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ABSTRACT The Electric Network Frequency (ENF) serves as a simple means to verify the authenticity
of audio recordings. ENF variations contain crucial information, acting as a distinctive ‘‘fingerprint’’ when
electronic devices are connected or located near power mains. A novel framework for ENF estimation is
proposed. This approach alternates between the Least Absolute Deviation (LAD) regression for determining
regression weights and objective function minimization with respect to frequency, adapting them within
the context of the ℓ1 norm or the sum of ℓ1 norms of the approximation error. This framework is a direct
consequence of Laplacian distributed noise. Goodness-of-fit tests are reported, indicating that the Laplacian
noise hypothesis is more appropriate than the hypothesis of Gaussian noise in the benchmark ENF-WHU
dataset. Extensive evaluation using audio recordings from the aforementioned dataset demonstrates the
exceptional performance of the proposed framework outperforming state-of-the-art ENF estimation schemes.
These findings provide compelling evidence for the efficacy of the proposed ENF estimation schemes as
reliable prerequisites for detecting audio forgeries.

INDEX TERMS Electric network frequency (ENF), robust ENF estimation, least absolute deviations (LAD)
regression, audio authentication, multimedia forensics.

I. INTRODUCTION
With the rapid advancements in speech synthesis and voice
conversion technologies, the landscape of audio recordings
has undergone a significant transformation. Fake audio
recordings that closely resemble human speech can now be
easily generated, highlighting the need for rapid and precise
tools to identify them. What adds to the complexity of this
issue is the emergence of Artificial Intelligence (AI)-powered
text-to-audio machines, which further amplify the challenge
of distinguishing genuine recordings from fraudulent ones.

In this context, leveraging Electric Network Frequency
(ENF) estimation constitutes a prerequisite for legitimate
audio verification. ENF serves as a unique environmental
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fingerprint embedded within audio recordings that are
captured near the power mains [1]. By accurately extracting
and analyzing the ENF variations present in the recordings,
it is possible to discriminate genuine audio content from
manipulated or fabricated ones.

ENF fluctuates instantaneously around its nominal value
of 60 Hz in the United States/Canada or 50 Hz in other
parts of the world. At any time instant, the ENF exhibits
almost the same fluctuation across an interconnected power
network. Thus, the ENF signal acquired from any power
outlet in such a network during a particular time period can be
utilized as a reference signal (i.e., ground truth) to be attested
with the ENF extracted from the multimedia recordings [2],
[3]. ENF gets intrinsically integrated into audio recordings
by a dynamic microphone near mains-powered devices
or to transmission cables due to electromagnetic wave
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propagation [4]. The presence of acoustic mains hum,
which is generated by various equipment, including typical
household appliances, causes the ENF to become embedded
in an audio signal recorded by an electret microphone [5], [6].

While numerous methods [7], [8] have been developed to
detect audio fakes, ENF extraction stands out as a distinctive
and powerful forensic tool in this domain. The use of
ENF as an authentication tool [9], [10] has proven to be
highly effective in verifying the authenticity of multimedia
recordings, offering a robust method to combat deep fake
attacks and ensure the integrity of digital content. ENF has
been exploited in multimedia forensics and anti-forensics
analysis [11], enabling timestamp verification [12], [13], [14]
and geo-location estimation [15], [16].
Despite the extensive research efforts in the ENF-

based multimedia forensics field [17], several challenges
persist [18]. These include the need for an accurate estimation
of the ENF in short audio recordings. Another challenge
is the extraction of ENF, which is much weaker than
the noise and audio content in a recording. The ENF
extraction involves estimating the instantaneous frequency
(IF) by segmenting the recording into overlapping frames.
Interference and low signal-to-noise ratio (SNR) hinder
ENF estimation. Additionally, normal device movement can
introduce significant Doppler effects and eliminate the ENF
signal in audio [19]. To address these limitations, a notable
approach is the Graph-based Harmonic Selection Algorithm
(GHSA) [20], which finds the optimal combination of
harmonic components for ENF estimation. The Harmonic
Robust Filtering Algorithm (HRFA) is also utilized to extract
the ENF from noisy observations. The Maximum Likelihood
ENF estimators (MLE) [21] and Weighted MLE (WMLE)
[22], incorporating both the GHSA and HRFA algorithms,
are referred to as P-MLE and P-WMLE, respectively. These
ENF estimators along with others in [20] constitute the state-
of-the-art methods for the problem addressed in the paper.

Here, assuming Laplacian noise, ENF estimation is
leveraged from the perspective of Least Absolute Deviation
(LAD) regression to find the regression weights and objective
function minimization with respect to frequency adapting the
ENF estimation schemes in [20], [21], and [22] in the context
of the ℓ1 norm or the sum of ℓ1 norms of the approximation
error. To enhance the ENF estimation accuracy, 10 novel
single/multi-tone ENF estimation schemes are developed
(see Section IV). A fair comparison with the experiments
conducted in [20] demonstrates an improved accuracy in
ENF estimation. The major contribution of the paper lies
in the formulation of ENF estimation as a LAD regression,
which alternates between the solution for the regression
weights and the minimization with respect to the frequency
of objective functions resorting to the ℓ1 norm or the sum
of ℓ1 norms of the approximation error until convergence.
The performance of the proposed ENF estimation schemes
is evaluated on the ENF-WHU dataset [20], consisting of
130 audio recordings. The validity of the Laplacian noise

TABLE 1. List of abbreviations.

hypothesis is thoroughly assessed with Goodness-of-Fit tests
at the noise model that emerged from the signal model and
the regression approximation error. Objective figures of merit
based on the Mean Square Error (MSE) are employed, such
as the average MSE (AMSE) and the standard deviation of
MSE across all frames of a recording. The authentication of
audio recordings is assessed by calculating and reporting the
AMSE between the estimated ENF extracted from the audio
recordings and the ground truth ENF. To our knowledge,
this is the first time ENF estimation is treated as a LAD
regression problem, extending the use of LAD regression for
ENF detection [23].

The novel contributions of the paper are as follows:
1) The ENF estimation is addressed from the perspective

of LAD regression.
2) Ten novel ENF estimation schemes are developed by

adapting those in [20], [21], and [22] in the context
of minimization with respect to frequency of objective
functions employing the ℓ1 norm or sum of ℓ1 norms
of the approximation error.

3) Goodness-of-Fit tests performed on the ENF-WHU
dataset at both the noise model and the regression
approximation error validate the hypothesis of Lapla-
cian noise.

4) A thorough experimental assessment of the ENF-
WHU dataset demonstrates that the proposed ENF
estimation schemes outperform the state-of-the-art
ENF estimation schemes in [20].

The remainder of the paper is organized as follows.
In Section II, prior work is surveyed. The ENF fundamentals
are detailed in Section III. The problem formulation and
the proposed framework are presented in Section IV. The
performance of the proposed framework is evaluated in
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Section V. In Section VI, conclusions are drawn, and
future work is suggested. To enhance readability, a list of
abbreviations is provided in Table 1.

II. PRIOR WORK
A. ENF FOR AUDIO AUTHENTICATION
The incorporation of ENF serves as an exceptional and
dependable feature that effectively verifies the integrity
and source of audio recordings, significantly bolstering the
authenticity and instilling trust. In [24], the authenticity of
audio recordings was established by comparing the logged
variations of the ENF in the mains hum of the questioned
recording to reference ENF values. An audio authenticity
detection algorithm, based on the Max Offset for Cross-
Correlation between the extracted ENF signal and the
reference signal, was proposed in [25]. The ENF signal
was extracted from a query audio signal and partitioned
into overlapping blocks for forgery detection. In [26],
an ENF-based audio authentication system examined audio
recordings by matching the ENF signal from a questioned
recording with the reference signal stored in a database
for timestamp verification. Also, the Absolute Error Map
was introduced to detect tampering and explore audio
authentication. In [27], the ENF criterion was employed to
authenticate digital audio recordings in legal proceedings
using a wide-area Frequency Monitoring Network as the
reference frequency database and a modified Short-Time
Fourier Transform (STFT) for ENF estimation. A forensic
tool was proposed in [28] to assess audio authenticity by
detecting phase discontinuity of the power grid signal (i.e.,
the ENF). This tool was utilized to estimate editing points
and make automatic decisions regarding the authenticity of
the audio evidence.

B. ENF ESTIMATION
ENF extraction in audio recordings has garnered significant
research interest over the years, positioning it as a prominent
forensic tool. In [21], a multi-tone harmonic model for the
ENF estimation was described. To estimate the ENF signal
more accurately, many harmonics were merged, and the
Cramer-Rao bound was applied to limit the variance of the
ENF estimator. A spectral estimation approach that combined
the ENF at multiple harmonics was discussed in [22]. The
ENF was extracted considering the local SNR at each har-
monic. The ENF extraction was treated as a data-dependent
(adaptive) filtering problem instead of the conventional
STFT [29]. This method resulted in high-resolution results
but at a significant computational cost. An ENF extraction
algorithm of training audio and power recordings from
different grids was proposed in [30]. The STFTwas employed
to correct the erroneously selected ENF peaks by leveraging
time correlations. In [31], the Adaptive Multi-Trace Carving
(AMTC) approach was developed to detect and track subtle
frequency components in noisy signals through iterative
dynamic programming and adaptive trace compensation.

In [32], a binary approach was introduced to desired specific
spectral lines instead of the entire frequency band. The main
core of ENF extraction was the discrete Fourier transform
algorithm. In the [33], a non-parametric approach for ENF
estimation was developed, which incorporated a custom lag
window design into the Blackman-Tukey spectral estimation
method. In [34], a Hilbert-based transform for instantaneous
frequencies estimation was described for estimating the
instantaneous frequencies. The insights from [35] and [36]
were exploited to develop a Capon spectral estimation applied
to ENF estimation leveraging the Gohberg-Semencul factor-
ization [37]. Furthermore, incorporating a Parzen temporal
window emphasized the significance of window selection
for accurate estimation of ENF. The combined methodology
not only achieved lower computational complexity but also
improved spectral resolution, leading to more accurate ENF
estimation. In [38], the ENF extraction was addressed as a
frequency demodulation problem. The ENF was approached
as a sinusoid at the nominal frequency by creating and
analyzing an IF signal instead of the direct measurements.
The research conducted in [39] was focused on estimating the
frequencies in short time frames. A systematic examination of
a number of high-resolution, low-complexity frequency esti-
mation techniques was employed. A decorrelation algorithm
for ENF estimation from a recaptured audio was proposed
in [40]. The dominant values of ENF were subtracted from
the original signal, resulting in a latent ENF extraction.
In [41], special emphasis was given to the preprocessing
stage. Principal component analysis was applied to eliminate
the interference from speech content prior to ENF estimation.
The method successfully combined the fundamental ENF
and its harmonics for very short audio clips. In [42],
a filtering method termed Robust Filtering Algorithm (RFA)
was introduced to deal with noise interference. To obtain a
time-frequency representation suitable for ENF estimation,
a kernel function was used.

C. ENF DETECTION
Although significant attention has been paid to ENF estima-
tion in audio recordings, a topic that has not been addressed
adequately is ENF detection. That is, whether ENF is present
or not in a recording. A notable exception was the detailed
study in [43]. That study introduced six different detectors,
of which three were evaluated in real-world audio recordings.
The detectors showed a credible performance for short audio
clips, enabling reliable ENF detection. In [44], a multi-
tone time-frequency detector was developed by utilizing a
multi-harmonic combination to determine if valid ENF traces
were present in a recording as well as to offer information
on the overall ENF quality and the number of accessible
harmonic components. In [23], a LAD-Likelihood Ratio
Test ENF detector was proposed that improved the accuracy
and robustness of ENF detection in short-length recordings
compared to the state-of-the-art detectors.

In [45], a superpixel-based ENF presence detector for
digital video was developed. Several ENF signal estimates
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from stable superpixel areas identified whether an ENF signal
was present or absent in short video clips. An automated ENF
disturbance detector using a linear discriminant was proposed
in [46]. ENF extraction was performed using the Estimation
of Signal Parameters by Rotational Invariant Techniques
before evaluating the detector.

III. ENF FUNDAMENTALS
Catalin Grigoras introduced the ENF criterion in forensic
analysis [47]. Differences in power production and consump-
tion cause the ENF variations. In Europe, at any given time,
the ENF can be expressed as f = 50 ± 1f Hz, where
1f signifies the aforementioned ENF fluctuations around the
nominal frequency [4]. Considering 1f , there are three types
of network operating conditions [48]. If 1f ≤ 50 mHz, the
conditions are considered to be normal. If 1f is between
50 and 150 mHz the operating conditions are deemed to be
impaired, but with no major risk. If 1f ≥ 150 mHz, the
operating conditions are deemed to be severely impaired,
resulting in significant risks of malfunction of the electric
network.

Following [4], a threefold ENF extraction approach can be
pursued.

• Time and frequency domain: The spectrogram of short-
time recordings is derived and compared visually with
the reference ENF signals.

• Time domain: After proper Finite Impulse Response
filtering, zero-crossings are measured around the fre-
quency of interest.

• Frequency domain: The periodogram of short-time
segments and their spectral peaks (i.e., searching for
magnitude peak around 50 Hz) are computed through
the Fast Fourier Transform (FFT). Each spectral peak is
compared against the ground truth ENF signal.

The spectrogram approach is the quickest and easiest to
employ [4]. It reveals the ENF components (i.e., harmonics)
and is particularly helpful for comparing the questioned ENF
dates and times against the database of ENF dates and times.
Only one ENF component can be extracted in the time domain
approach. The frequency domain approach estimates one
ENF component as well. The proposed framework, detailed
in Section IV, is a frequency domain approach.

IV. PROBLEM FORMULATION AND METHODOLOGY
In this Section, starting from signal modeling, ENF esti-
mation schemes are derived. In Section IV-A the audio
feed is defined. A brief description of the state-of-the-art
ENF estimation schemes can be found in Section IV-B. The
proposed schemes are analyzed in Section IV-C.

A. AUDIO FEED
The initial step is to define the audio feed after bandpass
filtering that retains the signal content around the ENF
harmonics. Following [20], the filtered audio signal x[n],

n ∈ {0, 1, . . . ,N − 1}, is approximated as

x[n] = s[n] + v[n]

=

∑
m∈M

Am[n] cos (2πTmf [n] + φm) + v[n], (1)

where s[n] represents the ENF signal, while v[n] denotes
colored Gaussian noise as a consequence of the bandpass-
filtered white Gaussian noise. Later on, the assumption of
Gaussian distributed noise will be challenged. In (1),Am[n] >

0 and φm is the time-varying amplitude and phase of the m-th
harmonic, mf [n], with f [n] denoting the IF (i.e., the nominal
ENF frequency), respectively. The term T = 1/fS refers to
the sampling interval with fS being the sampling frequency.
In (1), the ENF is treated as an unknown deterministic signal
that follows the multi-tone harmonic model consisting of
M = |M| harmonic components withM ⊆ Z+ being the
set of harmonic indices.

The direct IF calculation from (1) is a challenging task
because of the signals’ time-varying nature. This limitation
is addressed thanks to the STFT, which allows for analyzing
the signal’s frequency content over short overlapping frames,
providing a time-varying representation of the signal’s
spectrum. As a result, each IF is treated as a piecewise
constant for each frame. Let NENF denote the number of
frames that emerged, andNF be the length of each frame. If1
denotes the number of samples each frame is advanced (i.e.,
the frame step-size), NENF is given by

NF + (NENF − 1) 1 = N ⇒ NENF =
N − NF

1
+ 1, (2)

where N is the length of x[n]. NENF is the length of ENF
signal f [l] (i.e., the IF time series). The l-th frame, l ∈

{0, 1, . . . ,NENF − 1} is expressed as [20]:

xl[n] = sl[n] + vl[n]

=

∑
m∈M

Am,l[n] cos
(
2πTmf [l]n+ φm,l

)
+ vl[n], (3)

where n ∈ {0, 1, . . . ,NF − 1} and f [l] is the constant
frequency for the l-th frame.

B. INSTANTANEOUS FREQUENCY ESTIMATION
After determining the audio feed xl[n] in (3), an additional
step prior to ENF estimation is harmonic enhancement.
This is achieved by employing either the RFA [42] or
the HRFA [20] for single-tone or multi-tone enhancement,
respectively. These algorithms enhance the harmonic compo-
nents present in the ENF signal.

Let f̂single[l] = argmaxf Pl(f ) denote the frequency
corresponding to the spectral peak of the periodogram of
xl[n]1 given by

Pl(f ) =

∣∣∣∣∣∣
NF−1∑
n=0

xl[n]e−ȷ2πTfn

∣∣∣∣∣∣
2

, |f | ≤
fS
2

. (4)

1Note that the constant factor 1/NF prior to the squared magnitude is
omitted in (4) without harming the analysis.
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FIGURE 1. Flowchart of the proposed LAD-based ENF estimation
framework.

If the RFA [42] is applied to xl[n], then its output is referred to
as x̆E,l[n]. Searching for the frequency corresponding to the
spectral peak of the periodogram of x̆E,l[n] yields f̂E−single[l].
Let f̂MLE[l] be the outcome of the search within the

periodogram for the maximum sum-of-squares [21], i.e.,

f̂MLE[l] = argmax
f

∑
m∈M

Pl(mf ). (5)

If wm,l denote the SNR of the m-th harmonic in the l-th
frame, WMLE searches for the maximum sum-of-weighted-
squares [22]:

f̂WMLE[l] = argmax
f

∑
m∈M

wm,l Pl(mf ). (6)

Let xE,l[n] denote the output of HRFA [20], xS,l[n] be
the output of GHSA [20], and xP,l[n] refer to the output of
sequential application of HRFA and GHSA. By adapting (5)
or (6) in the context of xE,l[n], xS,l[n], xP,l[n], six ENF
estimation schemes result, namely f̂E−MLE[l], f̂E−WMLE[l],
f̂S−MLE[l], f̂S−WMLE[l], f̂P−MLE[l], and f̂P−WMLE[l].

Let the periodogram of the xE,l[n] be

PE,l(f ) =

∣∣∣∣∣∣
NF−1∑
n=0

xE,l[n]e−ȷ2πTfn

∣∣∣∣∣∣
2

. (7)

The goal of P-MLE is to find

f̂P−MLE[l] = argmax
f

∑
m∈�

PE,l(mf ), (8)

where� ⊆M is the subset of harmonic components with the
highest mutual correlation coefficients (CC) selected by the
GHSA [20]. The selection is treated as a maximum weight
clique problem in graph theory, using the Bron-Kerbosch
algorithm [49]. It is seen that (8) is amaximum sumof squares

optimization problemwhere all the harmonic components are
taken into account. Alternatively, one may resort to a single-
tone� (i.e., |�| = 1). Let {f [l]}m be the IFs in each harmonic
frequency band where {·̂} is omitted for notation simplicity.
The smoothest harmonic component is obtained by

m∗
= argmin

m∈M

NENF−1∑
l=1

|{f [l]}m − {f [l − 1]}m| (9)

and used in (8).
P-WMLE searches for the maximum sum-of-weighted-

squares. In this method, the weights represent the relative
energy in the signal subband compared to the energy in the
noise subband, where higher weights indicate a higher local
SNR and a greater contribution to the ENF estimation [20],
i.e.,

f̂P−WMLE[l] = argmax
f

∑
m∈�

wm,l PE,l(mf ), (10)

where wm,l is the weight for the m-th harmonic in the l-th
frame of the enhanced signal xE,l[n].

In the following, the ENF estimate for each frame using the
scheme {∼} is denoted as f̂{∼}[l], where l stands for the frame
index of the enhanced signal xE,l[n]. There are 10 schemes in
total.

C. PROPOSED FRAMEWORK
Here, the description of the proposed framework for ENF
estimation shown in Figure 1 is detailed. Initially, the audio
feed is preprocessed to retain the harmonics of ENF, which
are subsequently enhanced using the HRFA [20]. Then,
the harmonics with stronger ENF components are selected
through the GHSA [20]. The estimation process is alternately
optimizing for the LAD coefficients and searching for f̂{∼}[l]
by fine grid searching.

To begin with, the proposed framework resorts to the
assumption that the noise after centering in (3) follows
a Laplacian distribution Laplace(0, b), where b is a scale
parameter. To determine which dictates the distribution’s
spread, a data-driven approach is employed. The same applies
to the mean of the noise samples. The aforementioned
assumption is experimentally validated in Section V-A.
Considering the heavy-tailed characteristics observed in the
histograms of the noise samples (see Figure 2), the LAD
regression [50] is adopted. By doing so and leveraging the
robustness of the ℓ1 norm against outliers or assumption
violations, it is demonstrated that the proposed framework
offers a more suitable solution to address the challenges
associated with ENF estimation in audio recordings. The
estimation of ENF solves the optimization problem{

f̂c,LAD, θ̂LAD

}
= argmin

fc,θ
JLAD (fc, θ) , (11)

where the objective function of LAD regression is defined as

JLAD(fc, θ) = ∥xE,l − H(fc) θ∥1. (12)
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The objective function defined in (12) is a straightforward
extension of the Least Squares (LS) objective function for
sinusoidal detection [51], [52]. Here, instead of the LS
objective function, the LAD regression is employed. One of
the primary strengths of LAD regression is its resilience to
outliers (see Section 2.4 in [50]). In (12), H(fc) is the linear
model used for sinusoidal detection [51], [52]. Its columns
α and β have elements the cosine at the harmonics of fc
and the sinusoid at the harmonics of fc. Vectors α and β

are orthogonal, since H(fc)⊤H(fc) =
NF
2 I. Specifically, the

columns of H(fc) are given by:

α =
(
1, cos (2π T , fc · 1) , . . . , cos (2π T , fc · (NF − 1))

)⊤

β =
(
0, sin (2π T , fc · 1) , . . . , sin (2π T , fc · (NF − 1))

)⊤
,

(13)

where (·)⊤ stands for the transposition operator. The vector
θ ∈ R2×1 denotes the LAD regression coefficients, serving
as weights that dictate how α and β approximate xE,l so that
JLAD is minimized. xE,l is a vector with elements xE,l[n],
n ∈ {0, 1, . . . ,NF−1} denoting the enhanced l-th frame. The
optimization problem (11) is solved by estimating fc and the
regression coefficients iteratively. The iteration starts with fc
set at f̂{∼}[l]. Then, θ̂ for each frame is found by solving the
LAD regression problem [50]:

θ̂ = argmin
θ

∥xE,l − H(f̂c) θ ∥1. (14)

The LAD optimization problem with respect to θ (14) is
convex due to the convexity of the ℓ1 norm. This, combined
with linear operations preserving convexity, makes the entire
objective function convex. Due to the convexity, the estimates
of θ are computed using the LAD-Least Absolute Shrinkage
and Selection Operator (LAD-LASSO), employing the itera-
tively re-weighted least squares method [50]. Next, θ is kept
fixed and f̂c for each frame of xE,l , l ∈ {0, 1, . . . ,NENF−1} is
estimated. f̂LAD−{P−MLE}[l] minimizes the sum of ℓ1 norms
of approximation errors, i.e.,

f̂LAD−{P−MLE}[l] = argmin
f

∑
m∈�

∥xE,l − H(f ) θ̂∥1, (15)

For f̂LAD−{P−WMLE}[l], we are seeking the minimum of the
sum of weighted ℓ1 norms of the approximation error, i.e.,

f̂LAD−{P−WMLE}[l] = argmin
f

∑
m∈�

wm,l ∥xE,l − H(f ) θ̂∥1,

(16)

(15) can be adapted to the context of the remaining 8 schemes.
The minimization of (15) is conducted by fine grid searching
on a dense set comprising a large number of frequency
samples. The main contribution is the employment of the ℓ1
norm for parameter estimation in an alternating optimization
(see Algorithm 1) between (14) and (15). The alternating
optimization is repeated until the convergence of frequency
estimation. Accordingly, although the problem (14) is
convex, non-optimality may arise from grid searching in (15).

Algorithm 1 Non-Linear LAD Alternating Optimization

Require: Initial f̂c and θ , enhanced signal xE,l , maximum
iterations T , convergence threshold ϵ, set of harmonics
�

Ensure: Optimized values θ̂ and f̂
1: Initialize iteration count: t = 0
2: θ̂

(0)
= argminθ ∥xE,l − H(f̂c) θ ∥1

3: while t < T do
4: for l = 0 to NENF − 1 do
5: f̂ (t+1)[l] = argminf

∑
m∈�∥xE,l − H(f ) θ̂

(t)
∥1

6: end for
7: if |f̂ (t+1)

− f̂ (t)| < ϵ then
8: break
9: end if

10: t = t + 1
11: end while
12: return θ̂ and f̂

V. EXPERIMENTAL EVALUATION
In this Section, the experimental evaluation of the proposed
framework is presented against the state-of-the-art methods.
Firstly, it is demonstrated that the Laplacian distribution fits
better the histogram of vl[n] = xE,l[n] − sREF,l[n], l ∈

{0, 1, . . . ,NENF − 1}, n ∈ {0, 1, . . . ,NF − 1} with sREF,l[n]
denoting the piecewise constant reference ENF. This observa-
tion holds true when compared to the Gaussian distribution,
as discussed in Section V-A. Secondly, the effectiveness of
the proposed framework is evaluated in Section V-B.

A. STATISTICAL ANALYSIS OF THE DATA
1) DATASET DESCRIPTION
The performance of the proposed framework is evaluated on
the benchmark ENF-WHU dataset [20].2 The ENF-WHU
dataset is suitable for ENF estimation tasks due to the
inclusion of reference ENF ground truth for evaluating the
accuracy of ENF estimation. The dataset consists of 130 real-
world audio recordings captured, both day and night, with
different weather conditions, around Wuhan University. The
duration of audio recordings varies from 5 to 16 minutes.
The recordings are mono channel and are resampled at a
sampling rate of 8000 Hz with a quantization of 16 bits.
Also, a reference dataset of 130 audio recordings is available,
containing reference ENF frames sampled at a rate of 400 Hz.
Among the audio recordings, 130 audio recordings contain
ENF and are organized under the folder H1. The remaining
130 recordings contain the reference ENF data and are placed
in folder H1_ref.

2) EXPERIMENTAL VALIDATION OF MODELING
ASSUMPTIONS
In statistical applications, a crucial consideration is determin-
ing whether the assumed distribution appropriately represents

2https://github.com/ghua-ac/ENF-WHU-Dataset/tree/master/ENF-
WHU-Dataset
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FIGURE 2. Histograms of the noise samples vl [n], l ∈ {0, 1, . . . , NENF − 1}

and n ∈ {0, 1, . . . , NF − 1} (see Section V) for three randomly chosen
audio recordings from the folder H1 compared to the Laplacian (solid
line) and Gaussian (dashed line) probability density functions.

the noise model in the data. This involves examining whether
the selected distribution accurately describes the noise model
under consideration. The prevailing assumption in state-
of-the-art methods postulates a Gaussian distribution for
the noise vl[n] in audio feeds. The proposed framework
advocates that the Laplacian distribution fits better than the
Gaussian noise distribution.

To corroborate the aforementioned assumption, the his-
tograms of centered noise samples from three randomly
chosen audio recordings are depicted in Figure 2. The
empirical data distributions seem to fit better the Laplacian

TABLE 2. Accepted and rejected hypotheses in Goodness-of-Fit tests for
the Laplacian distribution across the 130 noise models pertaining to the
130 audio recordings.

distribution (i.e., solid red line) than the Gaussian distribution
(i.e., blue dashed line). Table 2 summarizes the results of the
Goodness-of-Fit test [53]. Let

ŭl[n] =
ul[n] − µ̂Ñ

b̂Ñ
, l ∈ {0, 1, . . . ,NENF − 1}

n ∈ {0, 1, . . . ,NF − 1} , (17)

where Ñ = NENF × NF and µ̂Ñ is the sample median

µ̂Ñ = med


NENF−1⋃

ℓ=0

{ul[0], ul[1], . . . ul [NF − 1]}

 (18)

and b̂Ñ is the MLE of the scale parameter of the Laplacian
distribution, i.e., themean absolute deviation from themedian

b̂Ñ =
1

Ñ

NENF−1∑
l=0

NF−1∑
n=0

∣∣ul[n] − µ̂
∣∣ . (19)

Here, µÑ ≈ 0, because the data have been centered. The test
statistic is defined as

ZÑ =

√
Ñ
504

ξÑ , (20)

where

ξÑ =
1

Ñ

NENF−1∑
l=0

NF−1∑
n=0

(ŭl[n])3 −
3

Ñ 2

NENF−1∑
l=0

NF−1∑
n=0

ŭl[n]

·

NENF−1∑
l=0

NF−1∑
n=0

(ŭl[n])2 + 2
(
1

Ñ

NENF−1∑
l=0

NF−1∑
n=0

ŭl[n]
)2

.

(21)

The asymptotic p-value for the test statistic ZÑ is calculated
as:

p-value = 2 ·
(
1 − 8

(∣∣ZÑ ∣∣)) , (22)

where8 (·) represents the cumulative distribution function of
the standard normal distribution.

Of the 130 hypotheses tested, 87 are accepted, validat-
ing the assumption of a Laplacian distribution. However,
43 hypotheses are rejected, suggesting deviation from the
Laplacian distribution. To determine the acceptance or
rejection of the hypotheses, a significance level of 5% is
utilized. Based on the evidence provided in Figure 2 and the
results of the Goodness-of-Fit test, it can be concluded that
the proposed framework, which utilizes the LAD regression
as a consequence and a Laplacian distributed noise model,
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TABLE 3. Summary of implementation details of the proposed ENF
estimation schemes.

is a suitable choice in the vast majority of audio recordings
in [20]. Specifically, for audio recordings #23, #42, and #129,
the corresponding p-values are calculated as 0.9016, 0.9812,
and 0.7096, respectively. These p-values are all greater
than the significance level of 5%, indicating no significant
deviation from the assumed Laplacian distribution within
these specific noise samples.

B. EXPERIMENTAL SETTINGS AND RESULTS
1) IMPLEMENTATION DETAILS
The implementation of the proposed framework is based on
the publicly available code3 for ENF estimation. Following
the setup in [20], the implementation details of the proposed
END estimation schemes, such as sampling frequency,
harmonic set, RFA/HRFA settings, and FFT frequency
resolution, are summarized in Table 3. In the context of the
RFA/HRFA parameter (α), x[n] denotes the signal composed
of a collection of distinct harmonic components derived from
the setM. The term maxn(·) refers to the highest absolute
value in the amplitudes of the signal x[n], accounting for
both the highest positive and lowest negative amplitudes. The
FFT frequency resolution, set to 1/4000, is beneficial when
searching for spectral peaks in a dense frequency grid.

2) EVALUATION METRICS
The performance evaluation of the ten proposed ENF
estimation schemes against the state-of-the-art (see Table 4)
is twofold. First, the results are evaluated by calculating the
AMSE, which is the average MSE between the estimated
ENF values under H1 and the ground truth ENF values under
H1_ref across the 130 recordings. The MSE for each ENF
estimation scheme is given by

MSE(i)
{∼}

=
1

NENF

NENF−1∑
l=0

(
f (i)
{∼}

[l] − f (i)REF[l]
)2

, (23)

3https://github.com/ghua-ac/ENF-WHU-Dataset/tree/master/ENF_
Enhancement_Estimation

FIGURE 3. Comparison of MSE across the 130 audio recordings from
ENF-WHU dataset between the LAD-E-single, LAD-P-MLE, and
LAD-P-WMLE ENF estimation schemes and the single/multi-tone
competitors.

where f (i)
{∼}

represents the estimated ENF values of the i-th

recording, i ∈ {1, 2, . . . , 130} and f (i)REF represents the ground
truth ENF values for all frames indexed by length l ∈

{0, 1, . . . ,NF − 1}. In (23), {∼} stands for the different ENF
estimation schemes included in Group II, such as the LAD-
P-MLE and LAD-P-WMLE. Then, the AMSE across the
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TABLE 4. Quantitative performance comparison of the ENF estimation schemes using 130 real-world audio recordings from the ENF-WHU dataset. For
single-tone estimation, M = {2}. For multi-tone estimation, M = {2, 3, 4, 5, 6, 7}.

130 audio recordings is calculated as:

AMSE{∼} =
1
130

130∑
i=1

MSE(i)
{∼}

. (24)

The standard deviation std{·} of the calculated MSE is also
measured, i.e.,

std{·} =

√√√√ 1
130

130∑
i=1

(
MSE(i)

{∼}
− AMSE{∼}

)2
. (25)

AMSE proves to be a suitable metric for audio authentica-
tion as it captures the sum of squared frequency estimation
errors and provides a measure of the alignment between the
estimated ENF and the reference ENF.

3) EXPERIMENTAL FINDINGS
The performance of the proposed ENF framework across
the 130 real-world ENF-WHU audio recordings is evaluated.
The implemented methods are presented in Table 4 and
categorized into two groups. Group I lists the state-of-the-
art single/multi-tone ENF estimation schemes employing
harmonic enhancement and harmonic selection modules.
Group II presents the evaluation results of the LAD-based
ENF estimation framework where RFA/HRFA or GHSA are
integrated for single/multi-tone harmonic enhancement and
harmonic selection.

The metrics for ENF estimation schemes in Group II
outperform all the corresponding ENF estimation schemes in
Group I. The top metrics are indicated in boldface. Among
the single-tone ENF estimation methods, where the second

harmonic is employed, the LAD-E-single scheme achieves a
significantly lower AMSE and std{·} against the two state-
of-the-art single and E-single competitors in Group I. More
specifically, the evaluation metrics of the proposed LAD-E-
single are 18 × 10−5 and 2.5 × 10−4, respectively. When
multiple harmonics are included, the LAD-P-MLE and the
LAD-P-WMLE result in a higher ENF estimation accuracy.
In Group II, the proposed LAD-P-MLE method outperforms
the P-MLEENF estimation scheme, achieving a lowerAMSE
and std{·} of 9 × 10−5 and 1.8 × 10−4 compared to 13 ×

10−5 and 2.4 × 10−4 for P-MLE, respectively. In Group II,
the LAD-P-WMLE scheme has a higher AMSE and std{·}
compared to the LAD-P-MLE, suggesting that the LAD-
P-MLE performs better within this group. However, it is
important to note that even though the LAD-P-WMLE is
worse than the LAD-P-MLE in Group II, it still outperforms
its direct competitor, P-WMLE, in Group I, as it achieves
a lower AMSE and std{·} of 20 × 10−5 and 2.0 × 10−4,
respectively.

By comparing the resulting AMSE values between the
extracted ENF from the audio recordings and the reference
ENF in Table 4, the legitimacy of the audio signals is
determined. A significantly lower AMSE suggests a closer
match between the extracted ENF and the reference one,
indicating a higher level of authenticity.

In Figure 3, the MSE measured for the three most
representative subsets of ENF estimation schemes using all
the recordings from the ENF-WHU dataset is presented.
The red curve in Figure 3(a), (b), and (c) depicts the MSE
values of the proposed LAD-E-single, LAD-P-MLE, and
LAD-P-WMLE ENF estimators. One might expect that the
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FIGURE 4. Comparison between the estimated ENF signals using the P-MLE and LAD-P-MLE methods against the ground truth ENF for two randomly
selected audio recordings within the H1 folder. The plots have been shifted vertically by ± 0.05 Hz around the 2nd harmonic.

single-tone schemes would estimate the ENF with higher
accuracy compared to the multi-tone ones, given that they
only extract a frequency around the 2nd harmonic. However,
as can be seen from the red curves in Figure 3(b) and (c),
the effect of GHSA and HRFA is remarkable, providing a
strong advantage against the single-tone schemes. Among
the multi-tone schemes from Figure 3(b), LAD-P-MLE is
the most accurate framework. As a result, after the graph-
based harmonic selection, the harmonic enhancement of the
components in higher harmonics of the signal, and the LAD
regression, the MSE is substantially reduced.

The estimated ENF using either the LAD-P-MLE or
P-MLE methods is compared to the ground truth ENF for
all frames on two randomly selected audio recordings in
Figure 4. To aid visualization, the ENF signals have been
shifted along the vertical axis by ± 0.05 Hz. The frame
index is indicated in the horizontal axis. It is apparent that
the red curve, corresponding to the ENF estimated by the
LAD-P-MLEmethod, exhibits a stronger correlation with the
ground truth ENF compared to the ENF estimated by the
P-MLE method. This suggests that the LAD-P-MLE method
provides more accurate estimates of the ENF for the given
audio recordings, making it a more reliable approach in this
context. Quantitatively, the calculatedMSE between the ENF
estimates of the LAD-P-MLE scheme and the ground truth
ENF resulted in 6.077 × 10−5 for the audio recording #1,
whereas the MSE for the P-MLE method is 8.45 × 10−5.
Similarly, for the audio recording #41, the MSE for the LAD-
P-MLE method is calculated as 6.77 × 10−5, while for the
P-MLE method, it is 7.37 × 10−5. The lower MSE values
obtained by the LAD-P-MLE method further confirm its
superior accuracy over the P-MLE method in estimating the
ENF signal for the provided audio recordings.

4) STATISTICAL ANALYSIS OF THE APPROXIMATION ERROR
In addition to the evidence provided in Section V-A2,
a comprehensive Goodness-of-Fit test [53] is performed to

assess the approximation error between xE,l and H (fc) θ

in (14) for the LAD-P-MLEENF estimation scheme, which is
the most accurate framework in Table 4. The test is conducted
for the first 5 audio recordings from the folder H1, resulting
in a total of 2873 frames. The size of the samples to be used
is Ñ = NF, where NF = 16 × fS = 16 × 800 = 12800.
The objective of the test is to determine whether the null
hypothesis that the observed residuals follow the Laplacian
distribution is valid.

Within LAD-P-MLE, the LAD-LASSO algorithm is
employed, a variant of the LASSO algorithm, where LAD
is used as the loss function. LAD-LASSO solves the
optimization problem (14). The LAD-LASSO algorithm [50]
is justified by the assumption that the approximation
error follows the Laplacian distribution. If the centered
approximation errors follow the Laplacian distribution, then
the ℓ1 norm penalty in the optimization problem can be
interpreted as a Maximum a Posteriori (MAP) prior. The
Laplacian distribution is a symmetric density function with
a sharp peak at zero and heavy tails, which makes it a
suitable choice for modeling data against outliers. The ℓ1
norm penalty in the LAD-LASSO algorithm is also known as
the ‘‘Laplace prior’’ in Bayesian statistics, and it encourages
sparse solutions by inducing a ‘‘spike-and-slab’’ prior on
the coefficients, where some coefficients are set exactly to
zero [54].
The results of a Goodness-of-Fit test are displayed in

Table 5, indicating the number of hypotheses that are
accepted versus the number that are rejected. The Laplacian
distribution is accepted at a significance level of 5%. From
the total 2873 frames tested, the null hypothesis of a
Laplacian distribution is accepted for 2620 frames. However,
the null hypothesis is rejected in 253 frames. In Figure 5,
the histograms of the approximation error for randomly
chosen frames are plotted and compared to the Laplacian
and Gaussian probability density functions. The error is
calculated for three randomly selected frames among the
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FIGURE 5. Histograms of the approximation error between xE,l and
H

(
fc

)
θ for 3 randomly chosen frames in the first 5 audio recordings

under the folder H1 compared to the Laplacian density function (solid
line) and Gaussian density function (dashed line). The approximation
errors have been centered.

2873 frames employing the proposed LAD-P-MLE ENF
estimation method. The histograms of the approximation
error fit better the Laplacian distribution depicted by the red
curve (solid line) than the Gaussian distribution. The p-values
calculated for frames #649, #711, and #1633 are 0.7827,
0.9563, and 0.9215, respectively. Because the computed
p-values are greater than the significance level of 5%, there
is no sufficient evidence to warrant the rejection of the
claim that the approximation error follows the Laplacian
distribution.

TABLE 5. Comparison of accepted and rejected hypotheses for the
approximation error in all frames of the first five audio recordings using a
Goodness-of-Fit test for the Laplacian distribution.

VI. CONCLUSION AND FUTURE WORK
Ten novel ENF estimation schemes have been proposed. They
alternate between LAD regression for finding the regression
weights and minimization of objective functions with respect
to frequency adapting those in [20], [21], and [22] in the
context of the ℓ1 norm or sum of the ℓ1 norms of the approx-
imation error. These ENF estimation schemes have enhanced
the ability to accurately estimate the ENF against the state-
of-the-art, enabling thus the authentication of the legitimacy
of audio evidence. The novel ENF estimation schemes have
been thoroughly assessed with respect to the average MSE
and the standard deviation of MSE using benchmark real
audio recordings and reference data. The proposed ENF
estimation schemes outperform the state-of-the-art schemes
in [20]. Experimental evidence related to Goodness-of-Fit
tests has been disclosed to support the validity of the
assumption that the noise follows the Laplacian probability
density function, justifying the use of LAD regression and
ℓ1 norm-based frequency optimization. These findings lay
the foundation for future research dedicated to exploring and
advancing further robust spectral analysis methods.
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