diagnosis service, we first
designed a priority allocation strategy for all four types
of requests. Then, considering the QoS characteristics of
requests, we made a priority allocation strategy to maximize
the long-term reward of the VCC system. In addition,
a mobile edge caching algorithm with high popularity
was proposed which offloaded the large-scale file requests
to alleviate the pressure of the cloud. Consequently, the
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multi-objective optimization resource scheduling method
was proposed to allocate communication and computing
resources. Finally, the simulation results revealed that the
Eunit 100 percent serviced interval was elongated while
ensuring the timeliness of the other requests, and even under
the premise of high vehicle density, we can guarantee the
service rate of 50 percent. Compared with the real-time
diagnosis mechanism, it can improve the service rate under
the insufficient resources. This will significantly reduce the
traffic impact caused by vehicle fault. And, from an economic
perspective, for the set simulation scale, the optimal number
of virtual machine configurations was given in 260, which
has practical reference value in reality.

The research on vehicle fault diagnosis is very meaningful
and can effectively avoid various traffic problems, such
as traffic congestion, travel plans, traffic accidents, etc.
By utilizing knowledge graph technology, the collected
data can be used for knowledge association and mining,
forming a huge vehicle fault knowledge base. In addition,
the powerful computing and storage capabilities of cloud
computing can more effectively solve vehicle fault diagnosis
problems, which is a new direction that can be explored in the
future.
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