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ABSTRACT According to a report published by Gartner in 2021, a significant portion of Machine Learning
(ML) training data will be artificially generated. This development has led to the emergence of various
synthetic data generators (SDGs), particularly those based on Generative Adversarial Networks (GAN). All
research endeavors so far have been exploratory, focused on specific objectives such as validating utility
or disclosure control or assessing how generators can decrease or increase inherent bias with differential
privacy. Hence, we aim to empirically identify an AI-based, data generator that can produce datasets
that closely resemble real datasets, while also determining the hyper-parameters that enable a satisfactory
balance between utility, privacy, and fairness in the datasets. To achieve this, we utilize the Synthetic Data
Vault, Data Synthesizer, and Smartnoise-synth, which are three synthetic data generation packages that are
accessible via Python. Different data generation models available within the package are presented with
13 tabular datasets iteratively as sample inputs to generate synthetic data. We generated synthetic data
using every dataset and generator and investigated the goodness of the generator using five hypothetical
scenarios. The utility and privacy offered by the generated data were compared with those of real data. The
fairness in the ML model trained with synthetic data was used as a third metric for evaluation. Finally,
we employ synthetic data to train regression and classification Machine Learning (ML) algorithms and
evaluate their performance. After conducting experiments, analyzing metrics, and comparing ML scores
across all 11 generators, we determined that the CTGAN from SDV and PATECTGAN from the SN-synth
package were the most effective in mimicking real data for all 13 datasets utilized in our research.

INDEX TERMS Synthetic data, synthetic data vault, data synthesizer, SmartNoise-synth, GAN, VAE.

I. INTRODUCTION
The combined utilization of Machine Learning (ML) and
Artificial Intelligence (AI), known as AI-ML, has become
increasingly prevalent in recent times to gain insights from
data, predict outcomes, analyze trends, make decisions, and
provide potential solutions to problems. These models were
trained using data, with the patterns within the presented
data serving as the basis for prediction. Deep learning mod-
els, on the other hand, can adapt and learn independently
from data. The reliability and effectiveness of AI-ML models
depend on the quality and accessibility of the data utilized
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during the training process. Challenges faced by ML models
include restrictions on data privacy, high costs associated
with data collection, the quality of the data utilized, and
potential biases inherent within the data. In 1993 Donald B
Rubin [1] introduced synthetic data. An early study com-
paring synthetic data with real data [2] has showed that the
statistical inferences from synthetic data and the original
data match. This appears to overcome the challenges of data
availability. The concept of Differential Privacy (DP) [3]
was introduced into synthetic data generation [4] to improve
disclosure control. Recent works [5], [6], [7] have focused
on the utility and reliability of machine learning algorithms
trained on synthetic data and have also produced encouraging
results, addressing challenges such as privacy protection,
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data collection costs, and data quality. According to Gartner,
synthetic data will constitute 70% of the data used in AIML
training by 2030, leading to the emergence of several com-
mercial synthetic data generators (SDG) such as Gretel.ai,
Datagen, MostlyAI, and CVEDIA. Despite progress in syn-
thetic data, the persistent problem that challenges AI-ML
model training is the inherent bias in the data. In the real
world, bias can occur and be attributed to factors such as gen-
der, age, demographics, race, and even the physical attributes
of objects such as their shape, colour, or size. However,
attempting to address this issue through techniques such as
oversampling or under-sampling of data using SMOTE [8]
or its variants may not necessarily result in a useful ML
model as they tend to focus solely on the target class and
disregard subgroups within each feature. Furthermore, the
implementation of DP to protect the privacy of datasets may
lead to a disparate impact [9], [10], [11], [12] on the resulting
dataset, particularly in imbalanced cases.

The reliability of synthetic data remains unclear, leading
to questions on the most effective option for generic use
across all tabular data samples. We take three key metrics into
consideration for any synthetic dataset deemed suitable for
trainingmachine learning algorithms. It is collectively termed
as evaluation metrics in this document.

1) Utility [13]:The ability of the dataset to maintain the
same statistical structure as that of the original sample
from which it was generated.

2) Disclosure control or privacy [14]:Howmuch privacy
protection the synthetic dataset can offer without dis-
closing the identity or confidentiality of any individuals
in the dataset? (E.g.: Name, City, Date of Birth, Phone
Number etc)

3) Fairness [15]:Equal treatment of all groups, sub-
groups, class, individuals in the dataset

Achieving an ideal balance between data utility, privacy, and
reduced bias is a significant challenge. The parameters that
generate acceptable results in generative models are yet to
be fully understood. Existing literature focuses on various
aspects such as the preservation of data utility, the role of
differential privacy in achieving disclosure control, and the
impact of differential privacy on the balance of data that
results in the widening gap between majority and minority
groups. Despite these efforts, there is no conclusive evidence
to support the superiority of any SDGs in achieving the right
balance of evaluation metrics, including utility, privacy, and
fairness in machine learning. Our experiments are directed
towards the identification of an SDG and its hyper-parameters
that produce synthetic data with a resemblance to real data,
regardless of the input sample’s characteristics. This gen-
erator must yield a satisfactory score while being utilized
to train the classification and regression machine learning
algorithms and maintain an appropriate balance of evaluation
metrics. The objective was achieved by following a method-
ical approach to answering the following questions.

1. We begin by determining how the data generators
treat the majority and minority target classes in

input data samples that have different dimensionality
and datatypes (continuous, categorical, constants, and
discrete)

2. Next, we checked whether increasing the number of
samples during data generation affects the quality of
the generated dataset.

3. Does pre-processing (oversampling the minority class)
of the data before being fed to the generator have any
impact?

4. If the SDGs produce the datasets for all 13 datasets
without missing any categorical values, we then eval-
uate which synthetic data generator produce a dataset
that matches or closelymatches the real dataset in terms
of its utility, disclosure control, and fairness.

5. Finally, we determine the optimum parameter tuning
that must be used during dataset generation.

The subsequent sections of this paper are arranged as follows.
Section II discusses previous research on the verification
and comparison of factual data using different techniques.
Section III encompasses the approach taken and the experi-
mental configuration, which also includes the sample datasets
utilized. Section IV presents the outcomes of the study
and finally, the discussion and conclusions are presented in
Section V.

II. RELATED WORK
The utility of synthetic datasets in machine learning has been
thoroughly examined using various data generators, as evi-
denced in previous studies [7], [16], [17]. The effectiveness
of synthetic data in machine learning has also been validated
[5], [6], [18]. Additionally since the inception of Generative
Adversarial Networks [19] by Ian Goodfellow, several inno-
vators have devised data generation techniques using GAN
[20], [21], [22], [23].

A Generative Adversarial Network (GAN) comprises two
models: generative and discriminative. The former endeavors
to replicate the original data by introducing noise, whereas
the latter compares the generated data against the original
data to determine the degree of similarity in terms of their
distribution. A shortcoming of GAN is that it considers the
class label as an additional attribute, which leads to diffi-
culties in the classification model. However, the Conditional
GAN (CGAN) [21] resolves this issue by handling the class
labels separately, thereby improving the quality of data for
the classification model. Owing to the deep networks utilized
in GAN, the system attempts to recall the training data and
improve it to achieve the closest resemblance to the original
data. This results in the possibility of revealing sensitive
or personal information that may be present in the original
data. To address this challenge, DPGAN [24] incorporated
differential privacy (DP) into GAN. The approach used by
the DPGAN is to train the discriminator with noise-induced
data and have the generator predict based on it, leading to dif-
ferentially private synthetic data. The PATE-GAN [20] model
takes this idea further by applying the Private Aggregation of
Teacher Ensembles (PATE) to theGAN. PATE-GANemploys
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a teacher and student model to produce a noisy dataset that is
then used to train the discriminator, resulting inmore effective
disclosure control than DPGAN.

It is well-established that Differential Privacy (DP) is
an effective tool for safeguarding the privacy of released
datasets. However, it also affects the utility and fairness of
synthetic datasets. Therefore, it is crucial to analyze the effect
of DP on synthetic data, particularly when disparities exist
between majority and minority classes in the dataset. Var-
ious versions of Generative Adversarial Networks (GANs)
have been employed to demonstrate the unequal impact of
DP on balancing classes in synthetic datasets. Ganev et al.
utilized three different datasets and employed PrivBayes,
W-GAN, and PATE-GAN to generate synthetic data to show-
case the differences. They deduced from their findings that
PrivBayes decreases the gap between the minority and major-
ity classes, whereas PATE-GAN increases it. However, the
results obtained from W-GAN were inconsistent. The results
and observations were similar when DP was applied to syn-
thetic data generation for healthcare datasets usingGAN [15].
Karan Bhanot et al, delved deeper into developing a robust
metric for measuring the fairness of synthetic healthcare
data. They also asserted the necessity of introducing fairness
in the dataset during data generation. The reason for the
impact on fairness has been attributed to the DP Stochas-
tic Gradient Descent, gradient clipping, and additive noise
that introduce bias in the dataset resulting in unfavorable
outcomes of the machine learning model trained on these
datasets [11], [12]. Even if the training data set has a small
disparity among its classes, DP can result in a larger imbal-
ance in the resulting synthetic data set [25]. Pre-processing of
the dataset by performing multi-label under-sampling until
both the majority and minority numbers are equal provides
better fairness in the generated data [26]. Blake Bullwinkel
et al demonstrated the effect of pre-processing using four
different SDGs. They used the Multiple Weights Exponential
Mechanism (MWEM), DP-CTGAN, PATECTGAN, part of
the Smartnoise-synth (SN-synth) package, and MST as data
generators. The observation made in this study is that GAN-
based generators produce varying results. Blake Bullwinkel
et al suggested hyperparameter tuning. The efforts to bench-
mark [23] four different differentially private GAN-based
SDGs showed that PATE-GAN offered better results when
the privacy budget e was ≥ 3.0 and DPCTGAN offered
better results when e was ≤ 1.0. The conclusion does not
generalize to which of the generators is better. Bias mitigation
options using the privatized likelihood ratio also highlight
that bias-related challenges remain in the SDGs [27].
Our work differentiates the approach of examining SDGs

against the three metrics across a range of datasets. This
involved conducting comparisons, analysis, and identifi-
cation of the generator, using 13 tabular datasets with
varying dimensions and characteristics. Our methodology
includes the use of GAN-based generators with hyper-
parameter tuning, and varying privacy budgets (e). Data

synthesizer was used to compare disclosure control. Addi-
tionally, we employed oversampling of the original dataset
and a combination of generators to generate data, followed
by an evaluation of their respective metrics.

III. METHODOLOGY
Fig 1 illustrates the approach employed in our experiments,
which incorporates the design of experiments and replication
principles to produce numerous synthetic datasets from the
initial data samples. Thirteen tabular datasets with diverse
attributes were utilized. The dataset with the lowest number
of rows was malware dataset which contained 374 rows. On
the other hand, credit card datasets had the largest number,
totaling 284808. Out of the thirteen datasets utilized, eight of
them had several records ranging from 1000 and 62000. To
avoid the extremes and ensure a fair comparison, a maximum
sampling size of 50,000 was established. This sampling size
was then employed to assess performance using the learning
curve. The objective was to ascertain whether the sample
size had any impact on the resulting synthetic datasets. Upon
examining the learning curve provided in Fig 11, it becomes
apparent that the accuracy of most datasets levels off after
reaching 20,000 records, except for the gaussian and TVAE
datasets. Hence, the training sample size was set to 2000 on
the lower end in the initial iteration which was 4% of the
maximum size and then increased to 5000 (10%), 10000
(20%), 20000 (40%) and 50000 (100%) for every dataset.

FIGURE 1. The design of experiment and replication methodology
adopted for experiments to generate and evaluate synthetic data
generated using different generators.

To generate, compare, and assess the SDGs, 11 different
synthetic data generators available as a part of Python pack-
ages were utilized. These include the Synthetic Data Vault
[28] (SDV), DataSynthesizer [4] (DS), and SmartNoise-
Synth as well as one commercial generator (GretelAi). For
SDV, the parameters EPOCH and BATCH_SIZE are altered,
whereas for DS, the privacy attribute e is varied to intro-
duce noise. For the SmartNoise-Synth generators, the pri-
vacy budget e is adjusted. The data generators that produce
datasets that are sufficiently close to the real data are iden-
tified, and subsequently, the hyperparameter is modified for
the most effective model to obtain the optimal parameters.
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The generated synthetic data are then employed to train a
variety of classification and regressionML algorithms includ-
ing XGBoost, Support Vector Machine, Logistic Regression,
KNeighbors, and Random Forest. It is difficult to choose
an ML algorithm that fits all types of data. Therefore, five
distinct classification and regression algorithms were chosen.
XGBoost algorithm is well suited for datasets of significant
size, while SVM is appropriate for smaller datasets. Logistic
Classifier and Regression work when the data exhibits lin-
earity. KNN operates based on the similarity and it is used to
achieve high accuracy. Additionally, the algorithms introduce
varying degrees of bias. Consequently, to ensure that our
observations and conclusions are not solely reliant on a single
algorithm, we employed the most optimal classification and
regression algorithms in our experiments. The dataset was
split into 70% training data and 30% testing data. Initially,
the machine learning algorithm was trained using the original
data and a baseline was established for comparison. In the
second phase, the synthetic data were split with a ratio of
70:30. Finally, in the third phase, the algorithm was trained
using 70% of synthetic data and tested against the original
data, which served as an indicator of the actual performance
of the synthetic data. An assessment of the generator com-
parison was executed via the collection of various parameters
for the classification and regression algorithms. A generator
comparison was performed by capturing different parameters
for the classification and regression models.

Apart from comparing the scores of the machine learning
models the evaluation metrics of the synthetic data were com-
pared using following measurements. The utility of synthetic
data was measured using visual as well as quantitative mea-
sures. Visual comparison was through density distribution
(confidence interval overlap) [13] and correlation graphs for
classification data and regression plots were used for regres-
sion data. Quantitative measurements included KL Diver-
gence, Euclidean distance, and Hellinger distance to compare
the similarities of real data and synthetic data.

Kullback-Leilber Divergence: Also known as relative
entropy, it measures the disorder (entropy) in the sample
being compared. It can be applied for both numerical as well
as categorical values.

Euclidean Distance:It simply measures the point-to-point
distance between two data points being compared.

Hellinger Distance:measures the difference between two
probability distributions.

It is used as a common metric for both classification
and regression models. In addition, scatter plots were used
for visual comparison of the regression models. To verify
privacy protection, a technique known as the ‘‘concept of
uniqueness’’ [29] was used. The process of identifying unique
data within a dataset involves utilization of a combination
of attributes. The likelihood of an individual successfully
identifying a specific record based on known parameters can
be measured using this method. The specific utility [17] of
the dataset was then measured using the confusion matrix and

ROC score. The Model score, Mean Squared Error (MSE),
Mean Aggregate Error (MAE), Root Mean Squared Error
(RMSE) and R Squared (R2) are used as utility metrics for the
regression model. The ratio of majority to minority classes
in the dataset is used to determine the effectiveness of the
SDG in generating the target class which is the minority.
Finally, the bias introduced by the ML classifier algorithms
as a result of training with synthetic data and bias introduced
by real datasets were compared using dalex [30], an package
in Python to check fairness.

IV. EXPERIEMENTAL SETUP
A. DATASET
Table 1 lists the datasets utilized as exemplars for the SDGs.
These data were meticulously selected based on following
criteria upon which we wanted to understand and compare
the synthetic data generators. Eleven of the datasets were
datasets with categorical class variables whereas two of
them were continuous target variables. Criteria for selection
were,

1. The target class distribution and imbalance in them.
This was to evaluate how the SDGs would treat the
minorities in the dataset. (e.g., stroke, credit card
approval, credit card fraud)

2. Number of categorical columns that represented con-
stant values. (e.g., wafer anomaly and malware dataset)

3. Correlation among attributes of the data
4. Dimensionality (number of columns) varying from

very low to very high. (e.g., Diabetes 9 columns, wafer
anomaly dataset with 1559 columns)

5. Variation in the number of records in the dataset.
(e.g., malware 324 records and credit card fraud with
284808 records)

6. Datasets having some attributes through which we can
demonstrate the data privacy (e.g. Adult income, HRA,
Cerebral stroke)

The first three attributes of a dataset would be a challenge
for any machine learning. Therefore, the dataset was inten-
tionally picked to evaluate how the SDGs would perform
with such challenging datasets. Attributes 5 and 6 were to
understand the impact of the size of the dataset on privacy
and performance of the generators.

The number of datasets chosen was intentionally high
to facilitate comparative analysis and identification of the
optimal generator with considerable generalizability. The
synthetic data generated were subjected to training the ML
classifier algorithm and later validated with a regression
algorithm to ensure that the results obtained, and observa-
tions made for a specific generator did not vary much. All
the datasets used were obtained from the public website
www.kaggle.com

B. SETUP
The experiments were conducted using Python version
3.8.13, by establishing an Anaconda environment with a
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conda version 22.9.0. To generate synthetic data, freely
available Python packages Synthetic Data Vault (SDV)
0.17.1, Datasynthesizer (DS) 0.1.11, and Smartnoise-synth
(SN-synth) 0.3.5.1 were utilized. Additionally, Gretel-
synthetics 0.18.1, a commercially available Synthetic Data.

Generator (SDG) package was used to generate data for
a few datasets and compare its performance with the freely
available packages in Python. Dalex 1.5.0 facilitated the
assessment of the fairness of the classifiers. Synthetic data
were generated on the Azure ML studio, utilizing Windows
virtual machines with 8-core and 4-core CPUs, with 16 GB
RAM and 8 GB RAM, respectively. All validations were
executed using an Intel 2.4GHz dual-core processor with
12 GB RAM.

C. EXPERIEMENTS
SDV offers various models, namely Gaussian, CTGAN, Cop-
ulaGAN, and TVAE, to generate data. When using Data
Synthesizer, the options available for generation include
Random, Independent and Correlated options. For our
experiments, we used Independent and Correlated options.
SN-synth employs generators such as DPCTGAN, DPGAN,
PAC, PATECTGAN, and PATEGAN. Fig 2 illustrates the
workflow for the process, which involved using different
sample sizes as input. Each iteration consisted of configuring
the key parameter for each generator, which determined the
dataset’s quality. Our objective was to start with a smaller
value and then incrementally increase it while continuously
evaluating the dataset. We terminated the iteration process
once we achieved an acceptable ROC score for classification
or when the scores began to deteriorate. In the case of SDV,
the identified parameters were epoch and batch_size. In the
first iteration, the epoch value was set to the minimum of
10 and then incrementally increased to 50, 100, 200, 250,
and 300. Similarly, the batch_size was set to 50, 100, 200,
300, and 500. Depending on each iteration’s performance,
the epoch values randomly varied between 10 and 300, ulti-
mately stopping at 300 as moving beyond 300 did not show
much improvement in the metrics. Anonymization was not
employed for the SDV generators. For the Privacy attribute
in DS, the variation is performed incrementally [e: 0.1, 0.5,
1.0, 5.0, and 10.0] for both the Independent and Correlated
generation. Concerning SN-synth-based generators, only the
privacy budget e is varied between [1, 5, 10, 20, and 50] in
the first pass. The default values of 2e-04 for the generator
learning rate, 1e-06 for discriminator decay, epoch set to 300,
and batch_size set at 500 are maintained. The parameters
were varied in the subsequent iterations.

To find answers to other questions, a few additional varia-
tions were attempted. First of these, shown in Fig 3, oversam-
ples the minority target class using SMOTE with parameter,
sampling_strategy set to ‘‘auto’’. Oversampled data were
used as input samples for the generators to generate synthetic
data. The rest of the process remains the same as shown
in Fig 2.

FIGURE 2. The iterative process followed for generating synthetic data by
changing the sample sizes and parameters for the data generation.

FIGURE 3. Synthetic data generation by oversampling the minority class
in the input sample.

The DPCATGAN and PATECTGAN have additional
parameters that influence the quality of the generated syn-
thetic data. Therefore, the SDGs were further tuned by vary-
ing their hyperparameters. In the case of DPCTGAN, the
gradient of noise was determined by the parameter Sigma,
which was set to a default value of 5 in the initial pass.
in the initial pass. Subsequently the values were changed to 1,
2, 3, and 10 and the results were evaluated. The effect of
these variations is discussed in the next section. In contrast,
PATECTGAN utilizes noise_multiplier, student and teacher
iterators as parameters. In addition, generator_lr and discrim-
inator_lr were used. To achieve moderate data privacy, all
tests were performed using privacy budget ofe=5. The other
parameters were iteratively varied as follows.

generator_lr= [0.0001,0.0002,0.0003,0.0004,0.0005]
discriminator_lr= [0.0001,0.0002,0.0003,0.0004,0.0005]
noise_multiplier= [0.0001,0.0005,0.001,0.002,0.003]
teacher_iters= [1, 3, 5, 7, 8] and
student_iters= [1, 3, 5, 7, 8]
In the final pass, the value of e was lowered to 2.5, the

noise multiplier was set to 0.0001, and the student and teacher
iterator was set to 2 to evaluate the impact of a reduced
e value. After the generation of synthetic data, machine
learning algorithms were trained to validate the quality and
utility of the generated data in comparison with algorithms
trained on real data. As the objective was to evaluate the
quality of the generated data, not much emphasis was given
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to which ML model scored the best. The ROC scores for
algorithms trained and tested on real data, trained and tested.
on synthetic data, and finally trained on synthetic data and
tested on real data are tabulated. The ROC Score is used
as a measure to evaluate as compared to the accuracy score
because the ROC score is better suited for evaluating the
classifier algorithm trained using an imbalanced dataset.

V. RESULTS
The outcomes presented in this section are the summary
of our results after narrowing down on the SDGs that are
generating datasets that are close to real data based on
their evaluation metrics. Table 2 tabulates the comparison
of minority class percentages in the original dataset and the
datasets generated using different generators.

We observe that not all the generators generate the minor-
ity target class when their population in the input sample
is minuscule, as seen in the case of the Cerebral Stroke,
Credit Card Application, and CredictCard Fraud datasets.
Therefore, synthetic data generated by Gaussian, Copula,
TVAE, DPGAN, DPCTGAN and PAC becomes unusable for
machine learning training. Table 3 and Table 4 along with the
figure inAPPENDIX provides details of themachine learning
model scores for all datasets generated using different param-
eters for synthetic data generators. The first observation is
that, except for CTGAN, PATECTGAN, and PATEGAN, the
rest of the generators do not generate the minority target class
for all datasets. The Fig 12 shows the ROC curve plotting for
all the generators using cerebral stroke as reference dataset.
For cerebral stroke dataset, Gausian, DPGAN and DPCT-
GAN fail to produce the target class which is minority. Hence,
they don’t show results. TVAE, PAC and PATEGAN display
marginal overfit.

The general usefulness of synthetic data is assessed using
various metrics, including the confidence interval overlap,
correlation mapping, relative entropy, KL Divergence, and
Hellinger Distance.

Although PATEGAN generates all the target classes irre-
spective of the majority and minority split, it fails to pro-
duce synthetic data that matches the real data used in the
experiments. The utility metrics used in the generic utility
assessment of the three generators for the sample sizing of
2000 are presented in Table 5.
KL Divergence and the Euclidean Distance of PATEGAN

is higher in comparison with PATECTGAN and CTGAN.
Fig 4 shows the propensity distribution [16] comparison for
the Logistic Classifier model trained on real data (blue color)
in comparison with the propensity when trained and tested
with synthetic data represented in green color and the dis-
tribution for model trained on synthetic data and tested on
real data. From this graph it is evident that PATEGAN loses
utility. This result is apparent even for other datasets used in
our experiments.

DS Correlated also produces good results when the dif-
ferential privacy e is high. However, it struggles to generate
the data when the dimensionality of data is high as observed

in the case of malware and wafer anomaly datasets. There-
fore, we focus on CTGAN and PATECTGAN. The second
inquiry pertains to the effect of increasing the sampling vol-
ume on the data generation. Fig 5 represents the ML model
score comparison for different sampling sizes on CTGAN
and PATECTGAN generators. The parameter chosen was
epoch = 300 for CTGAN and e = 5 for PATECTGAN. e is
set to 5 to achieve better privacy scores.

FIGURE 4. Comparison of propensity distribution of ML model for real
data (blue), synthetic data (green) and model trained on synthetic data
and tested on real data for datasets generated using CTGAN, PATECTGAN
and PATEGAN generators.

As the e value is increased, PATEGAN produces better
ROC scores which are tabulated in tables 3 and 4. The
outcomes of the examination, wherein the sampling was
iteratively increased from 2000 to 50000 rows for CTGAN
and PATECTGAN generators using cerebral stroke data are
provided in Table 6. The only notable observation is the
privacy in CTGAN decreases as the number of sampling
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FIGURE 5. Score for the model trained on synthetic data generated using
different sample sizing for (a) CTGAN and (b) PATECTGAN.

size is increased. Tables 7 and 8 tabulates outcomes of
the examination, for the sampling size 50000 rows for all
datasets. There are marginal variations; however, it is not very
significant.

The next step in our assessment determines whether over-
sampling the minority class in the input sample results
in a superior synthetic dataset. The SDV-based gener-
ators exhibited better results with oversampling of the
minority class. Tables 9 and 10 show that TVAE gen-
erates the best machine learning score among the gen-
erators; however, its generic utility is inconsistent across
datasets.

After verifying oversampling, we move towards which
SDG produces synthetic data with the right balance across
the evaluation metrics and what parameter gives the best
result. Tables 3 and 4 tabulate the list of generators and the
key parameters that influence the outcome of the generators.
In the first iteration, epoch and batch_size for SDV, privacy
budget e for DS, and SN-synth were used. In general, the
ROC scores improved for all three packages (i.e., SDV, DS,
and SN-synth) as the key parameter values increased. The
CTGAN produced a better score as the epoch and batch-size
values increased. A similar trend is observed for PATECT-
GAN and PATEGAN; the score continues to improve as
the value of e increases from 1 to 50. Based on the scores

for data generated using CTGAN and PATECTGAN, the
final comparison is between these two generators. For closer
comparison, the ROC scores of the logistic classifier model
are tabulated in Tables 11 and 12, respectively. Logistic
Regression showed greater variations than the other classifier
algorithms. The comparison of the ROC scores for each of the
generators for cerebral stroke data is illustrated in Fig 6.

FIGURE 6. (a). Comparison of the ROC scores of all the generators with
the parameters that produced the best scores. (b). Comparison of the ROC
curve for the data generated using the PATECTGAN with tuned parameter
and CTGAN with epoch set to 300.

The final step is to make variations to the parameters of
PATECTGAN generator as described in previous section.
Fig 7 illustrates the density overlap of real data and synthetic
data generated using CTGAN [epoch, batch_size] = [300,
500] and PATECTGN with hyper-parameter tuning settings
are epoch = 300, batch_size= 500, e = 5, generator_lr=
[0.0002], discriminator_lr= [0.0002], noise_multiplier=
[0.0001], teacher_iters= [1], student_iters= [1], dataset
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used is Cerebral Stroke. These parameters produced the best
results.

FIGURE 7. The density overlaps of real data and synthetic data generated
using (a) CTGAN and (b) PATECTGAN with tuning.

The correlation map comparison shown in Fig 8 and the
other generic utility parameter comparison are provided in
Tables 15 and 16 for CTGAN and PATECTGAN respectively.

FIGURE 8. Correlation map comparison of real data (Cerebral stroke
dataset), synthetic data generated using CTGAN and PATECTGAN with
tuned hyperparameters.

Data Synthesizer also produces better scores for classifi-
cation and regression models as the value of e is increased.
PAC was the poorest of all the generators, given the type
of datasets that were used. PAC introduced null values and
constant values in the columns resulting in loss of data
utility. It also fails to generate a minority class in the
dataset.

The TVAE generator from the SDV package produces
excellent results when the target class has a balanced distri-
bution of categorical values; however, when the gap between
the majority and minority data is large, TVAE fails to gen-
erate the minority target class. TVAE also fails to generate
other minority groups in the dataset which is evident in the

FIGURE 9. Comparison of Logistic Regression classification score
PATECTGAN with different noise_multipler values.

FIGURE 10. Comparison of Logistic Regression classification model
scores for PATECTGAN and DPCTGAN with different values
ofnoise_multplier and sigma.

mode graphs and fairness test using dalex. This behavior is
very similar to that of DS. PATEGAN works in the opposite
direction of other generators while dealing with the minority
category of the target class. This produces a higher number of
records with the target class which is aminority in the original
dataset as shown in Table 2
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FIGURE 11. The Learning curve of logistic regression classifier model used on the synthetic data generated for three different datasets with
different output sampling size. The curve shows that the accuracy flattens for the datasets around 15000 records.

TABLE 1. Datasets used as sample for synthetic data generation.

VI. DISCUSSION
How do the data generators treat the majority andminor-
ity classes in input data samples which have different
dimensionality and datatypes (continuous, categorical,
constants, and discrete)?

From the data tabulated in Table 1, we draw the fol-
lowing inference. CTGAN, PATECTGAN, and PATEGAN
are the three SDGs that produced all categorical classes
in the dataset for all types of input samples used in our
experiments. DS independent and PAC-introduced constants.
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TABLE 2. Percentage of minority target class in each of the dataset comparing the real dataset and the data generated using various generators.
parameters column shows the key parameter that was used in the generation during one of the iterations.

FIGURE 12. ROC Curve for Logistic Classifier model trained and tested on synthetic data generated using different generators for Cerebral Stroke dataset.
Gaussian, DPGAN and DPCTGAN generators did not produce the target class which was a minority.

PAC also introduced null values that affected the utility
of the dataset. DPCTGAN, DPGAN, and TVAE strug-
gled to produce minority target classes, which made the
dataset unusable for classification where the target class was
imbalanced.

Does increasing the number of samples during data
generation affect the quality of generated dataset?

This makes a difference for all the four SDV-based gener-
ators. For DS and SN-synth-based generators, increasing the
sample size did not make much difference.
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TABLE 3. Model trained and tested on synthetic data.

Does pre-processing (oversampling minority class) of
the data before being fed to the generator have any
impact?

Oversampling improves the classification score ofmachine
learning models. The TVAE produces better datasets when
minority classes are oversampled in the original dataset.
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TABLE 4. Model trained on synthetic data and tested on real data.

Oversampled data are good for overcoming the challenges
of privacy and bias, but we observe an inconsistency among

the data sets in terms of data distribution and correlation.
Therefore, this option works for scenarios if the only criterion
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FIGURE 13. The ROC curve plotted for the cerebral stroke dataset when the data is oversampled for the target class and then generated using the TVAE
generator.

FIGURE 14. The ROC curve comparison for the datasets generated by
different generators when the minority target class in the input dataset is
oversampled and fed to synthetic data generator.

TABLE 5. Utility metrics comparison for ctgan, patectgan and pategan
with 50000 samples for cerebral stroke data.

is the model score, and data utility is not very important.
Oversampling improves the classification score of machine
learning models. The TVAE produces better datasets when

minority classes are oversampled in the original dataset.
Oversampled data are good for overcoming the challenges
of privacy and bias, but we observe an inconsistency among
the data sets in terms of data distribution and correlation.
Therefore, this option works for scenarios if the only criterion
is the model score and data utility is not very important.

Which synthetic data generator produces the dataset
that matches or closely matches the real dataset in terms
of its utility, disclosure control and fairness?

We utilize Table 2 as the foundational basis for our prelim-
inary analysis. The data reveals that solely CTGAN, PATE-
CTGAN, and PATEGAN generators possess the capability to
generate the dataset for all the data samples. Subsequently,
we proceed with the examination of the data enumerated
in tables 3 through table 10. Upon careful observation of
Fig 4, it becomes evident that PATEGAN fails to preserve the
utility. Following an evaluation of the classification factors
in Fig 6a and 6b, as well as the regression model scores in
Table 19 and 20, it is apparent that the dataset generated by
CTGAN and PATECTGAN exhibit promising results. To fur-
ther validate these observations, we present the recorded data
for CTGAN and PATECTGAN in Table 11 and 12 for com-
parative purposes. Ultimately, the Hellinger Distance, KL
Divergence, Euclidean distance, and probability distributions
are employed to assess the utility.Table 13 illustrates data
privacy and Table 14, the metrics that exhibit bias for datasets
generated using CTGAN and PATECTGAN. Based on these
assessments, the CTGAN and PATECTGAN appeared to
be the most suitable SDGs. It is worth noting that TVAE
demonstrated optimally when the input data sample was well
balanced.

What is the optimum parameter tuning required at the
time of dataset generation?

For the SDV, it is recommended to use 300 epochs at the
batch size of 500 to achieve superior results. The utility of the
dataset is also enhanced under these conditions. However,
the introduction of privacy measures may reduce the utility
of the datasets. Unlike DS or SN-synth, SDV operates by
utilizing the faker package of Python for the anonymization
of data, rather than differential privacy. The DS’s correlated
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FIGURE 15. Regression plot comparison of House rent real data vs synthetic data for different synthetic data generators.

TABLE 6. ROC scores hellinger distance, entropy and privacy comparison for the data generated using pategan and CTGAN for different sampling size.

TABLE 7. ROC scores for datasets generated by increasing the input sampling size to 50000. score when the model is trained and tested on synthetic data.

generation option produces better scores for machine
learning models as the privacy attribute e is increased.

Nevertheless, that comes at the cost of compromising
the privacy of datasets. DS-correlated is a high-resource
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TABLE 8. ROC scores for classifier model trained on synthetic data and tested on original data.

TABLE 9. Logistic classifier model score for datasets trained and tested on synthetic data.

TABLE 10. Logistic classifier model score for datasets trained on synthetic data and tested on original data.

consumer and struggles as data dimensionality increases,
failing to generate datasets when the computing resources
are limited. DS, DPGAN, and PATEGAN have limited
optimization options, with varying privacy budget epsilon
being the only feasible option. Therefore, PATECTGAN and
DPCTGAN were selected for hyperparameter tuning. The

optimal configuration for PATECTGAN involves setting gen-
erator_lr, discriminator_lr, noise_multiplier, teacher_iters,
and student_iters, with a privacy budget of e = 5.
However, reducing the value of e while increasing the
noise_multiplier can enhance disclosure control, but it
may hurt the dataset utility. The quality of the generated
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TABLE 11. The ROC Score of logistic regression classifier when the model is trained using synthetic data generated using CTGAN and tested against real
data.

TABLE 12. The ROC score of logistic regression classifier when the model is trained using synthetic data generated using PATEGAN and tested against real
data.

TABLE 13. Probability of identification of a record in a synthetic dataset using the concept of uniqueness.

data is determined by a combination of these parame-
ters along with epoch and batch_size.PATECTGAN utiliz-
ing epoch and batch_size values of 300 and 500 respec-
tively and generator_lr=0.0002, discriminator_lr=0.0002,
noise_multiplier=0.0001, teacher_iters=1, and
student_iters=1achived the best result. As inferred from
the graph in Fig 9, the optimal noise_multiplier value for
PATECTGAN was 0.0001 at e = 5. Other parameters did
not make a major impact.

Further comparisons of PATECTGAN and DPCTGAN for
various values of noise_multiplier and sigma respectively are

shown in Fig 8. The comparison is run to validate whether
varying the noise gradient indicator sigma for DPCTGAN
has any impact on the generated dataset. However, from the
graph, we infer that it does not provide superior scores for
ML models or generic utility. From Fig 10, we also observe
that PATECTGAN with e = 2.5 and noise_multipler set to
0.0002 provides better ML model scores but it slightly loses
its utility as compared with e = 5.
Based on the evaluation and analysis, PATECTGAN

with parameter tuning and CTGAN were the top two
generators chosen for the final comparison. The disclo-
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TABLE 14. A Comparison of original data and the sdgs ctgan and patectgan showing the number of metrics that has bias.

TABLE 15. A comparison of hellinger distance for different features of diabetes dataset generated using patectgan and ctagan generators.

FIGURE 16. Regression plot comparison for House Rent data and Insurance data for the synthetic data generated using PATECTGAN with settings of
epoch = 300,batch_size= 500, e = 5, generator_lr= [0.0002], discriminator_lr= [0.0002],noise_multiplier= [0.0001], teacher_iters= [1],
student_iters= [1].

TABLE 16. A comparison of hellinger distance for different features of
credit card approval dataset generated using patectgan and ctagan
generators.

sure control between the two generators was compared by
tabulating the data identification probability, as shown in

Table 13. As expected, when privacy increases, the data
utility deteriorates. CTGAN uses the ‘‘anonymize_fields’’
parameter to anonymize the data. When this feature was
used to anonymize the fields of the adult census data, the
utility of the generated data as well as the ROC score
decreased.

The Python package provides five different metrics to
assess the bias of machine learning classifiers. These metrics
are the True Positive Rate (TPR), accuracy (ACC), Posi-
tive Predictive Value (PPV), False Positive Rate (FPR), and
statistical parity (STP) which uses the minority subclass to
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TABLE 17. Logistic classifier model.

TABLE 18. Random forest classifier model.

TABLE 19. House rent dataset.

determine bias. Table 14 shows the number of metrics that
display bias in the dataset when used to train the Random For-
est classifier model. To compare the data utility, the Hellinger
distance for Diabetes and Credicard_Approval datasets were
captured as samples and are shown in Tables 15 and 16,
respectively. The data in these tables were captured using
CTGAN parameters of epoch=250 and batch_size=300.
and PATECTGAN parameters are generator_lr= [0.0002],
discriminator_lr= [0.0002], noise_multiplier= [0.0001],
teacher_iters= [1], student_iters= [1].
From the data tabulated in Tables 19, 20, 21 and 22 for

house rent and insurance data, PATECTGAN appears more
superior. Fig 15 shows the regression plot comparison for real
data and synthetic data whereas Fig 16 shows the comparison

of house rent and insurance data generated using PATECT-
GAN with tuned parameters.

A. FUTURE WORK
TAVE is one of the best generators when the input sample data
are balanced. It is also one of the less resource-intensive gen-
erators compared with all GAN-based generators. Therefore,
we see scope to enhance the TVAE generator to identify and
handle the data imbalance and bias internally during the gen-
eration, so that TVAE can be more reliable and widely used.
Currently, there are methods available to balance data either
through pre-processing or post-processing [31]. It will be
worthwhile introducing the in-processing feature into TVAE
so that it can become a trusted SDG. Understanding why
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TABLE 20. Insurance dataset.

TABLE 21. METRIC for house rent dataset for dataset generated using patectgan with noise_multipler = 0.0001 and e = 5. captured scores are for
random forest regressor model.

TABLE 22. Metric for insurance dataset for dataset generated using patectgan with noise_multipler = 0.0001 and e = 5. captured scores are for random
forest regressor model.

many synthetic data generators other than PATECTGAN and
CTGAN struggle to generate the minority target class.

VII. CONCLUSION
From our experiments we observe that no single SDG can
handle all input sample scenarios perfectly. Therefore, our
findings cannot be generalized. Based on results tabulated in
Table 2, 3, 4 and further comparing the evaluation metrics
We narrow down on PATECTGAN and CTGAN as the top
two options. TVAE and DPGAN were found to introduce
bias by dropping classes with small representation sizes.
In both DS and SN-synth, increasing the value of the privacy
weightage leads to a boost in the data utility. TVAE is the
most effective in generating high-quality data for balanced
datasets, even when minority classes are oversampled in the

input data. While PATECTGAN, with the smallest noise
multiplier of 0.0001 and e =2.5, yields better results for
the classification model, a noise_multiplier of 0.0001 with
e =5 is slightly better in terms of utility. It is important
to note that increasing the noise multiplier for better pri-
vacy comes at the cost of data utility and introduces more
bias into the dataset. CTGAN exhibits similar behavior. The
commercial generator provided by GretelAI exhibited no
variation. Consequently, the selection of privacy-enhancing
parameters must be contingent on the requirements of the
business. If the statistical attributes of the dataset and the
accuracy of machine learning prevail as the primary business
needs, then CTGAN without anonymization and with epoch
and batch_size values set to maximum, or PATECTGANwith
a noise_multiplier of 0.0001 with e =5 are the most optimal
options.

VOLUME 12, 2024 12227



A. Kiran, S. Saravana Kumar: Methodology and an Empirical Analysis

REFERENCES
[1] D. B. Rubin, ‘‘Statistical disclosure limitation (SDL),’’ J. Official Statist.,

vol. 9, no. 2, pp. 461–468, 1993, doi: 10.1007/978-0-387-39940-9_3686.
[2] T. E. Raghunathan, J. P. Rubin, and D. B. Reiter, ‘‘Multiple

imputation for statistical disclosure limitation,’’ J. Off. Statist., vol. 19,
no. 1, pp. 1–16, 2003. [Online]. Available: http://hbanaszak.mjr.uw.
edu.pl/TempTxt/RaghunathanEtAl_2003_MultipleImputationforStatis
ticalDisclosureLimitation.pdf

[3] C. Dwork, ‘‘Differential privacy: A survey of results,’’ in Proc. 5th Int.
Conf. Theory Appl. Models Comput., Lecture Notes in Computer Science,
vol. 4978, 2008, pp. 1–19, doi: 10.1007/978-3-540-79228-4_1.

[4] H. Ping, J. Stoyanovich, and B. Howe, ‘‘DataSynthesizer: Privacy-
preserving synthetic datasets,’’ in Proc. ACM Int. Conf. Proc. Ser., 2017,
p. F1286, doi: 10.1145/3085504.3091117.

[5] M. Hittmeir, A. Ekelhart, and R. Mayer, ‘‘Utility and privacy assess-
ments of synthetic data for regression tasks,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Dec. 2019, pp. 5763–5772, doi: 10.1109/Big-
Data47090.2019.9005476.

[6] M. Hittmeir, A. Ekelhart, and R. Mayer, ‘‘On the utility of synthetic
data: An empirical evaluation on machine learning tasks,’’ in Proc.
14th Int. Conf. Availability, Rel. Secur., Aug. 2019, pp. 1–6, doi:
10.1145/3339252.3339281.

[7] F. K. Dankar, M. K. Ibrahim, and L. Ismail, ‘‘A multi-dimensional
evaluation of synthetic data generators,’’ IEEE Access, vol. 10,
pp. 11147–11158, 2022, doi: 10.1109/ACCESS.2022.3144765.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

[9] V. Cheng, V. M. Suriyakumar, N. Dullerud, S. Joshi, and M. Ghassemi,
‘‘Can you fake it until you make it? impacts of differentially private
synthetic data on downstream classification fairness,’’ in Proc. ACM
Conf. Fairness, Accountability, Transparency, Mar. 2021, pp. 149–160,
doi: 10.1145/3442188.3445879.

[10] G. Ganev, B. Oprisanu, and E. De Cristofaro, ‘‘Robin hood and Matthew
effects: Differential privacy has disparate impact on synthetic data,’’ 2021,
arXiv:2109.11429.

[11] E. Bagdasaryan, O. Poursaeed, andV. Shmatikov, ‘‘Differential privacy has
disparate impact on model accuracy,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019, pp. 15479–15488.

[12] C. Tran, M. H. Dinh, and F. Fioretto, ‘‘Differentially empirical risk mini-
mization under the fairness lens,’’ 2021, arXiv:2106.02674.

[13] A. F. Karr, C. N. Kohnen, A. Oganian, J. P. Reiter, and A. P. Sanil,
‘‘A framework for evaluating the utility of data altered to protect
confidentiality,’’ Amer. Stat., vol. 60, no. 3, pp. 224–232, 2006, doi:
10.1198/000313006X124640.

[14] J. P. Reiter, ‘‘Estimating risks of identification disclosure in microdata,’’
J. Amer. Stat. Assoc., vol. 100, no. 472, pp. 1103–1112, Dec. 2005, doi:
10.1198/016214505000000619.

[15] K. Bhanot, M. Qi, J. S. Erickson, I. Guyon, and K. P. Bennett,
‘‘The problem of fairness in synthetic healthcare data,’’ Entropy, vol. 23,
no. 9, p. 1165, Sep. 2021, doi: 10.3390/e23091165.

[16] F. K. Dankar and M. Ibrahim, ‘‘Fake it till you make it: Guidelines for
effective synthetic data generation,’’ Appl. Sci., vol. 11, no. 5, p. 2158,
Feb. 2021, doi: 10.3390/app11052158.

[17] J. Snoke, G. M. Raab, B. Nowok, C. Dibben, and A. Slavkovic, ‘‘Gen-
eral and specific utility measures for synthetic data,’’ J. Roy. Stat.
Soc. Ser. A, Statist. Soc., vol. 181, no. 3, pp. 663–688, Jun. 2018, doi:
10.1111/rssa.12358.

[18] R. Heyburn, R. R. Bond, M. Black, M. Mulvenna, J. Wallace, D. Rankin,
and B. Cleland, ‘‘Machine learning using synthetic and real data: Similarity
of evaluation metrics for different healthcare datasets and for differ-
ent algorithms,’’ in Proc. Data Sci. Knowl. Eng. Sens. Decis. Support,
Sep. 2018, pp. 1281–1291, doi: 10.1142/9789813273238_0160.

[19] S. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
Y. B. Ozair, and A. Courville, ‘‘Generative adversarial nets,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 27, 2014, pp. 2672–2680.

[20] J. Jordon, J. Yoon, and M. Van Der Schaar, ‘‘PATE-GaN: Generating
synthetic data with differential privacy guarantees,’’ in Proc. 7th Int. Conf.
Learn. Represent., 2019, pp. 1–21.

[21] B. Vega-Márquez, C. Rubio-Escudero, and I. Nepomuceno-Chamorro,
‘‘Generation of synthetic data with conditional generative adversarial
networks,’’ Log. J. IGPL, vol. 30, no. 2, pp. 252–262, Mar. 2022, doi:
10.1093/jigpal/jzaa059.

[22] D. Xu, S. Yuan, L. Zhang, and X. Wu, ‘‘FairGAN: Fairness-aware
generative adversarial networks,’’ in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2018, pp. 570–575, doi: 10.1109/BIGDATA.2018.
8622525.

[23] L. Rosenblatt, X. Liu, S. Pouyanfar, E. de Leon, A. Desai, and J. Allen,
‘‘Differentially private synthetic data: Applied evaluations and enhance-
ments,’’ 2020, arXiv:2011.05537.

[24] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, ‘‘Differentially private
generative adversarial network,’’ 2018, arXiv:1802.06739.

[25] T. Farrand, F. Mireshghallah, S. Singh, and A. Trask, ‘‘Neither private
nor fair: Impact of data imbalance on utility and fairness in differential
privacy,’’ in Proc. Workshop Privacy-Preserving Mach. Learn. Pract.,
Nov. 2020, pp. 15–19, doi: 10.1145/3411501.3419419.

[26] B. Bullwinkel, K. Grabarz, L. Ke, S. Gong, C. Tanner, and J. Allen,
‘‘Evaluating the fairness impact of differentially private synthetic data,’’
2022, arXiv:2205.04321.

[27] S. Ghalebikesabi, H. Wilde, J. Jewson, A. Doucet, S. Vollmer, and
C. Holmes, ‘‘Mitigating statistical bias within differentially private syn-
thetic data,’’ 2021, arXiv:2108.10934.

[28] N. Patki, R. Wedge, and K. Veeramachaneni, ‘‘The synthetic data vault,’’
in Proc. IEEE Int. Conf. Data Sci. Adv. Analytics (DSAA), Oct. 2016,
pp. 399–410, doi: 10.1109/DSAA.2016.49.

[29] J. G. Bethlehem, W. J. Keller, and J. Pannekoek, ‘‘Disclosure control of
microdata,’’ J. Amer. Stat. Assoc., vol. 85, no. 409, pp. 38–45, Mar. 1990,
doi: 10.1080/01621459.1990.10475304.

[30] H. Baniecki, W. Kretowicz, P. Piatyszek, J. Wisniewski, and P. Biecek,
‘‘dalex: Responsible machine learning with interactive explainability and
fairness in Python,’’ J. Mach. Learn. Res., vol. 22, pp. 1–7, Jan. 2021.

[31] E. Barbierato, M. L. D. Vedova, D. Tessera, D. Toti, and N. Vanoli,
‘‘A methodology for controlling bias and fairness in synthetic data
generation,’’ Appl. Sci., vol. 12, no. 9, p. 4619, May 2022, doi:
10.3390/app12094619.

A. KIRAN was born in Puttur, Karnataka, India,
in 1975. He received the B.E. degree in elec-
tronics and communication and the M.S. degree
in software systems from the Birla Institute of
Technology and Science, Pilani, Rajasthan, India,
in 1997 and 2004, respectively. He is currently
pursuing the Ph.D. degree.

He is the Associate Director in one of the
prestigious American multinational companies in
the field of artificial intelligence and automation.

Being passionate about exploring, investigating, and learning, he enrolled
for the Ph.D. degree, in 2021. His research interests include artificial intel-
ligence, machine learning, and automation. As a result, the research topic is
focused on synthetic data which in the present era where security, confiden-
tiality, and data privacy are talked about, is seen as a capable substitute for
real data for machine learning.

Mr. Kiran has presented two conference papers on this topic organized by
Springer and the other one by IEEE.

S. SARAVANA KUMAR (Member, IEEE)
received the Ph.D. degree from Bharath Univer-
sity, Chennai, India.

He is currently a Professor and the Head/IT of
the AI and ML Programme, School of Engineer-
ing and Technology (SOET), CMR University,
Bengaluru. After completing the Ph.D. degree,
he took up his passion for research. In parallel,
he began teaching. Having 20 years of experience
in teaching and research, he has authored many

books and filed 28 patents on various IoT sensor techniques. In his profession
as an academician, he has guided 15 research scholars. He is also guiding
research scholars associated with CMR University and with consultancy
projects in AI using machine learning techniques. He has published more
than 100 papers in various internationally reputed SCI journals and presented
several papers at various national and international conferences.

Dr. Kumar is a member of the IEEE Computer Society Bangalore Chapter.
He is also an editor and a reviewer of several international journals.

12228 VOLUME 12, 2024

http://dx.doi.org/10.1007/978-0-387-39940-9_3686
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1145/3085504.3091117
http://dx.doi.org/10.1109/BigData47090.2019.9005476
http://dx.doi.org/10.1109/BigData47090.2019.9005476
http://dx.doi.org/10.1145/3339252.3339281
http://dx.doi.org/10.1109/ACCESS.2022.3144765
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1145/3442188.3445879
http://dx.doi.org/10.1198/000313006X124640
http://dx.doi.org/10.1198/016214505000000619
http://dx.doi.org/10.3390/e23091165
http://dx.doi.org/10.3390/app11052158
http://dx.doi.org/10.1111/rssa.12358
http://dx.doi.org/10.1142/9789813273238_0160
http://dx.doi.org/10.1093/jigpal/jzaa059
http://dx.doi.org/10.1109/BIGDATA.2018.8622525
http://dx.doi.org/10.1109/BIGDATA.2018.8622525
http://dx.doi.org/10.1145/3411501.3419419
http://dx.doi.org/10.1109/DSAA.2016.49
http://dx.doi.org/10.1080/01621459.1990.10475304
http://dx.doi.org/10.3390/app12094619

