
Received 3 January 2024, accepted 10 January 2024, date of publication 15 January 2024, date of current version 15 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3354075

Path Planning for Outdoor Mobile Robots
Based on IDDQN
JIANG SHUHAI , (Member, IEEE), SUN SHANGJIE , AND LI CUN
School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
Institute of Intelligent Control and Robotics (IICR), Nanjing Forestry University, Nanjing, Jiangsu 210037, China

Corresponding author: Jiang Shuhai (shuhaijiang@aliyun.com)

This work was supported in part by the National Special Research Fund for Non-Profit Sector under Grant 201404402-03, and in part by
the 2023 Jiangsu Province Postgraduate Research and Innovation Program under Grant KYCX23-1140.

ABSTRACT Path planning is one of the research hotspots for outdoor mobile robots. This paper addresses
the issues of slow convergence and low accuracy in the Double Deep Q Network (DDQN) method in
environments with many obstacles in the context of deep reinforcement learning. A new algorithm, Improve
Double Deep Q Network (IDDQN), is proposed, which utilizes second-order temporal difference methods
and a binary tree data structure to improve the DDQNmethod. The improved method evaluates the actions of
the current robot using second-order temporal differencemethods and employs a binary tree structure to store
the results obtained from these methods, replacing the traditional experience pool structure. The environment
is constructed using a gridmethod, programmed in the Python language, with two two-dimensional gridmaps
created for simple and complex environments. DDQN and four related deep reinforcement learningmethods,
such as Multi-step updates and Experience Classification Double Deep Q Network (ECMS-DDQN), are
compared through simulation experiments with the IDDQN method. Simulation results indicate that the
IDDQN method improves various path planning metrics compared to the DDQN method and other relevant
reinforcement learningmethods. In the simple environment, IDDQNmethod exhibits a 26.89% improvement
in step convergence time, a 22.58% improvement in reward convergence time, and a 10.30% improvement
in average reward value after convergence compared to the original DDQN algorithm. It also outperforms
other simulated methods in the simple environment, although the difference is not significant. In the complex
environment, the IDDQNmethod avoids falling into local optima compared to other methods, demonstrating
the accuracy of its strategy in complex environments. Other methods show artificially high average reward
values after converging in local optima, lacking reference value. In the complex environment, IDDQN
method exhibits a 33.22% improvement in step convergence time and a 25.47% improvement in reward
convergence time compared to the original DDQNalgorithm, clearly surpassing other participating simulated
methods. The data above indicate that the IDDQN method improves both convergence speed and accuracy
compared to the DDQN method and the relevant improvement methods simulated in this paper. Particularly
in environments with many obstacles, the performance improvement is evident, allowing for effective path
planning in such environments.

INDEX TERMS Outdoor mobile robot, path planning, reinforcement learning, DDQN, IDDQN.

I. INTRODUCTION
Mobile robots integrate environment perception, path plan-
ning, control decision-making, and execution of actions [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

Environment perception and path planning are crucial scien-
tific issues in the localization and navigation ofmobile robots.
Dynamic path planning for mobile robots is a hot research
topic, and overcoming various dynamic obstacles remains
a worthy area of study [2]. To enable robots to navigate
efficiently and reliably in an environment without any human

51012

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-0399-4552
https://orcid.org/0009-0007-7663-7410
https://orcid.org/0000-0002-5196-8148

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

assistance, we still face many challenges [3].Path planning
refers to the robot autonomously searching for a collision-free
path from the starting point to the destination based on
the sensors it carries [4]. Robots should be able to extract
necessary information from the environment and take nec-
essary actions to plan a feasible collision-free motion path to
achieve their goals [5]. To successfully implement path plan-
ning, mobile robots need to possess perception, detection,
and decision-making capabilities [6].Mobile robots should be
capable of completing tasks from the starting point to the
destination in the safest, shortest path, or in the shortest time,
without human intervention [7]. Path planning and obstacle
avoidance methods can be classified based on the environ-
ment into static path planning or dynamic path planning,
and based on the path planning algorithm, into global path
planning and local path planning [8].
Research on the path planning algorithms for mobile

robots is extensive, encompassing both global and local
path planning. The methods can be broadly categorized
into traditional approaches and reinforcement learning-based
path planning methods [9]. Representative traditional meth-
ods include the A∗ algorithm [10], simulated annealing
algorithm [11], artificial potential field method [12], parti-
cle swarm algorithm [13], and ant colony algorithm [14].
Q-learning is a commonly used reinforcement learning-based
path planning method [15], and many scholars globally
have made improvements and innovations to the Q-learning
algorithm to further enhance the efficiency of robot path
planning. Soong et al. [16] addressed the dimensionality
catastrophe issue during Q-learning training in complex envi-
ronments by proposing Deep Q-learning Network (DQN).
DQN bridges the gap between high-dimensional percep-
tual inputs and actions using a neural network to store
content. While this algorithm successfully addresses the
dimensionality catastrophe problem of traditional Q-learning
in complex environments, it still faces the issue of over-
estimation. Hasselt et al. [17] addressed the overestimation
problem in theDQN algorithm by proposing theDouble Deep
Q-network (DDQN) algorithm. In comparison to the DQN
algorithm, DDQN introduces a second Q-network layer, with
the output of the first layer no longer used for the final output
but rather as input for the second layer. Simulations indicate
that the training effectiveness of the double-layered DQN
network surpasses that of DQN, resolving the overestimation
problem and improving accuracy. However, DDQN, using a
relatively simple experience pool, exhibits low sampling effi-
ciency in complex environments, impacting the algorithm’s
learning speed. Additionally, action selection in complex
environments after convergence is not highly accurate, and
the achieved reward values are not high.

Currently, there is not much research on the improve-
ment of the DDQN algorithm. This paper focuses on
addressing the issues of slow convergence speed and low
accuracy of the DDQN algorithm in environments with
many obstacles. A novel improvement to the Double Deep
Q Network (DDQN) algorithm, named Improved Double

Deep Q Network (IDDQN), is proposed based on a double-
layered network, introducing a second-order temporal dif-
ference method [18] and a binary tree structure [19]. The
IDDQN algorithm utilizes the second-order temporal dif-
ference method to evaluate the effectiveness of the current
iteration results. The effect of the actions chosen in the current
iteration is inversely proportional to the results calculated by
the second-order temporal difference method. Based on the
evaluation results, more suitable actions can be selected. The
results calculated by the second-order temporal difference
method are stored as historical information. To reduce the
time of selecting historical information, a binary tree structure
is employed to replace the experience pool structure for stor-
ing historical information. To demonstrate the effectiveness
of the algorithm, three simulation maps with different obsta-
cle positions are established [20], [21]. Simulations indicate
that the IDDQN algorithm, compared to the DDQN algorithm
and related improvement algorithms, achieves improved con-
vergence speed and accuracy. It can effectively facilitate path
planning for mobile robots in complex environments. Fig. 1
illustrates the flowchart of the algorithm.

In summary, the main contributions of this paper are as
follows:
1. Improved the existing DDQN algorithm to address envi-

ronments with numerous obstacles. Simulation results
indicate that the training metrics and efficiency of path
planning with this algorithm surpass traditional methods.

2. Introduced the use of a second-order temporal difference
method to evaluate the iterations of the DDQN algorithm
during training. This allows for a more accurate estimation
of action values, enhancing the algorithm’s precision.

3. Proposed the use of a binary tree structure to replace the
experience pool structure for storing iterative actions in
the algorithm. This reduces the time required for action
selection, thereby improving training efficiency and accel-
erating convergence.

The paper consists of six parts. The first part is the introduc-
tion, presenting some previous research and introducing the
innovative aspects of the proposed methods. The second part
reviews related work, discussing the development trends of
similar studies. The third part focuses on environmental inter-
action modeling. The fourth part presents the methodology.
The fifth part includes experimental analysis. The sixth and
final part presents the conclusion.

II. PREVIOUS WORK
This chapter summarizes similar work in recent years into two
categories: DQN-based methods and DDQN-based methods,
and analyzes the research motivations, original ideas, and
limitations of other researchers. The results are summarized
in Tab. 1.

A. ALGORITHM BASED ON DQN
Schaul et al. [22] addressed the issue of poor learning per-
formance in DQN by proposing a framework that prioritizes
experience and implementing prioritized experience replay in

VOLUME 12, 2024 51013

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 1. Schematic diagram of the IDDQN process.

DQN. This method, compared to uniform replay in DQN,
exhibits superior performance with significantly increased
reward values, but there is still room for improvement in the
algorithm’s convergence speed.

Cheng and Meng [23] tackled the problem of non-optimal
paths inDQNby linearly combining the action-value function
output by the neural network and the environment’s intrinsic
value to improve the original DQN network (LCV-DQN).
This refinement results in more accurate and efficient path
planning, but the overestimation problem of DQN persists.

Gu et al. [24]addressed the slow convergence issue in DQN
by decomposing the network structure, decoupling action
selection and action evaluation, thereby accelerating DQN
convergence. However, this approach may not adapt well to
complex environments, leading to suboptimal paths in the
algorithm’s planning.

Saito et al. [25] proposed a DQN algorithm based on a
taboo list strategy (TLS-DQN) for indoor single-path envi-
ronments. While this algorithm can find a path to the target

point in simple indoor environments, it lacks the ability to
guarantee effective path planning in complex environments
due to simulations being limited to environments with fewer
obstacles.

Gao et al. [26] addressed the slow convergence issue in the
DQN algorithm combined with prioritized experience replay
by introducing the k-means algorithm to handle the agent’s
state space. This improvement enhanced the convergence
speed of the DQN algorithm. However, the simulation envi-
ronment was limited to a simple setting in Tianjin Port, Bohai
Bay, and the algorithm exhibited unrealistic path planning in
complex environments at other ports.

B. ALGORITHM BASED ON DDQN
Zhang et al. [27]addressed issues in the DQN algorithm’s
path planning process, such as overestimation and poor
algorithm stability. They combined the Double Deep Q Net-
work (DDQN) with the Average Deep Q Network (ADQN),
using prioritized experience replay instead of average sam-
pling to enhance the utilization of value samples, reduce
overestimation issues, and improve algorithm stability. How-
ever, this approach is not suitable for continuous state spaces.

Wang et al. [28] tackled the slow convergence issue
in DDQN networks by establishing a DDQN reinforce-
ment learning algorithm based on a greedy strategy. This
method demonstrated faster network convergence speed and
improved path planning capabilities compared to the DQN
algorithm. However, it still employed an experience pool
structure, reducing sampling efficiency.

Yang et al. [29] addressed the issue of low accuracy in
DDQN paths by combining prior knowledge and integrating
the action mask method to handle ineffective actions gen-
erated by the agent, improving the DDQN algorithm. This
method, compared to traditional methods such as DQN, A∗,
and RRT, generated paths with better performance. However,
it exhibited an overreliance on prior knowledge, requiring
manual intervention for specific tasks.

Chu et al. [30] addressed the non-optimality of DDQN
paths in complex environments by proposing a dynamic com-
posite reward function to enhance DDQN, improving the
algorithm’s path planning capabilities in complex environ-
ments. However, it faced issues of poor convergence during
the training phase.

Peng et al. [31] combined multi-step update methods
with Deep Double Q Networks, proposing the MS-DDQN
algorithm,which exhibited better learning efficiency and gen-
eralization capabilities. However, it might become trapped in
local optima when the state space is extensive or contains
highly complex structures.

Zhang et al. [32], building uponMS-DDQN, combined the
advantages of multi-step guidance DDQN (MS-DDQN) and
experience categorization DDQN (EC-DDQN) algorithms,
developing a novel Experience Categorization Multi-Step
DDQN (ECMS-DDQN) algorithm. This improved the
algorithm’s generalization capabilities in total returns and
path planning. However, the reliance on prior knowledge

51014 VOLUME 12, 2024

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

in experience categorization made the algorithm sensitive
to environmental changes, limiting its universality. More-
over, the experimental setup featured overly simple random
environments with few obstacles, potentially leading to
local optima, and the algorithm parameters need further
optimization.

III. ENVIRONMENTAL INTERACTION MODELING
Robots are learners or decision-makers, and the environment
is everything with which the robot interacts, excluding the
robot itself. The process of predicting the robot’s inten-
tions can be seen as a continuous interaction between the
robot and the environment. Each interaction corresponds to
a reward value, and the best action can be chosen based
on the iterative results of these reward values. Fig. 2 illus-
trates the interaction between the robot and the environment.
In this figure, St represents the robot’s position in the t -th
iteration, rt is the reward function value in the t -th itera-
tion, and At is the action taken by the robot in the t -th
iteration.

From Fig. 2, it can be observed that when the robot per-
forms action At , it interacts with the current environment,
resulting in a current position St and a reward value rt .
This reward value reflects the score of the current action.
Based on the current position St and the reward value rt
obtained from the interaction with the environment, the robot
can choose the next action At+1, which will be executed
in the next iteration. In the continuous iterative cycle, the
robot continuously updates its position and reward values
based on environmental information. After iterating a suf-
ficient number of times, the robot will obtain an optimal
strategy.

This paper defines four actions for the grid simulation envi-
ronment, namely up, down, left, and right. In reinforcement
learning, the robot receives a special reward signal during its
interaction with the environment. For each step, the reward
is a numerical value, and the robot’s goal is to maximize
its reward. The environment provides positive rewards when
the robot performs well and negative rewards (punishments)
when the robot performs poorly.

The following reward rules are defined:
(1) Rewards include ‘‘reward’’ and ‘‘penalty,’’ where

rewards are defined as positive and penalties as negative.
(2) The reward values range from −1.0 to 1.0.
(3) Moving from one cell to an empty cell earns

+0.25 points.
(4) The robot incurs a penalty of −0.05 points for each

movement to ensure finding the shortest path.
(5) To avoid collisions with obstacles, moving to an obsta-

cle cell results in a penalty of −0.75 points.
(6) If the robot moves beyond the boundaries of the grid

map, a penalty of −0.75 points is imposed.
(7) The robot receives a penalty of −0.25 points for any

action taken in cells it has previously visited.
(8) Arriving at the destination earns a reward of

+0.75 points.

TABLE 1. Previous work.

(9) To prevent infinite loops, set a minimum total reward
(−0.5 ∗ environment size). When the total reward falls below
this minimum, stop the episode and move to the next one.

Fig. 3 is an example of an action and reward function. The
green grid represents the robot, the blue grid represents the
end point that the robot wants to reach, the red grid represents
the untouchable grid that is the obstacle, and the gray grid
represents the grid that the agent can enter. As can be seen in
Fig. 3, the reward for each lawful action is +0.25 points, and
−0.05 points are required for each step, e.g. from step 1 to
step 2, from step 2 to step 3, or from step 4 to step 5. When
a robot moves to a visited unit, it will receive a penalty
of −0.25 points. For the final action, the robot reaches its
destination, so the reward is 0.75 points.

IV. METHODOLOGY
Deep reinforcement learning algorithms have prominent
advantages in solving intent prediction problems compared
to other algorithms. This paper proposes an Improved Double

VOLUME 12, 2024 51015

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 2. Diagram of the interaction between the robot and the
environment.

Deep Q Network (IDDQN) algorithm based on the Dou-
ble Deep Q Network (DDQN) with a dual-layer network.
The IDDQN algorithm introduces a second-order temporal
difference method and a binary tree structure to enhance
performance. The second-order temporal difference method
evaluates the effectiveness of the current iteration’s results,
where the impact of the chosen action in the current iter-
ation is inversely proportional to the results calculated by
the second-order temporal difference method. The results
of the second-order temporal difference method are stored
as historical information. To reduce the time required for
selecting historical information, a binary tree structure is
employed to replace the experience pool structure for storing
historical information. Integrated with the robot-environment
interaction model discussed in Section Two, this improved
algorithm can be applied to path planning for robots in envi-
ronments with numerous obstacles. The algorithmic model is
illustrated in Fig. 4.

With this improvement, the algorithm can perform calcu-
lations more quickly and efficiently handle the interaction
between the robot and the environment. As a result, it can
more accurately predict the next actions and strategies the
robot will take in different environments. This contributes
to the robot making more precise decisions in complex
environments, enhancing both the practicality of the robot
in real-world scenarios and the training efficiency of the
algorithm. The specific description of the model structure in
Fig. 4 is provided below.

A. SECOND-ORDER TEMPORAL DIFFERENCE
In this paper, the traditional DDQN algorithm is enhanced
using the second-order temporal difference method and a
binary tree structure, addressing issues of low accuracy and
slow convergence in the traditional DDQN. The second-order
temporal difference method is introduced to evaluate the

FIGURE 3. Schematic diagram of robot rewards and actions.

current actions of the robot, and this evaluation is compared
with the next iteration. When the second-order temporal dif-
ference is significant, a reselection of actions is warranted.
In any m-th iteration calculation, at any time t, given the
current state (st , at,), DDQN uses the estimation discrep-
ancy from the previous round for (st , at,) as the temporal
difference, as shown in formula (1):

TDEm(st , at) = β t [rt+1(st , at) + γmax Qm−1 (st+1, at+1)

−Qm−1 (st , at)
]

(1)

In the equation, TDEm(st , at) represents the temporal dif-
ference for the state-action pair at time t in the m-th round,
β t is the learning rate, rt+1(st , at) is the immediate reward
value for that state-action pair, γ is the discount factor, and
Qm−1(st+1, at+1) denotes the estimated Q-value for taking
action at in state st in the (m − 1)-th round. In equation (2),
the estimation of the current state-action value is based on
the maximum value of the estimations for subsequent state-
action pairs, specifically utilizing the extreme values of Q for
subsequent state-action pairs instead of the true extremes for
the state-action pair, thus calculating the temporal difference.

Definition of Second-Order Temporal Difference:
In them-th round, at any time t the immediate reward value

is denoted as rt+1, and the Q-value is represented as:

Qm(st , at) = rt+1 + γmaxQm(st+1, at+1) (2)

where Qm(st+1, at+1) represents the estimation for the
state-action pair at time t + 1 in the m-th round. The def-
inition of the second-order temporal difference is illustrated
in Formula (3), denoted as TDE2.

TDE2
m(st , at) = αm

[
Qm−2(st , at) − Qm−1(st , at)

]
+ (1 − αm)

[
Qm−1(st , at)−Qm−2(st , at)

]
(3)

Here, TDE2
m(st , at) represents the second-order temporal

difference for the action pair at time t in the m-th round.
Qm−2(st , at) denotes the estimated Q-value for taking action
at in state st in the (m − 2)-th round. Qm−1(st , at) repre-
sents the estimated Q-value for taking action at in state st in

51016 VOLUME 12, 2024

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 4. The DDQN model structure based on second-order temporal
difference and binary tree structure.

the (m − 1)-th round.αm is a parameter between 0 and 1 used
to differentiate the differences between the weighted first two
estimation functions. (1−αm) is the complement of αm, used
to distinguish the differences between the weighted last two
estimation functions. The meaning of the formula is to obtain
a comprehensive second-order temporal difference error by
taking a weighted average of the differences between the first
two estimation functions and then taking a weighted average
of the differences between the last two estimation functions.

B. LOSS FUNCTION CONSTRUCTION
The larger the difference between the actual output and the
expected output of the algorithm, i.e., the larger the value
of the loss function, the worse the convergence effect of the
algorithm. In response to the stability issue of algorithm con-
vergence, this paper introduces the concept of second-order
temporal difference to reconstruct the loss function, aiming
to improve the convergence of the algorithm.

In the learning process of the DDQN model, sample
data is randomly selected from the experience pool, and
parameter updates are performed through gradient descent.
In the DDQN structure with second-order temporal differ-
ence, random sampling is conducted through experience
replay, learning is performed through the second-order tem-
poral difference function, and the weights θ are updated. The
formula for calculating the second-order temporal difference
is as shown in Formula (4):

TDE2
m = α

[
Qm−2(st , at; θ2) − Qm−1(st , at; θ3)

]
+ (1 − α)

[
Qm−1(st , at; θ4) − Qm−2(st , at; θ2)

]
(4)

where TDE2
m represents the second-order temporal dif-

ference of the action pair at time t in the m-th round.
Qm−2(st , at; θ2) represents the estimated Q value of the
value function at round (m − 2) when taking action at in
state st , using the weight parameters θ2. Qm−1(st , at; θ3)
represents the estimated Q value of the value function at
round (m − 1) when taking action at in state st , using
the weight parameters θ3. Qm−1(st , at; θ4) represents the
estimated Q value of the value function at round (m − 1)
when taking action at in state st , using the weight parameters
θ4. α is a parameter between 0 and 1, used to distinguish
the difference between the two estimated value functions
before weighting. (1 − α) is the complement of α, used to

distinguish the difference between the two estimated value
functions after weighting. The meaning of the formula is
to perform a weighted average of the differences between
the first two estimated value functions, and then perform
a weighted average of the differences between the latter
two estimated value functions, obtaining a comprehensive
second-order temporal difference error. The α weight param-
eter can be adjusted to choose the relative importance of
the two estimated value functions. θ2 is the parameter of
DDQN_1 (DDQN first-layer target network), θ3 and θ4

are the weight parameters of the value network and target
network of DDQN_2 (DDQN second-layer network), respec-
tively. In each step of model training, the parameter update
process is as follows: pass the parameters of the value net-
work in DDQN_2 to the value network in DDQN_1, while
keeping itself updated, i.e., θ3 = θ1, θ3 = θ3, where
θ3 represents the weight parameters of the value network
in DDQN_2 for the next state, and every N steps, pass the
parameters of the value network in DDQN_1 to the target
network, i.e., θ2 = θ1, and at the same time pass the
parameters of the value network in DDQN_2 to the target
network, i.e., θ4 = θ3. Thus, the improved loss function is
given by Formula (5):

L(θ) = Es,a,r,s′ [(1 − α)(TQ2 − TQ1)

−α(T Q1 − BQ2)]
2 (5)

This formula calculates the loss function L(θ), where θ

represents the parameters of the model, Es,a,r,s′ represents
the expectation over all possible states s, actions a, rewards
r , and next states s′. TQ2 represents the Q value of the sec-
ond estimated function calculated using the target network.
TQ1 represents the Q value of the first estimated function
calculated using the target network. BQ2 represents the Q
value of the second estimated function calculated using the
current network. α is a parameter between 0 and 1, used to
weight the two differences. The loss function L(θ) describes
the difference between the two estimated value functions,
and it computes the variance of the parameter values for the
two networks. Solving the reciprocal of the loss function in
Equation (5), the weight gradient is obtained as shown in
Equation (6):

∇θL(θ) = Es,a,r,s, {[(1 − α)(TQ2 − TQ1)

− α(TQ1 − BQ2)]∇θQ(s, a; θ3)} (6)

The weight gradient is used to update the parameters of the
value network with the aim of keeping the current network’s
weight parameters fixed. This helps the value network better
approximate the true values and prevents convergence insta-
bility in the algorithm.

C. BINARY TREE STRUCTURE
In addition, this paper replaces the traditional experience
pool structure with a binary tree structure to store the results
obtained from the aforementioned second-order time dif-
ference method. This reduces the time required to retrieve

VOLUME 12, 2024 51017

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

historical information. To simplify the binary tree formula,
let the second-order time difference TDE2

m, calculated using
the m -th round of the estimation function and the (m− 1)-th
round of the estimation function at time step t , be denoted as
d t , i.e.,:

dt = TDE2
m (7)

where the nodes in the binary tree structure are proportional to
the results of the time difference d t . The schematic diagram of
the binary tree storing the time difference is shown in Fig. 5.
Combining the temporal difference method and the binary

tree structure with the traditional DDQN method efficiently
selects historical information with larger errors, thereby
improving the accuracy and convergence speed of the tra-
ditional DDQN algorithm. In this context, pt represents the
value of each binary tree node, and this value is determined
based on the magnitude of d t . Its calculation is as shown in
the following formula:

pt = |dt | + µ (8)

In the above equation, µ is a small constant used to avoid
pt being an integer due to d t being an integer. t∈ 1, 2 . . . ,j,
where j represents the capacity of the binary tree.

In the previously mentioned method IDDQN, which com-
bines the temporal difference and binary tree methods with
the traditional DDQN approach, the principle of prioritized
sampling is that the larger the value of leaf nodes in the binary
tree, the higher their priority and therefore the higher the
probability of being selected. Through the IDDQN method,
time difference results dt can be selected quickly and effi-
ciently, reducing the algorithm’s runtime and improving its
efficiency. The prioritized sampling P t(t) can be calculated
using the following expression:

Pt (t) =
pt
j∑

t=1
pt

(9)

Prioritized sampling can lead to an uneven distribution of
algorithm results, potentially introducing bias. To reduce the
risk of premature convergence and improve the stability of
the sampling process, an importance samplingweight method
is introduced. The goal of this method is to estimate cer-
tain distribution properties and reduce variance by adjusting
the probability distribution. The calculation formula is as
follows:

ωt (t) =
1

j · Pt (t)
(10)

where ωt represents the importance sampling weight, t is the
current time, and j is the priority at the time of sampling. This
method helps improve the stability of sampling and reduces
bias.

Next, the neural network parameters θ̂t are updated through
backpropagation with the following update expression:

θ̂t = θ l2t + ωt (t) · (dt)2 (11)

FIGURE 5. Binary tree structure diagram.

In the above equation, θ̂t represents the updated Q-network
parameters after t iterations, θ l2t is the current parameters,
ωt is the importance sampling weight, and d t is the temporal
difference error result. This step is used to adjust the neural
network parameters to improve the algorithm’s performance.

After obtaining the neural network parameters, you can use
the approximation of the action-value function to calculate
the policy. If the next iteration is not in the terminal state,
you can determine the action for the next iteration based on
Equation (12). The algorithm will continue to execute in a
loop until it reaches the final state.

The flowchart of the algorithm is shown in Fig. 5.

πt+1 = ((1 − ε) · πt+1,best ∧ ε · πt+1,other) (12)

V. EXPERIMENTS AND ANALYSIS
A simple and effective grid map can be used for path
planning simulation research for robots other than drones,
enabling simulation of complex environments and reducing
modeling complexity. At the same time, the robot’s starting
point, endpoint, obstacles, and path can all be displayed in a
2D grid map, facilitating the visualization of path planning
information. It is convenient to use 2D grid maps to sim-
ulate information about real environments, as shown in the
first map in Fig. 6, which represents a complex 25∗25 grid
environment, and the second map represents an extremely
complex 30∗30 grid environment. Blue squares represent
obstacles, red dots represent the robot, the endpoint is set
as a yellow square, and gray positions represent safe areas.
Therefore, in the research on path planning for mobile robots
in this paper, the grid method is used for environmental
simulation.

In the first map of Fig. 6, the obstacle ratio is 8%,
indicating a lower number of obstacles, defined as a sim-
ple environment. In the second map, the obstacle ratio
is 25%, indicating a higher number of obstacles, defined
as a complex environment. These two maps will be used

51018 VOLUME 12, 2024

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

for the simulation of DQN algorithm, DDQN algorithm,
TLS-DQN algorithm, MS-DDQN algorithm, ECMS-DDQN,
and IDDQN algorithm. They will be used to test the conver-
gence speed, total average reward values, and path conditions
of these algorithms. This paper proposes an improvement
based on the DDQN method. The DDQN algorithm is cur-
rently a mature deep reinforcement learning algorithm, and
thus, the simulation results of the DDQN algorithm are used
as the baseline for performance evaluation. Metrics such as
convergence speed in steps, convergence speed in reward
values, average reward values after convergence, and whether
it leads to the optimal path are used tomeasure the algorithm’s
performance. This is done to demonstrate the advantages of
the improved IDDQN algorithm over the DDQN algorithm,
as well as its strengths and weaknesses compared to other
algorithms in the same category.

A. SIMULATION OF SIMPLE ENVIRONMENT
The order in the Fig. 7, Fig. 8, Fig. 9 is as follows: (a)
DQN, (b) DDQN, (c) TLS-DQN, (d) MS-DDQN, (e) ECMS-
DDQN, (f) IDDQN.

Fig. 7 shows the optimal paths simulated by the six algo-
rithms, all with a step count of 42. Therefore, these paths
can all be considered as optimal paths for the given task in
a simple environment.

Fig. 8 illustrates the change in step length with the number
of iterations, and Tab. 2 provides a performance compari-
son of the step length convergence for the six algorithms
based on Fig. 8 in a simple environment. The data in the
table are the averages of 10 experiments. Using the conver-
gence performance of the DDQN algorithm as a baseline, the
comparison of each algorithm with DDQN in terms of step
length convergence speed is shown. DQN exhibits less con-
vergence performance than DDQN in a simple environment.
MS-DDQN improves the convergence performance by
16.01% compared to the original DDQN. The ECMS-DDQN,
based on the improvement of MS-DDQN, outperforms the
original DDQN with a convergence performance improve-
ment of 26.41%. IDDQN shows a 26.89% improvement in
convergence performance compared to the original DDQN.
It can be observed that in a simple environment, the pro-
posed IDDQN algorithm and the ECMS-DDQN algorithm
have similar performance, indicating that there is no sig-
nificant advantage of IDDQN over ECMS-DDQN in a
simple environment. However, they both demonstrate signif-
icant advantages over the original DDQN algorithm, DQN
algorithm, TLS-DQN algorithm, and MS-DDQN algorithm.

Fig. 9 reflects the change in reward values over itera-
tions, and Tab. 3 compares the convergence performance
and average reward values after convergence for the six
algorithms in a simple environment based on the data from
Fig. 9. The data in the table is averaged over 10 experiments,
with the convergence performance of the DDQN algorithm
taken as the baseline. Except for the original DQN, other
algorithms show improvements in both the speed of reward
convergence and the average reward values after convergence

FIGURE 6. Simulation environment.

compared to DDQN.The proposed algorithm shows the most
significant improvement, with a 22.58% increase in reward
convergence speed compared to DDQN. Moreover, after
over 1500 iterations, the reward values avoid negative val-
ues, demonstrating more accurate policy choices at each
step, minimizing backtracking, and collisions with obstacles.
However, the difference with the ECMS-DDQN algorithm is
not substantial.

In the simple environment, none of the six algorithms fall
into local optima, all finding an optimal path. Therefore, the
average reward values after convergence are valuable as a
reference. Except for the original DQNalgorithm, the average
reward values of the other algorithms are higher than the
DDQN algorithm. The proposed IDDQN algorithm achieves
the highest average reward value, with a 10.30% improve-
ment over the original DDQN algorithm, demonstrating the
accuracy of the path strategy proposed in this study.

In summary, the DQN, DDQN, TLS-DDQN, MS-DDQN,
ECMS-DDQN, and IDDQN algorithms all successfully com-
plete path planning in a simple environment, finding an
optimal path. IDDQN exhibits better performance in terms
of convergence speed, with a 26.89% improvement over
DDQN. The proposed algorithm shows no significant advan-
tage over ECMS-DDQN in a simple environment but has
a clear advantage over other algorithms. IDDQN excels in
both reward convergence speed and average reward values
after convergence, with a 22.58% and 10.30% improvement,
respectively, compared to the original DDQN algorithm. In a
simple environment, IDDQN demonstrates a clear advantage
over the original DDQN algorithm and some previous algo-
rithms. However, it does not show a significant difference
compared to ECMS-DDQN, warranting further comparison
in a complex environment.

B. SIMULATION OF COMPLEX ENVIRONMENT
The order in the Fig. 10, Fig. 11, Fig. 12 is as follows:
(a) DQN, (b) DDQN, (c) TLS-DQN, (d) MS-DDQN,
(e) ECMS-DDQN, (f) IDDQN.

Fig. 10 depicts the optimal paths in a simulation of six
algorithms in a complex environment. The optimal path for
the DQN algorithm is 60 steps, while the optimal paths for the
DDQN and TLS-DQN algorithms are 58 steps. The optimal
paths for the MS-DDQN and ECMS-DDQN algorithms are

VOLUME 12, 2024 51019

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 7. Optimal trajectories of algorithms in a simple environment.

TABLE 2. The statistics of required episodes for step length convergence
of algorithms in a simple environment are as follows.

56 steps, and the optimal path for the IDDQN algorithm
is 52 steps. Upon observing the paths, it is evident that,
except for the IDDQN algorithm, the other algorithms exhibit
instances of backtracking to avoid obstacles. In contrast, the
IDDQN algorithm does not encounter this situation and finds
the shortest path. After multiple experiments, it has been
demonstrated that in environments with numerous obsta-
cles, algorithms like DQN and DDQN may experience local
optima without fully exploring the entire map. The IDDQN
algorithm, which stems from the optimization of action
exploration strategies, avoids getting stuck in local optima.

Fig. 11 illustrates the variation of step size with the num-
ber of iterations. Tab. 4 presents a performance comparison

FIGURE 8. The graph depicts the variation of step length with the number
of iterations for algorithms in a simple environment.

of the convergence characteristics of six algorithms in a
complex environment based on Fig. 11. The data in the
table represent the average of 10 experiments, with the
convergence performance of the DDQN algorithm used as
the baseline. The comparison highlights the convergence
speed of each algorithm relative to DDQN. It is evident
that DQN and TLS-DQN algorithms exhibit significantly
poorer convergence performance in complex environments
compared to DDQN. MS-DDQN shows a 9.29% improve-
ment in convergence performance over the original DDQN,
while ECMS-DDQN, an improvement based on MS-DDQN,
demonstrates a 19.16% improvement in convergence perfor-
mance over the original DDQN. IDDQN, compared to the
original DDQN, exhibits a remarkable 33.22% improvement
in convergence performance. It can be observed that in com-
plex environments, the step convergence performance of the
IDDQN algorithm proposed in this paper surpasses the other
five algorithms. This demonstrates a clear advantage of the
IDDQN algorithm in complex environments.

Fig. 12 illustrates the variation of reward values with the
number of iterations. Tab. 5 presents a performance compar-
ison of the convergence characteristics and average reward
values after convergence for six algorithms in a complex
environment based on Fig. 12. The data in the table represent
the average of 10 experiments, with the convergence perfor-
mance of the DDQN algorithm used as the baseline. Except
for the original DQN, all other algorithms show improve-
ments in reward value convergence speed relative to DDQN.

51020 VOLUME 12, 2024

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 9. The graph illustrates the variation of reward values with the
number of iterations in a simple environment.

TABLE 3. Statistics on the number of episodes required for reward
convergence and the average reward value after convergence for
algorithms in a simple environment are shown below.

The algorithm proposed in this paper exhibits the most sig-
nificant improvement, with a 25.47% increase in reward
value convergence speed compared to DDQN. Moreover,
after over 2200 iterations, the reward values avoid negative
values, demonstrating more accurate policy selection with
fewer instances of backtracking and collision with obstacles.

In the complex environment constructed in this study, all
algorithms, except IDDQN, fall into local optima, resulting
in artificially high average reward values after convergence,
rendering them of little reference value. Only the IDDQN
algorithm avoids local optima, providing further evidence of
the accuracy of its strategy in a complex environment.

In summary, DQN, DDQN, TLS-DDQN, MS-DDQN, and
ECMS-DDQN algorithms all fall into local optima in a
complex environment. IDDQN demonstrates superior per-
formance in step convergence, with a 33.22% improvement
over DDQN, establishing a clear advantage for the proposed
algorithm in complex environments. IDDQN also outper-
forms other algorithms by showing a 25.47% improvement
in reward value convergence speed compared to the original
DDQN algorithm. In a complex environment, IDDQN stands
out among the algorithms, as it avoids local optima, highlight-
ing the accuracy of its strategy.

C. ABLATION EXPERIMENTS
This paper introduces two main improvements to DDQN:

1. The proposal to use a binary tree structure instead of
the experience pool structure for storing algorithm iterations.
This modification, referred to as Module A, reduces the time
taken for action selection, enhancing training efficiency, and
expediting convergence.

2.The introduction of a second-order temporal difference
method to evaluate the results of DDQN algorithm iterations.
This approach, defined as Module B, provides a more accu-
rate estimation of action values, thereby improving algorithm
accuracy.

In this section, we conduct ablation experiments for these
twomodules in a complex environment. Initially, we simulate
DDQN using only a binary tree to replace the experience pool
structure. Subsequently, we compare this simulation with the
IDDQN algorithm. Next, we evaluate the performance of
using only the second-order temporal difference method in
DDQN algorithm training iterations. Finally, we compare
the results of this simulation with the IDDQN algorithm,
studying the performance of the algorithm when only the
second-order temporal difference module is employed.

Tab. 6 presents a comparison of path conditions, con-
vergence of step sizes, convergence of reward values, and
average reward values after convergence based on Fig. 13,
Fig.14, and Fig.15. The data represent the average values
after 10 experiments. It can be observed that using only
Module A cannot find an optimal path, while using only
Module B and the IDDQN method can both find an optimal
path. The convergence performance of step sizes using only
Module A is 17.79% lower than the IDDQN method, and the
convergence performance of reward values is 62.59% lower.
Due to falling into a local optimum, the reward values after
convergence have little reference value. Using only Module
B shows a 14.04% lower convergence performance in step
sizes and a 16.79% lower convergence performance in reward
values compared to the IDDQN method. The average reward
values after convergence are 0.89% lower than the IDDQN
method.

It is evident that the performance of using a single module
is not as good as the IDDQN method. Each module plays
its role, with the second-order temporal difference module
(Module B) mainly contributing to selecting better strategies.
The fact that the average reward values after convergence

VOLUME 12, 2024 51021

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 10. Optimal trajectories of algorithms in a complex environment.

are not much lower than the IDDQN method indicates that
this module helps improve the accuracy of path planning.
Since this module aids in finding better strategies, it also
accelerates the convergence of the algorithm. On the other
hand, the binary tree module (Module A) primarily helps
reduce the retrieval time for historical information, further
speeding up the convergence rate based on the second-order
temporal difference module.

D. SUMMARY
In summary, proposing the use of a second-order tempo-
ral difference method to evaluate the results of DDQN
algorithm training iterations and employing a binary tree
structure instead of an experience pool structure for storing
algorithm iterations to improve DDQN algorithm have shown
promising results. These modifications enable more accurate
estimation of action values, reduce the time required for
action selection, enhance training efficiency, and expedite
convergence.

Simulations were conducted for DQN, DDQN, TLS-DQN,
MS-DDQN, ECMS-DDQN, and IDDQN algorithms in both
simple and complex environments. In a simple environment,
all six algorithms found the optimal path. Regarding per-
formance metrics such as step convergence speed, reward
convergence speed, and average reward values after conver-
gence, the IDDQN method outperformed the DDQN method
by 26.89%, 22.58%, and 10.30%, respectively. It also showed

FIGURE 11. The graph depicts the variation of step length with the
number of iterations for algorithms in a complex environment.

TABLE 4. The statistics of required episodes for step length convergence
of algorithms in a complex environment are as follows.

superiority over DQN, TLS-DQN, and MS-DDQN methods
but exhibited a slight performance difference (0.48%) in step
convergence speed compared to ECMS-DDQN. In terms
of reward convergence speed and average reward values
after convergence, IDDQN performed slightly better than
ECMS-DDQN.

In a complex environment, DQN, DDQN, TLS-DQN,
MS-DDQN, and ECMS-DDQN methods all encountered
local optima and failed to find the optimal path. Conse-
quently, the average reward values after convergence in
this scenario were deemed not reliable. However, IDDQN
demonstrated the most significant improvement over DDQN
in terms of step convergence speed (33.22%) and reward
convergence speed (25.47%). It exhibited a clear advantage
over the other four methods, including the most effective

51022 VOLUME 12, 2024

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

FIGURE 12. The graph illustrates the variation of reward values with the
number of iterations in a complex environment.

TABLE 5. Statistics on the number of episodes required for reward
convergence and the average reward value after convergence for
algorithms in a simple environment are shown below.

FIGURE 13. (a) Only using Module A, (b) Only using Module B, and
(c) Comparing with IDDQN paths.

ECMS-DDQN. This underscores the effectiveness of IDDQN
in complex environments.

In ablation experiments, comparing IDDQN with algo-
rithms utilizing only the second-order temporal difference

FIGURE 14. (a) Only using Module A, (b) Only using Module B, and
(c) IDDQN Changes in step size with the number of iterations.

FIGURE 15. (a) Using only Module A, (b) Using only Module B, and
(c) IDDQN changes in reward values with the number of iterations.

TABLE 6. Comparison of performance in ablation experiments.

module or only the binary tree module highlighted that the
second-order temporal difference module primarily improves
action selection strategies, aiding the robot in choosing bet-
ter actions and accelerating algorithm convergence to some
extent. The binary tree module, building upon the use of the
second-order temporal difference module, further expedited
algorithm convergence.

VI. CONCLUSION
In this paper, an improved DDQN algorithm, named IDDQN,
is proposed to address the issues of slow convergence speed
and low accuracy in the presence of numerous obstacles in the
DDQN algorithm of deep reinforcement learning. The pro-
posed IDDQN algorithm utilizes the second-order temporal
difference method and a binary tree data structure. Firstly,
the second-order temporal difference method is introduced to
evaluate the actions of the current robot, and this evaluation
is then compared with the actions in the next iteration. When

VOLUME 12, 2024 51023

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

the second-order temporal difference is significant, a new
action should be chosen. The algorithm replaces the tradi-
tional experience pool structure with a binary tree structure
to store the results obtained using the second-order temporal
difference method, reducing the time required for retrieving
historical information.

Subsequent simulation analyses were conducted to ana-
lyze the convergence of step lengths, reward values, average
reward values after convergence, and the identification of
optimal paths for DQN, DDQN, TLS-DQN, MS-DDQN,
ECMS-DDQN, and IDDQN algorithms after multiple itera-
tions in both simple and complex environments. In a simple
environment, all six algorithms found an optimal path. Com-
pared to the original DDQN algorithm, IDDQN showed
improvements of 26.89%, 22.58%, and 10.30% in step con-
vergence time, reward convergence time, and average reward
values after convergence, respectively. IDDQN also outper-
formed DQN, TLS-DQN, and MS-DDQN, but the difference
in step convergence speed with ECMS-DDQN was only
0.48%. In terms of reward convergence speed and average
reward values after convergence, IDDQN slightly outper-
formed ECMS-DDQN.

In a complex environment, all methods except IDDQN
encountered local optima, failing to find the optimal path,
making the average reward values after convergence unre-
liable. IDDQN demonstrated the largest improvements over
DDQN in terms of step convergence speed (33.22%) and
reward convergence speed (25.47%). It also showed a clear
advantage over the other four methods, including the most
effective ECMS-DDQN, confirming the effectiveness of
IDDQN in complex environments.

The study focused on researching the IDDQN algorithm
in a static environment, proving its superiority over DQN
and DDQN algorithms in environments with many obsta-
cles. However, in real-world scenarios, dynamic obstacles
may exist, and the study may have limitations in dynamic
environments. Therefore, future research will investigate
the performance of the IDDQN algorithm in dynamic
environments.

REFERENCES
[1] Y. Chen and X. Zhou, ‘‘Research and implementation of robot path plan-

ning based on computer image recognition technology,’’ J. Phys., Conf.
Ser., vol. 1744, no. 2, Feb. 2021, Art. no. 022097, doi: 10.1088/1742-
6596/1744/2/022097.

[2] Y. Quan, H. Ouyang, C. Zhang, S. Li, and L.-Q. Gao, ‘‘Mobile robot
dynamic path planning based on self-adaptive harmony search algorithm
and morphin algorithm,’’ IEEE Access, vol. 9, pp. 102758–102769, 2021,
doi: 10.1109/ACCESS.2021.3098706.

[3] B. B. K. Ayawli, R. Chellali, A. Y. Appiah, and F. Kyeremeh, ‘‘An overview
of nature-inspired, conventional, and hybrid methods of autonomous vehi-
cle path planning,’’ J. Adv. Transp., vol. 2018, pp. 1–27, Jul. 2018, doi:
10.1155/2018/8269698.

[4] S. Campbell, N. O’Mahony, A. Carvalho, L. Krpalkova, D. Riordan, and
J. Walsh, ‘‘Path planning techniques for mobile robots a review,’’ in Proc.
6th Int. Conf. Mechatronics Robot. Eng. (ICMRE), Feb. 2020, pp. 12–16,
doi: 10.1109/ICMRE49073.2020.9065187.

[5] Y. Zhu, K. Chu, X. Chen, X. Wang, and H. Su, ‘‘Research and application
of a multi-degree-of-freedom soft actuator,’’ Sens. Actuators A, Phys.,
vol. 338, May 2022, Art. no. 113492, doi: 10.1016/j.sna.2022.113492.

[6] P. Phueakthong, J. Varagul, and N. Pinrath, ‘‘Deep reinforcement learning
based mobile robot navigation in unknown environment with continuous
action space,’’ inProc. 5th Int. Conf. Intell. Auto. Syst. (ICoIAS), Sep. 2022,
pp. 154–158.

[7] B. Pradhan, D. Roy, and N. Hui, ‘‘Multi-agent navigation and coordination
using GA-fuzzy approach: SocProS 2017,’’ Adv. Intell. Syst. Comput.,
vol. 2, pp. 793–805, Jan. 2019, doi: 10.1007/978-981-13-1595-4_63.

[8] S. Aggarwal and N. Kumar, ‘‘Path planning techniques for unmanned
aerial vehicles: A review, solutions, and challenges,’’ Comput. Commun.,
vol. 149, pp. 270–299, Jan. 2020, doi: 10.1016/j.comcom.2019.10.014.

[9] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, ‘‘Review of
autonomous path planning algorithms for mobile robots,’’ Drones, vol. 7,
no. 3, p. 211, Mar. 2023, doi: 10.3390/drones7030211.

[10] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the
heuristic determination of minimum cost paths,’’ IEEE Trans.
Syst. Sci. Cybern., vol. SSC-4, no. 2, pp. 100–107, Jul. 1968, doi:
10.1109/TSSC.1968.300136.

[11] M. Steinbrunn, G. Moerkotte, and A. Kemper, ‘‘Heuristic and ran-
domized optimization for the join ordering problem,’’ VLDB J. Int. J.
Very Large Data Bases, vol. 6, no. 3, pp. 191–208, Aug. 1997, doi:
10.1007/s007780050040.

[12] J. Borenstein and Y. Koren, ‘‘Real-time obstacle avoidance for fast mobile
robots in cluttered environments,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 1990, pp. 572–577, doi: 10.1109/ROBOT.1990.126042.

[13] J. Kennedy, ‘‘The particle swarm: Social adaptation of knowledge,’’ in
Proc. IEEE Int. Conf. Evol. Comput. (ICEC), Apr. 1997, pp. 303–308, doi:
10.1109/ICEC.1997.592326.

[14] X. Wu, G. Wei, Y. Song, and X. Huang, ‘‘Improved ACO-based path
planning with rollback and death strategies,’’ Syst. Sci. Control Eng., vol. 6,
no. 1, pp. 102–107, Jan. 2018, doi: 10.1080/21642583.2018.1471426.

[15] D. Zhao, H. Wang, K. Shao, and Y. Zhu, ‘‘Deep reinforcement learning
with experience replay based on SARSA,’’ in Proc. IEEE Symp. Ser. Com-
put. Intell. (SSCI), Dec. 2016, pp. 1–6, doi: 10.1109/SSCI.2016.7849837.

[16] E. S. Low, P. Ong, and K. C. Cheah, ‘‘Solving the optimal path planning of
a mobile robot using improved Q-learning,’’ Robot. Auton. Syst., vol. 115,
pp. 143–161, May 2019, doi: 10.1016/j.robot.2019.02.013.

[17] H. V. Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., vol. 30, Sep. 2015,
pp. 2094–2100, doi: 10.1609/aaai.v30i1.10295.

[18] P. Heredia and S. Mou, ‘‘Finite-sample analysis of multi-agent pol-
icy evaluation with kernelized gradient temporal difference,’’ in Proc.
59th IEEE Conf. Decis. Control (CDC), Dec. 2020, pp. 5647–5652, doi:
10.1109/CDC42340.2020.9303966.

[19] N. Gottlieb and M. Werman, ‘‘DecisioNet: A binary-tree structured neural
network,’’ Jul. 2022, arXiv:2207.01127, doi: 10.48550/arXiv.2207.01127.

[20] N. A. Khaleq and A. Ai-Araji, ‘‘Intelligent hybrid path planning algo-
rithms for autonomous mobile robots,’’ Int. J. Intell. Eng. Syst., vol. 15,
pp. 309–325, Jul. 2022, doi: 10.22266/ijies2022.1031.28.

[21] A. A. Rashed, A. Ai-Araji, and M. N. Abdullah, ‘‘Static and dynamic path
planning algorithms design for a wheeled mobile robot based on a hybrid
technique,’’ Int. J. Intell. Eng. Syst., vol. 15, pp. 167–181, May 2022, doi:
10.22266/ijies2022.0831.16.

[22] T. Schaul, J. Quan, L. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ Nov. 2015, arXiv:1511.05952.

[23] C. Yi and M. Qi, ‘‘Research on virtual path planning based on improved
DQN,’’ in Proc. IEEE Int. Conf. Real-time Comput. Robot. (RCAR),
Sep. 2020, pp. 387–392, doi: 10.1109/RCAR49640.2020.9303290.

[24] Y. Gu, Z. Zhu, J. Lv, L. Shi, Z. Hou, and S. Xu, ‘‘DM-DQN: Dueling
munchausen deep Q network for robot path planning,’’ Complex Intell.
Syst., vol. 9, no. 4, pp. 4287–4300, Dec. 2022, doi: 10.1007/s40747-022-
00948-7.

[25] N. Saito, T. Oda, A. Hirata, K. Toyoshima, M. Hirota, and L. Barolli,
‘‘A movement adjustment method for DQN-based autonomous aerial vehi-
cle,’’ in Proc. Int. Workshop Intell. Netw. Collaborative Syst., Jan. 2022,
pp. 136–148, doi: 10.1007/978-3-030-84910-8_15.

[26] X. Gao, Y. Dong, and Y. Han, ‘‘An optimized path planning
method for container ships in Bohai bay based on improved deep
Q-learning,’’ IEEE Access, vol. 11, pp. 91275–91292, 2023, doi:
10.1109/access.2023.3307480.

[27] Y. Long and H. He, ‘‘Robot path planning based on deep reinforcement
learning,’’ in Proc. IEEE Conf. Telecommun., Opt. Comput. Sci. (TOCS),
Dec. 2020, pp. 151–154, doi: 10.1109/TOCS50858.2020.9339752.

51024 VOLUME 12, 2024

http://dx.doi.org/10.1088/1742-6596/1744/2/022097
http://dx.doi.org/10.1088/1742-6596/1744/2/022097
http://dx.doi.org/10.1109/ACCESS.2021.3098706
http://dx.doi.org/10.1155/2018/8269698
http://dx.doi.org/10.1109/ICMRE49073.2020.9065187
http://dx.doi.org/10.1016/j.sna.2022.113492
http://dx.doi.org/10.1007/978-981-13-1595-4_63
http://dx.doi.org/10.1016/j.comcom.2019.10.014
http://dx.doi.org/10.3390/drones7030211
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1007/s007780050040
http://dx.doi.org/10.1109/ROBOT.1990.126042
http://dx.doi.org/10.1109/ICEC.1997.592326
http://dx.doi.org/10.1080/21642583.2018.1471426
http://dx.doi.org/10.1109/SSCI.2016.7849837
http://dx.doi.org/10.1016/j.robot.2019.02.013
http://dx.doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/10.1109/CDC42340.2020.9303966
http://dx.doi.org/10.48550/arXiv.2207.01127
http://dx.doi.org/10.22266/ijies2022.1031.28
http://dx.doi.org/10.22266/ijies2022.0831.16
http://dx.doi.org/10.1109/RCAR49640.2020.9303290
http://dx.doi.org/10.1007/s40747-022-00948-7
http://dx.doi.org/10.1007/s40747-022-00948-7
http://dx.doi.org/10.1007/978-3-030-84910-8_15
http://dx.doi.org/10.1109/access.2023.3307480
http://dx.doi.org/10.1109/TOCS50858.2020.9339752

J. Shuhai et al.: Path Planning for Outdoor Mobile Robots Based on IDDQN

[28] Y. Wang, C. Jiang, and T. Ren, ‘‘UAV path planning based on DDQN
for mountain rescue,’’ in Proc. Int. Conf. Intell. Robot. Appl., Aug. 2022,
pp. 509–516, doi: 10.1007/978-3-031-13841-6_46.

[29] Y. Xiaofei, S. Yilun, L. Wei, Y. Hui, Z. Weibo, and X. Zhengrong,
‘‘Global path planning algorithm based on double DQN for multi-tasks
amphibious unmanned surface vehicle,’’ Ocean Eng., vol. 266, Dec. 2022,
Art. no. 112809, doi: 10.1016/j.oceaneng.2022.112809.

[30] Z. Chu, F. Wang, T. Lei, and C. Luo, ‘‘Path planning based on
deep reinforcement learning for autonomous underwater vehicles under
ocean current disturbance,’’ IEEE Trans. Intell. Vehicles, vol. 8, no. 1,
pp. 108–120, Jan. 2023, doi: 10.1109/TIV.2022.3153352.

[31] X. Peng, R. Chen, J. Zhang, B. Chen, H.-W. Tseng, T.-L. Wu, and
T.-H. Meen, ‘‘Enhanced autonomous navigation of robots by deep rein-
forcement learning algorithm with multistep method,’’ Sensors Mater.,
vol. 33, no. 2, p. 825, Feb. 2021, doi: 10.18494/sam.2021.3050.

[32] X. Zhang, X. Shi, Z. Zhang, Z. Wang, and L. Zhang, ‘‘A DDQN path
planning algorithm based on experience classification and multi steps
for mobile robots,’’ Electronics, vol. 11, no. 14, p. 2120, Jul. 2022, doi:
10.3390/electronics11142120.

JIANG SHUHAI (Member, IEEE) received the
B.E. degree in mechanical design and manufac-
turing and the Ph.D. degree in forest engineer-
ing from Northeast Forestry University, Harbin,
China, in 1986 and 2000, respectively. He was a
Researcher with the Postdoctoral Research Station
of Forestry Engineering, Nanjing Forestry Univer-
sity. He was a Lecturer and an Associate Professor
with Nanjing Forestry University, in 2002 and
2006, respectively. In 2007, he was appointed as

the Director of the Institute of Intelligent Control and Robot Technology,
Nanjing Forestry University. For many years, he was engaged in the research
of robots and automation. He has successively participated in the research
and development of rotary cutting intelligent centering wood climbing robot,
new intelligent stump cleaning robot, and led the team to carry out research
and development of multifunctional mobile intelligent robot system, motion
control and system integration of palletizing and handling robot, hexapod
bionic disaster reduction and rescue robot, forest ember detection and clean-
ing robot, and outdoor food delivery robot. His current research interests
include robot and automation, mechanism modeling and control, pattern
recognition and intelligent systems, and deep learning. He is a member of
the Chinese Society of Automation.

SUN SHANGJIE was born in Zhenjiang, Jiangsu,
China, in 1998. They received the bachelor’s
degree in engineering from Nanjing Forestry Uni-
versity, in 2021, where they currently pursuing the
master’s degree in robotics engineering.

In 2020, they published a article titled ‘‘Forest
Fire Robot Path Planning Based on Deep Learn-
ing’’ in the ‘‘Forest Engineering’’ journal. In 2021,
they were granted a patent for an ‘‘Intelligent
Flower Pot Based on STM32.’’ In 2022, their arti-

cle titled ‘‘Stability Analysis of the Food Delivery Robot with Suspension
Damping Structure’’ was published in the ‘‘Heliyon’’ journal. Their research
interests include robot vision perception and path planning.

LI CUN was born in Baoding, Hebei, China,
in 2001. They received the bachelor’s degree
in engineering from Nanjing Forestry Univer-
sity, in 2022, where they currently pursuing
the master’s degree in control science and
engineering.

In 2023, they applied for the Jiangsu Provin-
cial Graduate Student Research and Innovation
Program Project, and the name of the applied
project was Research on Path Planning Methods

for Outdoor Mobile Robots Based on Visual Perception. Their research
interests include robot vision perception and path planning.

VOLUME 12, 2024 51025

http://dx.doi.org/10.1007/978-3-031-13841-6_46
http://dx.doi.org/10.1016/j.oceaneng.2022.112809
http://dx.doi.org/10.1109/TIV.2022.3153352
http://dx.doi.org/10.18494/sam.2021.3050
http://dx.doi.org/10.3390/electronics11142120

