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ABSTRACT AReal-time Operating System (RTOS) manages the execution order of tasks with a scheduling
algorithm to meet timing requirements. The scheduler frequently checks for ready tasks during context-
switching. However, high task numbers can cause longer processing time in this routine. RTOSs are
mainly implemented in software, but reconfigurable computing enables offloading to reduce, e.g., the
processing time of context-switching. On the other hand, optimizing the energy efficiency of running
applications is desirable. Power-saving techniques allow adapting current dissipation to required operating
conditions. However, unplanned use can lead to missed deadlines in real-time applications. Therefore,
real-time capability and energy efficiency have to be appropriately balanced. This work explores the
impact of power-saving techniques on real-time requirements while supporting RTOS with offloading
methodologies. A mapping strategy assigns tasks to Processing Elements (PEs) based on task dependency,
inter-task/processor communication, and power consumption metrics. A multi-core architecture is designed
with a Network-on-Chip (NoC) and four PEs in a 2D-mesh topology. The master PE manages the system
architecture, executes the mapping strategy, and dynamically scales voltage to reduce power consumption
while running an RTOS. The task scheduling is offloaded to the co-processor. On the other hand, each slave
PE executes assigned tasks with an RTOS and performs an inter-task/processor communication. The task
scheduling here runs on the reconfigurable hardware. Each slave PE locally adapts power with frequency
scaling and clock gating. The experimental results show that co-processor offloading reduces scheduling
overhead by 26.58%, and hardware offloading reduces it by 33.33%. Additionally, the proposed solution
has reduced overall power by 47.27% and energy consumption by 89.47%.

INDEX TERMS Dynamic voltage and frequency scaling (DVFS), field programmable gate array (FPGA),
multi-core architecture, power management, real-time operating system (RTOS).

I. INTRODUCTION
Real-time systems are ubiquitous in safety-critical appli-
cations such as avionics, automotive, and robotics. The
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correctness of the real-time system depends on the results
of its calculations and the calculated time. A missed
predefined deadline leads to malfunctions of the entire
system. Therefore, all time-sensitive computations in safety-
critical applications have to be executed before their dead-
lines [1]. Real-time Operating Systems (RTOSs) manage

11294

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9901-7889
https://orcid.org/0000-0001-6100-955X
https://orcid.org/0000-0003-3848-5691
https://orcid.org/0000-0003-2571-8441
https://orcid.org/0000-0002-8718-111X


G. Akgün et al.: Exploration of Power-Savings on Multi-Core Architectures

the execution order of tasks with their scheduling policy
and can thus meet the timing requirements of safety-critical
applications. However, RTOSs are mainly implemented in
software and sequentially executed on processors. They
suffer from computational overhead, jitter, and large memory
footprint [2]. Computational overhead is induced through
interrupt management, task scheduling, resource allocation,
deadlock mechanism, and various Application Programming
Interfaces (APIs) [2]. On the other hand, jitter occurs due to
the number of tasks, resources required, and system state.
For instance, task scheduling in RTOS checks in regular
intervals for a context switch. The execution time of the
context switch is deviant and thus leads to a non-deterministic
behavior at run-time. It is a critical problem for hard real-time
systems and should not occur. However, the occurring jitter
can be shortened or eliminated with reconfigurable systems.
Task scheduling can be implemented in hardware or on a
co-processor [1]. The approach would check the need for a
context switch in parallel and change tasks on processors if
necessary.

On the other hand, RTOS can use the data from design
space explorations to adjust performance/power and monitor
the embedded system at run-time. Power-saving techniques
usually adapt the power consumption of embedded systems
to existing workloads and operating conditions. One such
popular power capping technique is Dynamic Voltage and
Frequency Scaling (DVFS). Depending on the embedded
device, the power consumption can be optimized, for
instance, with onboard voltage regulators or Mixed-Mode
Clock Manager (MMCM) modules [3]. This dynamically
scales voltage and frequency to a particular operating point to
minimize power dissipation at run-time. However, frequency
scaling leads to a longer or shorter execution of tasks in
RTOSs. For instance, a faster execution of tasks results
in a long idle period where processors are busy waiting
for the next scheduled task. A slower operation may lead
to deadline misses and affect the real-time capability of
running applications. It is becoming increasingly crucial for
battery-powered embedded devices to meet reliability, real-
time capability, and energy efficiency requirements with
existing RTOSs.

Meeting this requirement becomes even more challenging
when applications run on multi-core systems. A single
processor design has limitations, such as the sequential
execution of an application that multi-core systems improve.
The application can be split into parts and run simultaneously
on multiple processors. That allows the execution time
to be shortened and optimization to be performed using
power-saving techniques. With single-core systems, there are
also performance losses for applications. In this case, the
processor has to interrupt the execution to check the current
power dissipation and adjust power with saving techniques.
This criterion can also be better controlled and managed in
multi-core systems. A dependency arises when an application
is divided into parts and distributed among processors. The

execution of these parts then requires a specific execution
order. Before distributing these parts among processors,
task parallelism and interconnections need to be examined.
Therefore, a mapping strategy for multi-core systems is
needed that distributes tasks among processors according
to their dependencies, execution time, and communication.
It can also manage task execution on processors while
dynamically adjusting frequency/voltage and meet real-time
requirements.

In this work, we have investigated the impact of
power-saving techniques on real-time capability while sup-
porting RTOS with offloading methodologies. For this
purpose, we have designed a multi-core system with an
open-source RTOS. Since the scheduling decision and task
selection at RTOS consume processing time, offloading
methodologies are examined more closely in this work.
Therefore, task scheduling runs in hardware and on a
co-processor. This improved the overall performance of the
context switch, as will be discussed in more detail later.
In addition, applications can be split into parts and executed in
parallel on multiple processors simultaneously. However,
in this case, the individual parts have a dependency that
affects the total execution time. Therefore, it is necessary to
investigate how dependency, inter-task communication, and
the resulting execution affect each other. For this reason,
we have performed a mapping strategy on a processor
that considers the mentioned criteria in the initialization
phase and allocates tasks to processor cores accordingly.
At the same time, this processor manages the total power
consumption and checks that no deadlines are missed in
RTOS running processors. For this purpose, the power
dissipation is optimized by DVFS and clock gating at run-
time. The contribution of this work can be summarized as
follows:
• A heterogeneous multi-core architecture for real-time
systems that performs power-saving techniques and
applies offloading methodologies to enhance RTOS
scheduling performance.

• A task mapping strategy that assigns tasks to slave Pro-
cessing Elements (PEs) based on task dependency, inter-
task communication, and power consumption metrics.

• An architecture where the master PE monitors system
requirements and deploys voltage scaling while slave
PEs perform tasks in real-time and apply frequency
scaling and clock gating.

• A discussion that elaborates on the trade-off between
real-time capability and energy efficiency in the pro-
posed system.

Section II introduces the related work in the area of
power-saving techniques on FPGAs, offloading methodolo-
gies on RTOSs, and our use case. Section III describes
this work’s proposed methodologies and contributions.
Section IV gives an overview of implemented hardware and
software architecture. All results in this work are presented in
Section V. The work is concluded in Section VI.
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TABLE 1. Comparison of related works with the proposed work. EDF - Earliest Deadline First, LST - Least Slack Time, F-PP - Fixed-Priority Preemptive.

II. RELATED WORK
While offloading methodologies improve the scheduling per-
formance of an RTOS, power-saving techniques lead to min-
imizing power dissipation. A Network-on-Chip (NoC)-based
multi-core system enables an application to be split into
tasks and executed simultaneously on PEs. A management
unit can control the power-saving techniques, dynamically
monitor power consumption, and assign tasks to PEs
while considering real-time and power constraints. Table 1
categorizes representative works from the literature with
different objectives considered in this work. Some results [7],
[8] offloaded RTOS task scheduling into reconfigurable
systems without applying power-saving techniques. Other
works [3], [4], [5], [6] applied power-savings with operating
systems, but only [3] used them with an open-source
RTOS. None of the works used clock gating for power
optimization under the considered constraints (all features
shown in Table 1). A mapping strategy was only proposed
in [5] for multi-core systems. However, it did not consider
inter-task communication through a NoC. This section gives
an overview of the state-of-the-art related to the proposed
work in offloading methodologies, power-saving techniques,
and task mapping strategies for multi-core systems.

An RTOS has a kernel with a scheduling algorithm.
It frequently checks whether a context switch is required,
selects the following execution task, and stores the context
into its stack. Thus, designers can implement application
functions without considering the synchronization, resource
usage, and ordering of function calls. However, the schedul-
ing process may be less predictable, and a high context
switching rate may lead to overhead in the system because
of complex and comprehensive algorithms for, e.g., control
applications [7], [9]. Researchers have proven that task
scheduling can be performed faster and the overall behavior
more predictable when offloaded from running processors.
This approach reduces run-time overhead and event response
time due to smaller critical sections [10], [11]. Moreover,
the system does not frequently have to be suspended
by the system tick interrupted by an Interrupt Service
Routine (ISR), which increases processor utilization and
improves scheduling predictability [7]. For this purpose,
task scheduling can be performed on the co-processor or
hardware. There are also related works (FASTHARD [12],
Silicon TRON [13], δ-Framework [14]) where the complete
RTOS is replicated as an entity in hardware. Other works

have offloaded and executed dedicated kernel services in
hardware [15], [16], [17], [18]. For instance, in [15], the
scheduler, inter-task synchronization (semaphore andmutex),
and inter-task communication (mailbox and queue) ran in
hardware. The proposed approach improved the performance
of computing time by 31.67%. The hardware-based task
scheduling reduces the computing time for the context
switch, which was decreased by 83.28% in [7] for eCos
with eight tasks, and 87.35% in [9] for µC/OS-II with
three tasks. In descending order, the FreeRTOS scheduler
checks all priority levels (starting from the highest priority)
to release the next scheduled task [19]. In some priority
levels, no tasks are available. Since all layers are checked
individually, the processing time is wasted during context
switching. Researchers in [8] investigated the execution of the
FreeRTOS context switch. The experiments showed a latency
of 1.73µs ±0.27µs for changing the context of five tasks
in FreeRTOS (version 7.4.0). Binary tree-based scheduling
was performed in hardware. The experimental results showed
no deviation, and the proposed solution had a latency of
0.92µs. The hardware-based task scheduling thus removed
jitter effects and reduced the latency by 46.82%. Tang and
Bergmann in [7] differentiate between active and passive task
scheduling. The software kernel frequently checks whether a
context switch is required and requests the offloaded module
for the next ready task in a critical section. This approach
is associated with passive task scheduling. If the outsourced
module triggers an interruption, it is an active task scheduling.
In this case, RTOS responds to the interrupt and performs
context switching. As a result, the active hardware-based task
scheduling resulted in a 23.7% longer execution time for
running applications on a soft-core processor in [7]. Similarly,
a co-processor can perform task scheduling and trigger an
interruption when context switching is necessary [11], [20].
Thus, the call of the context switching could be reduced five-
fold in [11]. However, this approach needs a shared memory
system to exchange necessary real-time information between
processors.

FreeRTOS is a widely used open-source RTOS with one
of the smallest memory footprints and runs on more than
thirty different processor architectures [19]. Therefore, it is
a suitable candidate for offloading strategies and extensions.
Researchers have modified its kernel functionalities to
perform an inter-task communication in a NoC [21],
offloaded task scheduling into hardware [8], or extended it for
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Symmetric Multi-Processing (SMP) support [22]. FreeRTOS
runs on each PE in the NoC-based multi-core system in
this work. FreeRTOS has 32 priority levels and checks
each level individually to see if a ready task is waiting for
execution [19]. It may happen that not all priority levels
contain tasks. As a result, the task scheduling wastes process-
ing time with individual checkings and leads to scheduling
overhead. FreeRTOS provides, in the meanwhile, a solution
(config_USE_PORT_OPTIMISED_TASK_SELECTION)
for the presented problem and skips priority levels if these
do not contain tasks [19]. Thus, FreeRTOS improves the
previously introduced scheduling overhead and promises
a better scheduling performance. Researchers in [8] did
not explore this effect while comparing the scheduling
performance with the proposed solution as it was tested
with an older FreeRTOS version. In this research work,
the FreeRTOS task scheduling runs on hardware and
co-processor. The work examines the impact of active (on
co-processor), and passive (as hardware-based) offloaded
task scheduling on FreeRTOS and the resulting task
performance. Besides, it considers the optimized task
scheduling behavior in experimental studies and compares
results with offloading methodologies.

On the other hand, power-saving techniques impact task
execution in RTOS. A (low-power) task scheduling can
continuously monitor the slack time and scale operating
frequency at run-time without exceeding the maximum
execution time. This approach was presented in [4] based
on the earliest deadline first policy and resulted in an
overall energy reduction of 27%. Another work in [6]
presented a hypervisor architecture suitable for low-power
applications where the scheduler dealt with the power
awareness of the system and partitioned tasks concerning
real-time requirements. It alternated the operating frequency
between 400MHz and 32MHz, leading to a power reduction
of 33%. In this context, the voltage was dynamically scaled
from 1.05V to 0.9V, resulting in a 28% power reduction. The
presented works are based on Linux OS [4] or XtratuM [6].
There are also many works related to low-power task
scheduling algorithms that optimize the power dissipation of
a system at run-time. A recent survey provides an overview of
energy-optimized scheduling algorithms. We refer the reader
to [23] for more information. However, few works have been
published yet with RTOSs and power-saving techniques. The
power management needs processing time to retrieve and
control voltage regulators’ values. The processing time takes
between 2 − 5ms for XC7Z020-CLG484-1 to read a single
value from onboard voltage regulators because it has an
I2C-based communication protocol (PMBus) and typically
operates at a frequency of 400kHz [24], [25], [26]. The
more values are accessed, the longer the processing takes.
Thus, the power management is partitioned in a hypervisor
architecture [6] or executed in parallel on a co-processor [3].
However, and to the best of our knowledge, no architectures
have been presented in the literature that consider the impact
of power-saving techniques on real-time capability while

supporting RTOS with offloading methodologies. Besides,
power-saving strategies have been widely investigated but not
combined with RTOSs. It was studied in simulations [21] or
in-house operating systems with a scheduling algorithm [5].
Therefore, we have designed a NoC-based multi-core archi-
tecture on reconfigurable systems with FreeRTOS running
PEs. Furthermore, we have explored optimizing strategies’
impact on real-time behavior and power consumption. Each
PE adjusts its frequency based on the required workload and
goes to sleep in idle phases. Besides, a power reduction also
takes place through voltage scaling. Although [6] investigated
the impact of DVFS on a hypervisor architecture, the effect on
real-time behavior was not. In addition, the behavior was only
examined for processors and not reconfigurable hardware.

Voltage scaling results in loss of the configuration if it
reaches a certain voltage level. Researchers have explored
this case in the context of power gating and identified 400mV
as the threshold for the PL supply voltage (VCCINT [27]) of
XC7Z020-CLG484-1 [28]. Dynamic Partial Reconfiguration
(DPR) technique (PCAP described in [29]) can be used
to restore the original condition, but it has a timing
overhead. In [28], the PCAP approach was used for a 4MB
configuration file and the configuration time was about 35ms.
The approach in [28] reduced power by 96%. A recent
survey gives an overview of power-saving strategies for
reconfigurable systems. We refer the reader to [30] for more
information. However, power gating is unsuitable for real-
time applications, and the system should not scale voltage
below the threshold. Therefore, this work explores the impact
of power-saving techniques with DVFS and clock gating on
real-time capability while supporting RTOS with offloading
methodologies. Since the power gating phase has a high
configuration time, it would affect the real-time capability,
and thus it is not considered in this work.

Various challenges arise in respective applications while
dynamically scaling voltage and frequency for power reduc-
tion. Streaming applications are generally about completing
computation under latency and performance constraints.
For instance, frequency scaling improved the throughput
of a streaming application by 37.32% [31]. In the same
way, energy-aware task parallelism can be used to reduce
the execution time of an application [32]. A resource
allocation graph maps each task of an application according
to the available resources on the reconfigurable system. The
goal is to reduce the overall execution time of the entire
application. Thereby, voltage and frequency modulation
can further improve the performance and power budget of
the system. In [32], the LEON3 processor accommodated
the application and power management tasks. The results
showed a power reduction of 28%. It was possible to
close the trade-off between an efficient, low-power design
and application-specific requirements using power-saving
techniques.

On the other hand, multi-core architectures are driven
by power walls, performance scalability, and reliability
challenges [21]. Thus, application workloads are divided
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among tasks to scale performance while meeting power
constraints. Mapping strategies are used to perform task
scheduling while respecting these constraints. Two task
mapping heuristics (Low Energy Communication based on
Dependencies Neighbor (LEC-DN) and Nearest Neighbor
(NN)) were performed on a PE for a 2 × 2 [21] and 3 × 3
[33] cluster. The LEC-DN heuristic kept high communication
volume tasks together and attempted to place them in nearby
PEs within the cluster. The NN heuristic examined the
proximity of available resources around a PE to perform a
task. The goal was to identify a PE within the cluster with
the most unassigned tasks. The approach led to avoiding
hotspots and balanced utilization of processing resources in
the architecture. Researchers in [34] proposed a mapping
strategy based on global priority in a centralized manner
with a master-slave scheme. The advantage is that tasks have
more PEs available for execution. Furthermore, decentralized
mapping strategies have additional power consumption since
the local management monitors the task scheduling within a
cluster. A centralized mapping approach monitors the overall
architecture and reduces thus power consumption through
single execution. Therefore, the multi-core architecture in
this work consists of a NoC with four PEs in a master-
slave configuration. The master PE executes the (centralized)
mapping strategy, monitors the underlying technology’s
power consumption and validates if all slave PEs meet the
real-time requirements for assigned tasks.

While dynamically mapping tasks to PEs, it is also neces-
sary to explore how dependencies, inter-task communication,
and resulting execution influence each other. Therefore,
a hierarchical clustering algorithm was proposed in [35] to
consider the dependencies for task mapping. An (in-house)
RTOS selected all ready tasks based on the Earliest Deadline
First (EDF) scheduling algorithm and grouped related tasks
according to their dependencies. A central hardware-based
scheduler received the scheduling/assignment information
and managed all hard real-time tasks in the NoC-based
many-core system. The hardware-based task scheduling has
flexibility in adjustment for other scheduling algorithms
and use-cases [36]. It is possible to divide a central hard-
ware scheduler into uniform partial schedulers to increase
performance in a NoC-based multi/many-core system [37].
For instance, cluster-based task scheduling can also group
tasks according to their periods to achieve a long idle
period. This approach was presented in [38] and reduced
energy consumption by 33.5% while meeting all real-time
requirements. In addition, there are works in the literature that
consider the influence of power-saving techniques on real-
time constraints and assign tasks accordingly on a NoC-based
multi/many-core system [39], [40]. However, these works
combined the mapping strategy with DVFS which increases
the mapping complexity due to the huge design space
exploration. Some works minimized the run-time overhead
by executing task mapping and DVFS separately [41].
An adaptive mapping was presented in [42] that gathered

run-time information for estimating application performance
and remapped applications to cores while applying DVFS
at run-time. The results showed a reduction of 28% in
energy consumption. However, this approach did not consider
the communication overhead through a NoC. A recent
survey provides an overview and classification of mapping
algorithms on multi-core systems. We refer the reader to [43]
for more information. This work obtains the task assignment
using the mapping strategy presented in [44]. However,
the solution in [44] was suitable for independent tasks and
thus did not consider the overhead introduced by incoming
messages through NoC in the task scheduling. Tasks, in this
work, can communicate with other tasks (associated with
inter-task) or processors through NoC (associated with inter-
processor), resulting in task dependency. Therefore, this work
extends the mapping strategy in [44] for dependent tasks and
considers the impact of power-saving techniques on running
tasks in task scheduling at run-time. Furthermore, researchers
in [21] proposed a multi-core platform that consisted of a
global, local manager, and slave PEs composed of a 4 × 4
NoC platform with 2 × 2 clusters. The global manager
coordinated the application repository and mapped the tasks
directly to the slave PE if the local manager requested it
through performed mapping algorithm (LEC-DN and NN).
Each PE ran FreeRTOS, and a task was automatically created
when assigned to the slave PE and deleted after its execution.
Besides, the FreeRTOS kernel was extended for inter-task and
inter-processor communication through the network. This
research work follows the same principle without adapting
the FreeRTOS kernel for inter-task/processor communication
and applies power-saving techniques while supporting RTOS
with offloading methodologies. Each slave PE individually
adjusts its operating frequency and turns the processor into
sleep mode while being in the idle phase. The master
PE scales the voltage for the reconfigurable hardware and
optimizes the power dissipation at run-time.

This work involves mapping and scheduling tasks in an
NoC-based multi-core system while considering task depen-
dency, inter-task communication, and power consumption.
There are several challenges in finding proper solutions for
this problem:

Firstly, identifying an optimal solution for task mapping
becomes complex and challenging due to the number of tasks
and resources available. Different algorithms and heuristics
( [21], [35], [39]) have been proposed to address and solve this
problem. We have applied the proposed heuristic mapping
strategy in [44] and extended it for dependent tasks (inter-task
and processor communication) to tackle the problem.

Secondly, the problem involves balancing real-time capa-
bility and energy efficiency. For instance, frequency scaling
leads to a longer or shorter execution of tasks in RTOSs
while also impacting power consumption. A slower execution
of tasks results in lowering power consumption on PEs,
but it may lead to deadline misses and affects the real-
time capability. Therefore, dynamic workloads and power
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FIGURE 1. Overview of the hardware architecture that contains a master PE and three slave PEs running FreeRTOS and connected
through a NoC. We used an offloaded methodology to support each PE to improve context switching and thus result in real-time
performance. Each slave PE performs clock gating and frequency scaling. The master PE performs voltage scaling, power
monitoring, and mapping strategy. The dashed frame describes the reconfigurable hardware.

consumption need to be monitored at run-time. Several
works have proposed solutions for this problem, such as
dynamically adapting task mapping based on processing time
and power consumption [39], [40], [41], [42], [43]. In the
same way, we have designed a heterogeneous multi-core
architecture in a master-slave configuration. The master PE
monitors power consumption, validates if all slave PEs meet
the real-time requirements, and reassigns tasks to slave PEs if
necessary. The slave PEs execute assigned tasks with RTOS
while dynamically adapting frequency and applying clock
gating in idle phases.

Thirdly, this problem involves task dependency through
inter-task or task-processor communication. For instance,
inter-processor communication introduces a communication
overhead and impacts the application completion time.
Several works [35], [36], [37], [38], [39], [40] have addressed
this problem and proposed possible solutions. Our mapping
strategy aims to assign dependent tasks primarily to the same
slave PE to avoid communication overhead. Otherwise, the
algorithm determines an appropriate slave PE based on a cost
function.

Finally, the problem involves designing a proper offloaded
scheduler for PEs, resulting in better RTOS scheduling
performance. For instance, it is unpredictable when slave PEs
receive messages in the NoC-based architecture. An RTOS
reacts faster to incoming messages or events with offloaded
task scheduling algorithms.

Several works ( [7], [8], [9], [11], [19], [20]) proposed
different solutions for this problem. We have proposed an
adaptable solution for hardware-based task scheduling in this
work. It can be used with any processor system without
adapting RTOS kernel functionalities.

III. DESIGN METHODOLOGY
A multi-core system architecture is designed to explore
the influence of power-saving techniques on real-time

capability. Figure 1 gives an overview of the proposed
architecture. The design consists of a NoC with four PEs in a
2D-mesh topology and master-slave configuration. Each PE
executes FreeRTOS. The master PE monitors the underlying
technology’s power consumption and dynamically scales
voltage to reduce its overall power. Besides, it hosts tasks in
the application repository and performs task assignments for
slave PEs. The mapping strategy considers task dependency,
inter-task/processor communication, and power consumption
to assign a task for execution on a slave PE. While executing
tasks and RTOS services, the running FreeRTOS kernel is
supported by an active offloaded task scheduling approach
on the co-processor (depicted as CPU1 in Figure 1). On the
other hand, each slave PE has a homogeneous design on
the reconfigurable hardware (depicted as a dashed frame in
Figure 1). It consists of a MicroBlaze processor, a MMCM
module for frequency scaling, clock gating for turning the
processor into sleep mode, and offloaded task scheduling.
Furthermore, a passive task scheduling approach supports
all FreeRTOS running slave PEs at run-time. After the
master PE’s task assignment, each slave PE dynamically
creates a task, executes assigned tasks, and performs an inter-
task/processor communication to transmit task results.

A. OFFLOADING REAL-TIME SYSTEM COMPONENTS
One of the most widely used RTOSs on reconfigurable
platforms is FreeRTOS. FreeRTOS is a portable and
open-source operating system suitable for embedded appli-
cations. It meets the (hard) real-time requirement of an
application at run-time. FreeRTOS supports semaphores and
mutex for resource sharing and synchronization. A real-
time scheduler executes functions (as tasks) in a specific
order with their priorities. The scheduler consists of three
types of scheduling algorithms. These algorithms are the
fixed-priority preemptive scheduling (with and without time
slicing) and the cooperative scheduling algorithm. Tasks with
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the same priority are executed according to the round-robin
policy [19]. To understand the task scheduling functionality
in software, we briefly present the execution flow as follows.
The kernel of FreeRTOS measures the passing time using a
tick-count variable. A timer interrupt increments this variable
with a temporal resolution based on the chosen frequency.
Each time the tick-count variable is incremented, the periodic
scheduler checks whether a context switching is required.
If an interrupt occurs during a task’s execution, the task’s
context has to be saved in the stack. The scheduler checks
the priorities of the tasks in the ready list. If there is a task
with a higher priority in the ready list, this task next is granted
a processing time when the interrupt routine completes. The
operating system retrieves the next task’s context from the
stack and continues its execution. Otherwise, the context of
the previous task is restored from the stack, and the execution
is resumed.

The periodic call of the task scheduling service introduces
additional overhead in software and eventually leads to jitter.
Therefore, it is beneficial to investigate the potential of
offloading the FreeRTOS task scheduling in more detail.
In this work, the task scheduling runs first on a co-processor
and second in hardware. In both cases, the task scheduling
selects the next task from the ready list. FreeRTOS still
pushes the context of the running task onto the stack and
restores the context of the following ready task from the
stack. In the case of the co-processor, an interrupt request
is sent to FreeRTOS when context switching is required.
Therefore, it does not frequently check anymore for context
switching. The context of the next task to be executed was
already selected by the co-processor and is available in
the shared memory. In the case of the hardware-based task
scheduling, FreeRTOS checks in regular intervals for context
switching. If a context switching is required, FreeRTOS reads
the next task to be executed from the offloaded reconfigurable
module. As a result, the offloading approach removes the
operating system’s processing time for scheduling decisions
and task selections.

B. POWER-AWARE REAL-TIME SYSTEM ARCHITECTURE
FreeRTOS has an idle task with the lowest priority. When
other tasks in FreeRTOS are deleted, the idle task frees
the allocated memory for the deleted task [19]. Otherwise,
this task has no other function in FreeRTOS to perform.
Therefore, the processor should enter sleepmode after freeing
thememory space. Such an enhancement should also bemade
for running tasks with power-saving techniques. One such
popular power capping technique is DVFS. It dynamically
scales voltage and frequency to a certain operating point to
minimize power dissipation at run-time. For instance, the
power consumption can be optimized with onboard voltage
regulators and MMCM modules on XC7Z020-CLG484-1
[3]. The onboard voltage regulators are used for scaling
voltage and sensing the power consumption. The MMCM
module is used to scale processor’s frequency and other
hardware components. However, frequency scaling leads to

a longer or shorter execution of tasks in RTOSs. For instance,
faster execution of tasks results in a long idle period where
processors are busy waiting for the next scheduled task. The
processor should be put into sleep mode with clock gating as
a solution. A slower operation leads to deadline misses and
affects the real-time capability of running applications.

Meeting this requirement becomes even more challenging
when applications run on multi-core systems. A single
processor design has certain limitations, such as sequential
execution of an application that multi-core systems improve.
The application can consist of different functions and be
executed simultaneously on several processors. This shortens
the time to complete the application and allows the processor
to enter sleep mode. The overall power consumption is also
taken into account in this work. Therefore, the single-core
system only has a limited possibility of using power-
saving techniques. In this case, the processor must interrupt
execution to check the current power loss and adjust the
power consumption with saving techniques. However, this
leads to performance degradation in applications. This
criterion can also be better controlled and managed with
multi-core systems. A dependency arises when an application
is divided into individual segments and distributed among
processors. The execution of these segments thus requires a
specific execution order. Before distributing segments among
processors, task parallelism and interconnections have to be
examined.

Therefore, a mapping strategy for multi-core systems is
needed that distributes tasks to processor cores according
to their dependencies, execution time, and communication.
A heuristic mapping strategy is designed with the mentioned
criteria in this work. Moreover, FreeRTOS runs on each
processor using offloaded task scheduling. Each processor
can locally optimize its performance and thus the power
consumption through clock gating and dynamic frequency
scaling. However, a power reduction also takes place through
voltage scaling. Thus, the goal is to manage the execution of
tasks on processing elements while dynamically adjusting the
frequency/voltage on the XC7Z020-CLG484-1 and meeting
real-time requirements with FreeRTOS.

IV. IMPLEMENTATION
A. HARDWARE-BASED TASK SCHEDULING
Since the essential part of the kernel is implemented as
assembly code, context switching is executed within a few
microseconds. However, deviations still occur during task
selection at run-time. This can lead to a non-deterministic
behavior and jitter because of the number of tasks, required
resources, or system status. In the case of hard real-time
requirements, jitter effects are unacceptable. Furthermore,
the run-time behavior should remain deterministic. The
goal should be to remove occurring jitter effects in RTOS.
In such cases, offloaded task scheduling should be preferred.
As proven in [8], a hardware-based task scheduling improved
the real-time capability of RTOSs. The latency for context
switching was reduced at least by 46.82%.
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Algorithm 1 Hardware-Based Task Scheduling
1: /* Update task list */
2: #pragma HLS inline
3: for All tasks in the task list do
4: #pragma HLS pipeline
5: if Task exists in the task list and has write state then
6: Update task items in the task list
7: else
8: Add task into the task list
9: end if

10: end for
/* Search for the next ready task */

11: #pragma HLS inline
12: for All tasks in the task list do
13: #pragma HLS pipeline II = 2
14: if Task has ready state then
15: Search for the highest priority task
16: end if
17: end for
18: for All tasks in the task list do
19: #pragma HLS pipeline
20: if Task has ready state and highest priority then
21: Search for the smallest count value (round-robin)

and select this as the next scheduled task
22: end if
23: end for
24: for All tasks in the task list do
25: #pragma HLS pipeline
26: if Task has ready state and highest priority then
27: Update count value for all tasks with the same

highest priority
28: end if
29: end for
30: return Current task to FreeRTOS

Therefore, we have offloaded the task scheduling of
FreeRTOS into hardware. We put a focus on the extensibility
and adaptability of our implementation. Thus, we have
implemented our approach with a high-level synthesis tool.
Algorithm 1 shows the structure of the implementation.
In the beginning, the hardware-based task scheduling returns
the information of the recent ready task to FreeRTOS.
If FreeRTOS sends a write command through the AXI
interface, the task scheduling updates the task list with the
new task entry (lines 2-10). However, it may happen that the
task already exists in the list, and only its states need to be
updated. Then, the task scheduling overwrites the respective
task entries. If the task does not exist, the task scheduling adds
it to the list. Once all tasks are updated, the task scheduling
searches for the ready task in the list (lines 11-29). First,
it identifies the highest priority in the ready list. Then, the
task scheduling selects tasks with the round-robin policy.
If multiple task items with the same priority are waiting for
processing time, the task scheduling enables an execution
one after another. The call of a task is monitored with a

counter for this purpose. The task with the lowest counter
reading and thus fewer calls in the same priority level is
executed next. Once the task item with the highest priority is
found in the ready list, the information is sent to FreeRTOS.
All loops are pipelined to allow concurrent execution
of operations [45]. Inlining functions lead to effectively
sharing and optimizing operations within the functions [45].
Therefore, we have optimized our implementation with these
pragmas in the Xilinx Vivado HLS tool. The AXI interface
is used for sending/receiving task information. In this work,
we have compared the performance of the task scheduling
with the AXI4-Stream (AXI-S) and AXI4-Lite protocols
(presented in Section V-B). Both protocols use a 32bit
interface data width. In the case of AXI-S, the first bit
shows if FreeRTOS reads the task status or writes a new
task item into the ready list. The next bit reflects whether
the task state is ready or not (blocked or suspended). The
following six bits contain information about the priority
of tasks. The information about the task pointer is in the
remaining 24 bits that correspond to the internal task pointer
pxCurrentTCB in FreeRTOS. In the case of AXI4-Lite,
each task item (write, ready, priority, and task pointer)
has its own 32bit width interface. A goal is to keep the
implementation reproducible. Therefore, we have only added
a few lines of code in task.c and portmacro.h. The
AXI interface is only called in these files. Besides, the macro
config_USE_PORT_OPTIMISED_TASK_SELECTION
in FreeRTOS_config.h is extended to turn on the
hardware-based task scheduling.

B. CO-PROCESSOR BASED TASK SCHEDULING
An alternative approach to offload task scheduling is
the porting on the co-processor. The main difference to
hardware-based task scheduling is the interprocessor com-
munication and synchronization. When context switching
is required, the co-processor sends an interrupt request to
RTOS. The context for the next task to be executed is
then available in the shared memory. RTOS fetches the task
information from the shared memory and assigns it in the
kernel to the current task control block (pxCurrentTCB).
As a result, this approach removes the processing time
which is usually required for scheduling decisions and task
selections in RTOS. To investigate the timing behavior of task
scheduling more deeply, we have conducted our implementa-
tion on anARMCortex-A9 dual-core processor of XC7Z020-
CLG484-1. These processors can operate with a maximum
frequency of 667MHz. In the case of the Programmable Logic
(PL), the maximum operating frequency is 250MHz. API
functions can change task states of FreeRTOS at run-time.
Both processors also need to access and use data structures.
Therefore, we have allocated a shared memory region to
enable a shared use in the linker script. The memory region
is divided into three partitions so that each processor has its
memory area. The third partition is the sharedmemory region.
Besides, synchronization mechanisms have been deployed
to access data structures simultaneously. The instruction set
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of the ARMv7-A architecture provides certain operations to
establish such a synchronization mechanism [46]. This mech-
anism prevents mutual exclusion within critical sections. The
LDREX and STREX commands allow exclusive access to
memory. LDREX loads the content of a memory address into
a register and initializes the state of the exclusive monitor.
It then tracks the synchronization operation.STREX performs
a conditional store operation on a memory address. If the
operation accesses the memory address, STREX updates the
memory location and the corresponding register with a status
bit.

LISTING 1. Use of the synchronization mechanism in the source code.

Listing 1 shows how the synchronization mechanism is
deployed in source codes. The function (in line 4) allocates
memory for the lock variable from the shared memory.
The synchronization mechanism enables controlled access to
the data structures and variables within the critical section
(lines 5-7). The approach ensures consistency and prevents
race conditions between processors. All shared variables
and data structures of FreeRTOS are listed in Table 2.
The interrupt routines are a basic mechanism of the RTOS
kernel. The ARMv7-A architecture has a Generic Interrupt
Controller (GIC) [46]. It manages interrupts that are triggered
by the software and peripherals. The scheduler on the
co-processor periodically calls an interrupt handler at a
certain frequency. It checks whether a context switching
is required for the running task in FreeRTOS. In context
switching, the task scheduling selects a new ready task and
sends an interrupt request with GIC to FreeRTOS. The task
scheduling accesses data structures to select a ready task.
Therefore, synchronization mechanisms are integrated into
the task scheduling on the co-processor. Apart from using
synchronization mechanisms, shared memory regions, and
calling of interrupt routines, the task scheduling is offloaded
into the co-processor. Besides, no further changes have been
made to FreeRTOS.

C. MULTI-CORE POWER-AWARE SYSTEM ARCHITECTURE
A multi-core system architecture is implemented on
XC7Z020-CLG484-1. The design consists of aNoCwith four
PEs in a 2D-mesh topology and master-slave configuration
(shown in Figure 2a). The master PE consists of an ARM
Cortex-A9 processor, a MMCM module for adjusting the
frequency of routers, and Direct Memory Access (DMA) for
enabling communication between the processor and router
(shown in Figure 2b). Each slave PE has a homogeneous
design on the hardware. It consists of aMicroBlaze processor,
MMCM module for frequency scaling, clock gating for

TABLE 2. All resources in the shared memory used by FreeRTOS and the
co-processor.

turning the processor into sleep mode and offloaded task
scheduling (shown in Figure 2c).

Because of the limited BRAM resources, the recon-
figurable hardware consists of three slave PEs connected
through a NoC. Each slave PE executes FreeRTOS. When
a task is assigned through the mapping strategy to a slave
PE, FreeRTOS automatically creates a task at run-time.
FreeRTOS moves a task’s stack to its heap on a context
switch and thus allocates dynamic memory. Otherwise,
the slave PE does not require heap memory. This work
examined the FreeRTOS heap usage for the design. We have
assumed that a FreeRTOS would schedule a maximum of
14 tasks at run-time. It resulted in the required memory
size of 64KiB for FreeRTOS. A slave PE has a local
repository to store assigned tasks from the master PE’s
mapping assignment. This work reserves a memory size of
32KiB for tasks in the local repository. The reconfigurable
hardware of XC7Z020-CLG484-1 has 140 BRAM cells. The
design would need 72 BRAM cells for a 2 × 2 and 192
BRAM cells for a 3 × 3 NoC architecture. Since a 3 × 3
NoC architecture exceeds available hardware resources, the
hardware architecture consists of 4 routers arranged in a
2 × 2 mesh topology. In addition, it is beneficial due to
the scalability to deploy a NoC in reconfigurable computing.
Bus-based systems cannot be extended, whereas a NoC can
be scaled by configuring or adding more routers to the
existing architecture [47]. That is the reason why a NoC is
used in the hardware design.

Applications are called periodically in our example task
set. Therefore, a Timer IP monitors the execution time of
running applications from master PE as shown in Figure 2b.
When the defined period passes, the Timer IP calls an
interrupt signal to indicate the end of a period to the processor.
Otherwise, slave PEs use the Timer IP for the FreeRTOS tick
as shown in Figure 2c.
All slave PEs have an individual clock domain and

dynamically change the frequency with the MMCM mod-
ule. The PL fabric clock is set to a maximum value
of 100MHz. Experimental studies have shown that the
MicroBlaze processor in this design cannot operate below
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10MHz. The MMCM module thus adapts the operating
frequency within these ranges. The MicroBlaze processor
cannot directly receive/send a message from/to the router
because of individual PE clock domains. Therefore, FIFOs
are connected between the network interface and router to
decouple different clock domains. As soon as a data packet
is received, a FIFO triggers an interrupt signal to notify the
processor of new incoming data packets. In the meantime,
the processor prepares data packets for dispatch or processes
other application sections.

The MicroBlaze processor has an AXI-S interface and is
directly connected to FIFOs. The Processing System (PS)
does not support an AXI-S interface. A DMA IP can transfer
AXI Memory-Mapped (AXI-MM) messages to AXI-S based
messages. Therefore, DMA is used to interface FIFOs to
the ARM processor. In addition, the DMA component can
directly access the DDR memory in PS. Thus, it is connected
to the DDR controller with a separate high-bandwidth AXI4
High-Performance Port. The DDR controller is responsible
for the arbitration between the DDR memory access requests
of the ARM processor and DMA [48]. Hence, data packets
are stored (read) simultaneously into (from) the DDR
memory through DMA while executing the application on
the processor. DMA has two interrupt signals for incoming
(AXI-MM to AXI-S) or outgoing (AXI-S to AXI-MM)
transmissions. It signals the ARM processor that packets
are received or sent. The use of DMA overall reduces the
compute and communication-intensive initial mapping phase
on the ARM processor.

The used routers follow an XY-routing scheme. Besides,
it utilizes round-robin arbitration and wormhole flow control.
Therefore, FIFOs hold a single flit. Phit and flit sizes have
been configured with 32bit width. The FIFO depth depends
on the packet size and is accordingly defined. The NoC uses
the XY-routing algorithm connected in a mesh topology and
thus is deadlock-free. All routers have an AXI-S port and
are directly connected to FIFOs. A packet contains a header
and tail flit. The TLAST signal from the AXI-S interface
represents a tail flit and signals to the router that a packet
is fully transmitted or received. The header flit signals the
destination in XY coordinates. For a detailed description of
the router used, we refer the reader to [47] at this point.

FIFOs have to notify PEs that they are ready to transmit
packets on the NoC. Therefore, a threshold is defined for the
output FIFO to indicate its empty state. The threshold shows
that the receiving PE has either read or is reading packets from
its input FIFO. This is why FIFO depth corresponds to the
packet size and operates in the store-and-forward policy to
monitor the situational progress of packets within the NoC.
Thus, packets are generated and fully present in the output
FIFO before injecting them into the NoC. The wormhole
control flow allows routers to accept only a single flit per
input. When a packet has passed through the network, the
number of flits in the sending PE’s FIFO is reduced by one.
A packet is guaranteed to reach its destination when it has
passed a fixed number of routers. That can be determined by

Routermax = Dimx + Dimy − 1, where Dimx and Dimy are
dimensions of the NoC. If the number of flits falls below this
size, the package has arrived at the destination. Therefore, a
2×2 NoC requires FIFOs of a threshold size of 29. However,
due to the limitations of the Xilinx FIFO IP, the threshold
has been set to 27. When output FIFOs capture the fallen
threshold, it triggers an interrupt signal to the MicroBlaze
processor to indicate leaving packets.

All applications are executed on a 32bit MicroBlaze
processor. The real-time configuration is selected, and the
implementation is optimized for performance. Besides, the
processor has no caches and two local memories for data and
instructions with 64KiB and 32KiB address ranges. The first
memory area is reserved for FreeRTOS and the second for the
application. The floating-point unit is enabled (with extension
and exception settings). The MicroBlaze processor has three
AXI-S ports. The ports are connected to the input, output
FIFO and outsourced task scheduling of FreeRTOS.

If the processor clock signal is stopped without prior
indication, unpredictable effects may occur. An abrupt
halt can result in data corruption during memory access
or transition to an undefined processor state. Therefore,
discrete ports (sleep, hibernate, suspend) are enabled on
the configuration to manage processor sleep and wake-up.
That allows the MicroBlaze processor to complete external
accesses, such as memory transactions, and safely halt its
pipeline, providing a safe state for clock gating. Xilinx
provides in [49] a schematic for clock gating used in
this work. For a detailed description of the clock gating,
we refer the reader to [49]. The MicroBlaze processor can
suspend itself with sleep instruction (mbar16) and initialize
clock gating by activating its sleep signal [50]. However,
an interrupt signal or a dbg_wakeup request can disable the
clock gate and wake the processor. The debug request signal
has not been used in this work. In addition, Timer IP or
incoming data packets can trigger an interrupt signal. The
mbar instructions have been executed within 2+N or 8+N
cycles where N is the number of clock cycles to complete
memory access [50]. The proposed schematic in [49] has only
required a single clock cycle. Therefore, entering and leaving
a clock gated state is negligible. Besides, the MicroBlaze
processor and BRAMmemory are only clock gated as shown
in Figure 2c. The remaining PE components generate the
interrupt signal or are responsible for system monitoring.
Thus, these components have not been clock gated.

D. VOLTAGE SCALING AND POWER SENSING ON
XC7Z020-CLG484-1
The onboard voltage regulators are used for scaling voltage
and sensing the power consumption. The platform consists
of a dual-core ARM Cortex-A9 processor and an FPGA [24].
It is equippedwith three digital power controllers (UCD9248)
by Texas Instruments (TI) [51]. These controllers provide
ten power rails to supply PS, PL and other parts of the
evaluation board. The power controllers are wired with the
Power Management Bus (PMBus) which is connected to a
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FIGURE 2. [a] Overview of the hardware architecture on XC7Z020-CLG484-1. The structure of the master PE and the connection to
individual slave PEs are shown. The master PE consists of the PS that controls voltage regulators. The router has its clock frequency,
which the PS controls through the MMCM module. [b] Overview of the hardware architecture of the master PE. MMCM adjusts the
frequency of routers, and DMA enables the communication between the processor and router. [c] Overview of the hardware architecture
of slave PEs. The MicroBlaze processor runs FreeRTOS. The scheduling decisions are made in hardware. The processor can be put into
sleep mode when idle with clock gating. In all diagrams, all signals and the corresponding clock domains are color-coded.

1-to-8 channel I2C bus switch (PCA9548) [24]. Using the
PMBus commands [51], it is possible to read the voltage

and current on each power rail. In this research work,
we investigate the characteristics of the PL internal supply
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Algorithm 2 Voltage Scaling on XC7Z020-CLG484-1
1: /* Scaling of the voltage (VCCINT ) to the set point */
2: if set point ≤ 1.00V and set point ≥ 0.55V then
3: if set point ≤ nominal voltage then

/* Modify the following PMBus commands */
4: POWER_GOOD_OFF = 85% of the set point
5: POWER_GOOD_ON = 90% of the set point
6: VOUT_UV_FAULT_LIMIT = 85% of the set point

7: DVS with VOUT_COMMAND to the set point
8: VOUT_MARGIN_HIGH = 105% of the set point
9: VOUT_MAX = 110% of the set point
10: VOUT_OV_FAULT_LIMIT = 115% of the set

point
11: end if
12: if set point > nominal voltage then

/* Modify the following PMBus commands */
13: VOUT_MARGIN_HIGH = 105% of the set point
14: VOUT_MAX = 110% of the set point
15: VOUT_OV_FAULT_LIMIT = 115% of the set

point
16: DVS with VOUT_COMMAND to the set point
17: POWER_GOOD_OFF = 85% of the set point
18: POWER_GOOD_ON = 90% of the set point
19: VOUT_UV_FAULT_LIMIT = 85% of the set point

20: VOUT_MARGIN_LOW = 95% of the set point
21: end if
22: end if

voltage (VCCINT ). The nominal voltage of PL is 1V [27].
Xilinx already provides a driver for XC7Z020-CLG484-1 to
retrieve the voltage and current data [26]. Once the system
setup is correctly initialized and the sensed data are read,
the driver can adjust the voltage parameters at run-time.
Algorithm 2 describes the voltage scaling with the PMBus
commands on the platform. The steps have to be followed as
the board has off-the-shelf protection mechanisms [25]. The
mechanism has protection limits to prevent an overcurrent,
overvoltage, and undervoltage fault occur on the technology.
Without a proper setup of the PMBus commands, the fault
management is active and turns off the board immediately.
Thus, the appropriate commands have to be adapted to the
redefined set points while scaling the voltage as shown in
Algorithm 2 (lines 3-11 or 12-21). Based on previous research
works, we have limited the voltage scaling between 1V and
550mV to prevent a faulty operation (line 2).

E. DESIGN OF THE HEURISTIC MAPPING ALGORITHM
AND SYSTEM MONITORING
The master PE monitors the system state, analyzes task
dependencies, creates a sorted task list, and determines where
to run corresponding tasks. In this case, the task dependency
is represented in a Directed Acyclic Graph (DAG). Here,
a node represents the execution time of a task. The edges

describe the time for incoming and outgoing messages from
a task. These factors determine the weight quantity for each
node and its edges. The master PE assigns priority to each
node based on its weight quantity. The priority is obtained
from the subordinate weight values in the respective task path.
The highest accumulated weight value of a node corresponds
to the highest priority. A task list sorted by these priorities
represents a topological ordering of applications in DAG
since a predecessor task is always weighted and prioritized
higher than the subordinate weights of its successors.

Afterward, the master PE checks whether a slave PE
can provide the required memory size for respective tasks
and their parameters. Then, each initial node is assigned
to a slave PE to take advantage of task-level parallelism.
A task-to-task communication can occur at subsequent nodes.
Therefore, a cost function is calculated for each node and
slave PE. The task is then assigned to the respective slave
PE with the lowest cost function. The cost function considers
the following two cases. First, it checks whether there is
already a predecessor node on the respective slave PE. If this
is the case, inter-processor communication is not required.
This leads to a cost reduction (otherwise to a cost penalty).
Another case may occur as follows. One of the predecessor
nodes may be executed on another slave PE. In addition, the
execution may still be running and not completed. Therefore,
the respective task must wait until the predecessor node
completes its execution and receives the data through the
network. The predecessor task with the latest execution
should be identified, as the other predecessor tasks should
already be completed. If this case exists, a penalty is included
in the cost function. Each slave PE has a task list with some
entries. These entries contain the total memory usage, the end
time of the overall execution, and the number of assigned
tasks. The task list is updated regularly and reflects the current
status of the task assignment. The cost function identifies a
suitable slave PE for a task. However, the identified slave PE
may not have enough memory. Therefore, the task list is used
to select a suitable slave PE with sufficient memory.

Algorithm 3 describes the steps of task mapping. The
algorithm checks if a task has a predecessor (denoted as a
parent in line 5). If this is not the case, the task is mapped to
a slave PE with the lowest workload (denoted as utilization
in line 6). This results in an even distribution of initial tasks
to exploit task-level parallelism. If the task has a predecessor,
the mapping strategy identifies the task with the lowest cost
function (line 12). A slave PE can wait for an incoming
message from a predecessor task. Therefore, the timing list is
frequently updated (line 17). It also considers potential time
savings due to task mapping. A task is finally assigned to
a slave PE (lines 10, 16). The estimated completion time is
updated after each mapping (line 19).

The master PE has a repository to host applications and
their data. In this work, an executable code compiled for
the MicroBlaze ISA is prepared and stored in the DDR
memory. The master PE transfers the source code and its data
through the NoC to slave PEs. Subsequently, the slave PE

VOLUME 12, 2024 11305



G. Akgün et al.: Exploration of Power-Savings on Multi-Core Architectures

Algorithm 3 Heuristic Mapping Algorithm
1: /* Task assignment to slave PEs */
2: Assignment (Prioritized task list T , List of slave PEs P)
3: for Task tj ∈ T do
4: if parent (tj) = ∅ then
5: pe_index ← Find slave PE with the lowest

utilization and enough memory (tj)
6: if No slave PE is found then
7: Return an error
8: end if
9: Add tj to assigned task list L (ppe_index)

10: else
11: pe_index ← Find slave PE with the lowest cost and

enough memory (tj)
12: if No slave PE is found then
13: Return an error
14: end if
15: Add tj to assigned task list L (ppe_index)
16: Update the task timing data of L (ppe_index)
17: end if
18: Update the end point of ppe_index
19: end for
20: return An assigned task list L (pi) to each slave PE

pi ∈ P with L (pi) ⊂ T

stores receiving packages into the local BRAM memory to
execute them as part of a task. As a result, any application
can be deployed on a slave PE after a task assignment.
Moreover, the same application may run with different data
in different tasks. That would introduce redundancy and
cause memory overhead. These cases can also be better
controlled, as applications and their data are sent separately,
which improves memory usage on slave PEs. In this work,
all applications were prepared as standalone applications to
integrate these flexibly as tasks into FreeRTOS. We have
reserved a 32KiB frame for each application in the DDR and
BRAM memory.

The starting address of an application function is placed
at the beginning of a frame. Therefore, a function pointer
within a FreeRTOS task points to this address to execute
an application function. When a slave PE receives the first
package, it calls the receive task in FreeRTOS, which stores
all received application packages into the local BRAM
memory. After receiving and storing all packages, the receive
task creates an application task. All application tasks have
the same execution pattern. With this model, a single generic
function can execute any application task associated with
a slave PE without knowing the specific behavior of the
task at design time. This is possible because multiple tasks
can share functions of a FreeRTOS-based program without
interfering with each other, provided there is no concurrent
write access to global variables. The function immediately
suspends or blocks the task state because it waits for the
starting signal from the master PE. The master PE starts

all slave PEs simultaneously to monitor the system status
and perform run-time management. After receiving the start
control message, the application task thus returns to the ready
state and can be executed within the application hyperperiod
specified by the master PE. The application task remains in
the blocked state when a task waits for messages or execution
completion from predecessors. It remains blocked until the
receive task or a predecessor task mapped on the same slave
PE sends a notification event. Afterward, the application task
calls the assigned task with the function pointer and executes
it according to the call definition in master PE. The function
also returns a result after execution, which is used for inter-
task communication. If the successor task is located on the
same slave PE, the result is copied into the associated task
memory region. Otherwise, the resulting message data is sent
to the corresponding slave PE through the network.

All generated tasks attempt to complete their executions
within a hyperperiod. However, FreeRTOS has preemptive
task scheduling and executes tasks in a specific order with
their priorities. For instance, tasks with the same priority are
executed according to the round-robin policy. The master
PE has created a sorted task list that contains the execution
order of assigned applications for a slave PE. The slave PE
can therefore set priorities according to the tasks it receives.
However, this approach scales poorly with an increasing
number of allowed maximum tasks in a slave since each
different priority group increases the time required to perform
a context switch. Therefore, slave PEs have a scalable
mechanism that dynamically assigns a high priority to each
application task according to its assignment. This process
resembles the passing of a token from one task to the next
after its completion. Hence, all slave PEs use the following
six priority levels in FreeRTOS (from high to low):

• Level 5 - reserved for FreeRTOS service routines
• Level 4 - reserved for the receive task
• Level 3 - assigned to completed application tasks
• Level 2 - assigned to the application task to be
performed next

• Level 1 - default priority for all application tasks
• Level 0 - reserved for the idle task

Level 0 is reserved for the idle task. Clock gating is
performed within this task since no other task is processed.
The receive task must preempt all other application-specific
execution because it receives messages from PEs and
manages the underlying system. More precisely, this task
manages incoming messages, creates application tasks,
adjusts the processor clock desired by the master PE, and
releases the execution of tasks on request. Because of its
crucial role, this task has the highest priority (Level 4).
Otherwise, all created tasks are assigned to Level 1 except
for the first generated task in Level 2. Thus, the FreeRTOS
task scheduling will start executing the assigned task in
Level 2. Besides, FreeRTOS allows changing task priorities
dynamically. When an application task from Level 1 (2)
attempts to raise (lower) its priority, i.e., pass the priority
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token, FreeRTOS will enforce a context switch before the
task runs into the blocked state. Once a task completes its
execution, it is set to Level 3 to prevent it from being replaced
by another application task. Here, the next task to be executed
is determined, and its priority is set to Level 2. Finally, the
task status in Level 3 is blocked. If the last task reaches
Level 3, a notification about completing all tasks is sent to the
master PE. All tasks revert to Levels 1 and 2 at the beginning
of each new hyperperiod. Note that hardware-based task
scheduling is connected with each slave PE to improve
scheduling overhead. Since the presented implementation is
extensible and adaptable, only the described adjustments in
Section IV-A are made to all slave PEs.
The master PE prepares all slave PEs to execute all tasks

periodically before a defined deadline in real-time. Initially,
a hyperperiod is defined in which all slave PEs have to
complete all assigned tasks. The master PE determines a
deadline for each slave PE. First, it identifies the slave PE
with the latest expected execution time and checks whether
this PE can execute all its tasks within the specified period.
This period is defined as a deadline for this slave PE, even if
the expected execution time ends earlier than the specified
period. Otherwise, the specified period has to be adjusted
to meet the deadline. As described before, there may be
dependencies between individual tasks so inter-processor
communication may be necessary. Therefore, all slave PEs
should complete their execution before the identified latest
execution time and defined deadline. The execution time is
divided by the identified latest execution time, and the result
is multiplied by the defined deadline, which is the resulting
deadline for the slave PE. The underlying system architecture
allows each slave PE to adjust its operating frequency using
MMCM. Note that the NoC operating frequency corresponds
to the maximum frequency set in the slave PE so that no
bandwidth and message loss occur at run-time. Thus, all
slave PEs perform frequency scaling based on the determined
deadline. The master PE measures the total execution time
of each slave PE and verifies that slave PEs meet the
deadline as closely as possible without violating the schedule.
In addition, it calculates an adjustable frequency (between
fmin and fmax) for each slave PE concerning the deadline and
notifies them about it at the end of each hyperperiod. The
slave PEs then set the proposed frequency locally.

FreeRTOS has an idle task at the lowest priority. If the
task scheduling has no other ready tasks, then it calls the
idle task that frees the allocated memory for deleted tasks
and has no other function in FreeRTOS to perform. However,
it is possible to call an idle hook function optionally within
this task [19]. The idle hook function can be customized and
allows the processor to be put into sleep mode. In this work,
the function calls the sleep instruction of theMicroBlaze ISA.
It triggers the clock gate module in PL (shown in Figure 2c),
which puts the processor and memory into a sleep state.
However, the processor is woken up in two cases. First,
the FreeRTOS kernel periodically checks whether a context
switching is required for a higher priority task. In addition,

the processor may receive a package that triggers an interrupt
and places the processor in the operating state. Otherwise,
it remains in the idle task, and thus the processor is in the
sleep state.

In the case of the voltage scaling, the master PE can
only adjust the voltage of the entire PL region. Therefore,
a minimum voltage level is identified at run-time in
which all PEs can still be stably executed. The expected
results have been distorted if the voltage value is below a
particular voltage value. As a result, the PL region loses
its configuration, and the MicroBlaze processors can no
longer run an application. However, the configuration can
be restored with DPR in Xilinx when the voltage reaches a
stable value. The configuration has a timing overhead that
is much higher than that of the voltage scaling. In [28], the
PCAP approach was used for a 4MB configuration file and
the configuration time was about 35ms. Due to the expected
high configuration time, we see a threat in the real-time
behavior and remove the consideration of power gating from
this work. At the same time, scaling the voltage from the
nominal mode to 0.4V took 2.73ms [28]. For this reason,
voltage scaling is performed during the initialization phase.
The slave PEs execute all applications at this set voltage level
during the execution. The necessary steps for voltage scaling
have already been described in Section IV-D.

V. EVALUATION
This section presents the experimental results obtained for
the FreeRTOS task scheduling offloaded to the co-processor
and hardware performed on XC7Z020-CLG484-1. The
underlying technology allows the voltage to be dynamically
scaled and the power dissipation to be monitored at run-time.
However, power management required almost 5ms to retrieve
only one power value from voltage regulators. Deadline
violations occur during system monitoring. Therefore, the
evaluations have been split. The second ARM Cortex-A9
processor executed first the (active) offloaded task scheduling
and second monitored (only for power measurements)
the power dissipation at run-time. The master PE mon-
itors the system state and manages the task assignment
(Section IV-E). Therefore, the master was the first ARM
Cortex-A9 processor, and all MicroBlaze processors were
slaves. Moreover, the master PE has a repository to host
applications and their data. In this case, all applications for the
repository were obtained from the BEEBS benchmark [52].
An initial measurement was performed with it for the
task assignment. A MicroBlaze processor ran them within
standalone applications and measured, for instance, the
execution time in processor cycles. Table 3 gives an overview
of the measured results. Here, bss indicates the memory size
for variables, data for parameters, and code for application’s
functions. Afterward, the executable codes compiled for the
MicroBlaze processor were prepared and stored in the DDR
memory. The Microblaze processor had version 11.0, and
the running FreeRTOS version was 10.1.2. A DAG graph
with the selected functions from the BEEBS benchmark was
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TABLE 3. Measurement of execution times and examination of memory size on a MicroBlaze processor.

FIGURE 3. A DAG graph with dependency, partitioning, and calling order
of tasks in each slave PE for the experimental study. The nodes’ calling
order and the DAG graph structure were arbitrarily selected.

prepared to examine the task assignment from the master PE
to slave PEs. Figure 3 shows the graph’s structure and tasks’
interdependencies.

The edges show the sequence in which the respective result
of the task should be sent to the successor node. In addition,
it shows the distribution and calling order of tasks in the
individual slave PEs. The goal was to explore the impact
of power-saving techniques on real-time capability while
supporting RTOS with offloading methodologies. Therefore,
the research was conducted on an exemplary, arbitrarily
selected task diagram to compare the different sets of results
with each other. Nevertheless, the architecture enables the
exploration of different benchmarks under different DAG
graph structures.

A. CO-PROCESSOR BASED TASK SCHEDULING
As described in Section IV-B, we have offloaded the
FreeRTOS task scheduling on the co-processor. The
co-processor sent an interrupt request to FreeRTOS when
context switching was required. Typically, a task is
interrupted several times during execution to check for
context switching. Therefore, we studied the effect of
context switching during task execution. Figure 4 shows the
results for task interruption with the BEEBS benchmark.
The co-processor based task scheduling had a negligible
deviation in all experiments. A small range of deviations
only occurred in the fdct application. There was a more
comprehensive range of deviations in the optimized and
default software-based FreeRTOS task scheduling, which
were highly irregular in all experiments. The time required
for context switching could be reduced for all applications.
By calling the context switching in a controlled manner,
more computing time could be gained by a maximum of

TABLE 4. Results of measured latency for the FreeRTOS task scheduling
on co-processor.

3.68% for fdct, 6.35% for qsort, 0.67% for matmul float,
and 0.25% for matmul int. Furthermore, we have measured
the latency for the task scheduling and compared it with
the default and optimized software-based FreeRTOS task
scheduling. The task scheduling was running on the ARM
Cortex-A9 processor at 667MHz. Table 4 shows the complete
latency of the FreeRTOS task scheduling. All task scheduling
had a deviation in the latency measurements. However,
the co-processor based task scheduling still had the lowest
deviation and thus led to lower jitter effects at run-time (also
shown in Figure 4). Besides, the co-processor based task
scheduling reduced the latency by 26.58% (18.3%) compared
to the default (optimized) FreeRTOS task scheduling.

B. HARDWARE-BASED FREERTOS TASK SCHEDULING
As described in Section IV-A, we have accessed the
hardware-based task scheduling through the AXI4-Lite and
AXI-S protocols. We have compared latencies and consumed
hardware resources for both protocols. Table 5 demonstrates
the utilized hardware resources for XC7Z020-CLG484-1.
The implementation did not require BRAM, DSP, and
BUFG for both protocols. The round-robin policy had a
significant impact on utilized hardware resources. Comparing
both protocols showed that there was not much difference
in the hardware resources consumed. Overall, the task
scheduling also consumed few hardware resources with both
protocols. In addition, we have investigated the latency of
the hardware-based task scheduling for both AXI protocols.
The AXI-S protocol needed 0.44µs to receive an update of
the recent ready task. In the case of the round-robin policy,
it took 0.65µs. Contrary, the AXI4-Lite protocol had a latency
of 0.77µs with the round-robin policy. Comparing both
protocols showed that the AXI4-Lite had a marginally higher
latency than AXI-S. It was noticeable in both measurements
that communication accounted for the essential latency
time. The transaction latency was 0.63µs (0.75µs) for
AXI-S (AXI4-Lite). Besides, we also changed the frequency
of the task scheduling using the AXI4-Lite protocol to
investigate the effect of frequency on latency. We run the
task scheduling with 100MHz, 142MHz and 200MHz and
measured an latency of 0.77µs, 0.74µs and 0.72µs. This
approach was also insufficient to match the latency of the
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FIGURE 4. Four different applications ([a] fdct, [b] qsort, [c] matmul float, [d] matmul int) have been selected from the BEEBS benchmark [52].
A scheduling frequency of 500Hz, 1000Hz, 2000Hz and 4000Hz was set for each measurement. The experiments were performed with all three
scheduling algorithms of FreeRTOS (PPwTS = Prioritized Preemptive Scheduling with Time Slicing, PPwoTS = Prioritized Preemptive Scheduling without
Time Slicing, CoS = Cooperative Scheduling). Co-Proc. = Co-Processor based Task Scheduling, Normal/Optimized = Default/Optimized Software-based
FreeRTOS Task Scheduling.

AXI-S protocol. In addition to the hardware execution,
FreeRTOS also executes a small portion of assembly code
for context switching. Table 6 shows the complete latencies
for the hardware-based task scheduling with both AXI
protocols, optimized, and default software-based FreeRTOS
task scheduling. The default and optimized task scheduling
in FreeRTOS had a deviation in the latency measurements.
Contrary, the hardware-based task scheduling had no variance
and thus no jitter effects in the execution. Overall, the task
scheduling with the AXI-S protocol performed best and was
23.43% faster than the solution with the AXI4-Lite protocol.
Besides, it was 33.33% faster than the default FreeRTOS
task scheduling. Compared to the conducted measurements
in [8], the improvement was 45.56%. But, the co-processor
based task scheduling reduced the latency by 71%. However,
the co-processor-based task scheduling ran at a frequency
of 667MHz. Besides, the scalability of the task scheduling
depends on the number of processors. The hardware-
based task scheduling can be connected to any processor.
Thus, it is adaptable and suitable for scalable systems.
Moreover, the module can be integrated with just an AXI
protocol call into FreeRTOS and thus requires no changes
in the kernel as the co-processor-based implementation. The
co-processor-based task scheduling required shared memory
and synchronization mechanisms due to the shared resources.
Due to the low utilized hardware resources and latency,

we finally implemented the hardware-based task scheduling
with the AXI-S protocol and connected it to the MicroBlaze
processors.

C. HARDWARE UTILIZATION
Table 7 gives an overview of the hardware resource utilization
of the proposed system architecture. It consumed 45.82%
of the available slice logic blocks (LUTs) and 27.47% of
the slice registers (FFs). Thus, the design can be extended
for additional functionalities, e.g., hardware accelerators.
The BRAM hardware usage was 51.43%. DMA, followed
by MMCM consumed the most hardware resources in the
master PE. In the case of a slave PE, the MicroBlaze
processor had the most resource utilization. The hardware
resources of the clock gatemodule usedwere negligible. Each
slave PE had a homogeneous design structure and roughly
equivalent resource consumption. Besides, the NoC router
had a relatively low hardware utilization, as expected from
the lightweight router based on XY routing scheme.

D. RUN-TIME MEASUREMENT
We performed run-time measurements for task assignment.
Figure 3 shows how and in which order tasks were distributed
to individual slave PEs. Furthermore, Figure 5 presents
the conducted experimental results. We performed our
investigation with different hyperperiods and identified the
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TABLE 5. Resource consumption of the implemented hardware-based task scheduling on XC7Z020-CLG484-1.

TABLE 6. Results of measured latency for the FreeRTOS task scheduling.

same behavior in all of them. Therefore, we normalized
all recorded values with an hyperperiod of 20ms. The task
distribution estimates the total execution times on each slave
PE. It has been found that slave PE1, PE2, and PE3 would
take 10.37ms, 2.84ms, and 0.59ms, respectively. For this
reason, the master defined a corresponding deadline of 20ms
(normalized to 1ms), 5.48ms (0.27ms), and 1.13ms (0.05ms)
for each slave PE. Since slave PE1 had the latest execution
time, the hyperperiod was assigned, and the remaining
two PEs got a period according to this value. After the
estimation, a run-time measurement is performed to check
the correctness of the estimated values. A total execution
time of 10.89ms (0.54ms), 3.10ms (0.15ms), and 0.60ms
(0.03ms) was measured, respectively. This resulted in a
deviation of 4.76%, 8.25%, and 2.69% between the estimated
and actual execution times. The deviation resulted from task
execution in FreeRTOS and data packets in the network.
Both behaviors are unpredictable and therefore have not been
measured/determined at design time. The frequency of the
individual PEs is then adjusted. In each iteration, the master
PE checkswhether the specified deadlines aremet by all slave
PEs. The frequency scaling and clock gating result shows
that the slave PEs could always meet the deadlines, and the
master PE could estimate a correct frequency of 55MHz,
57MHz, and 54MHz, respectively. At run-time, the behavior
was observed, and if the execution time exceeded the defined
deadline, the frequency was re-estimated. Note that the NoC
operating frequency corresponds to the maximum frequency
set in the slave PE. In this case, it was 57MHz. At a lower
frequency, bandwidth and packet loss can occur. However,
the master PE provided a correct frequency estimate every
time. Therefore, no deadline was exceeded. In the last
measurement, DFS was disabled, and the execution time
was only measured with clock gating at 100MHz. Figure 5
shows that, as expected, clock gating did not affect the run-
time measurement, and the initially measured condition was
restored.

As Section IV-E described, the MicroBlaze processor goes
into sleep mode when FreeRTOS calls the idle task. For
this, the slave PE calls the sleep instructions and sends
a sleep signal to the hardware module to bring him into

FIGURE 5. The run-time measurements from the individual slave PEs are
shown. The execution time is normalized to the hyperperiod of 20ms. The
error tolerance indicates the interval to the respective period. (DFS =
Dynamic Frequency Scaling, CG = Clock Gating).

sleep mode. Besides, the clock gate module has an external
wake-up signal that the interrupt controller triggers. There
are two cases when the processor is woken up. The kernel
of FreeRTOS measures the passing time using a tick-count
variable. A timer interrupt increments this variable with a
temporal resolution based on the chosen frequency. Each time
the tick-count variable is incremented, the periodic scheduler
checks whether context switching is required. Second, the
processor receives packages from theNoC,which turns on the
processor. We measured the latency, and the wake-up process
took five clock cycles. To bring the processor into sleep mode
took 30 clock cycles.

E. POWER AND ENERGY MEASUREMENT
We measured the PL power consumption without a design,
and it was PPL,stat = 50.64mW, which was considered in all
measurements and removed from the results presented. The
effect of power-saving techniques on the system architecture
is presented in Figure 6. The master PE analyzes task
dependencies, assigns tasks to slave PEs and monitors the
performance with run-time measurements to check whether
execution time meets defined hyperperiods (deadline) and
thus real-time requirements. It predicts a frequency for local
frequency scaling and adapts it if necessary at run-time.
Figure 6a shows the results of DFS measurements indicating
that power consumption was reduced from 370.14mW to
104.30mW with increasing periods. Moreover, Figure 6a
also shows that the master PE assigned a new frequency to
each slave PE at each period. Table 8 gives an overview
of all frequencies that the master PE had determined and
each slave PE set for DFS on each period. A measurement
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TABLE 7. Resource consumption of the implemented complete system architecture on XC7Z020-CLG484-1.

TABLE 8. Operating frequency results for each hyperperiod and slave PE,
performed in frequency scaling.

without power-savings (denoted as baseline in Figure 6a)
was conducted at (fmax) 100MHz and used as a comparison
baseline. Figure 6b shows the achieved improvement by
power-saving techniques related to no optimization in the
design. Thus, power consumption was improved by 9.28%
(67.52%) in the lowest (highest) period with DFS. However,
clock gating with (and without) DFS resulted in better
power optimization. The power was reduced from 192.72mW
to 100.38mW for clock gating only and thus improved
by 46.45% (68.35%) in the lowest (highest) period. The
combination with DFS reduced power consumption by
47.41% (71.70%) in the lowest (highest) period. Each slave
PE performed a clock gating whenever the processor was
idle. Lowering the period reduced the available idle time
across slave PEs and thus degraded the achievable power
reduction by clock gating. Furthermore, the combination
with DFS resulted in a slight improvement of the power
consumption because frequency scaling increased idle time.
However, clock gating can only serve a limited number of
hardware components. In our case, it was the MicroBlaze
processor and BRAMmemory in the respective slave PE. All
other components remain active as they trigger an interrupt
to specific events. For instance, a FIFO triggers an interrupt
to inform the processor about incoming packages that must
continuously operate in the proposed design. On the other
hand, DFS can be applied to all hardware components in PL
and is in this sense more universally applicable. However,
there is a task dependency associated with inter-task or
processor communication in the system,wherebyDFS cannot
be fully exploited. Otherwise, the processors could have
executed their tasks with the highest frequency and gone into
sleep mode with clock gating earlier.

Figure 7 shows the dynamic power consumption with
normal task execution without optimization (baseline),
voltage scaling, and clock gating. In the experiments, the
voltage was scaled down by 15%, and a hyperperiod of
50ms was set. In the beginning, the effect of voltage scaling

was noticeable without a task execution. The power was at
149.7mW and reduced by DVS to 79.21mW. The baseline
had a dynamic power dissipation of 421.13mW, and DVS
reduced it by 27.63% to 304.74mW. As before discussed,
the clock gating greatly impacted the power. Thus, it reduced
the power by 73.32% to 112.35mW. However, a combination
with DVS resulted in an overall saving of 85.39%. The
improvement that clock gating brings to DVS was 79.81%.
Figure 7 also depicts the dynamic behavior of clock gating on
power consumption. Here, the power was initially 149.7mW.
Afterward, the slave PEs were in an idle phase for 50ms,
which resulted in power consumption of 84.47mW. During
task execution, the power increased to 112.35mW. Thus, the
design obtained a power reduction of 24.81% in slack times.

Figure 8a shows the power consumption resulting from
DVFS in combination with clock gating for hyperperiods
between 13ms and 100ms. The nominal voltage was 1V
and was reduced in 0.05V steps to 0.85V. Below this
threshold, results were getting corrupted, and FreeRTOS had
a problem caused by a lack of heap memory [19]. This value
was, therefore, the defined threshold for the measurements.
The master PE specified an operating frequency on each
hyperperiod (shown in Table 8) and thus scaled from 100MHz
to the indicated frequency value. However, the power was
reduced by a maximum of 47.27% (from 1V to 0.85V
at a period of 100ms) with power-savings. In addition,
all slave PEs met the specified deadlines while adapting
power with optimization techniques at run-time. Besides,
energy consumption is illustrated in Figure 8b-d. Here,
a linear increase with a rising period can be seen. Each slave
PE had a corresponding energy consumption according to
the number of assigned tasks (as presented in Figure 3).
Here, the baseline describes the case in which there is no
optimization in the system. Clock gating and frequency
scaling reduced power consumption by 53.34% at 13ms and
80% at 100ms (compared to 1V). Voltage scaling achieved
additional reductions. It diminished the energy consumption
by 69.33% at 13ms and 89.47% at 100ms while scaling the
voltage to 0.85V. If the underlying hardware allows voltage
scaling, the design can significantly reduce power/energy
consumption and thus result in more savings.

The mapping strategy proposed in [44] was compared
with a random algorithm. Therefore, we have compared
the random and heuristic mapping algorithm’s impact on
power consumption (Figure 9). The power consumption was
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FIGURE 6. A comparison of power-savings (clock gating and DFS) supported by design has been conducted. [a] presents the resulting power
measurements for a hyperperiod of 13ms, 25ms, 50ms, 75ms, and 100ms. [b] shows the deviation to the baseline without optimization according to the
measured results in [a]. (CG = Clock Gating, DFS = Dynamic Frequency Scaling).

FIGURE 7. Effect of voltage scaling and clock gating on dynamic power
dissipation. The baseline describes the task execution without
optimization. The nominal voltage is at 1V and was scaled to 850mV. The
measurements were performed for a hyperperiod of 50ms.

measured for different hyperperiods between 11 and 100ms.
The number of messages on the edges of the DAG graph for
inter-task communication (Figure 3) was increased step-wise
from one (1M) to a maximum of nine (9M) messages in the
experiments. Each slave PE had 32KiB memory available
for tasks, so the maximum number of messages could be
increased to nine in this work. Figure 9 shows only all
tasks successfully mapped through the mapping strategy in
the respective hyperperiod without exceeding the deadline.
Slave PEs had sufficient processing time for task execution at
higher hyperperiods, resulting in longer idle times and lower
power consumption. Moreover, Figure 9 shows that mapping
was not possible for lower periods because tasks exceeded the
defined deadline and thus violated the real-time requirement.
The influence was notable for hyperperiods below 22ms.
The reason was that more messages were sent or tasks were
suspended for a certain time due to the inter-task dependence.
The proposed mapping strategy aims to assign dependent
tasks to the same slave PE and thus avoid messaging through
the network. Besides, it monitors the execution time for
each slave PE and assigns tasks accordingly. Therefore,
the heuristic mapping assigned tasks more efficiently at
lower periods than the random algorithm without violating

real-time requirements. This was why only the proposed
solution could map tasks with nine messages to slave PEs.
Nevertheless, both algorithms resulted in a significantly
similar power consumption for all hyperperiods with one
message (1M HM/RM). However, the heuristic mapping
couldmeet all real-time requirements until an hyperperiods of
11ms, whereby the random mapping algorithm successfully
assigned tasks until 13ms. On the other hand, the proposed
mapping strategy resulted in more power-saving for high
number of messages. For instance, the heuristic mapping
resulted in a 24.99% lower power consumption at 22ms for
eight messages compared to the random algorithm. Thus,
the proposed mapping strategy can better meet real-time
requirements while consuming less power.

F. IMPACT OF POWER-SAVING TECHNIQUES ON
REAL-TIME CAPABILITY
One aspect of this work was to balance real-time capability
and energy efficiency. This work considered the real-time
capability differently at master PE and slave PEs. On the
one hand, hardware-based task scheduling led to better
scheduling performance and improved context-switching by
33.33% at slave PEs. The approach resulted in no variance
and, thus, no jitter effects in the execution. The impact
on power consumption was not measurable because of the
infinitesimally short processing time of the context switch
and the longer retrieving time of a power value. However,
the hardware-based task scheduling enabled FreeRTOS, for
instance, to react faster to incoming messages with enhanced
scheduling performance in the design.

On the other hand, the master PE checked whether all slave
PEs met the real-time requirements. In case of a deadline
violation on a slave PE, the master PE computed a new
frequency. The slave PE then scaled operating frequency
based on the computed frequency. This reduced the power
dissipation while meeting real-time requirements. A lower
energy consumption was consumed at lower hyperperiods.
However, the experiments showed that lower hyperperiods
led tasks to exceed the defined deadline, thus violating
the real-time requirement. This could be prevented with
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FIGURE 8. The power-saving techniques provided by the architecture (clock gating and frequency scaling) were linked to voltage scaling. The impact of
voltage scaling on power and energy consumption on each slave PE is presented. All measurements were conducted for a hyperperiod of 13ms, 25ms,
50ms, 75ms, and 100ms. [a] presents the power consumption for applying DVFS and clock gating for the application. [b]-[d] show the energy
consumption for the respective slave PE.

FIGURE 9. Effect of random (RM) and heuristic mapping (HM) strategy on
power consumption. The number of messages represented as edges in
the DAG graph was increased by 1, 5, 8, and 9 (9M) messages. Clock
gating was performed. The overall power consumption was measured.

the power-saving techniques used while meeting the real-
time requirements. Besides the frequency scaling, slave
PEs applied clock gating while executing the idle task
in FreeRTOS. The master PE scaled the voltage for the
reconfigurable hardware and, thus, all slave PEs. This
also reduced power consumption while meeting all real-
time requirements. The master PE executed the heuristic
task mapping that aimed to assign dependent tasks to the
same slave PE to avoid inter-processor communication, thus

reducing power consumption. The evaluations showed that
the proposed strategy could map tasks with nine messages
to slave PEs while reducing power and meeting real-time
requirements. Using these various techniques at different
levels in the system architecture led to reducing overall power
consumption while not violating real-time requirements.

VI. CONCLUSION
This work investigated the impact of power-saving tech-
niques on real-time requirements while supporting RTOS
with offloading methodologies. The proposed solution was
performed on a heterogeneous multi-core architecture with
an NoC and four PEs in a 2D-mesh topology. The master PE
monitored power consumption, dynamically scaled voltage,
and assigned tasks to slave PEs with a heuristic mapping
strategy. All slave PEs applied frequency scaling and clock
gating to reduce power. The task scheduling was offloaded on
a co-processor and in hardware. As future work, it is planned
to compare the proposed heuristic task mapping with other
mapping algorithms. The hardware-based task scheduling
will be enhanced with a power-aware scheduling algorithm.
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