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ABSTRACT High-quality images are of great significance for vision tasks in underwater environments.
However, as light propagates through water, it is scattered and absorbed, which commonly causes issues like
color distortion and loss of detail, making the capture of high-quality images challenging. To improve the
quality of underwater images, we propose an underwater image enhancement method that is based on channel
similarity to adaptive color correction and stationary wavelet detail enhancement. Specifically, We first
innovatively introduce channel similarity values to avoid red artifacts during color correction, and finely
adjust the compensation amount at the pixel level based on the intensity difference between the red and green
channels. By designing a new dynamic normalization range based on channel similarity, our color correction
method adaptively adjusts the dynamic range of each RGB channel’s pixel value. This accommodation
for color deviations in various underwater scenes enhances the color saturation of images. Subsequently,
using the stationary wavelet transform, we accurately decompose the image into low-frequency and
high-frequency components. Through fine processing of the low-frequency components, we optimize
detail performance and enhance the visual clarity of the underwater scene. Extensive experiments on
four benchmark datasets validate that our method is state-of-the-art in underwater image enhancement,
excelling in both qualitative and quantitative evaluations. Additionally, our method bolsters the precision
of tasks such as keypoint matching and edge detection within the realm of image processing. The code
is available at https://github.com/Zhenbo-Wang/Adaptive-Color-Correction-and-Stationary-Wavelet-Detail-
Enhancement.

INDEX TERMS Underwater image enhancement, color correction, channel similarity, stationary wavelet
decomposition.

I. INTRODUCTION
The oceans, rivers, and lakes are repositories of extensive
biodiversity and natural resources. Recent advancements in
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science and technology have established image processing
and analysis as crucial tools, expanding the capabilities of
researchers to explore and study underwater environments.
These methodologies are extensively utilized in areas such as
marine biology research [1], surveys of underwater environ-
ments and resources [2], the inspection and maintenance of
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FIGURE 1. Comparison of original and enhanced images and their color distribution histograms. The first row shows the
original images and their color distribution histograms, and the second row shows the enhanced images and color distribution

histograms by our method.

subaquatic structures [3], underwater archaeological explo-
ration [4], and the development of underwater robotics [5].
However, the complexity of the underwater environment
makes it difficult for ordinary imaging equipment to capture
clear underwater images.

The quality of underwater images is influenced by a
number of factors, primarily the inherent attributes of the
aquatic environment and the physical processes governing
light propagation within this medium. These factors can lead
to problems such as color distortion, low contrast, loss of
detail, blurred images. For instance, light of different wave-
lengths exhibits varied attenuation rates when propagating
underwater. Due to the longer wavelength of red light, it is
easily absorbed by water, while blue-green light, with its
shorter wavelengths, has a stronger propagation capability.
Therefore, underwater, the intensity of red light diminishes
swiftly, whereas the blue and green light maintains a stronger
intensity relative to red [6]. As shown in the first row of
color distribution histograms in Figure 1, the average pixel
value of the red channel is smaller than the average pixel
value of the blue and green channels, which makes most of
the underwater images we obtain show a greenish hue or
a bluish hue. Light propagating underwater also undergoes
scattering, which causes the light to deviate from its original
straight-line path, resulting in blurred images. In addition,
suspended particles and organisms in the water further
enhance scattering and absorption, resulting in reduced
image contrast and loss of detailed information [7]. Thus,
the research on obtaining high-quality underwater images
by means of underwater image enhancement methods has
become an urgent problem for underwater vision, which is of
great significance for enhancing the efficiency and accuracy
of underwater activities, protecting marine life and cultural
heritage, and promoting scientific research and industrial
development.
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In this work, we propose an enhancement method based on
channel similarity to adaptive color correction and stationary
wavelet transform to address the problem of color distortion,
contrast degradation, and detail loss in underwater images.
The main contributions of this paper are as follows.

« We propose a method based on channel similarity and
red channel compensation, which introduces the channel
similarity value to determine whether the red channel
needs to be compensated or not, and effectively avoids
red artifacts in color correction. In addition, the amount
of compensation is finely adjusted at the pixel level
based on the intensity difference between the red and
green channels. This method provides an innovative
and targeted solution to the problem of image color
distortion in underwater environments.

o We design a new normalization range for statistical color
correction based on channel similarity, which makes our
correction method can be adaptively adjusted according
to the unique color distribution of each image, thus
further enhancing the contrast and saturation of the
image.

« We present a combined strategy of stationary wavelet
decomposition and image sharpening. The approximate
low-frequency components of the image are extracted
by the translation invariance of the stationary wavelet,
and then sharpening the low-frequency information can
effectively enhance the main structure and morphology
of the image, improving the local details of the image.

Il. RELATED WORK

Currently, underwater image enhancement technology can be
divided into two research directions: hardware enhancement
and algorithm enhancement. Hardware enhancement mainly
relies on advanced optical and electronic devices to improve
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the quality of image acquisition, such as sonar technology [9]
and polarization technology [10]. Sonar techniques are
capable of accurately determining the distance between an
underwater object and the camera and correcting for per-
spective distortion caused by the refraction of light in water.
Polarization techniques are applied to complex scattering sit-
uations in water to effectively reduce or eliminate the effects
of scattering caused by various suspended particles. While
hardware enhancement methods perform well in certain
specific contexts, they are often accompanied by expensive
equipment costs, complex maintenance requirements and
portability. In addition, hardware methods may not be able
to meet the challenges of all underwater environments and
conditions.

Compared with hardware enhancement, algorithmic
enhancement not only solves the problems of cost and
complexity, but also provides more flexible and diversified
means of image processing, making it more advantageous
and attractive in many application scenarios. Algorithmic
enhancement methods are mainly classified into three
underwater image enhancement techniques based on physical
models, non-physical models, and deep learning [11].

(1) Physical model-based underwater image enhancement
techniques aim to develop mathematical models to describe
the physical process of underwater image degradation as
a basis for designing algorithms for image processing and
enhancement. For example, the Jaffe-McGlamery underwater
imaging model [12] describes in detail the image quality
degradation process due to light scattering and absorption
in underwater optical imaging, which is a classical model
in underwater vision research. Chiang et al. compensated
for the attenuation differences in the propagation path,
thus improving the quality and sharpness of underwater
images [13], [14]. In addition, Drews et al. utilized the
theoretical basis of the physical light propagation model [15]
to improve the quality of underwater images by design-
ing a depth estimation method to create a depth map
for underwater images, then estimating and removing the
background scattering based on the depth value of each
pixel, and finally automatically adjusting the global color
distribution of the image through a color correction method.
Akkaynak and Treibitz proposed a method called Sea-
Thru [16], which demonstrates through physical modeling
that the attenuation coefficient of the signal is not uniformly
distributed throughout the scene, but depends on the distance
and reflectivity of the object. They further showed that
the coefficient of backscattering increasing with distance
is different from the signal attenuation coefficient. This
approach successfully solves the problem of color loss caused
by commonly used atmospheric image formation models
when applied to underwater images.

(2) Non-physical modeling techniques for underwater
image enhancement are used to improve image quality by
directly adjusting image pixel values. Typical representa-
tive methods include histogram equalization [23], contrast
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stretching [17], image fusion [19], [41] and Retinex-based
methods [21], [22], [28]. For example, Igbal, Kashif et al.
proposed a color balance and contrast correction method
based on RGB and HSI color models [17], aiming to reduce
color bias and improve image quality. To address the problem
of color bias in underwater images, Dong et al. proposed
a specific fraction-based method [18] that combines the
application of RGB and LAB color models to optimize the
image quality by performing color correction in both RGB
and LAB color spaces, while enhancing the contrast in the
L-channels and applying a strategic equalization in the AB-
channels. Ancuti et al. proposed a method combining the
underwater white balance technique and multi-scale fusion
technique [19], which can effectively improve the quality
of underwater images. Recently, Zhang et al. proposed an
underwater image enhancement method called MLLE [20],
which locally adjusts the color and details of the input image
according to the principle of minimum color loss and the
fusion strategy guided by the maximum decay map, and
adaptively adjusts the contrast of the image through the local
mean and variance to further improve the visibility of the
image.

(3) With the rapid development of deep learning tech-
nology in recent years, underwater image enhancement
techniques based on deep learning have also been widely
applied [24], [25], [26]. To address the problem of monocular
underwater image color correction, Li et al. proposed a
generative adversarial network called WaterGAN [24]. This
network achieves color correction of monocular underwater
images by generating a training dataset using real underwater
images and their corresponding depth information, and
further using these data to train WaterGAN. Similarly,
Jiang et al. proposed a goal-directed perceptual adversarial
fusion network named TOPAL based on adversarial networks
and image fusion [25], which achieves adaptive fusion
of latent features through dual-channel attention modules
and introduces a global-local adversarial mechanism in
the reconstruction, thus significantly improving the quality
of underwater images. Peng et al. designed a U- shape
transformer network [26], which integrates channel-wise
and spatial-wise attention mechanism modules to effec-
tively eliminate color artifacts and colors. Huang et al.
proposed a semi-supervised learning framework called Semi-
UIR [27], which consists of a teacher network and a
student network. This framework aims to exploit the extra
information contained in unlabeled data to improve the
performance and generalization of the model. Although
deep learning-based image enhancement methods exhibit
significant potential and advantages, they also face some
challenges. The existing deep learning-based underwater
image enhancement methods are limited by the lack of a large
amount of real training data and a priori information, as well
as the possibility of ignoring underwater-specific problems,
which together limit the efficacy and usability of deep
learning-based underwater image enhancement methods,
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FIGURE 2. Flowchart of the proposed method.
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FIGURE 3. Visualization of color channel separation. The red channel
loses a lot of information, while the green and blue channels retain more
image information.

resulting in less robustness and generalization than traditional
methods.

lll. METHOD

We present the flowchart of our method in Figure 2. The
proposed method includes three main steps: red channel
color compensation, color correction of RGB channels and
stationary wavelet transform enhance details. In this section,
our method is described in detail.

A. RED CHANNEL EVALUATION AND COMPENSATION

The longer wavelengths of red light are easily scattered
and absorbed in water, resulting in rapid attenuation and
severe loss of visual information. In contrast, the shorter
wavelengths of blue and green light attenuate more slowly
in water, so their information is better retained underwater,
as shown in Figure 3. This physical phenomenon results
in significant color shifts observed in underwater images,
making the images mainly shifted to blue and green.
Therefore, the first task of underwater image enhancement is
to correct the color shift of the image to restore its relatively
real colors. Currently, color constancy-based methods have
demonstrated their effectiveness for underwater image color
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correction. However, the color correction methods based on
color constancy have certain limitations, they can correct
the color deviation of the image for underwater images well
with slight loss of red channel information, for serious loss
of red channel information, the corrected underwater image
produces significant red artifacts, as shown in Figure 6(d).
These artifacts are caused by overcompensation in areas
where red color appears, whereas red enhancement should
primarily affect pixels with small red channel values and
should not alter pixels that already contain significant red
components [19]. In view of this, the present study explores a
series of judgment methods aimed at accurately determining
when the color constancy methods can be directly applied for
correction and when additional processing of the red channel
is required to avoid red artifacts during color correction.
After comprehensive consideration, we finally chose
channel structure similarity [8] as our judgment criterion.
The selection of channel similarity has several key advan-
tages: first, it provides a comprehensive understanding of
inter-channel relationships by comprehensively evaluating
luminance, contrast, and structural information; second,
this method demonstrates a high degree of accuracy and
consistency in determining the relative informational richness
between channels; Lastly, it effectively guides our compen-
sation strategy to ensure that the intensity of the red channel
is boosted while avoiding over-saturation and preserving the
natural appearance of the image. Overall, channel similarity
can be better used to measure the degree of information
retention in the R, G, and B channels. Mathematically, the
process of calculating channel similarity is as follows:

(zﬂxﬂy + Cl) (zaxy + CZ)

SSIM(x, y) = (IL)Z( n M)% + Cl) (0)(2 + O'y2 + CZ)

ey
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R-channel T=0.6 T=0.7 T=0.8

Original

FIGURE 4. Comparison of color correction results at different T. Shows
that the judgment condition with T set to 0.7 can obtain images with
better contrast and color saturation.

where x, y represent the two channel images to be compared,
Mx, (y are the mean luminance of x, y respectively.
oxz,oyz are the variance of x, y respectively, oy, is the
covariance of x and y, and C1, C2 are the stabilization
factors.

We adopt the strategy of selecting the channel with the
highest average pixel value and compute its similarity to the
red channel. This strategy is based on the assumption that the
color channel with the higher average pixel value commonly
contains richer image information, which can provide a
more accurate basis for evaluation. Thus, by comparing the
structural similarity of these two channels, we are able to
more effectively determine the degree of information loss in
the red channel and adjust accordingly. In addition, since the
green and blue channels show higher stability and consistency
compared to the red channel in underwater environments,
this study only directly calculates the structural similarity
between these two channels in order to effectively evaluate
their information retention status, and plays a key role in
the color correction methods discussed subsequently in this
paper. Specifically, our mathematical calculation equations
are as follows:

R SSIMUR IO Prn > Pran ()
SSIMT ] SSIMUR, 1B), i PGy < Phean
G B G 4B

Pgsiv = Pgspv = SSIM(I®, 17) )

where PSRSIM represents the SSIM value of the red channel
with channel with maximum pixel average, IR, IC, and
IB respectively represent the R, G, and B channels of the
original underwater image I. PS.,. and PB., represent
the pixel average of the green channel and the pixel
average of the blue channel, respectively. PgSIM and PESIM
represent the SSIM values of the green channel and the blue
channel.

In our method, we introduce a threshold 7' to determine
the necessity of color compensation for the red channel.
When the value of I§SIM is greater than 7', we consider that
the structural similarity between the red channel and the

11070

=

(a) Original

() @ = 0.5

FIGURE 5. Visual comparison of red channel compensation effects. Image
set (a) shows the original images and their red channels. Image sets (b),
(c), and (d) each display the compensation effects when the
compensation factor value is set to 0.5, 1, and 1.5, respectively. In each
set of images, the first column shows the compensated red channel
images, the second column presents the corresponding RGB images, and
the third column illustrates the compensated color correction results,
demonstrating the effect of the compensation process on the red channel
and its subsequent color correction in the images.

maximum channel is sufficiently high that direct color correc-
tion can obtain satisfactory results. On the contrary, we need
to apply color compensation before color correction to avoid
over-processing the regions with sufficient red components.
To accurately adjust the degree of color compensation for the
red channel, we set the threshold 7 in the range of 0.6 to
0.8. Through observation and analysis, we notice that when
T is set to 0.6, as shown in the first row of Figure 4, the
color correction produces red artifacts. This indicates that
under the condition that PIS{SIM is larger than 0.6 and smaller
than 0.7, the information in the red channel is still lacking,
S0 it is necessary to compensate the red channel before color
correction to avoid red artifacts. When T is set to 0.8, it may
lead to overcompensation, which reduces the contrast and
saturation of the image, and this result is especially obvious
in the last column of Figure 4. Therefore, based on the
results of a large number of experimental tests, we determine
that the best results can be achieved by performing color
correction under the judgment condition of 7' equal to 0.7,
which not only effectively avoids the generation of red
artifacts, but also maintains the contrast and saturation of the
image.

The color compensation strategy reconstructs the red
channel based on the relative stability of the green channel.
Because the compensation process takes into account the
hypothetical theory in the Gray World [29] that the average
value of each color channel is the same before light
attenuation, and accordingly the degree of red compensation
is quantified by the difference between the average values
of the green and red channels. Meanwhile, the amount of
compensation is considered at the pixel level. This allows
the compensation to be flexibly adjusted to the specifics of
the image, giving more compensation to areas with less red
channel information and less compensation to areas with
richer red channel information, resulting in a more natural
and balanced visual effect. Based on this, the degree of
red compensation is quantified through the difference in the
average values of the green and red channels. Red channel
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FIGURE 6. Shows the results of different color correction methods applied to underwater images. The original
images is shown in column (a). Columns (b) to (f) show the images after applying the following color correction
techniques respectively: Gray World [29], UCM [17], the method proposed by Fu et al. [21], the underwater
white balance technique of Ancuti et al. [19] and our proposed color correction method.

compensation is obtained by the following equation:

IRCG) = IR() + (PG gy — PRean)(1 — IRGDIC(x) ()

Ry, | IRC@). i PSgy < T s
ey =11 R )
I"(x), if Pggpg > T

where IRC represents the compensated red channel, / R(x)and

I6(x) represent each pixel value of the original red channel
and green channel, respectively. « is the compensation
factor, and we set its value to 1. As shown in Figure 5,
we experimentally test different values of «. The results show
that when o = 0.5, the red channels are undercompensated,
and the images show red artifacts after color correction.
On the contrary, when ¢ = 1.5, the overcompensation
causes the images to show unnatural color distortion in local
areas, which affects the overall visual effect of the images.
When the compensation factor is set « = 1, the best
compensation effect can be achieved in different underwater
lighting scenarios, which not only avoids the problem of
under- or over-compensation, but also achieves a more natural
and balanced color correction, which significantly improves
the visual quality of underwater images.

B. ADAPTIVE COLOR CORRECTION BASED ON STATISTICS
AND CHANNEL SIMILARITY

Corrections methods based on color statistics have been
widely adopted in underwater image processing, mainly due
to their ability to simply and efficiently adjust the color dis-
tribution in images. However, the traditional statistical-based
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approach has a significant limitation: it relies on a fixed
constant parameter A to control the dynamic range of the
image. This approach can be problematic, as it does not
account for the varying color distributions found in different
underwater images. To address this limitation, we proposed
a new strategy to adapt to the different color features of
underwater images.

We calculate the mean and variance for each color channel,
two statistical parameters that provide information about
the color distribution for each image. At the same time,
we combine the similarity value of each channel with the
parameter )\ to design a new adaptive normalization range to
better control the dynamic range of the image. This allows
our color correction method to adaptively and dynamically
adjust based on the color distribution and statistical properties
of each image, rather than relying solely on the A value. The
specific calculation equation is as follows:

Pfliax = Prcr{ean +A+1 - gSIM))Pf'zlir (0)
C

Pniin = Pfr{ea.n —(A+d- gSIM))Pf/éI @)
where c; € {RN, G, B}, RC represents the red channel after
color compensation, Py € _{PESIM’ PSsnns PEsv ) Prean
and Py} are the mean and variance of each color channel of
the underwater image, respectively. Py, and P, are the
maximum and minimum values used for normalization. A
is a parameter controlling the dynamic range of the image,
we evaluate the effect of different A on color correction.
The results show that too small X\ leads to image distortion.

A = 1 results in severe distortion of the images, with the
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(a) Original

FIGURE 7. Visual comparison of color correction at different values of b.
(a) are the original images. (b), (c) and (d) show the image processing
results when b is set to 1, 2 and 3, respectively. In each set of images, the
first column shows the color correction results and the second column is
the histogram of the corresponding image processing results.

pixel distributions mainly concentrated at the two extremes.
A = 3 results in insufficient image contrast and blurred
images. In contrast, A = 2 provides the best color correction
results, achieves a wide pixel distribution, and reasonably
enhances the contrast, while preserving the details and clarity
of the image, as shown in Figure 7(c). Then, we normalize
I°! by mapping it to the range 0 to 255 using the following
equation:

cl v — Ilillax
Ifhg = == o X 255 ®)
Imlax - Imlin

where IébR represents the color corrected image.

As shown in Figure 6, our proposed color correction
strategy can better balance the red channel, reduce the red
artifacts introduced by domain stretching, and effectively
correct the color shift of the underwater image, thus achiev-
ing a more realistic and saturated color effect. However,
underwater images still have some inherent challenges that
cannot be ignored. In particular, the image suffers from
a lack of contrast due to the scattering and absorption
effects of the water, thus making certain details disap-
pear from view. Consequently, we will detail in the next
section a frequency-domain based processing strategy for
color-corrected underwater images. This strategy further
optimizes the image quality by combining the stationary
wavelet transform and sharpening techniques.

C. STATIONARY WAVELET TRANSFORM ENHANCES
IMAGE DETAILS

Wavelet transform is widely applied in the image analysis
and processing with its excellent properties demonstrated in
key areas such as denoising [30], image enhancement [31],
edge detection [32], and feature extraction [33]. The wavelet
transform has been significantly developed and applied
in the field of underwater image enhancement in recent
years, especially in feature fusion [41], [49]. Underwater
images face the challenge of blurring and distortion due
to refraction and scattering of light in water, suspended
particles, etc. Wavelet transform, due to its excellent ability
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(a) (b) 8=0.2 () B=1
FIGURE 8. Comparison of results for images processed with different
sharpening factors. (a) is the underwater image without detail

enhancement after color correction. (b-d) are images after detail
enhancement with sharpening factors of 0.2, 1 and 10, respectively.

in multi-scale analysis and preserving image details, has
become an effective tool to deal with these challenges. In this
work, we propose an enhancement method based on wavelet
transform for single underwater image details, as shown in
Figure 2. We aim to adopt a simple and efficient method that
can make the objects and structures in underwater images
more clearly recognizable, and further enhance the overall
visibility and recognition of the images. We choose the
simplest member of Daubechies wavelets, the dbl (Haar)
wavelet. It is ideal for image detail enhancement in this study
due to its simple form, computational efficiency, and ability to
effectively capture edge and detail information in the image.
Its scale function ¢(x) and wavelet function ¢(x) can be
defined as respectively:

¢(x)={ 1 if0<x<l ©

0 if otherwise

1
1 if0<x<—

POI=1 1 if-<x<l (10)
5 <

0 if othersize

Furthermore, IéIOR(x, y) as the input image, its first level
wavelet decomposition can be expressed as:

LL (x, y) = Icop (*, ¥) * 9(x) * $() (11)
LH ! (x, y) = Icop(x, ¥) * ¢(x) * ¢(3) (12)
HL ' (x,y) = Icop(x, ¥) * (%) * $() (13)
HH ! (x, y) = Icop(x, ¥) % 9(x) * () (14)

We use stationary wavelet transform (SWT) rather
than discrete wavelet transform (DWT), because stationary
wavelet has translation invariance and produces a stable
response to small translations of the image. Meanwhile,
SWT the image to the same size as the original image, this
property of maintaining the original resolution allows for
multi-scale analysis at the same spatial resolution, aiming to
more accurately capture the details and structural features of
the image. Additionally, stationary wavelet reserves all infor-
mation in each decomposition, ensuring the completeness and
continuity of the entire process.

The presence of particles and impurities in the water
scatters the incident light, resulting in underwater images that
show blurred object edges and lost details. Such problems
are commonly concentrated in the low-frequency portion of
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Detailed enhanced image
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FIGURE 9. Comparison of the undetailed enhanced image and the detail enhanced image. The second row shows a magnified view of

the selected area from the first row.

the image, which is the region of the image that contains
the main structural and luminance information. To reduce the
impact of underwater environmental factors on image quality,
especially in low light and poor water quality conditions,
we utilize Gaussian filters to process the low-frequency
components of each channel of the image to obtain a blurred
image. The specific process is as follows:

I} = LL“ % Gy ¢ € {RN,G, B} (15)

where * represents the convolution operation, ij,ll is the
resulting blurred image, LL! is the low-frequency com-
ponent of each channel after color correction and G is
the Gaussian filter. With this step, we obtained a blurred
image that emphasizes the main structures and objects of the
image while removing the high-frequency noise and detail
information. Subsequently, we calculate the difference image
1! between LL! and the blurred image I;; by equation (16),
finally the difference image is weighted and added back to
the image LL! according to equation (17) to get the detail
enhanced image LLY .

I =LL — ) (16)
LLy = LLY + I} (17)

where £ is an adjustable parameter that determines the degree
of image sharpening. To determine the optimal value of S,
we conducted many experiments to vary the size of the
over-parameter B. The results of the sharpened image are
found to be the best when the parameter § = 1, which can
effectively enhance the contrast of the image and significantly
improve the overall visual effect of the image, as shown in
Figure 8(c). In contrast, when 8 = 0.2, the image detail
enhancement is not significant and high-frequency details are
not enhanced, resulting in the image remaining in a blurred
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state. When 8 = 10, the high-frequency details in the image
are over-enhanced, especially at the image edges and texture
regions, which leads to distortion of the image details and
noise amplification, thus degrading the quality of the image.
We only show the results of our single experiment in Figure 8,
but we experimented with many sizes of the parameter 8 in
fact.

For the high-frequency components, which are the details
and textures in the image, we choose to leave them as they are
without further processing. We consider that processing the
detail information of the image too much will lead to loss of
detail or noise amplification, and instead degrade the quality
of the image. Therefore, we merge the detail-enhanced low-
frequency subbands with the unprocessed high-frequency
subbands and obtain the final reconstructed image by inverse
wavelet transform. The specific calculation equation is as
follows:

Ip' (e, y) = (LLE (x, ) % ¢ ') x 7' (1))
+ (LH (x, ) % ¢~ () % 07 (1)
+ (HL (x, )+ 0 () % 07 (1)
+HH ) x 9 '@ x 0 0)  (18)

where [ lc)‘ represents the channel obtained by inverse wavelet
transform, ¢~ (x) and ¢~ !(x) are the inverse scale function
and inverse wavelet function of Haar wavelet respectively.
As shown in Figure 9, after our image detail enhancement
process, the clarity of the image is significantly improved.
Besides, the method also effectively enhances the details and
contrast of the image and optimizes the overall visual effect
of the image.

Since natural light is not available in deep-sea environ-
ments, relying on artificial light source illumination will
result in the image showing uneven luminance distribution.
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Algorithm 1 Outline of Proposed Algorithm
Input: /
Output: /p
: Decompose the input image [ into R, G, B channels
: PR PS., PR < mean(IR), mean(/€), mean(/B)
: PESIM, PSSIM, P]S?SIM are calculated by Eqgs. (1)-(3)
- if PI§SIM < T then
JRN

< compensation of the IR by Eq. (4)
else
IRN R
: end if
: for each c; € {RN, G, B} do

R A A T

10:  Calculate Plean and P5L,

11:  Calculate Pl and Pf]lin by Eqgs. (6)(7)

12:  Color corrected image I&yg obtained by Eq. (8)

13:  LL¢, LHC, HL!, HH! are obtained using stationary

wavelet transform by Egs. (9)-(14)

14:  Apply Gaussian blur to the LL! by Eq. (15)

15:  The differential image / ;1 is obtained by Eq. (16)

16:  The detail enhanced image LLE1 is obtained by
Eq. (17)

17:  The enhanced image / g‘ is obtained by performing the
inverse wavelet transform

18: end for

19: Recombine the / EN, 1 DG Vi g into the composite image Ip

20: Ip < CLAHE(p)

21: Return Ip

Therefore, we introduce CLAHE [34] at the end to equalize
the histogram of local regions of the image, which further
enhances the contrast of the underwater image and makes
the detailed features of the image more prominent, while
avoiding the problem of over-enhancement of the image that
may be caused by the global histogram equalization. We give
the algorithmic flow of the proposed method as shown in
Algorithm 1.

IV. RESULTS AND DISCUSSION

In this section, we first introduce the experimental settings,
including the dataset, the comparison methods, and the evalu-
ation metrics. Next, we compare our method qualitatively and
quantitatively with other representative methods to evaluate
the performance of our proposed method. We also analyze
the contribution of applying SWT in underwater image detail
enhancement in this section, as well as the effect of applying
CLAHE for luminance equalization in the final stage of the
processing flow. In addition, we compare the runtime of
the different methods to show their performance in terms of
efficiency.

A. EXPERIMENT SETTINGS

1) DATASETS

In this paper, we conducted experiments based on the UIEB
dataset [35], which contains 950 actual underwater images
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including various underwater scenes such as deep-sea fish,
coral reefs, submarine cables, and so on. Our test set consisted
of reference datasets and non-reference datasets. For the
reference dataset, we selected 90 pairs of underwater images
with reference images from UIEB and named it UIEBT90.
It is worth pointing out in particular that these 90 pairs
of images are not randomly selected, but are specifically
chosen by the Ucolor method from the UIEB dataset for
testing [42]. Using images that are not part of the training
set as the test set can validate the performance of the
deep learning method more effectively, ensuring the rigor
of the experiments and the accuracy of the results. For the
no-reference datasets, we considered the unpaired subset
validation set of EUVP [36], the URPC2018 [37], and the
UIQS dataset [38], containing 329, 800, and 3630 images,
respectively. These datasets provide a challenging and diverse
test environment as they cover many different types of
underwater scenes and visual degradation phenomena. This
allows us to conduct more comprehensive comparative
experiments to verify the generalization ability of different
methods under different underwater conditions and scenarios.

2) COMPARED METHODS

We compared our proposed method with eight state-
of-the-art underwater enhancement techniques, including
four conventional methods (UDCP [39], GDCP [40],
MLLE [20], WWPF [41]) and four deep learning-based
methods (Ucolor [42], U-shape [26], TOPAL [25], Semi-
UIR [27]). We used the source code provided by the authors
and their recommended parameter settings to achieve the best
results.

3) EVALUATION METRICS

We used two types of image quality evaluation met-
rics to prove the effectiveness of our method. These
include non-reference image quality evaluation metrics
and full-reference image quality evaluation metrics. For
non-reference image quality evaluation metrics, we selected
UCIQE [43] and UIQM [44]. UCIQE evaluates the underwa-
ter image quality by the linear combination of color intensity,
saturation and contrast, with larger values indicating better
image quality. UIQM is another non-reference underwa-
ter image quality evaluation metric, which combines the
brightness, contrast, and saturation of images, with larger
values also indicating better image quality. For full-reference
image quality evaluation metrics, we utilized PCQI [45].
PCQI evaluates the processing effect by comparing the
contrast between the original image and the processed image
in a localized area, with larger values indicating a better
processing effect. The UCIQE, UIQM, and PCQI image
quality evaluation metrics are widely used in the field of
underwater image enhancement and are recognized as impor-
tant criteria for assessing underwater image quality. They
not only cover the scope of non-reference and full-reference
image quality assessment, but also have been adopted
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TABLE 1. The mean UIQM scores of different methods on UIEBT90, EUVP-Test, UPRC2018 and UIQS.The highest value in each row is represented by a bold

number.
Oricinal CLAHE UDCP GDCP Ucolor MLLE TOPAL U-shape @WWPF Semi-UIR Ours
& (1994) (2013)  (2018)  (2021)  (2022) (2022) (2023) (2023) (2023)
UIEBT90 2.4745 2.7409 2.0180 2.0995 3.0305 1.9561 2.8994 3.0141 2.3900 2.9503 3.0529
EUVP-Test 2.3394 2.6219 2.1027 21755 29762 22875  2.7860 2.9258 2.5158 2.9150 3.0676
UPRC2018 2.3077 2.5398 2.0970 22433 29184 2.6036 2.7764 2.8993 2.7280 2.8173 3.0548
UI1QS 2.4641 2.6795 2.1315 24002 2.9963 24112 2.8644 2.9705 2.6591 2.9582 3.0261

TABLE 2. The mean UCIQE scores of different methods on UIEBT90, EUVP-Test, UPRC2018 and UIQS.The highest value in each row is represented by a

bold number.

CLAHE

UDCP

GDCP

Ucolor

MLLE

TOPAL

U-shape

WWPF

Semi-UIR

Original “904y"  (2013) (2018) (2021) (2022) (2022)  (2023)  (2023) (2023) Ours
UIEBT90 05031 05527 05860 06141 05709 0.6216 05726 05748  0.6241 06188  0.6203
EUVP-Test 04742 05206 05996 05982 05628 0.6123 05403 05466  0.6155 05932  0.6187
UPRC2018 03902 04378 04941 05410 05119 05693 04710 05284 05782 05532  0.5883
UIQS 04321 04761 05128 05467 05317 05829 05004 05456  0.5958 05667  0.5804

TABLE 3. The mean PCQI scores of different methods on UIEBT90, EUVP-Test, UPRC2018 and UIQS.The highest value in each row is represented by a bold

number.
Original CLAHE UDCP GDCP Ucolor MLLE TOPAL U-shape @WWPF Semi-UIR Ours
& (1994) (2013)  (2018)  (2021)  (2022) (2022) (2023) (2023) (2023)

UIEBT90 — 1.2036 0.9324 1.0161 1.1033  1.2242 1.1377 1.0866 1.2187 1.1704 1.2614
EUVP-Test — 1.1696 1.2711  1.1936  1.0271 1.3888 1.1109 0.9495 1.3333 1.2886 1.4001
UPRC2018 — 1.1947 1.2160  1.3119 1.2758 1.2506 1.1205 1.1004 1.2997 1.3247 1.4359

UI1QS — 1.2268 1.1041 12127 1.2121 1.3304 1.0899 1.2035 1.3002 1.2911 1.3707
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FIGURE 10. Comparative analysis of mean scores and standard deviations of UIQM, UCIQE, and PCQI for each method on the dataset
(UIEBT90, EUVP-Test, UPRC2018, UIQS). The error bars above each bar in the figure indicate the respective standard deviation.

by several state-of-the-art underwater image enhancement
methods [19], [20], [26], [27], [41], [42], proving the wide
recognition and reliability of their evaluation effects.

B. QUANTITATIVE COMPARISONS

We compared the quantitative results of our different
methods on the UIEBT90, EUVP-Test, UPRC2018, and
UIQS datasets, as shown in Table 1, 2, and 3. On the no-
reference metrics, our method obtains the highest UIQM [44]
scores on all four datasets, which reveals that our method
performs better in enhancing the color and contrast of
underwater images. As can be seen from the UCIQE [43]
scores in Table 2, our method obtains the highest scores on
both the EUVP-Test and UPRC2018 datasets, as well as the

VOLUME 12, 2024

second-highest scores on the UIEBT90 and UIQS datasets,
which indicates that our method is equally effective in color
correction and clarity enhancement. As shown by the data
in Table 3, our method also significantly outperforms the
comparative methods in terms of the full reference metrics,
as our method obtains the highest PCQI [45] scores on all four
datasets, which demonstrates the significant improvement in
perceptual quality achieved by our method as well, enhancing
the realism and visual appeal of the images.

In addition, we conducted a comprehensive analysis of the
UIQM, UCIQE, and PCQI scores obtained for each method
on four datasets. Specifically, for each metric, we aggregated
the scores obtained from the four datasets and then calculated
the mean and standard deviation of these scores, which
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UIEBT90

EUVP-Test

UPRC2018

ulQs

Input ubCP GDCP Ucolor MLLE

FIGURE 11. Visual comparison results of different methods.

allowed us to comprehensively evaluate the stability of each
method in dealing with a variety of underwater environments.
As shown in Figure 10, our method not only significantly
outperforms several other traditional methods in mean
UIQM scores, but also slightly outperforms deep learning-
based Ucolor, U-shape, and Semi-UIR methods. Meanwhile,
our method shows the smallest standard deviation, which
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TOPAL  WWPF  U-shape Semi-UIR

indicates that our method can correct the color distortion of
underwater images more consistently in different underwater
environments. On the UCIQE and PCQI metrics, our method
also shows high mean scores and small standard deviations.
In contrast, the other methods have more fluctuating scores
on these metrics and exhibit higher standard deviations,
indicating that their performance is unstable on different
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TABLE 4. The mean MSE, PSNR, and SSIM scores for image detail enhancement with and without SWT on the four datasets. | indicates that the smaller
the value, the better the image quality, 1 indicates that the larger the value, the better.

UIEBT90 EUVP-Test UPRC2018 UIQS
MSE (Without SWT) 39.2644 38.0727 27.5943 32.1440
MSE (SWT Applied) 28.1458 | 25.1195 | 19.3769 | 22.5755 |
SSIM (Without SWT) 0.9084 0.9146 0.9136 0.9067
SSIM (SWT Applied) 095111 0.9521 1 0.9546 1 0.9516 1
PSNR (Without SWT) 26.8076 28.1237 30.7721 29.7518
PSNR (SWT Applied) 29.7342 1 30.6874 1 32.9939 1 32.0499 1

datasets. In the case of TOPAL, its scores on UCIQE and
PCQI fluctuate significantly, reflecting a large difference
in its performance on different datasets. This discrepancy
may stem from the fact that TOPAL fails to fully learn
certain dataset-specific underwater features during training.
Overall, our method demonstrates significant advantages in
all evaluation metrics, and these results not only highlight the
excellent performance of our method but also prove its high
stability in different underwater environments.

C. QUALITATIVE COMPARISONS

To demonstrate the superiority of our method, we quali-
tatively compared our results with other results of several
state-of-the-art methods on four datasets. On each dataset,
we selected underwater images of different underwater
scenes to improve image visibility at different degradation
levels, as shown in Figure 11. We first compared our
method with traditional underwater image processing meth-
ods, including UDCP [39], GDCP [40], MLLE [20], and
WWPF [41]. We found that UDCP significantly degrades
image luminance and exacerbates color distortion, and even
produces red artifacts when processing underwater images
with green or blue deviation. GDCP enhances the overall
luminance of the image but exacerbates the color distortion
and tends to introduce red artifacts when processing light blue
underwater scenes in the UIEBT90 and EUVB-Test datasets.
MLLE and WWPF are able to achieve good results in under-
water images, but they are not satisfactory in background
color correction, and MLLE [20] and WWPF [41] also show
slight red artifacts when processing blue-green underwater
images in the UIQS dataset, as shown in the last row of images
in Figure 11. These results indicate that although traditional
methods can improve image quality in some aspects, they
have limitations in color correction and avoiding artifacts.

In qualitative comparisons with deep learning-based
underwater image enhancement methods, we analyze the
performance of Ucolor [42], TOPAL [25], U-shape [26],
and Semi-UIR [27] when processing images of different
underwater scenes. Although these deep learning methods
perform effectively in removing the effect of light scattering,
they still face challenges in removing the background color
deviation, as shown in the second row of images for the
EUVP-Test dataset and the third row of images for the
EUIB90 dataset in Figure 11. This problem may be mainly
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U-shape Semi-UIR

FIGURE 12. Comparison of different methods for texture detail
enhancement in underwater images.

attributed to the fact that deep learning-based methods rely
on a large amount of accurately labeled training data to learn
and recognize complex underwater environment features.
However, due to the diversity and complexity of underwater
environments and the limitations of photographing under real
conditions, it is difficult to obtain a sufficiently large and
realistic number of labeled images. This leads to the result
that deep learning models may not be able to adequately
learn and adapt to variable underwater environments during
training.

In comparison, Our method not only obtained excellent
color correction results when processing underwater images
with blue and green deviations, but also better eliminated the
color deviation of the background. Moreover, our method can
better improve the clarity of yellow turbid underwater images.
Overall, our method obtained excellent color correction
results in any color-shifted underwater scene, outperforming
comparative methods in terms of color correction, contrast
enhancement, brightness enhancement, and detailed texture
enhancement. This reflects the excellent performance of
our method in color correction and detail enhancement,
which also proves that in the field of underwater image
enhancement, traditional methods still have their unique
and irreplaceable advantages in some aspects, especially in
dealing with image background color deviation.

D. EVALUATION OF DETAIL ENHANCEMENT APPLYING
STATIONARY WAVELET TRANSFORM

To comprehensively evaluate our proposed image detail
enhancement strategy based on SWT, we designed a set of
comparison experiments. Specifically, in the strategy with
SWT, we first performed wavelet decomposition on the
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Original

CLAHE

Our Method
- Final CLAHE

Luminance
Histogram

Our Method
(+ CLAHE)

Luminance
Histogram

Luminance
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FIGURE 13. Visual comparison of the impact of CLAHE on our underwater image enhancement method performance. The first row
shows the original image; the second row shows the image processed only using CLAHE; the third and fifth rows show the results of
our method without applying and after applying the final CLAHE step, respectively; the fourth and sixth rows provide luminance
histograms corresponding to the images in the third and fifth rows, respectively, which are used to quantitatively analyze the
luminance distributions; and the last row shows a graph of the luminance difference between the third and fifth rows of the image,

which visually compares the luminance changes.

input image and then performed detail enhancement on the
obtained low-frequency components and reconstructed them
by inverse wavelet transform to obtain the detail-enhanced
image. While in the strategy without SWT, we directly
performed the same detail enhancement process on the input
image to obtain the enhanced image. The purpose of this set of
comparison experiments is to clearly demonstrate the effect
of applying SWT in underwater image detail enhancement
and its advantages. We evaluated their performance using
quantitative metrics of MSE, PSNR [48], and SSIM.

As shown in Table 4, the PSNR and SSIM of the
enhancement strategy using SWT are higher than those of
the strategy without SWT on four datasets, and its MSE
metric is also lower, demonstrating that the strategy based
on SWT effectively enhances image details while avoiding
the introduction of too much noise. In addition, we evaluated
the performance of our method in enhancing texture details
compared to several other state-of-the-art methods, as shown
in Figure 12. By locally magnifying the area, it can be
observed that MLLE [20], WWPF [41], and our method
effectively enhanced the texture information in the red-
boxed area, significantly improving its contrast and clarity.
However, our method outperforms MLLE and WWPF in the
blue-boxed annotation area, making the colors more saturated
and significantly improving image clarity. This shows that our
detail enhancement strategy based on SWT has significant
advantages over other state-of-the-art methods in enhancing
texture information, contrast, and saturation.
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TABLE 5. The mean scores of UIQM, UCIQE, and PCQI for our method
applying CLAHE and without CLAHE on the four datasets. The highest
value in each row is represented by a bold number.

Ours

Original (-Final CLAHE) Ours
UIEBT90 24745 27241 3.0529
uigm  EUVP-Test 23304 2.7249 3.0676
UIQS 24641 2.6914 3.0261
UPRC2018  2.3077 2.7186 3.0548
UIEBT90 05031 0.6164 0.6203
EUVP-Test  0.4742 0.6188 0.6187
UCIQE  ""yios 0.4321 0.5900 0.5804
UPRC2018 03902 0.5848 0.5883
UIEBT90 — 1.1588 1.2614
EUVP-Test ~— — 13646 1.4001
PeQl UIQS — 13112 1.3707
UPRC2018  — 13435 1.4359

E. EVALUATION OF CLAHE ON UNDERWATER IMAGE
ENHANCEMENT

This section introduces a comparative study aimed at
comprehensively evaluating the specific impact of CLAHE
on the performance of our underwater image enhancement
method. We designed three sets of experiments: the first set
of experiments only applied CLAHE to process underwater
images; the second set of experiments applied our complete
image enhancement process, which includes luminance
equalization using CLAHE in the final step; and the third set
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TABLE 6. The mean runtime of on 300 images of size 256 x 256 for each method. The fastest runtime value in row is represented by a bold number.

Method UDCP GDCP Ucolor MLLE

TOPAL  U-shape

WWPE  Semi-UIR Ours

Time (s) 2.0196 0.1350  6.6448  0.0557

1.1002

0.5056 0.2260 0.6221 0.3767

of experiments applied our enhancement method but removed
the CLAHE step in the process. Such experimental setup is
intended to reveal the unique contribution of CLAHE in the
whole enhancement process and its impact on the final image
quality.

Through the comparison of the third and fifth rows of
images in Figure 13, we can observe that the image quality
has been significantly improved and the color distortion
problem has been effectively solved after the steps of
color correction and detail enhancement. Nevertheless, these
images still need to be optimized in luminance distribution.
By applying CLAHE in the last step, the image luminance
has been significantly adjusted, resulting in a more uniform
luminance distribution, as shown in the luminance histograms
in the fourth and fifth rows of Figure 13. To visualize the
impact of CLAHE even more, the last row of Figure 13
provides maps of the difference in luminance with and
without CLAHE in the final step. These comparison images
clearly reveal the effect of CLAHE as the last step of our
method in terms of adjusting the luminance of the image.

To further evaluate the impact of CLAHE on the per-
formance of our underwater image enhancement method,
we conducted a series of quantitative comparisons. UIQM,
UCIQE, and PCQI were selected as the quantitative evalua-
tion metrics, and we focused on analyzing the effect of apply-
ing CLAHE on image quality enhancement at the final stage
of the processing flow. Table 5 demonstrates the comparison
of UIQM, UCIQE, and PCQI scores of our method with
and without applying CLAHE on four different datasets. The
data in Table 5 show that when CLAHE is used in the final
stage of processing, our method outperforms the case without
CLAHE in most metrics, and the improvement in UIQM
scores is particularly significant. This result demonstrates that
the luminance and contrast of the images are significantly
improved by applying CLAHE. Although the UCIQE scores
decreased after applying CLAHE, this demonstrates that
the preliminary stage of our method has been effective in
improving the color correction of the images, and that further
enhancement of luminance may lead to subtle color variations
that can affect the UCIQE scores. However, considering
that our goal is to address the luminance distribution of
underwater images and further enhance the image quality,
subtle color variations are acceptable, especially considering
the significant enhancement of the images in terms of
luminance and contrast.

F. COMPARISONS OF RUNTIME
To evaluate the computational complexity of our method,
we randomly selected 300 underwater images from four test
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" (b) Ours

(a) Original

FIGURE 14. Shows the result of applying the SIFT operator to match key
feature points on underwater images. where (a) is the key point matching
effect of the original underwater images and (b) is the key point matching
effect of the underwater images enhanced with our method. The
quantitative evaluation based on SIFT matching is shown in Table 7.

TABLE 7. Statistics of the number of correct and incorrect matches for
applying the SIFT operator to match key feature points on two sets of
underwater images A and B in Figure 14. | indicates that the smaller the
value, the fewer the number of incorrect matches, and ¢ indicates that
the larger the value, the more correct matches.

Underwater pair of images  Correct Matches ~ Incorrect Matches

A Original 45 1
A Ours 126 1 1

B Original 54 3
B Ours 731 1l

datasets for runtime comparison. The experiments were run
on a Windows 10 PC with Intel(R) Core(TM) i19—9900k
CPU at 3.6 GHz, 32 GB Memory, Matlab2018b, and Python
3.8. As can be seen from the data in Table 6, our algorithm
ranks fourth among all tested algorithms in terms of mean
running time, which is slightly higher than MLLE, WWPF,
and GDCP, but better than several deep learning-based
methods (Ucolor, U-shape, TOPAL, and Semi-UIR). This
result reveals the balance between the running efficiency
and the processing quality of our algorithm, particularly
in comparison to the deep-learning-based algorithms. This
may be due to the fact that our algorithms are designed
to run more efficiently in traditional CPU environments
without relying on GPU acceleration, which is especially
important in resource-constrained application environments.
In the future, we plan to further optimize the running speed of
our algorithm while trying to maintain or improve the quality
of image processing.

V. APPLICATION

Image processing aims to optimize image quality and provide
high-quality images for further analysis and applications.
Therefore, to verify the performance of underwater images

11079



IEEE Access

Z. Wang et al.: Underwater Image Enhancement

Original UDCP GDCP Ucolor MLLE
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FIGURE 15. Example application of edge detection for underwater images applying Canny operator.

processed by our method for practical applications, we will
analyze its performance on two major applications of key
feature point matching and image edge detection.

A. UNDERWATER IMAGE KEY FEATURE MATCHING

We applied the standard SIFT operator [46] to compute
keypoint matching on both the original and the processed
underwater images of our method, such as the two sets of
underwater images A and B shown in Figure 14. It can be
clearly seen that the underwater images processed by our
method are able to detect and match more feature points, both
in group A images and group B images. The data in Table 7
shows that for the original underwater images in group Al,
45 correct keypoint matches and 1 wrong match were found
by applying the SIFT operator. When the SIFT operator is
applied to the images processed by our method, the number
of correct keypoint matches on group A images increases to
126 with only 1 incorrect match, and the number of correct
keypoint matches on group B images increases to 73, with
only 1 incorrect match. Quantitative and qualitative results
show that our method of underwater image enhancement not
only improves the number of feature point matching, but also
enhances the accuracy of matching. It effectively improves
the image quality and makes the key information in the image
clearer and more accurate.

B. EVALUATION OF DETAIL ENHANCEMENT

Edge detection has become one of the notable applications as
it not only reveals the key structural and shape information
of the image but also helps to enhance the clarity of the
target and improve the recognizability of the image. As shown
in Figure 15, we applied the Canny operator [47] for edge
detection and compared the original image as well as the
image enhanced by different methods. In Figure 15, the
first and third rows are the original images and the images
processed by each method, and the second and fourth rows
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are the Canny edge detection results corresponding to each
image in the first and third rows respectively. As can be seen
in the second row of images, the underwater images enhanced
by our methods have more complete edges, the contour edges
of marine organisms are more complete, and the edges of
seagrasses are richer. In the fourth row of comparison, the
underwater image enhanced by our method has more edge
information while the background contours in the image are
clearer. This proves the excellent performance of our method
for edge detection applications.

VI. CONCLUSION

In this paper, we introduce in detail a novel method for
underwater image enhancement. The method cleverly com-
bines statistical color correction and stationary wavelet detail
enhancement techniques. By introducing the channel simi-
larity value as a judgment criterion for color compensation
and combining it with statistical color correction methods,
our method is not only applicable to the processing of
various underwater scenes, but also more accurately restores
the real underwater colors. Additionally, the application
of stationary wavelet decomposition further enhances the
image details. Through extensive experimental evaluations,
our method demonstrates superiority both qualitatively and
quantitatively. In comparison with several other state-of-
the-art methods, our proposed method exhibits superior
performance in improving underwater image quality while
demonstrating higher robustness. Meanwhile, application
experiments show that our method also achieves excellent
performance in practical applications such as keypoint
matching and edge detection.
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