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ABSTRACT Source code summaries play a crucial role in helping programmers comprehend the behavior
of source code functions. In recent deep-learning based approaches for Source Code Summarization, there
has been a growing focus on Transformer-based models. These models use self-attention mechanisms to
overcome the long-range dependency issue that previous models often encounter, making them a promising
solution for the Source Code Summarization task. However, these models suffer from two shortcomings:
1) they are weak in handling the semantics of keywords, and 2) they are weak to learn the source code with
complex structure. To resolve these shortcomings, our study proposes integrating Non-Fourier and AST-
Structural relative position representations into Transformer-based model for Source Code Summarization,
which we have named NFASRPR-TRANS. NFASRPR-TRANS employs two types of positional encoding
schemes in two different Transformer encoders. The first encoder handles the semantics of the keywords
of the input source code sequence by using the Gaussian Embedder to encode the non-Fourier relative
position representation of the sequence. The second encoder uses Tree Positional Encoding to learn the
structural information of the Abstract Syntax Trees (ASTs), which provides relative position information in
the ASTs for generating the source code summaries. Finally, we comparedNFASRPR-TRANSwith previous
models and evaluated its performance on the Java and Python datasets using five metrics, including BLEU,
ROUGE-L, CIDEr, METEOR, and SPICE. NFASRPR-TRANS achieves 2%-10% improvements across all
five metrics on both datasets.

INDEX TERMS Abstract syntax tree, deep learning, machine translation, natural language, program
comprehension, positional encoding, source code summarization, software engineering.
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ROUGE Recall-Oriented Understudy for Gisting Eval-
uation.

RQ Research Question.
SBT Structure-based Traversal.
SDLC Software Development Life Cycle.
seq2seq Sequence-to-sequence.
Si-SAN Structure-Induced Self-Attention.
SPICE Semantic Propositional Image Caption Evalu-

ation.
SWUM Software Word Usage Model.
TR Text Retrieval.

I. INTRODUCTION
Over the years, there has been a spate of interest in using
software in human life. To ensure the proper function-
ing of the software, activities such as software testing and
software maintenance have received significant attention.
However, these works are often time-consuming. According
to research, the maintenance stage of the Software Develop-
ment Life Cycle (SDLC), accounts for an estimated 59% of
the total time cost, on average [1]. Program comprehension is
regarded as a major factor in code maintenance, and having a
source codewith good code summarization is believed to help
reduce future maintenance costs [2]. Source code summaries
could help programmers comprehend the behavior of source
code functions, which is beneficial to the programmers’ work
of software maintenance, code categorization, code retrieval,
and other work [3], [4], [5]. The automation of Source Code
Summarization is believed to free programmers from the
heavy work of manually summarizing the code and to reduce
the mismatch between summaries and functions of code [6].
With good summarization of source code, programmers

could quickly understand the actions of the source code.
Comparatively, if the summary lacks information on the
internal behavior of the source code, the programmers may
struggle to comprehend the purpose of the source code and
have to invest more time in tracing through the entire code to
understand it.

Early works [3], [6], [7], [8], [9], [10], [11], [12], [13]
treat the Source Code Summarization task as an Information
Retrieval (IR) task. They used templates to extract the key-
words in a source code and to generate a summary, by way
of synthesizing the keywords into the corresponding natural
language templates. However, the IR-based models rely on
pre-defined templates; they do not consider the semantics
of the keywords or the contextual information between key-
words and surrounding codes. As a result, the summaries
generated by the IR-based models often suffer from poor
readability [14].
Recently, researchers working on Source Code Summa-

rization have been inspired by the Neural Machine Trans-
lation (NMT) task in Natural Language Processing (NLP).
The latest Deep Learning (DL) models for Source Code
Summarization follow an encoder-decoder framework [15],
using architecture such as Recurrent Neural Network [16],
Graph Neural Network [17], or Transformer [18].

Recent DL-based approaches [14], [19], [20], [21],
[24], [25] are raised more attention on Transformer-based
model [18] which uses self-attention mechanism to handle
the long-range dependency issue that both RNN-based [19],
[23] and GNN-based [17] models struggle with. Even though
the Transformer-based models achieve state-of-the-art per-
formance compared to other DL-based models and IR-based
models [24], they still have several deficiencies.
Example 1: First, most of the Transformer-based models

are using sequential relative positions between code tokens.
This approach may ignore the structural or semantic infor-
mation of the source code. For example, Figure 1 shows that
the Transformer [24] cannot effectively summarize this code
snippet, as its model lacks the ability to learn the structural
information. Although some other Transformer-based mod-
els, such as SiT [25], have attempted to address this issue by
integrating matrices containing the structural information of
AST into their models’ calculations, these matrices need to
be fixed in size when training. In other words, models may
only capture the contextual information within a single block
of input source code and ignore the cross-block information.
As shown in Figure 1, the if statement within the nested
function in this example may be overlooked by SiT.

The second limitation of previous Transformer-basedmod-
els is their inability to correctly learn the definition of special
keywords, especially those that are out-of-vocabulary (OOV).
Although they have implemented a ‘‘Copy attention mecha-
nism [26]’’ to avoid the OOV problem, and can generate a
complete summary without any unknow tokens, this method
still does not ensure the model could learn the contextual
meaning of OOV words well. For instance, as illustrated in
Figure 1, the Transformer was unable to accurately interpret
the meaning of certain keywords, such as ‘sync’ and ‘wrap’.
Similarly, SiT was unable to understand the meaning of ‘db’.

In this study, we demonstrate that incorporating both 1)
the non-Fourier relative position representation in source
code tokens and 2) the AST-structural relative position rep-
resentation in ASTs of source code are essential for the
Transformer-based models to understand the semantics and
syntax of source code. As depicted in Figure 1, ourmodel suc-
cessfully captures the definition of keywords such as ‘wrap’
and ‘sync’ and also learns the syntactic information of the
nested function, including the if statement in it. For a more
detailed analysis of this case, please refer to section V.

Our proposed model, integrating Non-Fourier and
AST-Structural Relative Position Representations into
Transformer (NFASRPR-TRANS), is a Transformer-based
model designed for the Source Code Summarization task.
We construct it by referring to the works of [14], where
we apply two Transformer encoders to learn two differ-
ent types of position representations respectively. The first
Transformer encoder, the Source Code Sequence (SC-Seq)
Encoder, directly integrates the non-Fourier relative position
representation between source code tokens into the input
source code sequence. This positional encoding step helps
the model better capture the contextual relationships between
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FIGURE 1. A nested function example written in Python.

specific keywords. The other Transformer encoder, the AST
Relative Position (AST-RP) Encoder, is based on SiT [25],
blending the AST-structural relative position representation
into the input data and the computation of the self-attention
mechanism. This allows NFASRPR-TRANS to more effec-
tively learn the structural information and grammar rules
inherent in the programming language.

Our study presents the experimental results on two com-
mon datasets for performance competition in different pro-
gramming languages, Java [27] and Python [28]. The results
demonstrate that our proposed model, NFASRPR-TRANS,
surpassed the comparative models [24], [25] in terms of five
evaluation metrics, achieving a better performance on both
datasets. Specifically, on the Java dataset, the performance of
NFASRPR-TRANS outperforms the comparative models by
at least 6.21%, 6.30%, 6.94%, 10.30%, and 6.63% in terms of
BLEU [29], ROUGE [30], CIDEr [31], METEOR [32], and
SPICE [33] scores, respectively. While in the Python dataset,
NFASRPR-TRANS outperforms comparative models by at
least 2.43% in BLEU, 1.84% in ROUGE-L, 5.94% in CIDEr,
4.33% in METEOR, and 4.83% in SPICE.

To conclude, our study makes the following main contri-
butions:

• We propose NFASRPR-TRANS which introduces two
distinct types of Transformer encoders. These encoders
learn the non-Fourier and AST-structural relative posi-
tion representations of the source code separately, result-
ing in improved code semantics and syntax learning.

• We demonstrate that our proposed model improves the
quality of automatically summarizing the source code,
as measured by five automatic evaluation metrics, and
by incorporating both the non-Fourier relative position
representations and the AST-structural relative position
representations.

• We confirm the effectiveness of NFASRPR-TRANS in
enhancing the source code summarization quality by
conducting extensive experiments on benchmarks for
the Source Code Summarization task. The source code
and datasets for NFASRPR-TRANS are publicly avail-
able on GitHub.1

1https://github.com/hsmeiliang/NFASRPR_TRANS

For the rest of our paper, its organization is as follows.
Section II introduces the previous works of the Source
Code Summarization and the related DL techniques in our
work. In section III, there is an explanation of the workflow
and architecture of NFASRPR-TRANS in detail. Section IV
shows the experimental result of our proposed model and
the comparison of its performance with previous works.
In section V, we provide a test case to evidence that
the improvements are reflected in the generated summary.
Section VI covers the research questions and the threats to
validity in our study. Finally, the conclusion of our study and
future research works are discussed in section VII.

II. RELATED WORKS
A. MANUALLY-DESIGNED AND IR-BASED APPROACHES
FOR SOURCE CODE SUMMARIZATION
Reviewing the past, the works for Source Code Summa-
rization have focus on exploiting the manually-designed and
information retrieval (IR) approaches, to extract features and
keywords in the source code and to synthesize them to gen-
erate predictive summaries.

Haiduc et al. [3] proposed employing the Text Retrieval
(TR) approach, a branch of the IR-based approach, to extract
the lexical information, such as keywords, from the input
source code. The extracted keywords are then combined
with the structural information of the source code to acquire
the semantics of the programming languages, resulting in
automatically summarizing the source code. The purpose of
Haiduc’s approach was to gain insight into the source code
behavior by utilizing the identified keywords.

Sridhara et al. [6] introduced the Software Word Usage
Model (SWUM), which automates the extraction of the key-
words with their linguistic and structural relationships in
source code. This allows for the identification of actions,
themes, and secondary arguments related to a specific
method. The SWUM approach combines the linguistic infor-
mation of the identification with the control flow graph,
along with data and control dependencies to create a detailed
logic summary of the source code. After that, they proposed
an extension model of the SWUM [7], which focused on
capturing the high-level actions of source code methods
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from a block-wise relationship perspective, in contrast to the
statement-wise relationship of their earlier model. With this
modification, their approach can more accurately capture the
if-else and loop relationships within the source code, resulting
in a more precise Source Code Summarization.

Lastly, Zhang et al. [34] introducedRencos, a novelmethod
that blends the IR-based andDL-based approaches for Source
Code Summarization. To accomplish this, Rencos utilizes IR-
based techniques to retrieve two source codes that are most
syntactically and semantically similar to the input code. The
DL-based approach then encodes the input and the retrieved
codes, and a summary of the source code is generated by
merging the input and the two retrieved codes during the
decoding process. The results of the experiments indicate that
Rencos leverages the complementary strengths of IR-based
and DL-based approaches, improving the performance of the
Source Code Summarization task.

B. DL-BASED APPROACHES FOR SOURCE CODE
SUMMARIZATION
Ahmad et al. [24] put forward a Transformer-based model for
Source Code Summarization, which employs relative posi-
tion representations and copy attention. Unlike models that
rely on structural information in ASTs, they pointed out that
incorporating the sequential mutual interactions of source
code tokens in the self-attention mechanism can better rep-
resent the semantics of source code. Their results show that
their Transformer-based model outperforms previous models
significantly in the Source Code Summarization task.

Wu et al. [25] proposed SiT, which is a Transformer-
based model with a novel structure-induced self-attention
(Si-SAN) mechanism to generate summaries for the source
codes. SiT uses the source code sequence and the multi-
view structural information of source code as input. The
multi-view structural information is captured by adjacency
matrices of three code graphs, including abstract syntax tree,
control flow, and data dependency. Then, SiT adopts their
proposed Si-SAN mechanism, which is designed to drop
out irrelevant information in the self-attention matrix, based
on the multi-view structural information. Their experimental
results revealed that SiT, through the utilization of the Si-SAN
mechanism, attains a quicker convergence rate compared to
Transformer [24].
Gong et al. [14] proposed SCRIPT, a model for Source

Code Summarization that enhances the learning of struc-
tural information in the source code by employing two types
of transformer encoders. The first encoder is a standard
Transformer encoder, which directly integrates the structural
information of the code into the code sequence, while the
second encoder is derived from SiT, which calculates the
dependencies between the tokens in the AST. Different from
SiT, SCRIPT calculate the shortest path length of the AST
in order to get the structural information of the source code
from the AST. They point out that the AST’s shortest path
length reflects the relationship of two tokens, as there exists

a positive correlation between the proximity of two tokens
in the AST of source code and the strength of their semantic
relationship.

These studies demonstrate the potential of integrating the
structural information of the ASTs into a Transformer-based
model to produce high-quality summaries for the input source
code. However, as the case shows in Example 1 in section I,
the existing Transformer-based models suffer from two short-
comings: 1) they are weak in handling the semantics of
special words, and 2) the models are weak to learn the source
code with complex structure.

To resolve these shortcomings, in this study, we propose
a novel approach, NFASRPR-TRANS, which employed two
different methods in the positional encoding step to learn the
information which relates to the two shortcomings separately,
and which improves the ability of our model to comprehend
the source code and which also generates more accurate
summaries.

C. TRANSFORMER
Due to the ability for better long-term dependency modeling,
the Transformer-based model has gained more popularity
than RNNs in the NLP task. The Transformer [18], also
known as vanilla Transformer, uses self-attention and par-
allelization for an efficient information exchange between
inputs and outputs, making them more suitable for handling
complex NLP tasks.

Similar to RNNs [16], Transformer is a sequence-to-
sequence model with encoder-decoder architecture. The
encoder of the Transformer is composed of multi-head atten-
tion with a self-attention mechanism, feed-forward neural
network (FNN), and Add&Norm. The decoder of the Trans-
former has similar structures to the encoder, but the masked
multi-head attention is added in each decoder layer.

In Transformer, both the input and target output are
sequences of tokens that are embedded as a sequence of
vectors. To be specific, the set of input and target output
vectors is

{
x i, yi

}
, 1 ≤ i ≤ N , where N is the number of

training data. An input vector x i =
(
x i1, x

i
2, . . . , x

i
m
)
, where

x im ∈ Rdmodel ,m is the number of code tokens of the i-th inputs
and dmodel is the dimension of the model. A target output
vector yi =

(
yi1, y

i
2, . . . , y

i
ω

)
, where yiω ∈ Rdmodel and ω is

the number of words of the i-th target output sequence. Then,
the positional encoding layer adds the position information
of the tokens into the input vectors and output vectors. The
input vector will be the input to the encoder, and the output
vector from the encoder will be the input to the decoder.

In the self-attention mechanism, an input vector x =

(x1 . . . xm) is transformed to an output vector o = (o1 . . . oc),
where c is the length of the output vector. The calculation of
the self-attention mechanism is as follows:

oi =

m∑
j=1

αij

(
xjWV

)
, (1)
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eij =
xiWQ

(
xjWK

)T
√
dk

, (2)

αij =
exp

(
eij
)∑m

k=1 exp (eik)
, (3)

where WQ and WK
∈ Rdmodel×dK , and WV

∈ Rdmodel×dV are
the parameter matrices which are attention weights that are
unique.

Since the input vector x can be regarded as a large matrix,
we express the self-attention calculation in the following
equation, and it can be calculated in parallel.

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (4)

where Q = WQx, K = WK x, and V = WV x.
In multi-head attention, there are multiple attention heads

in each layer. An attention head is a set of (WQ,WK ,WV )
parameter matrices. The calculation of the multi-head atten-
tion is

MultiheadAttention (Q,K ,V )

= Concat (head1, . . . , headh)WO, (5)

headi

= Attention
(
QWQ

i ,KWK
i ,VWV

i

)
, (6)

where (WQ
i ,WK

i ,WV
i ) are i-th attention head’s parameter

matrices, h is the number of heads, and WO is a parameter
matrix owned by the whole multi-head attention heads.

Masked multi-head attention differs from regular multi-
head attention in that the masked multi-head attention only
looks to earlier positions of the output vector. That is, (1) is
changed to

oi =

i∑
j=1

αij

(
xjWV

)
. (7)

The Add&Norm layer calculates the residual connection
and layer normalization for a vector. That is

LayerNorm
(
x ′

+ o′
)
, (8)

where x ′ is the input vector of the previous block of
Add&Norm, and o′ is the output vector of the previous block
of Add&Norm.

The FNN is composed of a fully connected network and a
ReLU activation function, processing the input vector. That
is

FNN
(
x ′
)

= ReLU
(
WFx ′

+ bF
)

, (9)

where WF and bF are the fully connected network’s weight
matrix and bias vector, respectively.

In addition, in section II-B we have introduced that
Wu et al. [25] proposed a variant self-attention mechanism,
namely Si-SAN, which drops out irrelevant information in
the self-attention matrix based on the multi-view structural

information. The calculation of Si-SAN can be expressed
with the following equation:

SiSAN (A,Q,K ,V ) = softmax
(
A · QKT

√
dk

)
V , (10)

A = αAast + βAfl + γAdp, (11)

where A is the multi-view structural information, which is an
integrating matrix of three code graphs’ adjacency matrices,
including the Aast abstract syntax tree, the Afl control flow,
and the Adp data dependency graphs. And α, β, γ are the
corresponding weight for each adjacency matrix.

D. POSITIONAL ENCODING SCHEMES
Recently, there has been a spate of interest in positional
encoding for deep learning, particularly for Transformer-
based models [35]. Viswani et al. [18] proposed the Trans-
former, which utilizes the self-attentionmechanism to capture
the long-dependencies relationship in input data. However,
since the self-attention mechanism is not sensitive to the
position information of the input data, it is necessary to
use positional encoding to incorporate the position infor-
mation into the model. For the source code which features
unique structural properties and follows strict programming
language grammars, there are multiple ways to encode it.

Viswani et al. [18] first propose to incorporate position
information by injecting it into the Transformer only at the
first layer of the encoder and decoder using a pre-defined
sinusoidal function. Subsequently, Dehghani et al. [36]
observe that the Transformer-based model could achieve a
better performance by injecting position information into
each layer of the model.

Ahmad et al. [24] proposed the use of relative posi-
tional encoding [37] within the Transformer-based model
for Source Code Summarization. They demonstrated that
the semantic information of the source code is not solely
dependent on the absolute position of the code tokens, but
rather on the relative position of any two tokens. For instance,
the semantic meaning of ‘1+2’ is the same as ‘2+1’.

Zheng et al. [35], [38] proposed a positional encoding
scheme that leverages pre-defined non-Fourier functions,
such as Gaussian function. The performance of the non-
Fourier functions of positional encoding is heavily influenced
by a trade-off between the stable rank of the embedding
matrix and the distance preservation of the embedding coor-
dinates. Specifically, the stable rank has a significant impact
on themodel’smemory of the training data, while the distance
preservation affects the generalization ability of the model.

Shiv et al. [39] proposed a tree positional encoding scheme
for extending the Transformer model to tree-structured data,
enabling the mapping of data between tree and sequence
structures. Shiv et al. utilized a stack-like position represen-
tation that encodes the path information from the root node
for each node, and the scheme takes two hyper-parameters:
1) the width of the tree, and 2) the depth of the tree.
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Wu et al. [25], and Gong et al. [14] proposed using
adjacency matrices for encoding tree-structured data in the
Transformer-based model, indicating that it is important to
choose a suitable positional encoding scheme for learning the
specific information from the input data, and that utilizing
the features in the ASTs of the source code could help the
Transformer-based models to comprehend some structural
information of the source code.

These studies indicate that it is important to choose a
suitable positional encoding scheme for learning the specific
information from the input data, and that utilizing the features
in the ASTs of the source code could help the Transformer-
based models to comprehend some structural information of
the source code.

Inspired by these observations, to solve the shortage of
the Transformer-based models which we have illustrated in
Example 1 in section I, the ability of themodel to comprehend
the semantics of the keywords and structural information
of the input source code is important. Our model uses two
different methods to learn them from the input source code.
Specifically, NFASRPR-TRANS applies: 1) the Gaussian
Embedder to encode the non-Fourier relative position repre-
sentations between source code tokens to learn the contextual
relationships between specific keywords, and 2) the Tree
Positional Encoding to encode the AST-structural relative
position representations to make the model comprehend the
complex structure of the input source code.

The details of the Gaussian Embedder and the Tree Posi-
tional Encoding are in section III-A.

III. NFASRPR-TRANS: INTEGRATING NON-FOURIER AND
AST-STRUCTURAL RELATIVE POSITION
REPRESENTATIONS INTO TRANSFORMER
A. WORKFLOW OF NFASRPR-TRANS
As the illustration in Figure 2 shows, NFASRPR-TRANS
involves several key steps. First, we pre-process the input
source codes and summaries, and also generate the ASTs
of input source code for the Tree Positional Encoding step.
Next, NFASRPR-TRANS employs two types of positional
encoding schemes, one representing the non-Fourier rel-
ative position by the Gaussian Embedder for the source
code sequences, and the other conducting the AST-structural
relative position representations of the ASTs using Tree
Positional Encoding. These positional encoding schemes
facilitate the encoder’s ability to understand the semantics and
structural information of the source code. Finally, the code
sequence and the two types of relative position representa-
tions are fed to the model encoder, and then the predicted
summary is generated by the decoder.

1) PRE-PROCESSING OF SOURCE CODE SEQUENCE
To generate efficient input features for the source code
text, we implemented the pre-processing step proposed by
Ahmad et al. [24], since some user-defined code tokens
are compound words in CamelCase and snake_case forms,

which are rare words in the training dataset and cause the
OOV problem [26]. To address this, our model splits up the
CamelCase and snake_case forms source code tokens before
conducting Word Embedding on the input source code. This
step enables our model to capture the essential information
from the source code text, and generates high-quality sum-
maries that are both accurate and informative.
Example 2: The CamelCase and snake_case forms are

two types of naming conventions in computer programming.
In the CamelCase form, words are joined together without
spaces or punctuation, and the first letter of each word is
capitalized to make it easier for humans to identify each
individual word. For example, the code tokens ‘‘stepValue’’
is CamelCase form code tokens. In the Pre-processing step,
these tokens are split by spaces and become ‘‘step Value’’.
On the other hand, snake_case joins words with an under-
score and uses all lowercase letters. For example, code tokens
such as ‘‘resource_patch’’ is written in snake_case. After pre-
processing, these tokens become ‘‘resource patch’’.

The next step is Word Embedding, which is a common
technique in the NLP task [40] and has been widely used in
DL-based models for Source Code Summarization [24], [25].
It is a pre-train neural network to transfer the input tokens
into vectors, and these vectors could represent the semantics
similarity of each of the two tokens by their distance in the
vector space. If any two tokens have similar meanings or
characteristics, their distance in the vector space is close.
Otherwise, when two tokens have different meanings or are
completely irrelevant, they are far away from each other in
the vector space.

2) ASTS OF THE SOURCE CODE
We employed several open-source tools to generate the ASTs
of the source code. The javalang [41] is a tool that is used
to parse the source code in the Java programming language,
which extracts the ASTs in the dictionary form, while the
attokens module provided by [25] is used to obtain the ASTs
of the source code in the Python programming language.
By leveraging these tools, the ASTs of the source codes are
generated and passed to the Tree Positional Encoding.

3) GAUSSIAN EMBEDDER
To generate the non-Fourier relative position representations
of the source code sequence, we use the Gaussian signal as
the embedding function, as in [38]. The computation of the
Gaussian Embedder is as follows [45]:

φ (t, xi) = exp

(
−

|t − xi|2

2σ 2

)
, (12)

σ =
1

4N
√
k × ln 10

, (13)

where xi is the i-th token of the input source code sequence
x, k is the empirically chosen threshold, N is the number of
samples, and σ is the standard deviation chosen log-linearly
from [10−4, 10−1].
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FIGURE 2. The source code summarization workflow of NFASRPR-TRANS.

The embedded distance between the two tokens x1 and x2
is as follows [38]:

D (x1, x2) = exp

(
−

|x1 − x2|2

4σ 2

)
. (14)

As pointed out by [38], the value of σ is crucial in deter-
mining the performance of the Gaussian Embedder, which
is related to the model’s memorialization and generalization.
A large σ leads to overly smooth generalization and poor
memorization becauseD (x1, x2) becomes larger. Conversely,
a small σ leads to bettermemorization but poor generalization
because the D (x1, x2) becomes smaller.

4) TREE POSITIONAL ENCODING
In the Tree Positional Encoding step, to provide the model
with the structural information of the input source code,
we refer to the work of [39] to obtain relative position rep-
resentation from the ASTs. Specifically, our model utilizes
the Pre-order traversal algorithm to traverse an AST, and
then reversing the Pre-order traversal sequence and encoding
the sequence to the AST positional encoding vectors by the
scheme of [39]. Finally, there is an embedding network in the
NFASRPR-TRANS to generate the AST-structural relative
position representations.

The encoding step of [39] is demonstrated in Figure 3.
In each AST positional encoding vector, its dimension is
(g · d), where g is the degree of the ASTs, and d is the max-
imum tree depth that constraints the size of the vector. The
root position R is initiated as the zero vector

⇀

0, and the AST
positional encoding vectors of other nodes are represented as
follows from [39]:

TP (p) = DbLDbL−1 . . .Db1
⇀

0, (15)

0 ≤ bl < g, ∀l ∈ {1 . . . L} , (16)

where bl is the step choice at the l-th level of the AST and L
is the level of the node that p locates, and the set ⟨b1 . . . bL⟩

can be represented as a path from root node to the node p, and
Dbl is an operation that pushes bl in one-hot g bit vector to
p’s relative position vector.

Notably, our proposed model differs from that of [39]
which used the Deep-First-Search (DFS) algorithm for
traversing ASTs, in that our model used a Pre-order Reverse
traversal algorithm. Specifically, after getting a Pre-order
traversal sequence of an AST, we first reverse the sequence,
then encode the reversed sequence to the AST positional
encoding vectors by the scheme of [39].
Example 3: Figure 4 is an example of the difference Tree-

traversal Strategies for theAST. In the tree traversal sequence,
we can consider the operators as ‘Verb’ and the parameters as
‘Subject’. Following this, in the Pre-order Reverse traversal
algorithm, the sequence can be interpreted as: ‘The param-
eters do the action of the operator.’ Which is similar to the
‘Subject + Verb’ expression in the natural language.

Our model utilizes two features of the Pre-order Reverse
traversal algorithm. First, by reversing the order of the
Pre-order traversal sequence of the AST, our model starts
reading from the parameters and learns how to describe the
situation of the parameters and operators. Second, we do
not modify the tree node index that the Pre-order traversal
algorithm generates; that is, we keep the feature of the Pre-
order traversal algorithm when encoding the tree node vector.
This implicitly makes our model imitate the way compilers
process syntax trees. We believe that this approach is more
in line with the natural language sentence structure of the
‘Subject + Verb’ expression, and it also retains the program-
ming information of the source code. These features help
the model generate more human-readable and meaningful
sentences.

By leveraging the Tree Positional Encoding and an embed-
ding network, we are able to extract those AST-structural
relative position representations, that could be used to sup-
port the model to summarize the source code with complex
structure.
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FIGURE 3. An example of AST positional encoding vectors.

FIGURE 4. An example of an AST in six different types of tree traversal
strategies.

FIGURE 5. The architecture of NFASRPR-TRANS.

B. ARCHITECTURE OF NFASRPR-TRANS
Figure 5 presents the overall architecture of the model we
proposed. It is made up of two different types of encoders
and one decoder.

The Source Code Sequence Encoder (SC-Seq Encoder) is
in charge of paying attention to keywords, and it is composed
of the normal Transformer encoder with theGaussian Embed-
der, which treats the source code sequence as input. The AST
Relative Position Encoder (AST-RP Encoder) is composed
of a normal Transformer encoder with Si-SAN and Tree

Positional Encoding. It takes the SC-Seq Encoder’s output
and the AST information as its input to learn the structural
information of the input source code. Finally, the Decoder is
composed of a normal Transformer decoder, which is utilized
to generate a summary.

1) SOURCE CODE SEQUENCE ENCODER
Recall that there are various positional encoding schemes
that can be used in the Transformer-based model. Inspired
by [36] and [38], we can leverage the memorization and
generalization ability of the non-Fourier positional encoding
functions and inject the position information in each layer.
By doing so, the model can gain knowledge about keywords
and parameters in the input source code.

Therefore, we have the Source Code Sequence Encoder
(SC-Seq Encoder) which is shown in the left block of the
encoder in Figure 5. The input data for the SC-Seq Encoder
is the source code sequences X = {x1, . . . , xN }, which have
undergone the Pre-processing step mentioned in section III-
A, and an input source code sequence is represented as x,
x ∈ X . Then we use the Gaussian Embedder formatted
in (12)-(14) to calculate the non-Fourier relative position
representation vector G of X and inject it into input data.
Finally, the output of n-th layer of SC-Seq Encoder is denoted
as Hn

1 , defined as:

Hn
1 = EN n

1(H
n−1

+ G) (17)

where Hn−1 represents the output of the previous layer.
The EN n

1() represents the computation of the vanilla Trans-
former encoder and includes the modules we introduced in
section II-C: namely the multi-head self-attention, the FFN,
and the Add&Norm layers.

2) AST RELATIVE POSITION ENCODER
Although sequential relationships of source tokens are
learned in the SC-Seq Encoder, it disregards the structural
information or grammatical rules of the programming lan-
guage. To address this, we drew inspiration from the previous
works [14], [25] that parse ASTs to get the structural infor-
mation of the source code.

Thus, we construct an AST Relative Position Encoder
(AST-RP Encoder) which is shown in the right block of the
encoder in Figure 5. By using the Tree Positional Encoding,
which had been introduced in section III-A, the model is able
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to gain the attributes such as the source code structure and
grammatical rules of the programming language.

In the AST-RP Encoder, the input data – the traversal
sequence of AST – first passes through the Tree Posi-
tional Encoding and an embedding network to compute the
AST-structural relative position representation matrix M .
Assuming the original input of the n-th layer of the AST-
RP Encoder is Hn

1 , which is the output of the previous layer
(SC-Seq Encoder), the AST-structural relative position rep-
resentation matrix M is blended into Hn

1 . After the above
computation, we obtain the input matrix for the AST-RP
Encoder, expressed as H

n
in (19).

M = Tree_Positional_Encoding(AST ), (18)

H
n

= σ
(
FC1

n
(
Hn
1
)
+ FC2

n
(
MHn

1
))

, (19)

where AST is the traversal sequence of AST, σ (·) is the
sigmoid activation function, and FC1

n and FC2
n are fully-

connected layers in the n-th layer of the AST-RP Encoder.
Finally, for the output of the n-th layer of the AST-RP

Encoder,Hn
2 , is in (20) and the overall output of the n-th layer

of both encoders of NFASRPR-TRANS is Hn in (21).

Hn
2 = EN n

2

(
Aggr

(
Hn
1 ,H

n
))

, (20)

Hn
= Aggr

(
Hn
1 ,Hn

2
)
, (21)

where the Aggr(·, ·) is a simple element-wise addition func-
tion used to combine the two encoders’ outputs Hn

1 and
Hn
2 . The EN n

2() represents the computation of a Trans-
former encoder that includes those modules we introduced
in section II-C that are Si-SAN, FFN and Add&Norm layers.

3) DECODER
We do not have any modifications on the Decoder, that is
we employed the vanilla Transformer decoder in NFASRPR-
TRANS. So, the DEn() consists of modules such as masked
multi-head self-attention, multi-head self-attention, FFN, and
Add&Norm. To calculate the probability of each candidate
word, the Softmax function is applied.

The decoding process is defined as

canditates = DEn
(
Hn) , (22)

oi = max (Softmax (canditates)) , (23)

where oi is the i-th word in the generated summary. To choose
the final word, NFASRPR-TRANS employs the Greedy strat-
egy during testing, which selects the candidate word with the
highest probability.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
1) DATASETS
To ensure the reproducibility and generalizability of our
experimental results, we have utilized an existing Java dataset
provided by Hu et al. [27] and Python dataset provided by
Wan et al. [28] to evaluate our proposed model, both datasets

TABLE 1. The statistics of the Java dataset from [27].

TABLE 2. The statistics of the Python dataset from [28].

are widely used in evaluating the models for the Source Code
Summarization task [14], [24], [25].

The Java dataset [27] comprises of 87,136 code/summary
pairs. However, due to the computational limitation, we have
only used 57,428 pairs, which have been divided into 40,000
pairs for training, 8,714 pairs for testing, and 8,714 pairs for
validation.

For the Python dataset [28], which consists of 92,545
code/summary pairs, the original source codes of it are writ-
ten in Python2. This makes some of the source codes to be
non-executable in Python3, so we are unable to generate their
ASTs. To account for the computational limitation and filter
out the non-executable Python source codes, we used only
66,047 pairs from the Python dataset and divided them into
40,000 pairs for training, 18,047 pairs for testing, and 8,000
pairs for validation.

The Tables 1 and 2 display the statistics related to the
length of code and summary for the Java and Python datasets,
respectively.

2) PRE-PROCESSING
Apart from the data pre-processing steps byAhmad et al. [24],
we also pre-process the ASTs of the source code and their
corresponding relative position representations (as explained
in section III-A). Specifically, our model uses the Pre-
order traversal algorithm to walking the ASTs and reverse
the ASTs’ sequences to generate the reversed Pre-order
sequences of the ASTs. Next, our model follows the steps
of Shiv et al. [39] to encode the root path of each node of the
ASTs’ reversed Pre-order sequences to generate the relative
position matrices of ASTs, which serve as the input data of
the AST-RP Encoder.

3) TRAINING DETAILS AND HYPER-PARAMETERS
We used Python 3 and Pytorch to construct our model,
and train our model on a system with Ubuntu 18.04 LTS
installed, equipped with a 6-core 3.1 GHz i5-8600 CPU,
an NVIDIA GeForce GTX 1080 8G GPU, and 32GB RAM.
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TABLE 3. The performance of different models on Java dataset.

TABLE 4. The performance of different models on Python dataset.

To set most of the hyper-parameters, we followed the setting
of Ahmad et al. [24].

Specifically, in both datasets, the vocabulary sizes are
50000 for the encoder and 30000 for the decoder. The Adam
optimizer [42] is used to train NFASRPR-TRANS on the Java
dataset, while the AdamW optimizer [43] is used to train the
model on the Python dataset. Both optimizers have a learning
rate of 10−4, a training batch size of 16, and a learning rate
decay of 0.99. The weight decay is set to 0 for the Adam
optimizer in the Java dataset and 0.01-0.05 for the AdamW
optimizer in the Python dataset.

The number of the NFASRPR-TRANS encoder/decoder
layers is 6 layers, with 3 layers each for the SC-Seq Encoder
and the AST-RP Encoder and 6 layers for the Decoder. The
dropout rate is 0.2 in the encoder/decoder layer. The Gaussian
Embedder is constructed of 4 layers with the σ set to 0.001 in
both datasets, and its dropout rate sets to 0.2 in the Java
dataset and 0.7 in the Python dataset. The dropout rate of the
Tree Positional Encoding layers is 0.2 in the Java dataset and
0.7 in the Python dataset.

Finally, the maximum training epochs are set to 200 epochs
when training on both datasets. In addition, we adopt an
early-stopping strategy that ends the training process when
the performance of the validation state fails to improve for
20 consecutive epochs to avoid overfitting.

4) EVALUATION METRICS
To assess the quality of the generated summaries, we con-
duct experiments using some commonly employed metrics
in NMT evaluation: BLEU [29], ROUGE [30], CIDEr [31],
METEOR [32], and SPICE [33].

B. EXPERIMENTAL RESULTS
In this section, we provide the experimental results to support
the improvement of our proposed model over the baselines,
Transformer [24] and SiT [25].
To demonstrate the superiority of NFASRPR-TRANS

compared to baselines, we first use the evaluation metrics to
measure the similarity between the summaries generated by
the models and human-written summaries. Table 3 shows the
performances of our proposed model and baselines on the test
data of the Java dataset, and Table 4 shows the performances
on the test data of the Python dataset. In Tables 3 and 4, the
best score in each evaluation metric is highlighted in bold,
and the percentage improvement of NFASRPR-TRANS over
the best baseline is provided in brackets.

In comparison to all baselines, NFASRPR-TRANS
exhibits the best performance across all five metrics. Table 3
shows that NFASRPR-TRANS achieves improvements of
at least 6.21% in BLEU, 6.30% in ROUGE-L, 6.94% in
CIDEr, 10.30% in METEOR, and 6.63% in SPICE on the
Java dataset. Meanwhile, in Table 4, NFASRPR-TRANS
shows improvements of at least 2.43% in BLEU, 1.84%
in ROUGE-L, 5.94% in CIDEr, 4.33% in METEOR, and
4.83% in SPICE on the Python dataset. The results suggest
that the non-Fourier and the AST-structural relative position
representations significantly improve the performance of
NFASRPR-TRANS for Source Code Summarization.

In this study, we utilize two types of positional encoding
schemes, namely Gaussian Embedder and Tree Positional
Encoding, in NFASRPR-TRANS, that encode two types of
relative position representations and that allow the model
to understand the semantics and syntax of the source code.
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TABLE 5. The performance of applying different tree traversal algorithms of NFASRPR-TRANS on the Java and Python datasets.

To assess the contribution of these modules, we next con-
duct an ablation experiment in which we add or remove
these two modules to examine their impact. Specifically,
by removing the Gaussian Embedder, the SC-Seq Encoder
becomes a vanilla Transformer and the AST-RP Encoder
remains unchanged. Similarly, by removing the Tree Posi-
tional Encoding module, the AST-RP Encoder becomes a
vanilla Transformer with Si-SAN and the SC-Seq Encoder
does not change.

The lower half of Tables 3 and 4 show the ablation exper-
imental results on the Java dataset and the Python dataset,
respectively. According to the results, both variant models
achieve higher performances compared to the baselines in
both datasets, indicating that both types of relative position
representations are beneficial for NFASRPR-TRANS mod-
els to learn more of the semantics or syntax of the source
code and to support the model to generate higher-quality
summaries. Conversely, when comparing with the full model,
removing any type of relative position representation has
resulted in a drop in performance. This drop demonstrates
that both of these modules play a major role in NFASRPR-
TRANS in learning more semantics or syntax of the source
code.

In addition, Figures 6 and 7 depict the change in BLEU
and ROUGE-L scores on the validation data over each
of the 10 training epochs, and it is observed that the
NFASRPR-TRANS exhibits a much faster convergence rate
than baselines on both datasets. For example, for the con-
vergence rate on the Java dataset shown in Figure 6, our
model surpasses all baselines from the 30th to 80th epoch
and achieves the best performance of baselines in about
120 epochs, while the baselines need more than 190 epochs
to achieve it. Moreover, as showed in Figure 7, our model
trained on the Python dataset surpasses all baselines in the
first 10 epochs and achieves the best performance of base-
lines in about 90 epochs, while the baselines need more
than 150 epochs to achieve it. The results imply that the
high convergence rate of NFASRPR-TRANS highlights the

necessity of both the non-Fourier and AST-structural relative
position representations.

Next, we focus on the Tree Positional Encoding module
of our proposed model and examine the impact of different
tree traversal algorithms on the performance of the model by
conducting additional experiments. Given that there are sev-
eral tree traversal algorithms to choose from (e.g., Pre-order,
In-order, Post-order, BFS, IDDFS [44]), we further conduct
experiments employing different tree traversal algorithms in
the Tree Positional Encoding module of NFASRPR-TRANS.
Table 5 shows how applying different tree traversal algo-
rithms affected the performance of the model on the Java
dataset and the Python dataset, respectively. As shown in
Table 5, the best scores in each evaluation metric are high-
lighted in bold.

In comparison to all tree traversal algorithms, Pre-order
Reverse traversal algorithm, which has been adopted in
NFASRPR-TRANS, achieved the best performance in both
datasets, indicating that the Pre-order Reverse traversal
algorithm may be more valuable for Source Code Sum-
marization, as we supposed in section III-A. In addition,
as shown from Tables 3 to 5, most other tree traversal
algorithms outperformed the baselines for Source Code Sum-
marization, which reveals that Tree Positional Encoding is a
suitable choice to add position information to Transformer-
based models for Source Code Summarization.

V. QUALITATIVE ANALYSIS AND VISUALIZATION
This section includes a test case that is presented to deter-
mine that NFASRPR-TRANS is capable of: 1) using the
non-Fourier relative position representations encoded by the
Gaussian Embedder to learn the semantics of special words,
and 2) using the AST-structural relative position represen-
tations of ASTs encoded by the Tree Positional Encoding,
in order to capture the complex structure of the source code.

Figure 8 displays a test case with a nested function example
from the Python dataset. The lower half of the figure shows
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FIGURE 6. Convergence of different models on the Java dataset.

FIGURE 7. Convergence of different models on the Python dataset.

FIGURE 8. A nested function example written in Python with its five attention groups.

the comparison between generated summaries, revealing that
Transformer [24] does not capture the keyword ‘wrap’ and
the behavior of the nested function, resulting in a summary
that does not match the intended functionality. Similarly,
SiT [25] fails to learn the nested function’s behavior of the
source code, and therefore, generates an erroneous summary.
In contrast, NFASRPR-TRANS successfully captures both
the keyword ‘wrap’ and learns the actions of the nested
function, resulting in an accurate and complete summary.

In order to demonstrate the ability of NFASRPR-TRANS
to learn the definition of special keywords and the behavior
of the nested function, we present the attention heatmaps
from the 3rd layer of both the SC-Seq Encoder and the AST-
RP Encoder in Figure 9 and Figure 10, respectively. The

source code is first dissected into 5 attention groups, which
are sequentially numbered from 1 to 5, as seen in Figure 8.

The group numbers 1 through 3 in Figure 9 correspond
to the circled keywords in Figure 8, which received high
attention from the SC-Seq Encoder of NFASRPR-TRANS.
Meanwhile, Figure 11 is the attention heatmap of the 6-th
layer of the Transformer encoder, which further confirms our
observation that the Transformer is inefficient at capturing
these keywords. Specifically, the attention score between
the keywords ‘db’ and ‘wrapper’ of group number 3 in the
Transformer is almost 0, whereas the keywords ‘sync’ and
‘wrapper’ are nearly fully attended to, which may be the
reason why the generated summary of Transformer is lacking
these keywords.
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FIGURE 9. The attention heatmap of the SC-Seq Encoder.

FIGURE 10. The attention heatmap of the AST-RP Encoder.

Next, the group numbers in Figure 10 indicate the structure
of the statements they circle in Figure 8, which are also
shown in the AST of this test case in Figure 12. Group num-
ber 1 denotes the relationship between the input argument
‘f’ and the nested function ‘wrapper’, while group number
4 represents information regarding the ‘functools.wraps’ and
the input argument ‘f’. Group number 2 shows the structural
information of the nested function’s content, and group num-
ber 5 outlines the structure of the nested function’s return
statement. Figure 10 highlights that the AST-RP Encoder of
NFASRPR-TRANS puts significant emphasis on the struc-
ture of the source code represented by these group numbers.
Comparatively, Figure 11 illustrates that the Transformer is
unable to capture the information related to these attention
groups, which could be another reason for generating a mis-
matched summary.

FIGURE 11. The attention heatmap of the transformer [24] Encoder.

FIGURE 12. The AST graph of the source code.

VI. RESEARCH QUESTIONS AND THREATS TO VALIDITY
A. RESEARCH QUESTIONS
RQ1: Does our proposedmodel, NFASRPR-TRANS, gener-
ate summaries with a higher level of accuracy in explaining
the behavior of source codes compared to other DL-based
models?

To address the shortcomings of the DL-based models that
we discussed in Example 1 in section I, we propose compre-
hensive solutions in our model to tackle each issue in detail.
This RQ intends to verify whether our model, NFASRPR-
TRANS, generates more accurate summaries in explaining
source code behavior than other DL-based models.

Tables 3 and 4 show the overall performance of differ-
ent models for the Source Code Summarization task on the
Java [27] and Python [28] datasets, and it is observed that
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FIGURE 13. Performance of varying code length in different methods on
the Java dataset.

NFASRPR-TRANS achieves the best performance across all
five metrics for both datasets compared to other DL-based
baseline models. On the Java dataset, NFASRPR-TRANS
achieves higher BLEU, ROUGE-L, CIDEr, METEOR, and
SPICE scores than Transformer [24] ( +11.45%, +7.88%,
+21.60%,+10.25%, and+15.22% ) and SiT [25] (+6.21%,
+6.30%, +6.94%, +10.30%, and +6.63% ) did. Simi-
larly, on the Python dataset, NFASRPR-TRANS achieves
higher scores in all five metrics than both Transformer [24]
(+3.72%, +2.67%, +7.63%, +4.90%, and +6.82%) and
SiT [25] ( +2.43%, +1.84%, +5.94%, +4.33%, and
+4.83%) do.

The results reveal that NFASRPR-TRANS, which utilizes
both the Gaussian Embedder and the Tree Positional Encod-
ing to integrate the non-Fourier and AST-structural relative
position representations into Transformer, leads to improve-
ment in the Source Code Summarization task.
RQ2: What are the impacts of the length of source codes

and summaries on the performance of NFASRPR-TRANS
in Source Code Summarization?

As previously mentioned, NFASRPR-TRANS is designed
to address the challenge of learning complex structured
source code, often characterized by long code and summary
lengths. Hence, this RQ seeks to examine the impact of code
length on the code representation learning of the model,
as well as the effect of summary length on evaluating text
generation performance.

As shown in Figure 13 and 14, the BLEU and ROUGE-
L scores of Transformer [24] and SiT [25] decrease while
code and summary lengths increase. This indicates that
these models have the difficulty of learning the code

FIGURE 14. Performance of varying summary length in different methods
on the Java dataset.

representations in long code length and in generating a com-
plete long summary.

In contrast, Figure 13 shows that NFASRPR-TRANS out-
performs the baselines on both metrics in the Java [27]
dataset, and also maintains a stable performance when
the code lengths is increasing. This indicates that the
AST-structural relative position representation of NFASRPR-
TRANS is effective in helping the model handle the complex
structure of the source code. Similarly, Figure 14 illustrates
that NFASRPR-TRANS achieve the best performance with
varying summary lengths. Although the metrics scores have
slightly decreased with increasing summary lengths, the gaps
of the performance compared to the baselines in the last
two summary-length intervals are the largest. This indicates
that the NFASRPR-TRANS has a better ability to generate
complete long summaries.
RQ3: Do the features of different programming lan-

guages (e.g., average source code length) affect the model
performance?

In this study, we use Java [27] and Python [28] datasets to
demonstrate the performance of NFASRPR-TRANS. Since
different programming languages have their own unique fea-
tures when coding, such as a programming rule and an
average source code length, we compare the performance
of NFASRPR-TRANS on both Java and Python datasets to
verify how the programming language features affect the
performance of the model.

As shown in Tables 3 and 4, NFASRPR-TRANS shows
a better performance on the Java dataset, yet a lower one
on the Python dataset. Tables 1 and 2 demonstrate the data
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characteristics of both datasets, which show that the aver-
age code length in the Python dataset is relatively short.
Consequently, the corresponding AST is small, making the
contribution of the AST-structural relative position represen-
tation of NFASRPR-TRANS less in the Python dataset than
in the Java dataset.

However, NFASRPR-TRANS outperforms the baselines
on both Java and Python datasets, indicating that applying the
AST-structural relative position representation in the model
can outperform models without it.
RQ4:Does NFASRPR-TRANShave a faster convergence

rate than other DL-based models do?
Having a faster convergence rate means that the model

takes fewer training steps to achieve the best performance
compared to the other models. As Figures 6 and 7 show,
NFASRPR-TRANS has a faster convergence rate than Trans-
former [24] and SiT [25] on the Java [27] and Python [28]
datasets do. Figure 6 demonstrates that NFASRPR-TRANS
surpassed all baselines from the 30th to the 80th epoch
and achieved the best performance of the baselines in about
120 epochs. In comparison, baselines required more than
70 additional epochs to reach the same level of performance.

It’s worth noting that the convergence rate is largely influ-
enced by the architecture of the model, training data, and
training equipment. Our two baselines, Transformer [24] and
SiT [25], are both DL-basedmodels that share a similar archi-
tecture of NFASRPR-TRANS, and they are trained using
the same datasets and equipment as NFASRPR-TRANS
does. Therefore, it is safe to conclude that applying non-
Fourier and AST-Structural relative position representations
in Transformer, NFASRPR-TRANS, converges faster than
other DL-based models on both Java and Python datasets do.
RQ5: Do different hyper-parameters in NFASRPR-

TRANS affect the model performance?
In NFASRPR-TRANS, we leverage the Gaussian Embed-

der and the Tree Positional Encoding as two major compo-
nents. As mentioned in section III-A, the Gaussian Embedder
is used to encode the non-Fourier relative position represen-
tations, and its hyper-parameter σ has an impact on its ability
to perform positional encoding, whereas the Tree Positional
Encoding is used to encode the AST-structural relative posi-
tion representations, and its hyper-parameters g and d have
an impact on its ability to perform positional encoding.

To analyze how different values of these hyper-parameters
affected the performance of the model, we conducted
ablation experiments where the value of σ varies from[
10−4, 10−3, 10−2, 10−1], and the value of (g, d) varies from
[(4, 32) , (8, 16) , (16, 8) , (32, 4)]. The performance com-
parison of these variant models is shown in Tables 6 and 7,
and the best score in each evaluation metric is highlighted in
bold.

Table 6 demonstrates that choosing the appropriate value of
σ = 0.001 is crucial for NFASRPR-TRANS, since an incor-
rect value can cause a slight decrease in the performance of
the model. Although a smaller σ brings better memorization
to the model, it may lead to poor generalization of the model,

TABLE 6. The performance of different σ values on Java and Python
datasets.

TABLE 7. The performance of different (g, d ) values on Java datasets.

making the model fail to train. In addition, Table 7 illustrates
that the performance of variant models drops dramatically
when g and d are too small or too large. While the best
performance (g, d) pair is also the hyper-parameters we set
for NFASRPR-TRANS. It means that the (g, d) pair should
be chosen to fit most of the ASTs’ widths and depths to obtain
the best AST-structural relative position representation.

Therefore, it is important to carefully select the optimal
values of σ and (g, d) to ensure the best performance of
NFASRPR-TRANS.
RQ6: How effective are the two types of relative position

representations that we applied in NFASRPR-TRANS?
As we had mentioned before, NFASRPR-TRANS encodes

non-Fourier relative position representations using the Gaus-
sian Embedder to learn the semantics of source code key-
words, while AST-structural relative position representations
are encoded using Tree Positional Encoding to learn the
syntax of the source code.

To validate the effectiveness of these two position represen-
tations, we conduct an ablation experiment in whichwe added
or removed these two modules in NFASRPR-TRANS. The
results, as shown in Tables 3 and 4, demonstrate that both vari-
ant models achieved 2% ∼ 9% higher performance across all
evaluationmetrics compared to the baselines on both datasets.
On the other hand, the performance of both variant models
decreased 1% ∼ 2% when compared with the full model on
both datasets. In other words, both types of relative position
representations are beneficial for NFASRPR-TRANS to learn
more semantics or syntax of the source code, thus supporting
the model in generating higher quality summaries.
RQ7: Does the use of different tree traversal algorithms

in the Tree Positional Encoding module affect the perfor-
mance of our model?
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TABLE 8. The training time on Java and Python datasets.

In section III-A, we proposed that the Pre-order Reverse
traversal algorithm is more suitable for Tree Positional
Encoding to generate natural language sentences. To verify
the performance of different tree traversal algorithms on
the Tree Positional Encoding module, we implemented the
Tree Positional Encoding with different tree traversal algo-
rithms, including Pre-order, In-order, Post-order, BFS, and
IDDFS [44]. The performance comparison of these variant
models with ours is shown in Table 5.

The results demonstrate that the Pre-order Reverse traver-
sal algorithm outperforms other tree traversal algorithms
in both Java and Python datasets. Therefore, we can con-
clude that applying different tree traversal algorithms in the
Tree Positional Encoding module affects the performance of
the model. Meanwhile, by employing the Pre-order Reverse
traversal algorithm in this module, we can achieve a better
performance in the Source Code Summarization task.
RQ8: What is the cost of implementation of NFASRPR-

TRANS?
As we had mentioned in section III, NFASRPR-TRANS

employs the Gaussian Embedder and the Tree Positional
Encoding. Both make NFASRPR-TRANS superior to previ-
ous works, but also leave the model with more parameters
to train. Table 8 demonstrates the training time in second
of different model in Java and Python dataset. The results
demonstrate that the time cost of NFASRPR-TRANS is
higher than SiT, but lower than Transformer.

Although NFASRPR-TRANS takes more time cost than
SiT, it has the best performance, as shown in section V.

B. THREATS TO VALIDITY
There are certain undetected factors in our study that might
produce unexpected experimental outcomes that result in
erroneous conclusions. To assess the threats to the validity
of our study, we discuss the following four aspects of validity
threats in this section.

1) INTERNAL VALIDITY
The quality of the collected summaries in the datasets posed
the most significant threat to the internal validity of our study.
For example, both Java [27] and Python [28] datasets were
collected from the GitHub, where poor quality summaries for
source code, i.e., noisy data, may exist; including unrelated
and unreadable summaries. Specifically, in the Java dataset,
the referenced summary of each code/summary pair was
taken from the first sentence of the corresponding Javadoc
in the source code, while the Python dataset contains some
Python2 source codes which are no longer supported by the

FIGURE 15. Some noisy data in the Java and Python datasets.

Python programming language. These factors result in the
datasets containing some noisy data, some of which are listed
in Figure 15. The presence of noisy data could mislead the
DL-basedmodels in predicting the summaries. However, effi-
ciently removing the unexpected noisy data is challenging.
To address this threat, future studies could consider explor-
ing alternative methods that eliminate redundancy data and
reduce the impact of noisy data in the datasets.

2) EXTERNAL VALIDITY
The external validity of our proposed model may be threat-
ened by the generalizability of it, i.e., whether or not our
proposed model can be applied to different programming
languages. Therefore, in our study, we used two publicly
available datasets, Java [27] and Python [28], which are
widely used programming languages in the market [45].
As demonstrated in section IV-B, the experimental results
show that NFASRPR-TRANS outperforms other DL-based
models in both datasets. Additionally, as shown in section V,
the generated summary by NFASRPR-TRANS is of higher-
quality, more complete, and more meaningful compared to
other DL-based models. Although we believe that our pro-
posed model for Source Code Summarization can be applied
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to other programming languages, further experiments are
necessary to confirm it.

3) CONSTRUCT VALIDITY
In our study, the construct validitymay be called into question
due to the potential biases inherent in the automatic evalua-
tion metrics we earlier had employed to assess the similarities
between the generated summaries and the referenced human-
written summaries. To minimize this threat in our study,
we have selected five different metrics: BLEU [29], ROUGE-
L [30], CIDEr [31], METEOR [32], and SPICE [33].
In BLEU’s study [29], the authors conducted a series of

experiments on MT tasks, involving four different natural
languages translated into English, to investigate the corre-
lation between BLEU scores and human evaluation results.
Their findings revealed a strong positive correlation between
BLEU and human judgement, with a correlation coefficient
of 0.99. The authors pointed out that BLEU can accurately
determine whether two English sentences correspond to the
same translated sentence. In a similar vein, BLEU can also
be applied to judge whether the two summaries correspond
to the input source code.

The study of ROUGE-L [30] demonstrates that there is
a high correlation between ROUGE-L scores and human
judgement in the document summarization task. As both
Source Code Summarization and document summarization
generate brief sentences to describe the input content, we can
aptly assume that ROUGE-L scores can be used to evaluate
the similarity of the generated summaries and human-written
summaries with a human-like view.

While many others – including CIDEr, METEOR and
SPICE – have suggested, n-gram metrics such as BLEU
and ROUGE-L have several weaknesses. The evaluation by
BLEU and ROUGE-L is based on the n-gram approach,
which involves sensitive word-to-word matching between
two sentences, and that may result in incorrect matching,
especially for common function words that are not critical for
the meaning of the sentence.

Therefore, we chose to employ METEOR [32], which is
a recall-oriented metric. Different from BLEU, METEOR
has an alignment to check the mapping of each word in two
ways, including exact mapping and stemmed mapping. In the
study of METEOR [32], the authors evaluated both BLEU
andMETEOR on theMT task and found that METEOR over-
comes the weaknesses of BLEU and has a higher correlation
with human judgement.

In addition, the studies of CIDEr [31] and SPICE [33] have
evaluated image caption tasks with several metrics, includ-
ing BLEU, ROUGE, METEOR. The findings reveal that all
five metrics have their best performance in different image
caption tasks. For example, CIDEr is the top performer in
evaluating the similarity of human judgements and generated
captions, while SPICE has the best performance for evaluat-
ing the similarity between two sentences, considering other
features such as the objects, attributes and relations in the
input image. The image caption task shares similarities with

the Source Code Summarization task in that both generate
concise sentences to describe the input data. Hence, we can
adopt CIDEr and SPICE for evaluating our model.

The above analysis of the validity criteria for the five
metrics we used reveals that these metrics are not only valid
for measuring the similarity between predicted and human-
written summaries in the Source Code Summarization task,
but they also compensate for each other’s shortcomings. This
eliminates the potential threat of construct validity in our
study as much as possible.

4) CONCLUSION VALIDITY
The conclusion of our study is that NFASRPR-TRANS
outperforms other DL-based models in Source Code Summa-
rization. To analyze the validity of this conclusion, we discuss
it based on two criteria: 1) Did the re-built models of baselines
perform as well as their original models? 2) Does NFASRPR-
TRANS obtain higher metric scores than the other DL-based
models do?

To satisfy the first criterion, we trained our model and
baselines on the same server to guarantee a just comparison.
However, there are several undefined hyper-parameters in the
baselines’ studies [24], [25]. Although, we set these hyper-
parameters to the same values as our model, these undefined
hyper-parameters could potentially compromise the perfor-
mance of the baselines. Therefore, further research is needed
to examine the impact of assigning these undefined hyper-
parameters in order to fully conclude that NFASRPR-TRANS
outperforms other DL-based models.

Next, we discuss the second criterion for conclusion valid-
ity. Recall the experimental results shown in Tables 3 and 4:
NFASRPR-TRANS outperforms all the baselines on both
datasets by achieving 2% - 10% higher performance across
all five metrics. As a result, we can conclude that NFASRPR-
TRANS is demonstrated to be a superior performance in
source code summarization compared to other DL-based
models.

VII. CONCLUSION
Program comprehension is widely considered a critical fac-
tor in software development. Through the use of Source
Code Summarization, programmers are able to have brief yet
comprehensive summaries of source code behavior, allow-
ing greater efficiency in program comprehension. Previous
studies have shown that Transformer-based models outper-
form other deep learning (DL) based models in the area of
Source Code Summarization. However, these models have
confronted several problems, including learning the seman-
tics of a source code’s keywords, and understanding the
complex structure of source code.

In this study, we propose NFASRPR-TRANS, which
can address these problems and achieves a better perfor-
mance compared to Transformer-based models in the Source
Code Summarization task. In NFASRPR-TRANS, there are
two different Transformer encoders, which employ Gaus-
sian Embedder and Tree Positional Encoding as positional
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encoding schemes, respectively. By utilizing the Gaussian
Embedder, the SC-Seq Encoder can encode the non-Fourier
relative position representation of the input source code
sequence and handle the semantics of the source code’s
keywords. Meanwhile, the Tree Positional Encoding in the
AST-RPEncoder can encode theAST-structural relative posi-
tion representation and equips NFASRPR-TRANS with the
ability to learn the complex structure by the ASTs of the input
source code.

We have conducted competitive experiments with previous
models on the Java and Python datasets. Our experimental
results show that NFASRPR-TRANS outperforms the other
DL-based models and has a faster convergence rate than other
Transformer-based models. On the Java dataset, NFASRPR-
TRANS achieves at least 6.21%, 6.30%, 6.94%, 10.30%,
and 6.63% improvements on BLEU [29], ROUGE [30],
CIDEr [31], METEOR [32], and SPICE [33], respectively.
While on the Python dataset, it achieves improvements of
at least 2.43%, 1.84%, 5.94%, 4.33%, and 4.83% on five
metrics, respectively.

In addition, we have analyzed a qualitative test case and
visualized its attention heat maps of NFASRPR-TRANS, and
it is observed that the semantics between specific keywords
are well learned by the SC-Seq Encoder, and the complex
structure of the source code is well learned by the AST-RP
Encoder.

In future planning, we will apply NFASRPR-TRANS to
other programming languages in order to assess its generaliz-
ability. However, given that different programming languages
have varying features, grammars, and usage patterns, we also
plan on integrating specific features of each programming
language into NFASRPR-TRANS for Source Code Sum-
marization. The objective is to improve the domain-specific
performance of the model.
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