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ABSTRACT This paper deals with the stability of nonlinear multi-agent systems (MASs) with multiple
time delays. A class of multi-agent system (MAS) is constructed considering the effects of multiple time
delays, nonlinearity, and uncertainty. An integral sliding mode surface is built based on the MAS, and the
corresponding sliding mode dynamics are established. Using the Lyapunov method, sufficient conditions are
obtained to ensure the sliding mode dynamic asymptotic stability with H∞ performance. Consequently, the
sliding mode controller parameter matrix is obtained. Furthermore, a sliding mode control law ensures that
the considered system can be driven into the sliding mode surface. Finally, a numerical example is given to
demonstrate the usefulness of the theoretical result.

INDEX TERMS Multi-agent systems, multiple time-delay, uncertainty, sliding mode control.

I. INTRODUCTION
Multi-agent systems (MASs) are a collection of multi-
ple agents with interaction, coordination, and autonomy.
Through communication and cooperation between agents,
MASs can solve problems that single-agent systems can-
not solve. With the development of network technology
and artificial intelligence, the application of MASs has
attracted considerable attention in intelligent tracking [1], [2],
microgrid [3], [4], [5], environmental monitoring [6], [7].
Although MASs have been widely applied, there are still
some problems that need to be solved.

Due to the large scale and complex communication of
MASs, communication delays are inevitable when informa-
tion is exchanged between agents. Communication delays
may lead to incoherent information transmission of MASs
and even ruin the system’s stability, making it difficult to
achieve the expected effect [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. Many literatures provide effective
control schemes for systems with single time-delay, such as
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event-triggered control [18], [19], [20], [21], [22], adaptive
control [23], [24], [25]. In addition, considering that there
are information interactions between the agents in an MAS,
communication delays may affect the system’s performance.
Few studies focus on MASs affected by multiple time delays.
In [26], a delay-based double integral region partitioning
method is proposed for MAs systems with multiple time
delays, while the uncertainty of the system is not considered.
Unlike the research above that considers the affected only
by a single delay of MASs, this paper focuses on the MASs
affected by multiple time delays, nonlinearities, and model
uncertainties.

On the other hand, most of the mentioned achievements
are designed for nominal MASs. In complex systems such
as truck trailers and fluid mechanics, the influence of
nonlinearities and model uncertainties on MASs cannot be
ignored, reducing the control performance of the MASs [27],
[28], [29], [30], [31], [32]. Therefore, designing an effective
control scheme for these factors is necessary. Various control
methods, such as T-S fuzzy control and composite nonlinear
feedback (CNF), have been studied for nonlinearity and
model uncertainty systems. T-S fuzzy control has a strong

10512

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3457-9324
https://orcid.org/0000-0002-0226-2405
https://orcid.org/0000-0002-1899-2808


J. Feng et al.: Integral Sliding Mode Control for a Class of Nonlinear MASs

approximation ability for nonlinear systems and can be used
to model nonlinear systems by the T-S fuzzy model approach.
Based on the above characteristics, T-S fuzzy control was
adopted in [33], [34], [35], and [36] to study nonlinear
systems with uncertainty problems. CNF consists of two
parts: linear feedback law and nonlinear feedback law. The
linear feedback law is designed to produce a closed-loop
system to achieve fast response, and the nonlinear feedback
law is used to reduce the linear feedback overshoot. Due
to the above characteristics, CNF is adopted in [37] and
[38]. In addition to the above methods, the sliding mode
control has recently attracted wide attention [39], [40], [41],
[42] because it can counteract the effect of uncertainties and
nonlinearities inevitable in most practical systems. In [42],
the traditional sliding mode control is adopted to ensure the
asymptotic stability of multiple time-delayed MASs with
nonlinearities and model uncertainties. This method provides
ideas for MASs with multiple time delays, nonlinearities,
and model uncertainties. However, the time delay considered
is constant while time delays in most practical systems are
time-varying, which limits the application of the proposed
methods. There are few research results on nonlinear MASs
with multiple time-varying delays, nonlinearities, and model
uncertainties, which motivates current research. Based on
the above discussion, this paper aims to design a sliding
mode controller for nonlinear MASs with multiple time-
varying delays, nonlinearities and model uncertainties. The
contributions of this paper are summarized as follows:

(1) A class of nonlinear MAS is established by considering
disturbance, model uncertainties, and multiple delays.

(2) An integral sliding surface is constructed on the
nonlinear MASs with multiple time-varying delays,
nonlinearities and model uncertainties, and the corre-
sponding sliding mode dynamics are derived.

(3) A sufficient condition is derived and presented in LMIs,
which ensures that the sliding mode dynamics are
asymptotically stable with H∞ performance.

(4) A novel sliding mode control law is synthesized to
guarantee the reachability condition.

The remaining sections are distributed as follows. The
second section describes MASs and some necessary lemmas.
The third section gives the principal results and proves the
feasibility of the proposed sliding mode controller. In the
fourth section, a simulation example is given to confirm
the validity of the proposed approach. The fifth section
concludes this paper.
Notation: The notations used in this paper are standard.

XT , X−1 denote the transpose and inverse of a matrix X ,
respectively. ∥ · ∥ denotes the vector or matrix Euclidean
norm. P > 0 (P < 0) denotes P as a positive-definite
matrix (negative-definite matrix). The symbol * denotes the
transposed element in the symmetric position of the matrix.
diag denotes the diagonal matrices, vec denotes the row
matrix, col denotes the column matrices. diagm{Ni} denotes
the m-block-diagonal matrices diag{N1, · · · ,Nm}. vecm{Ni}

denotes the m-block-row matrix vec{N1, · · · ,Nm}. colm{Ni}
denotes the m-block-column matrices col{N1, · · · ,Nm}.

II. PRELIMINARIES
A directed graph G = (V ,E) is used to characterize the
communication between m agents, where V = {1, 2, · · · ,m}

is used to represent the set of agents, E ⊆ V ×V stands for a
set of edges. (i, j) ∈ E represents that agent i is able to obtain
information from the neighboring agent j. The adjacency
matrix A =

[
aij

]
∈ Rn×n of can also describe the digraph G.

If any information flow exists between agents i and j, it can
be represented by aij > 0, otherwise aij = 0. Considering
that multiple agents are inevitably affected by communication
delay, the MASs can be described by the following model:

ẋ(t) = (A+

i
A)x(t) +

m∑
i=1

(Adi +
i

Adi)x(t − τi(t))

+ B(u(t) + g(t, x(t))) + Hw(t)

y(t) = Cx(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm denotes
system control input, g(t, x(t)) denotes continuous function
of the system state, y(t) ∈ Rp represents measurement output,
and w(t) ∈ Rq stands for external interference, which subject
to L2 [0, ∞) ,A ∈ Rn×n,Adi ∈ Rn×n,B ∈ Rn×m,C ∈

Rp×n,H ∈ Rn×q are constant matrices with appropriate
dimensions; the communication delay, τi(t), are time-varying
differentiable functions satisfying:

0 ≤ τi(t) ≤ τMi , τ̇i(t) ≤ τdi, (2)

in which τMi and τdi are constants. Without loss of generality,
it is assumed that τM1 ≤ τM2 ≤ · · · ≤ τMm . For the sake
of simplicity represent τi(t) with τi.

a
A,

a
Adi are uncertain

time-varying matrices, satisfying:[i
A,

i
Ad1 · · ·

i
Adm

]
= MF(t) [N ,Nτ1 · · ·Nτm] , (3)

with M ∈ Rn×f1 , Nτ i ∈ Rf2×n are constant matrix and
F(t) ∈ Rf1×f2 is an unknown matrix satisfying FT (t)F(t) ≤ I
without loss of generality.
Remark 1: Compared with [42], the model considered in

this paper involves uncertainty and multiple time-varying
delays, as well as the effects of measurement output, nonlin-
earity and external disturbances, which is more general.

The following assumptions are mentioned to facilitate the
development of a sliding mode control strategy.
Assumption 1: If (A,B) is controllable, then there exists a

matrix K such that A − BK is also stable, where rank(B) =

m ≤ n.
Assumption 2: For the nonlinear term g(t, x(t)), there

exists a non-negative constant ḡ satisfying ∥g(t, x(t))∥ < ḡ,
and ḡ is the upper bound of the nonlinear term g(t, x(t)).
Assumption 3: For the external interference w(t) there

exists a non-negative constant w̄ satisfied ∥w(t)∥ < w̄, where
w̄ is the upper bound of the external interference w(t).
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The above Assumptions 1, Assumptions 2 and
Assumptions 3 are the same as those made in [42].
Next, we introduce the following lemmas essential in the
subsequent derivation process.
Lemma 1: [43] For any constant matrix M = MT > 0,

M ∈ Rn×n, and assuming there are positive scalars h > 0 and
vector function ẋ(t):[−h, 0] −→ Rn, then there are the
following inequalities:

− h
∫ 0

−h
ẋ(t + s)Mẋ(t + s)ds

≤
[
xT (t) xT (t − h)

] [
−M M
M −M

] [
x(t)

x(t − h)

]
. (4)

Lemma 2: [44] Given matrices P, Q, and symmetric
matrix Z ,

Z + P8(t)Q+ QT8T (t)PT < 0, (5)

for 8(t) with 8(t)8T (t) ≤ I , if and only if there exists a
scalar ζ > 0 satisfied:

Z + ζPPT + ζ−1QTQ < 0. (6)

Definition 1: [45] For γ > 0, if the following condition
should be satisfied:∫

∞

0
yT (t)y(t)dt < γ 2

∫
∞

0
wT (t)w(t)dt, (7)

system (13) satisfies H∞ performance, under zero initial
conditions, all non-zero w(t) holds.

III. MAIN RESULTS
There are three main subsections in this section. Firstly,
an appropriate integral sliding mode surface is selected to
establish the corresponding dynamic model for the integral
sliding mode. Then, the stability and H∞ performance
analysis of system (1) is discussed. Finally, a sliding mode
control law is designed to ensure the system can be driven
into the sliding mode surface.

A. INTEGRAL SLIDING SURFACE DESIGN
The integral sliding mode surface of system (1) is selected as:

s(t) = G(x(t) − x(0)) − G
∫ t

0
(A+ BK )x(s)ds, (8)

where G∈ Rm×n is a constant matrix satisfies det(GB) ̸= 0,
K∈ Rm×n is a constant matrix. According to the equation of
system (1), it is easy to get:

x(t) = x(0) +

∫ t

0
((A+

i
A)x(s)

+

m∑
i=1

(Adi +
i

Adi)x(s− τi(s))

+ B(u(s) + g(s, x(s))) + Hw(s))ds. (9)

By substituting equation (9) into equation (8), we get:

s(t) = G
∫ t

0
((

i
A− BK )x(s) +

m∑
i=1

(Adi +
i

Adi)

× x(s− τi(s)) + B(u(s) + g(s, x(s)))

+ Hw(s))ds. (10)

According to the sliding mode theory, when sliding mode
takes place s(t) = 0, ṡ(t) = 0, the derivation of equation (10)
along system (1) is obtained:

ṡ(t) = G((
i

A− BK )x(t)

+

m∑
i=1

(Adi +
i

Adi)x(t − τi(t))

+ B(u(t) + g(t, x(t))) + Hw(t)). (11)

Therefore, the equivalent control law is as follows:

ueq = −(GB)−1G((
i

A− BK )x(t)

+

m∑
i=1

(Adi +
i

Adi)x(t − τi(t))

+ Bg(t, x(t)) + Hw(t)). (12)

Then the equivalent control law (12) is substituted into
system (1) to obtain the sliding mode dynamics:

ẋ(t) = (A+ BK + R̄
i

A)x(t) +

m∑
i=1

R̄(Adi +
i

Adi)

× x(t − τi(t)) + R̄Hw(t), (13)

with R̄ = I − B(GB)−1G.
Remark 2: By adjusting the initial value of the integrator,

the initial state of the system is kept in the sliding mode, and
the robustness of the system is ensured.

B. STABILITY AND H∞ PERFORMANCE ANALYSIS
In this subsection, a sufficient condition of stability of sliding
mode dynamic system (13) with given controller gain K is
derived.
Theorem 1: System (13) with given control gain matrix K

is robustly stable and satisfies H∞ performance index γ =
√

γ̄ , if there exist real symmetric matrices P > 0,Ri > 0,
Q1i ≥ Q2i > 0 (i = 1, · · · ,m), W , and scalars ε > 0 and
γ̄ > 0, such that the linear matrix inequality (14) is satisfied
and the optimal performance index can be obtained by solving
the following condition,

min
P,W ,Ri,Q1i,Q2i,ε

γ̄[
0 + εÑT Ñ M̃

∗ −εI

]
< 0, (14)

where

M̃ =

[
(R̄M )TW , 0n,2nm, (R̄M )TW , 0n,mn

]T
Ñ =

[
N ,N1, · · · ,Nm, 0n,(2m+1)n

]

0 =


011 012 0 014 W T R̄H
∗ 022 023 024 0
∗ ∗ 033 0 0
∗ ∗ ∗ 044 W T R̄H
∗ ∗ ∗ ∗ 055


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with

011 = W T (A+ BK ) + (A+ BK )TW +
∑m

i=1Q1i

−
∑m

i=1Ri + CTC

012 = vecm{W T R̄Adi + Ri}

014 = P−W T
+ (A+ BK )TW

022 = diagm{−(1 − τdi)(Q1i − Q2i) − 2Ri}

023 = diagm{Ri}

024 = colm{(R̄Adi)TW }

033 = diagm{−Q2i − Ri}

044 = −W −W T
+

∑m
i=1(τ

M
i )2Ri

055 = −γ̄ I .

Proof: Choose the following Lyapunov functional:

V (t) = xT (t)Px(t) +

m∑
i=1

∫ t

t−τi(t)
xT (s)Q1ix(s)ds

+

m∑
i=1

∫ t−τi(t)

t−τMi

xT (s)Q2ix(s)ds

+ τMi

m∑
i=1

∫ 0

−τMi

∫ t

t+θ

ẋT (s)Riẋ(s)ds, (15)

Taking the derivative along the trajectory of system (13)
yields

V̇ (t) = 2xT (t)Pẋ(t) + (τMi )2
m∑
i=1

ẋT (t)Riẋ(t)

+

m∑
i=1

(xT (t)Q1ix(t) − (1 − τ̇i(t))

× xT (t − τi(t))(Q1i − Q2i)x(t − τi(t))

− xT (t − τMi )Q2ix(t − τMi ))

− τMi

m∑
i=1

∫ t

t−τMi

ẋT (s)Riẋ(s)ds

≤ 2xT (t)Pẋ(t) + (τMi )2
m∑
i=1

ẋT (t)Riẋ(t)

+

m∑
i=1

(xT (t)Q1ix(t) − (1 − τdi)

× xT (t − τi(t))(Q1i − Q2i)x(t − τi(t))

− xT (t − τMi )Q2ix(t − τMi ))

− τMi

m∑
i=1

∫ t

t−τMi

ẋT (s)Riẋ(s)ds, (16)

Considering that 0 ≤ τi(t) ≤ τMi , we get:

− τMi

m∑
i=1

∫ t

t−τMi

ẋT (s)Riẋ(s)ds

= −

m∑
i=1

τMi (
∫ t−τi(t)

t−τMi

ẋT (s)Riẋ(s)ds

+

∫ t

t−τi(t)
ẋT (s)Riẋ(s)ds)

≤ J1 + J2
(17)

with

J1 = −τi(t)
m∑
i=1

∫ t

t−τi(t)
ẋT (s)Riẋ(s)ds

J2 = −(τMi − τi(t))
m∑
i=1

∫ t−τi(t)

t−τMi

ẋT (s)Riẋ(s)ds.

Define η1(t) =
[
xT (t), ηT1a(t), η

T
1b(t)

]T with

η1a(t) =

[
xT (t − τ1), · · · , xT (t − τm)

]T
η1b(t) =

[
xT (t − τM1 ), · · · , xT (t − τMm )

]T
.

Applying Lemma 1 yields

J1 + J2 ≤ ηT1 (t)9η1(t), (18)

where

9 =

911 912 0
∗ 922 923
∗ ∗ 933

 ,

with

911 = −
∑m

i=1 Ri, 912 = vecm{Ri},

922 = diagm{−2Ri}, 923 = diagm{Ri},

933 = diagm{−Ri}.

It follows from (13) that the following zero equality is true.

0 = 2(xT (t) + ẋT (t))W T ((A+ R̄
i

A+ BK )x(t) + R̄

×

m∑
i=1

(Adi +
i

Adi)x(t − τi(t)) + R̄Hw(t) − ẋ(t))

(19)

Let η(t) =
[
ηT1 (t), ẋ

T (t)
]T

. Adding the right side of (19)
into V̇ (t) yields

V̇ (t) ≤ ηT (t)3η(t) + 2xT (t)W T R̄Hw(t)

+ 2ẋT (t)W T R̄Hw(t) (20)

where

3 =


311 312 0 314
∗ 322 323 324
∗ ∗ 333 0
∗ ∗ ∗ 344

 (21)

with

311 = W T (A+ R̄
i

A+ BK ) + (A+ R̄
i

A+ BK )TW

+
∑m

i (Q1i − Ri)

312 = vecm{W T R̄(Adi +
i

Adi) + Ri}
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314 = P−W T
+ (A+ R̄

i
A+ BK )TW

322 = diagm{−(1 − τdi)(Q1i − Q2i) − Ri − RTi }

323 = diagm{Ri}

324 = colm{(R̄Adi + R̄
i

Adi)TW }

333 = diagm{−Q2i − Ri}

344 = −W −W T
+

∑m
i=1(τ

M
i )2Ri.

Then analyze the H∞ performance :∫
∞

0
yT (t)y(t)dt < γ 2

∫
∞

0
wT (t)w(t)dt. (22)

For the sliding mode dynamic (13) is admissible with the
following specified H∞ norm upper bound, the following
performance index is introduced:

J = V̇ (t) + yT (t)y(t) − γ 2wT (t)w(t). (23)

According to the above discussion, it can be concluded
that:

J ≤ ηT (t)3η(t) + xT (t)CTCx(t) + 2xT (t)W T R̄Hw(t)

+ 2ẋT (t)W T R̄Hw(t) − γ 2wTw(t). (24)

By defining ζ (t) =
[
ηT (t),wT (t)

]T
, the (24) can be

represented as

J ≤ ζ T (t)2ζ (t), (25)

where

2 =


211 212 0 214 W T R̄H
∗ 222 223 224 0
∗ ∗ 233 0 0
∗ ∗ ∗ 244 W T R̄H
∗ ∗ ∗ ∗ 255


with

211 = W T (A+ R̄
i

A+ BK ) + (A+ R̄
i

A+ BK )TW

+
∑m

i (Q1i − Ri) + CTC

212 = vecm{W T R̄(Adi +
i

Adi) + Ri}

214 = P−W T
+ (A+ R̄

i
A+ BK )TW

222 = diagm{−(1 − τdi)(Q1i − Q2i) − Ri − RTi }

223 = diagm{Ri}

224 = colm{(R̄Adi + R̄
i

Adi)TW }

233 = diagm{−Q2i − Ri}

244 = −W −W T
+

∑m
i=1(τ

M
i )2Ri

255 = −γ 2I .

From the above inference, if 2 < 0, we can obtain J < 0.
Under initial state of zero, integrating both sides of V̇ (t) <

γ 2wT (t)w(t) − yT (t)y(t) along 0 to ∞ to get∫
∞

0
yT (t)y(t)dt < γ 2

∫
∞

0
wT (t)w(t)dt − V (∞) (26)

Considering V (∞) ≥ 0, we can get∫
∞

0
yT (t)y(t)dt < γ 2

∫
∞

0
wT (t)w(t)dt. (27)

It follows that system (13) is robustly stable with the
attenuation level γ . Due to 2 contains uncertainty and
nonlinearity, 2 converted into two parts:

2 = 0 +

i
0, (28)

where 0 is defined in Theorem 1 and

i
0 =


a

011
a

012 0
a

014 0
∗ 0 0

a
024 0

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


with

i
011 = W T R̄

i
A+ (R̄

i
A)TW

i
012 = vecm{W T R̄

i
Ai}

i
014 = (R̄

i
A)TW

i
024 = colm{(R̄

i
Adi)TW }.

Then, the following equation can be obtained:
i

0 = sym{M̃F(t)Ñ }, (29)

with M̃ and Ñ being defined in Theorem 1.
Considering FT (t)F(t) ≤ I , one get from Lemma 2 that

2 < 0 is equivalent to

0 + εÑT Ñ + ε−1M̃M̃T < 0, (30)

with ε being a positive constant. Through analysis, it can
be seen that (14) is satisfied, which means 3 < 0 in (20),
and according to Lyapunov’s theorem, the system (13) is
asymptotically stable with w(t) = 0. Furthermore, the
optimal H∞ performance index γ can be obtained by
inequality (14). The proof is completed.
Remark 3: By adopting a delay-dependent method for

dividing the double integral domain, we can derive a
less conservative stability criterion through modification
of −

∫ t
t−τMi

ẋT (s)Riẋ(s)ds = −
∫ t−τi(t)
t−τMi

ẋT (s)Riẋ(s)ds −∫ t
t−τi(t)

ẋT (s)Riẋ(s)ds. The above integral terms are bounded
by using the integral inequality given Lemma 1. Less con-
servative results can be obtained by using tighter inequalities
in [46], [47], [48], [49], [50], [51], and [52].

C. SLIDING MODE CONTROLLER DESIGN
In what follows, Theorem 1 is extended to design the
controller K for system (13).
Theorem 2: System (13) is robustly stable and satisfies the

H∞ performance index γ =
√

γ̄ , if there exist any matrices
S with appropriate dimensions, real symmetric matrices P̂ >

0, R̂i > 0, Q̂1i > Q̂2i > 0(i = 1, · · · ,m),X , scalars ε̂ >

0 and γ̄ > 0, such that the linear matrix inequality (31) is
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satisfied and the optimal performance index can be obtained
by solving the following condition,

min
P̂,X ,S,R̂i,Q̂1i,Q̂2i,ε̂

γ̄[
0̂ + ε̂M̂M̂T N̂T

∗ −ε̂I

]
< 0, (31)

where

M̂ =

[
(R̄M )T , 0n,2nm, (R̄M )T , 0n,mn

]T
N̂ =

[
NX ,N1X , · · · ,NmX , 0n,(2m+1)∗n

]

0̂ =



0̂11 0̂12 0 0̂14 R̄HX CX
∗ 0̂22 0̂23 0̂24 0 0
∗ ∗ 0̂33 0 0 0
∗ ∗ ∗ 0̂44 R̄HX 0
∗ ∗ ∗ ∗ 0̂55 0
∗ ∗ ∗ ∗ ∗ −I



with

0̂11 = (AX + BS) + (AX + BS)T +
∑m

i (Q̂1i − R̂i)

0̂12 = vecm{R̄AdiX + R̂i}

0̂14 = P̂− X + XTAT + STBT

0̂22 = diagm{−(1 − τdi)(Q̂1i − Q̂2i) − R̂i − R̂Ti }

0̂23 = diagm{R̂i}

0̂24 = colm{(R̄AdiX )T }

0̂33 = diagm{−Q̂2i − R̂i}

0̂44 = −X − XT +
∑m

i=1(τ
M
i )2R̂i

0̂55 = −γ̄ I .

Furthermore, the controller matrix can be obtained by K =

SX−1.
Proof: Define the following notations,
J = diag{X ,X , · · · ,X ,X},X = W−1, S = KX ,

Q̂1i = XTQ1iX , Q̂2i = XTQ2iX , R̂i = XTRiX ,

P̂ = XTPX , γ̄ = γ 2, (i = 1, · · · ,m), ε̂ = ε−1. Pre- and
post-multiplying (30) by JT and J respectively, the following
equation can be obtained:

0̂ + ε̂−1N̂T N̂ + ε̂M̂M̂T < 0, (32)

according to Schur’s complement, (32) is equivalent to (31),
and if (31) has a feasible solution, system (13) robustly stable
with a H∞ performance index γ . Moreover, K = SX−1

obtains the controller gain matrix. The proof is completed.
Next, it is proven that the obtained sliding mode control

law can derive the system into the predefined sliding mode
surface (8).
Theorem 3: For the controller gain matrix K obtained by

Theorem 2, the trajectory of the system (1) can be driven
to the sliding mode surface by the following sliding mode

control law:

u(t) = Kx(t) −

m∑
i=1

(GB)−1GAdix(t − τi(t))

− ρ · sgn(s(t))(GB)−1, (33)

where

ρ = λ + ∥GM∥ ∥N∥ x̄ + ∥GB∥ḡ+ ∥GH∥ w̄

+

m∑
i=1

∥GM∥
∥∥Nτi

∥∥ x̄. (34)

with λ being a positive constant.
Proof: If Theorem 2 holds, then x(t) is bounded. So we can
find a positive scalar x̄ such that sup0<t<∞∥x(t)∥ ≤ x̄.
Choose the Lyapunov functionals for Vs(t) =

1
2 s
T (t)s(t),

calculating the time-derivative of Vs(t) yields:

V̇s(t) = sT (t)ṡ(t) = sT (t)G((
i

A− BK )x(t)

+

m∑
i=1

(Adi +
i

Adi)x(t − τi(t))

+ B(u(t) + g(t, x(t))) + Hw(t)). (35)

Substituting (33) into (35), one has

V̇s(t) = sT (t)ṡ(t)

= sT (t)G(
i

Ax(t) +

m∑
i=1

i
Adix(t − τi(t))

+ Bg(t, x(t)) + Hw(t) − sgn(s(t))ρ)

≤ ∥s(t)∥∥G∥(∥M∥∥N∥x̄ +

m∑
i=1

∥M∥∥Nτi∥x̄

+ ∥B∥ḡ+ ∥H∥w̄− sgn(s(t))ρ)

= −λ∥s(t)∥. (36)

Therefore, the reachability conditions are guaranteed, and
the proof is completed.

IV. NUMERICAL EXAMPLES
In this section, a numerical example is used to verify the
validity of the proposed theoretical method.

Consider system (1) with the following parameters

A =

[
−2.2 1
−1 0.9

]
,M =

[
0.1 0.35
0 0.3

]
,N =

[
0.35 0.5
0.2 2.7

]
,

Nτ1 = Nτ2 =

[
0.55 0.3
0.4 0.9

]
,F(t) =

[
0.8sin(t) 0

0 0.8sin(t)

]
,

B =

[
0.01
3

]
,Ad1 = Ad2 =

[
−0.22 0.1
−0.1 0

]
,H =

[
0 0
0 1

]
,

C =

[
1 0
0 1

]
, w(t) =

[
0.2sin(t)
0.2cos(t)

]
,G = BT ,

g(t, x(t)) = 0.11
√
x21 + x22 , τ1(t) = (0.3 + 0.1 sin(t)),

τ2(t) = (0.2 + 0.1 cos(t)).
It is easy to check that the time-varying delay satisfy (2)

with τM1 = 0.4, τM2 = 0.3, τd1 = τd2 = 0.1. For this
system, using Theorem 1, the H∞ performance index can be
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FIGURE 1. System’s open loop response x(t).

FIGURE 2. The response of system state x(t).

FIGURE 3. The response of control input u(t).

obtained as γ = 8.8513 × 10−5. To verify the effect of the
proposed method, it is assumed that the system initial value
x(t0) =

[
2.5 −1.2

]T . When the controller is not applied,
the open-loop response of the system is shown in Figure 1.
It is observed that the system state is divergent. Setting γ =

FIGURE 4. The response of sliding mode surface s(t).

8.86×10−5, the controller gain K =
[
−2.693 −14.734

]
can

be obtained by using Theorem 2. The simulation results are
provided in Figure 2-Figure 4. Figure 2 and Figure 3 depict,
respectively, the responses of system state x(t) and control
input u(t), which shows that the system state is gradually
stabilized to 0 by the designed controller. Figure 4 plots the
response of sliding mode surface s(t) and internal subgraphs
represent graphs of time-varying delays. It can be seen from
Figure 1 that the open-loop system without controller K
is unstable, while Figure 2 shows that the system is stable
under the action of the designed controller K . The above
simulations illustrate that the proposed integral sliding mode
control strategy is effective.

V. CONCLUSION
In this paper, an integral sliding mode control method is
proposed for nonlinear MASs with multiple time delays,
external disturbances, and uncertainties. An integral sliding
mode surface and the corresponding sliding mode dynamic
model were established. Then, the Lyapunov method is
used to obtain sufficient conditions that ensure the dynamic
asymptotic stability of the sliding mode dynamics with
H∞ performance. In addition, the sliding mode controller
parameter matrix is obtained. The sliding mode control law
ensures that the system under consideration can be driven to
the sliding mode surface. Finally, numerical examples and
simulation results validate the effectiveness of the proposed
method.
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