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ABSTRACT Use of magnetic scalar potential instead of magnetic vector potential can dramatically reduce
the computational cost for 3D magnetic field analysis, but for most methods, the use of scalar potential
was limited to current-free conditions. However, for coplanar coils characterized by homogeneous current
density, the current density can be transformed into an equivalent permanent magnetization to satisfy the
current-free condition. By utilizing this equivalent permanent magnetization as a source, a variational
formulation for the magnetic scalar potential can be derived, and finite element analysis becomes feasible
for complex systems that analytical method cannot be used. However, the equation for the equivalent
permanent magnetization was previously presented only for rectangular coils, and its detailed derivation
process, variational scalar potential formulation, and application method for finite element analysis were
not introduced, limiting the practicality of the method. To generalize the method to practical applications,
this study introduces a generalized equation for equivalent permanent magnetization applicable to arbitrary
cross-sectional coplanar coils, its variational formulation using the magnetic scalar potential, and a method
for its application in finite element analysis. The results of the magnetic field analysis using the scalar
potential formulationwere comparedwith those of the traditional vector potential formulation to demonstrate
the feasibility and usefulness of the formulation.

INDEX TERMS Arbitrary shape, magnetic charge, magnetic field, coplanar winding, permanent magneti-
zation.

I. INTRODUCTION
The utilization of magnetic scalar potential has been proven
as a cost-effective approach for analyzing the magnetic field
of a magnetostatic system [1], and various formulations were
developed to utilize magnetic scalar potential. Namely, there
are reduced magnetic scalar potential, total magnetic scalar
potential, mixed scalar potential, and combined magnetic
vector and scalar potential formulations [2], [3].
Among the formulations, total magnetic scalar potential

provides themost accurate and fast computations; the reduced
scalar potential is less accurate in regions with high per-
meability [2] and requires pre-computation of field T0 [2],
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[3], [4]; the magnetic vector potential has a high computa-
tional cost. However, in scenarios involving steady current
sources, the comprehensive use of total scalar potential is
impossible. This is because the formulation of total magnetic
scalar potential is based on assumptions of current-free con-
ditions [2], [3], [5].

Consequently, various combined methods were introduced
to utilize the magnetic scalar potential in more general
cases. The combined methods partition the field analysis
region into distinct areas, distinguishing between current-free
and current-source regions, enabling the combined use of
magnetic scalar potential and magnetic vector potential,
respectively [6]. To ensure the consistency of the solution
between the regions, boundary conditions or cut surfaces
with potential jumps are introduced [1], [2], [3], [4], [5], [6],
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[7]. The most recent method utilizes cut surfaces assigned
with potential jumps whose value is equal to the fraction of
the total current; then, magnetic fields in simply connected
regions enclosed by currents become a single-valued func-
tion. Thus, with adequate choice of cut surfaces, computation
of current-free regions using total magnetic scalar potential
formulation is possible, and this results in significant reduc-
tion in computational cost [1], [7].

Nonetheless, by employing equivalent permanent magne-
tization for the current, it becomes feasible to conduct a
comprehensive total magnetic scalar potential field analysis
for the entire region by eliminating the current-source region.
While the equation for equivalent permanent magnetization
of a coplanar rectangular coil has been established [8], [9],
a generalized equation for arbitrary cross-sectional coils, its
detailed derivation process, magnetic scalar potential for-
mulation, variational formulation, and the methodology for
its implementation in finite element method (FEM), remain
unaddressed.

This study aims to provide a field analysis method applica-
ble to arbitrary cross-sectional coplanar coils in the absence
of magnetic materials. First, a generalized equation for equiv-
alent permanent magnetization is derived with a detailed
description of its premises and scope of application. This
equation serves as the foundation for developing a total mag-
netic scalar formulation. Secondly, a variational formulation
that has the equivalent permanent magnetization as a source
is derived. This formulation is the fundamental equation used
in FEM, and being able to directly use equivalent perma-
nent magnetization instead of pre-calculated magnetic charge
improves the feasibility of the method in complex geome-
tries where analytical pre-calculation is impossible. Lastly,
we present a straightforwardmethod for its implementation in
finite element analysis (FEA), benefiting from its alignment
with electrostatic formulations, which simplifies the process.

Then, numerical examples are presented to demonstrate the
feasibility and usefulness of the proposed method. Specif-
ically, by employing FEM, we performed magnetic field
analyses of three-dimensional (3D) coplanar coils using both
magnetic scalar potential and magnetic vector potential. The
results include a comparison of relative errors and computa-
tional costs between the two approaches.

II. DEFINITION OF THE PROBLEM
The problem under consideration pertains to the magnetic
scalar potential field analysis method for closed-loop of uni-
form cross-sectional coplanar coils in air. Previous works
on this subject were limited to rectangular cross-sectional
coils. For practical uses, expansion of the method to arbitrary
cross-sectional coils is required. To do so, three stages of the
method should be developed.

First, the generalized equation for permanent magnetiza-
tion of 3D arbitrary coils needs to be derivedwith clarification
on the scope of its possible application. The derivation pro-
cess of equivalent permanentmagnetization in 2D rectangular
coils is limited to a pair of antisymmetric current sources,

each perpendicular to the cross-sectional plane. This prereq-
uisite strictly limits the equation’s transformation from 2D
to 3D where no geometries meet such a requirement. Thus,
the transformation process for 2D to 3D geometries needs to
be clarified. Moreover, the derivation of equivalent perma-
nent magnetization in rectangular coils assumes equal current
segment heights. For arbitrary coils, such an assumption is
not met, and the derivation process for such a scenario also
needs to be introduced. These will be presented in sections III
and IV.

Second, the derivation of the magnetic scalar potential
state equation using the equivalent permanent magnetiza-
tion and its variational formulation needs to be derived. The
variational formulation is a fundamental equation used to
calculate the magnetic scalar potential and magnetic field
for a given system. Especially for arbitrary cross-sectional
coils, the distribution of magnetic charge is complex and
cannot be calculated analytically. In such cases, numerical
analysis is mandatory, and being able to use the equivalent
permanent magnetization directly as a source adds feasibility
to the method. These will be presented in section V.

Third, a detailed and feasible application method for the
formulation needs to be introduced. In arbitrary 3D cross-
sectional coils, analytical methods cannot be used to calculate
the equivalent magnetization or magnetic charge. Themanda-
tory process for numerical calculation of the equivalent
permanent magnetization is introduced by defining the ref-
erence wall and using the wall distance function, as shown
in section IV. Then, a separate PDE module is needed
to employ variational formulation and conduct numerical
analysis. However, the formulation’s similarity with that of
electrostatics allows the use of a commercial electrostatics
module to calculate the magnetic scalar potential with simple
substitution of sources and conversion of units, as introduced
in section V.

III. EQUIVALENT PERMANENT MAGNETIZATION OF
2D/2D-AXISYMMETRIC ARBITRARY CROSS-SECTIONAL
COILS
It is widely known that the magnetic field of permanent
magnets can be computed using the magnetic charge or sur-
face current density. Conversely, the surface current density
can also be modeled using permanent magnetization. There-
fore, if the distribution of current can be represented by the
superposition of segments of surface current density, then
a rectangular coil can be represented by equivalent perma-
nent magnetization [8]. However, for arbitrary cross-sectional
coils with varying heights of current segments, the current
must be further subdivided into infinitesimal volume seg-
ments, each characterized by its own volume current density.
A. Equivalent Magnetic Charge and Surface Current Den-

sity of Permanent Magnetization
The governing equation for the magnetostatic system with

a current source is:

∇ × ∇ × A = µ0Js, (1)
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where Js and A are source-current density and magnetic
vector potential, respectively.

For permanent magnets, the source can be modeled using
the equivalent magnetization current density. The governing
equations are as follows:

∇ × ∇ × A = µ0Jm, (2)

Jm = ∇ × Mp, (3)

where Jm and Mp are the magnetization current density and
permanent magnetization, respectively.

When Mp is uniform, only magnetization surface current
density, defined as

Km =

∫
JmdL = JmL, (4)

where L is the length of a magnet, appears at the boundaries
of the permanent magnet (as depicted in Fig. 1(b)) and can be
calculated as:

Km = Mp × n. (5)

From this equation, it is evident that a pair of antisym-
metric, normal to permanent magnetization vector, surface
current density replaces homogeneous permanent magnetiza-
tion.

Permanent magnetization can also be modeled using the
magnetic charge density, defined as:

ρm = −∇ · Mp, (6)

where ρm is magnetic charge.
When Mp is uniform, only the surface magnetic charge

density appears at the boundaries (as shown in Fig. 1(c) and
has the value:

σm = Mp · n. (7)

FIGURE 1. (a) Uniform permanent magnetization, (b) equivalent surface
current density, and (c) equivalent magnetic charge.

From (1) and (2), it is evident that both Js and Jm act
as sources of A, and substituting Js with the equivalent Jm
results in the same vector potential A. Therefore, by deter-
mining the equivalent permanent magnetization Mp or the
equivalent magnetic charge density ρm for Jm, it becomes
possible to compute the magnetic field using the magnetic
scalar potential.
B. Derivation of Equivalent Permanent Magnetization
To determine the equivalent magnetization for the rectan-

gular coil, the volume current density region was separated

into fragments of sheet currents, each having a length of L,
width w, and surface current density K. Then, these layers
of equivalent magnetization from each current sheet were
superposed.

For the rectangular coils, the magnetization increases lin-
early to Mmax towards the center, as depicted in Fig. 2(b).
In the equivalent model, only surfacemagnetic charge density
σm is present, as shown in Fig. 3(c) [8].

FIGURE 2. Equivalent magnetization of (a) sheet current and (b) volume
current.

FIGURE 3. (a) Decomposition of volume current to sheet current
segments, (b) accumulation of sheet current density, and
(c) accumulation of surface magnetic charge.

However, for arbitrary cross-sectional coils with vary-
ing heights of current segments, the volume current density
region must be further separated into fragments of an
infinitesimal area of width dw and length dL, as shown in
Fig. 4.

FIGURE 4. (a) Segmentation of 2D arbitrary coil model and (b) a pair of
antisymmetric infinitesimal volume current density–equivalent
permanent magnetization and magnetic charge density.

Subsequently, the equivalent permanent magnetization for
each infinitesimal areamust be defined and superposed. Since
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there is a difference in the magnitude of the magnetization in
the y-direction, volume magnetic charge density ρm appears.
To define the equivalent permanent magnetization for an

infinitesimal area of the volume current density J, the volume
current density can be expressed using the surface current
density K of infinitesimal length dL and width w:

J =
K
w (8)

The surface current density was defined to have a finite
length L of a magnet, but we can assume a magnet seg-
ment of infinitesimal length dL to determine the equivalent
infinitesimal surface current density and magnetization. This
mathematical model aligns with the physical model and
assumptions of continuum mechanics, where an object can
be regarded as a collection of infinitesimal volume elements
[11].

Given that J is constant, as w → dw,

|K| → |dK| (9)∣∣Mp
∣∣ →

∣∣dMp
∣∣ (10)∣∣dMp

∣∣ = |dK| = |J| dw (11)

Finally, the equation for permanent magnetization can be
obtained by integrating the infinitesimal permanent magne-
tization of each horizontal segment at a given height y:∣∣Mp

∣∣ =

∫ ∣∣dMp
∣∣ =

∫
|J|dw = Jw, (12)

where w(x,y) represents the width of the volume-current den-
sity segment measured from the outer coil boundary. Thus, w
can be expressed as:

w(x, y) = (xo(y) − x), for x > xi
w(x, y) = (xo(y) − xi(y)), for x < xi (13)

Here, xo(y) and xi(y) represent the distances from the
antisymmetric plane to the outer and inner coil boundaries,
respectively.

Thus, for a 2D arbitrary cross-sectional coil, the equation
for the magnetization is:

Mp(x, y) = |J| (xo(y) − x) · ay , for x > xi(y), (14)

Mp(x, y) = |J| (xo(y) − xi(y)) · ay , for x < xi(y), (15)

where ay denotes the unit vector. Themagnetic charge density
is expressed as follows:

ρm = −∇ · Mp = − |J| (
dxo(y)
dy

−
dxi(y)
dy

) (16)

σm = Mp · n (17)

For an arbitrary 2D-axisymmetric model, magnetization is
a function of r and z:

Mp(r, z) = |J| (ro(z) − r) · az , for r > ri(z), (18)

Mp(r, z) = |J| (ro(z) − ri(z)) · az , for r < ri(z), (19)

where ar is a unit vector. The equation is identical to that
of the 2D model, with a change of variables to a cylindrical
coordinate system.

FIGURE 5. 2D-axisymmetric arbitrary coil model.

FIGURE 6. (a) 2D-arbitrary coil model, (b) permanent magnetization, and
(c) magnetic charge density.

For a given coil shown in Fig. 6(a), the equivalent perma-
nent magnetization andmagnetic charge density are depicted.
The magnitude of the permanent magnetization depends on
the coil width, as indicated in (13), and the magnetic charge
density depends on the slopes of the outer and inner coils,
as presented in (16):

IV. EQUIVALENT PERMANENT MAGNETIZATION OF 3D
ARBITRARY CROSS-SECTIONAL COILS
As depicted in Fig. 6, a 3D coplanar coil was constructed by
sweeping the 2D cross-sectional geometry along the coplanar
curve. Thus, it might seem possible to superpose layers of
magnetization for the antisymmetric infinitesimal region of
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volume current density, as implemented in the 2D and 2D-
axisymmetric cases. However, for nonsymmetric coils, it is
impossible to identify the antisymmetric pair of the volume
current density. Therefore, the superposition method is insuf-
ficient for fully deriving the equivalent magnetization in the
3D case.

FIGURE 7. 3D-Axisymmetirc arbitrary coil model.

To solve this problem, Ampere’s law for the magnetization
current density can be utilized. Using Stokes’ theorem, for
any closed loop, (3) can be expressed as:∫∫

Jm · ds =

∮
Mp · dl (20)

For coplanar coils, by taking this Ampere loop to contain
an identical cross-sectional area of volume current density J,
we can demonstrate that permanent magnetization reaches its
maximum value and remains constant for the inner domain
surrounded by the coil, as indicated in Fig. 8. Consequently,
for a closed loop of a coplanar coil, the assumption of an
antisymmetric pair of current densities J can be considered
negligible.

Therefore, for an arbitrary coil, the permanent magnetiza-
tion can be calculated similarly to the 2D case. The equation
for the permanent magnetization is equivalent to (12), where
the coil width w(x, y, z) represents the width of the volume
current density segment measured from the outer coil bound-
ary for a given coplanar height z:

wcoil(x, y, z) = (do(x, y, z) − d(x, y, z)), for d > di
winner (z) = (do(z) − di(z)), for d < di (21)

Here, wcoil and winner represent the widths inside the coil
and inner regions, respectively, and d represents the distance
measured from the reference axis, as shown in Fig. 8. The
reference axis can be drawn with the coil cross-section and
then swept together to create a reference wall. The distance
from the reference axis was then obtained using the wall
distance function. The reference axis can be any z-axis within
the cross-sectional plane. However, for simplicity, it can be
set to the leftmost point of the coil geometry.

FIGURE 8. Reference axis, inner coil distance di, outer coil distance do,
and distance from reference axis d , and coil width w .

The permanent magnetization distributions for the rect-
angular and arbitrary coils determined by the wall distance
function are depicted in Fig. 9. For the rectangular coil, the
equivalent permanent magnetization remains constant within
the inner domain as in Fig.9(a), while for the arbitrary coil,
it varies with height z, as illustrated in Fig. 9(b)(c).

V. WEAK FORMULATION OF THE EQUIVALENT MODEL
USING THE MAGNETIC SCALAR POTENTIAL AND
APPLICATION TO FEM
A. GOVERNING EQUATION AND WEAK FORMULATION OF
THE EQUIVALENT PERMANENT MAGNETIZATION IN AIR
The governing equation for the equivalent permanent mag-
netization source in air can be derived from Maxwell’s and
the constitutive equations. Notably, the constitutive equation
does not include a magnetization term because there is no
magnetic material with relative permeability in the problem.
It is essential to avoid simply adding a magnetization term
to the problem, as this does not yield accurate field analy-
sis results in the presence of magnetic materials. However,
addressing such a problem is beyond the scope of this study.

1) GOVERNING EQUATION OF THE EQUIVALENT
PERMANENT MAGNETIZATION MODEL
The governing equation was obtained using Maxwell’s equa-
tions and the constitutive equation given as:

∇ · B = 0 (22)

∇ × H = 0 (23)

B = µ0Hm + µ0Mp, (24)

where B, Hm, Mp are magnetic flux density, magnetic field
intensity, and permanent magnetization, respectively.

From (23), the magnetic scalar potential is defined as:

Hm = −∇φm (25)
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FIGURE 9. Equivalent permanent magnetization of (a) rectangular coil,
(b) arbitrary cross-sectional coil, and (c) arbitrary coil cross-sectional view.

Taking divergence on both sides, (24) is rewritten as:

∇ · B = µ0(∇ · Hm + ∇ · Mp) (26)

Substituting (22) and (25), (26) can be rewritten as:

0 = µ0(−∇
2φm + ∇ · Mp) (27)

Dividing µ0 on both sides of (27), the governing equation is
obtained as:

∇
2φm = ∇ · Mp (28)

In magnetic charge form, (28) is rewritten as:

∇
2φm = −ρm (29)

2) WEAK FORMULATION OF THE EQUIVALENT PERMANENT
MAGNETIZATION MODEL
The derivation process for the variational formulation is sim-
ilar to that used in other electromagnetic systems [12]. The

governing equation (28) can be reduced to a variational state
equation by multiplying both sides by an arbitrary virtual
potential φ̄, as follows:∫

−∇ · (∇φm − Mp) φ̄d� = 0 (30)

By employing the vector identity ∇ · (∇ψψ̄) = (∇ ·∇ψ)ψ̄+

∇ψ · ∇ψ̄ , (30) can be rewritten as:∫
[(∇φm − Mp)∇φ̄ − ∇ · {(∇φm − Mp)φ̄}]d� = 0 (31)

Using the divergence theorem, (31) can be revised as:∫
(∇φm − Mp)∇φ̄d� =

∫∫
(∇φm − Mp) · nφ̄d0, (32)∫

(∇φm − Mp)∇φ̄d� = −

∫∫
1
µ0

(Bn) · nφ̄d0, (33)

where

Bn(φm) = (−µ0∇φm + µ0Mp) · n = µ0(−
∂φm

∂n
+ Mp · n).

For the variational equation, the Dirichlet and homogeneous
Neumann boundary conditions can be revised as:

φ̄ = 0on01 (34)

Bn(φm) = 0on01 (35)

By imposing boundary conditions (34) and (35), the
right-hand side of (33) becomes zero, resulting in the vari-
ational state equation:∫

∇φm · ∇φ̄d� =

∫
Mp · ∇φ̄d� (36)

B. COMPARISON WITH ELECTROSTATICS
The governing equation and the variational formulation of the
electrostatics are derived as:

∇
2φ =

−ρ + ∇ · Pp

ε0
, (37)∫

ε0∇φ · ∇φ̄d� =

∫
(ρφ + Pp · ∇φ̄)d�, (38)

where ρ is charge density and Pp is permanent polariza-
tion [12]. In (28) and (37), the divergence of permanent
polarization and permanent magnetization are both sources of
scalar potentials φm and φ, respectively. Furthermore, in (28),
the divergence ofMp can be identified as the magnetic charge
density ρm, and permeability µ0 is not included in the gov-
erning system.

C. APPLICATION TO FEM
The structural similarity in the formulation between the
equivalent permanent magnetization and electrostatics sim-
plifies the application to numerical analysis. By ensuring
the source terms in the differential equations are equivalent,
it becomes possible to find the solution for the magnetic
scalar potential φm. Thus, the equivalent permanent magne-
tization method can be applied using an electrostatic module
based on the scalar potential formulation.
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1) FEM USING PERMANENT POLARIZATION
From (37) and (38), by replacing permanent polarization Pp
with the corresponding value of permanentmagnetizationMp
and charge density ρ with 0, we can acquire the equivalent
differential equation, as represented in (28). Thus, the two
equivalence conditions are defined as:

Pp = ε0Mp (39)

ρ = 0 (40)

Substituting (39) and (40), (37) becomes identical to (28),
as follows:

∇
2φ =

−ρ + ∇ · Pp

ε0
= ∇ · Mp = ∇

2φm (41)

From (41), the equivalence conditions ensure that the electro-
static potential φ and magnetic scalar potential φm are equal
in magnitude. Thus, Hm can be obtained by determining the
equivalent Eeqv, as follows:

−∇φ = Eeqv = −∇φm = Hm (42)

Finally, B can be computed via the constitutive relation as:

B = u0Hm + u0Mp = u0Eeqv + u0Mp (43)

Also, comparing the constitutive equation for current
source(42) with (41),

B = u0H, (44)

B = u0Hm + u0Mp = u0(Hm + Mp), (45)

it is evident that the H is equivalent to:

H = Hm + Mp (46)

Here, H is the magnetic field intensity of the current source.

2) FEM USING CHARGE DENSITY
Similarly, the equivalent differential equation, that is (29),
can be obtained using two equivalence conditions defined as
follows:

Pp = 0 (47)

ρ = ε0ρm (48)

Substituting (47) and (48), (37) becomes identical to (29),
as follows:

∇
2φ =

−ρ + ∇ · Pp

ε0
= −ρm = ∇

2φm (49)

The process for determining the H and B is the same as that
described in the previous section.

VI. NUMERICAL EXAMPLE AND COMPARISON OF THE
RESULTS
To verify the accuracy and effectiveness of the mag-
netic scalar potential method in reducing the computational
cost, the magnetic flux density B and magnetic field
intensity H were calculated using (a) equivalent magnetic
charge/permanent magnetization and (b) external current as a

source, using magnetic scalar potential and magnetic vector
potential formulation, respectively. Subsequently, their rel-
ative errors, degrees of freedom (DOF), and computational
times are presented for comparison.

A. 2D / 2D AXISYMMETRIC ARBITRARY
CROSS-SECTIONAL COILS
For 2D/2D axisymmetric coil models, the magnetic scalar
potential method does not reduce the computational costs,
nor is it important because the computational costs are low.
Therefore, in this section, only the accuracy of this method is
discussed.

1) ARBITRARY 2D MODEL
The resultant magnetic fields (B) calculated from the three
sources are presented in Fig. 10. The resultant fields were
identical, except for minor differences in certain regions,
which decreased as the mesh size decreased, as shown in
Fig. 11. The change in the average relative error was cal-
culated between the magnetic scalar potential and vector
potential method with respect to the mesh size factor (k),
as depicted in Fig. 12. The mesh size factor (k) is defined
as follows:

k =
max coil width
max element size

, (50)

where k represents the minimum number of mesh elements
per unit length of coil.

FIGURE 10. Magnetic field (B) calculated using (a) magnetic charge, (b)
external current density, and (c) permanent magnetization.

FIGURE 11. Relative error of H when (a) k=10 and (b) k=30.

The relative error for B is the same as that forH because B
is calculated using H, as in (44).
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FIGURE 12. Change in relative error of H with respect to k–2D model.

2) ARBITRARY 2D-AXISYMMETRIC MODEL
This result is the same as that obtained for the 2D model.
The resulting fields were almost identical for both scalar and
vector potential methods, with minor relative errors in some
regions. Figures for the 2D-axisymmetric model are omitted
because of their high resemblance to the 2D model.

FIGURE 13. Magnetic field (B) calculated using equivalent magnetic
charge – 2D-axismmetric model.

B. 3D ARBITRARY CROSS-SECTIONAL COILS
The resultant magnetic field of the 3D coil model calcu-
lated using the equivalent magnetization and magnetic scalar
potential formulation is presented in Fig. 14. The resultant
field appeared identical for both the magnetic scalar potential
and magnetic vector potential methods.

The main source of error is the error in the wall distance
function when finding equivalent permanent magnetization.
This error is amplified during the process by which diver-
gence of permanent magnetization is calculated in curved
regions of the coil, as in Fig. 15. Thus, this error can be
reduced by reducing the margin of error for the wall distance
function and mesh size. However, for the efficiency of the
method, reducing the mesh size is sufficient; the relative error
of the magnetic field depended on the mesh size factor k ,

FIGURE 14. Magnetic field (B) calculated using equivalent magnetic
charge– 3D Model.

FIGURE 15. Relative error of B when (a) k=2 (b) k=10.

and the relative error converged from 4 to 0.7% for mesh size
factors of 1–10, as depicted in Fig. 16.
Most importantly, the magnetic scalar potential method

significantly reduced computational costs; the DOF and
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FIGURE 16. Change in the relative error of B with respect to k–3D model.

FIGURE 17. Change in DOF with respect to k–3D model.

FIGURE 18. Change in computational time with respect to k–3D model.

computational time were both reduced by approximately
89.5 and 35%, respectively, as indicated in Figs. 17 and 18,
respectively.

The amount of reduction in DOF is anticipated for the
magnetic scalar potential method, and it seems much more
plausible for the computational time to be reduced to a sim-
ilar degree. However, unlike other methods suggested for
rectangular coils which pre-calculate divergence of perma-
nent magnetization or magnetic charge before solving for
magnetic potential, pre-calculation is impossible for arbitrary
3D coils. This is because boundaries of arbitrary coils can
have varying shapes, and the resultant equivalent permanent
magnetization and distribution of volume magnetic charge
density cannot be calculated analytically.

In this case, numerical calculation of divergence of perma-
nent magnetization is mandatory, and it must be included in
the computational time. Thus, a 35% reduction in computa-

tional time is reasonable, and it is still a significant reduction,
considering the high accuracy of the method.

The relative error for B is the same as that for H because B
is calculated using H, as in (44).

VII. CONCLUSION
This study proposes a magnetic scalar potential field analysis
method for closed-loop of arbitrary cross-sectional copla-
nar coils in air. From the previous method on rectangular
cross-sectional coils, we expand the method’s applicability,
practicality, and feasibility by suggesting the equations and
steps required for finite element analysis.

First, a generalized equation for equivalent permanent
magnetization for 3D arbitrary coplanar coils is derived.
By providing a detailed derivation process for 2D/2D axisym-
metric case and transformation from 2D to 3D case, we clarify
that the method can be applied to non-symmetric and arbi-
trary cross-sectional cases. Justification for not meeting the
antisymmetric volume current density requirement and intro-
duction of infinitesimal volume current segment are provided
during the process.

Secondly, a variational magnetic scalar potential formula-
tion of the equivalent permanent magnetization is suggested.
The variational formulation is necessary for finite element
analysis, as the formulation defines the PDE solved for. The
capability of directly using equivalent permanent magnetiza-
tion as a source adds the feasibility of the method for general
cases when pre-calculation of magnetic charge is impossible.

Finally, details required for the application of the method
are introduced. To calculate equivalent permanent magne-
tization, a reference wall is defined and used in the wall
distance function. Moreover, from the result of the formula-
tion, we conclude that the parallel structure of the formulation
with that of electrostatics allows a convenient method for
application to FEM by defining the equivalence conditions.
The simple substitution of the sources stated in the equiva-
lence conditions makes the state variable equations identical,
and magnetic scalar potential can be calculated using the
electrostatics module.

To demonstrate the usefulness and accuracy of the pro-
posed method, this study demonstrated a reduction in com-
putational cost and relative error compared with the vector
potential method. Overall, the DOF and the computational
timewere reduced by 89.5 and 35%, respectively. The relative
error was dependent on the mesh size but converged to 0.7%
for fine meshes, primarily attributable to the computational
error of the wall distance function. The computational time
for the method included the time required for the calcula-
tion of divergence of equivalent permanent magnetization,
or magnetic charge, leading to a lower reduction in compu-
tational time compared to DOF. However, unlike other coils
with simple geometry where pre-calculation of magnetic
charge is possible, such a process is mandatory for arbitrary
coils and 35% is still a meaningful reduction considering the
high accuracy of the method.
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Overall, the proposed method enables feasible and use-
ful field computation of coplanar coils in air. By providing
the magnetic scalar potential field analysis method for
non-symmetric and arbitrary cross-sectional coils, the design
of coil geometry in applications that utilize axial flux can be
conducted with much greater design space, and its numeri-
cal field analysis results can be obtained with much lower
computational cost. Furthermore, steps suggested for the
derivation of the generalized equation and its variational mag-
netic scalar potential formulation provide the basis for further
expansion of the method to cases with magnetic materials,
where computational costs are much higher, and reduction in
computational costs can be more valuable.
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