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ABSTRACT This paper introduces an optimal bi-objective optimizationmethodology customized for micro-
grid systems, encompassing economic, technological, and environmental considerations. The framework
portrays the objectives of an intelligent microgrid, aiming to minimize operational costs, CO2 emissions,
peak-to-average ratio (PAR), and energy consumption while concurrently enhancing user comfort (UC).
A scheduled power allocation strategy is formulated to efficiently cater to the energy needs of residential
loads. The stochastic nature of wind and solar resources is characterized by modeling wind speed and
solar radiation intensity using a beta probability density function (PDF). The non-dominated sorting genetic
algorithm II (NSGA-II) is employed to address optimization challenges. A decision-making process is imple-
mented to select the optimal solution from the non-dominated alternatives. The study presents three scenarios
illustrating the optimal operational values for various parameters and energy consumption, providing a com-
prehensive analysis of the proposed algorithm’s efficacy. Leveraging the NSGA-II algorithm, coupled with
renewable energy resources and optimal energy storage system scheduling, yielded significant reductions
in overall expenses, PAR, CO2 emissions, user discomfort, and energy consumption. MATLAB simulations
were conducted to substantiate the efficacy of our proposed approach. The obtained results underscore the
effectiveness and productivity of our devised NSGA-II-based approach. Notably, the proposed algorithm
demonstrated a substantial reduction in electricity costs by 19.0%, peak-to-average ratio (PAR) by 30.7%,
and carbon emissions by 21.7% in scenario-3, as evidenced by a comparative analysis with the unscheduled
case.

INDEX TERMS Smart grid energy, storage system, operating cost, carbon emission, heuristic, optimization.

I. INTRODUCTION
In today’s world, Energy is one of the primary and significant
problems the world needs to overcome. Energy problems
include generation, transmission, and receiving problems, but
the most important is excess and maintaining electricity pro-
duction and distribution demand. Research shows that 15%
of the people around the globe have no electricity usage due
to no access or are away from the grid stations and live in
off-grid areas. The only solution for the off-grid commu-
nity to provide electricity is installing renewable systems in

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

those areas [1]. Environmental activists encourage people and
authorities to install renewable systems like PV, Wind, and
Biomass. According to estimated research, in 2035, renew-
able energy will be counted as one-third of the total energy
in the world. To achieve long-term expectations from the
system, it is necessary to carefully isolate and predict the
solar system of the region where it is installed and keep the
door open to expand the system further when the demand
increases [2]. The engineer also plays a vital role in making
these systems more efficient by improving the power demand
and quality and maintaining the system grid stability for
unpredictable solar irradiation and sudden climate weather
conditions [3]. Renewables become more stable when a
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backup system is installed, whichworks when sudden climate
change occurs and at nighttime when no solar power is avail-
able [4]. The use of ESSs also increased pollution emissions.
The idea of a smart grid was introduced due to renewable
energy and storage issues. An intelligent system in the shape
of a smart grid was developed, which provided energy to
loads by performing a bi-way communication between them
through an advanced measuring infrastructure (AMI) [5].
Different renewable sources, i.e., PV, WT, Fuel cells, and
Non-renewable sources, i.e., Diesel generators, MT, etc., are
used by smart grids to provide electrical energy to different
types of load [6]. The energy requirement of the consumers
is made possible by the energy exchange between the utility
and smart grid due to uncertainties in renewable sources [7].
Obtaining the energy with minimum operating cost cannot
only be solved by modeling the source side. Different DSM
strategies can be used to deal with it. A vast amount of
contribution has been made to energy management in smart
grids by optimizing its source side as well as consump-
tion side research. For the reduction of operating costs and
pollution emissions, the MOPSO algorithm is used, whose
optimal solution uses fuzzy-based logic [8]; however, they
have not considered peak average ratio (PAR) to reduce peaks
in the system. Modeling uncertainty in renewable energy
sources and reducing cost and emission in [9] by MOPSO
algorithm. Reference [10] introduced an efficient energy
management system that successfully reduced the cost of
storage systems under DSM strategy by using Branch and
Reduce Optimization Navigator (BARON); however, carbon
emission due to EES was ignored. Demand was managed
by real-time pricing aided by an inclined block rate. Also,
power scheduling is performed by normalizing its function
using the Genetic algorithm [4]. Dual composition is used
to model constraints in a real-time proposed system that per-
forms a two-way communication [11] for optimal scheduling.
In [12], the cost associated with energy consumption is
reduced by using an artificial bee colony (ABC) algorithm
and a quasi-static technique that also improves the load factor.
Non-dominated genetic sorting algorithm II (NSGA-II) is
used to reduce the microgrid’s operating cost [13], increasing
the system’s efficiency by using PVs, batteries, and utility
grid as the energy inputs. SQP algorithm is used in [14] to
increase customer comfort by reducing customer bills and
PAR with the B technique. This algorithm solves the above
equation as a mixed integer linear programming (MILP)
problem [15]. It introduces the concept of DC microgrids,
which has reduced the system’s cost and increased its avail-
ability [16]. Two scenarios describe results obtained from the
Multi-Objective Genetic Algorithm (MOGA). Operating cost
and pollution emissions are minimized using the MOPSO
algorithm, whose results are distributed to 3 scenarios [17].
Cost, emission, and customer satisfaction were modeled as
the three objectives in [18] using a non-dominated genetic
sorting algorithm III (NSGA-III) algorithm. At the same
time, the load factor has not been improved. In [19], DSM
Load curtailment and shifting strategies are used to reduce

operating costs and pollution. ϵ-constraint approach is used
to solve Mixed Integer Non-linear Programming (MILNP)
and obtain Pareto fronts. The comparison is drawn for dif-
ferent techniques to reduce consumption and operating costs
in an intelligent grid. Reference [20] also described dif-
ferent algorithms, i.e., MOPSO and GA. PSO, MILP, etc.,
for obtaining objectives. In [21], the total cost of the smart
grid is reduced by using the MAPPO algorithm. Real-time
pricing (RTP) and load schedules were used as the DSM
method’s optimal functioning. Reference [22] described dif-
ferent DSM strategies for an intelligent microgrid to work for
demand response. Case studies showed that peak clipping,
valley filling, and load shifting were experimented with to
operate microgrids [23]. Minimizing operational costs and
energy consumption are the important issues considered in
smart grids. Reference [24] uses artificial intelligence (AI)
techniques for different management applications, i.e., inte-
grating renewable sources, Demand side management, ESS
summation, and energy management smart grid. The peak-
to-average ratio is minimized by reducing the peak load for
residential consumers using load shifting as DSM strategy,
and results were formulated for both cases with and with-
out DSM strategy [25]. Reference [26] proposed an energy
management system (EMS) for an intelligent building that
increases customer comfort by managing the system’s cost
and energy consumption, which also increases the overall
security. A fair pricing scheme is introduced to help reduce
low-energy consumers’ bills by introducing a fair pricing
scheme as in [27] that helps him calculate the energy cost
of both high-energy consumers and low-energy consumers
and charge them accordingly [28] and reduces computational
costs for managing energy consumption is smart build-
ing (SB) using genetic algorithm (GA) with DSM strategies.
The smart grid architecture model (SGAM) is presented
in [29] and uses powerful tactics for modeling the condition
of a microgrid on the generation and management sides.
In [30], different algorithms are compared for demand-side
management strategies to reduce operating costs and energy
consumption in a smart grid. Cost and PAR are minimized for
load in a residential area, and an optimal scheduling model
is proposed for EVs in smart grids by MILP, whose results
are optimized under the proposed model [31]. Reference [32]
uses Grey wolf optimization for optimal energy management
in PHEVs, and Monte Carlo simulations model intermittent
behavior of renewable sources. Table 1 summarizes the find-
ings from the survey above.

It is clearly understood from the above research that
many numbers of models have been proposed that were effi-
cient in reducing cost and energy consumption in intelligent
grids. However, substantial research gaps in proposed mod-
els remain regarding several technical and physical factors:
Different models have reduced operating and emissions but
ignored energy consumption and consumer comfort, which
produced inconvenience on the customer side. Load cur-
tailment and Load shifting are used as demand response
programs that have also caused discomfort to customers.
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TABLE 1. Summarizes of literature review. TABLE 1. (Continued.) Summarizes of literature review.

This study represents a scheduled way to minimize operat-
ing costs and energy consumption in an intelligent microgrid
consisting ofWTs, PVs,MTs, and ESSs. The proposedmodel
supplies energy to residential types of consumers (RC). Non-
dominated genetic sorting algorithm II (NSGA-II) is adopted
to find the Pareto fronts of the optimization problem, and the
real solution is selected by the decision-making method.
The rest of the paper’s organization is: Section II introduces
the concept of a smart grid. The system model is explained
in Section III. Section IV deals with the proposed methodol-
ogy and its related approaches for the optimization problem.
In Section V, simulations and results are discussed. Finally,
a conclusion is drawn in Section VI.

II. OVERVIEW OF SMART MICROGRID
A smart microgrid is a technical device that provides elec-
trical energy to loads using intelligent energy meters, which
perform a bi-way communication between the system and
the utility grid. Daily load demand from the customer is
received by the smart meter in the installed advanced meter-
ing infrastructure (AMI) in a typical micro smart grid. The
smart meter also receives electricity prices a day ahead of the
utility. After receiving both price and demand, it devises a
plan to supply optimal energy to load connected, observing all
technical, economic, and environmental situations. Figure 1
shows an overview of a smart grid in which photovoltaic
cells (PVs) and wind turbines (WTs) are used as renewable
energy resources, Micro Gas Turbines (MGTs) are used as
distributed energy sources (DESs), Electrical energy storage
systems (ESSs) in the form of batteries are used as storage
elements, and utility grid (UG) is used to exchange power
with the system when required. Three classes of consumers,
including Residential Consumers (RCs), Commercial Con-
sumers (CCs), and Industrial Consumers (ICs), are used as
loads.

III. SYSTEM MODEL
A. SUPPLIED POWER RESOURCES
Supplied Power resources are the energy sources that transmit
the generated energy to the total number of loads connected
with the proposed model. The number of power-provided
sources in our proposed model is of two types which are:

• known resources.
• unknown resources.
Our proposedmodel, described in 2Micro Turbines (MTs),

constitutes known resources, whereas PV and wind tur-
bines (WTs) explain the unknown resources. Batteries are
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FIGURE 1. Smart microgrid.

used as Electrical energy storage systems (ESSs) in the
model, along with the power resources. The exchange of
electricity is made possible by using a utility grid (UG)
between the customer and the energy distributor in the pro-
posed model.

B. LOAD TYPES
The type of load fed by our model consists of different home
appliances, i.e., electric bulbs, fans, water motors, washing
machines, etc., with a maximum load range of 4-35KW,
falling into the residential consumer category.

Uncertainties are associated with renewable energy
resources due to their erratic behavior, i.e. solar source (PV)
and wind depend on availability. Both renewable energy
resources.

Crucially depend on atmospheric conditions and climate
which makes them vulnerable to obtaining their 24-hour
day-ahead forecast. Different types of stochastic and prob-
abilistic techniques containing fuzzy-based logic, beta PDF
and CDFs, Maximum likelihood and Bayesian methods, and
Monte Carlo (MC) simulations are used to model the inter-
mittent behavior of PV and wind [33]. Our proposed model
uses the probabilistic method to overcome the uncertain
behavior of renewable sources. Solar and wind uncertainty
is tackled using solar radiance, wind speed, and ambient
temperature, as discussed in subsections.

C. PV MODELING
The photoelectric effect is used as a base for solar power
generation by converting the light from the sun to electrical
energy. The light rays in the form of solar radiation from
the sun are utilized and absorbed by the material and con-
verted to electrical particles that constitute the DC form of
electricity. Beta PDF and linear power are used to model the

uncertainty using ambient temperature and solar radiance (si)
in 1 and 2. [18], [34].

L (si)=


λ (σ + φ)si(σ−1).(1 − si)(φ−1)

λ (σ ) λ (φ)
0 ≤ si ≤ 1,

σ ≥ 0, φ ≥ 0
0


(1)

N (x) = THa +
si
sidef

× (TN − 20), t ∈ (1, . . . , 24) (2)

where Te is the ambient temperature, si is the solar irradiance,
and TN is the nominating cell temperature. σ and φ are the
parametric values of beta PDF given in 3 and 4:

σ = α(
α(1 + α)

ϕ2 − 1) (3)

φ = (1 − α)(
α(1 + α)

ϕ2 − 1) (4)

Solar power can be determined by equation 5 using the values
obtained from the above functions.

SPs = Sdefs ×
si
sidef

×(1 + ξ×(N (x) − N (x)def )×Msc×θsc)

(5)

D. MODELING OF WIND
A wind turbine generator (WTG) is used to produce wind
power. The mechanical energy of wind is converted to elec-
trical energy by WTG. The use of wind power is increasing
exponentially; however, wind power generated is also asso-
ciated with different uncertain and unknown elements that
make it vulnerable to predicting its factual day forecast. The
wind’s direction, speed, and wind speed characteristic curve
are the elements that affect the generatedwind power.Weibull
PDF utilizes wind speed as the modeling element to control
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the uncertain wind behavior, as given in equation 6 [18].

Xv(Sv) = 1 − exp(−(
Sv
βs

)2) (6)

βs is the value assumed of the scalar parameter of wind speed.
It is given by equation 7.

βs =
2

√
γ
Sr (7)

While Sr is the measured speed of wind for modeling the
Wei-bull PDF given in equation 8.

Sr = βsζ (1 +
1
2
) (8)

Wind power output is calculated by equation 9 [31].

EWTurbine =


0 Ssw < Sst

Ew(
Ssw− Sst
Sw − Sst

) Sst ≤ Ssw < Sw

Ew Sw ≤ Ssw < Ssf
0 Ssw ≥ Ssf

 (9)

where Ew, Ssw, Sst , Sw and Ssf are the rated WT power, speed
of the wind, cut-in speed of the wind, rated speed of the wind,
and cut-out speed of the wind, respectively.

IV. OBJECTIVE FUNCTIONS
The main objective of our model is to simulate an intelligent
microgrid to reduce operational expenses and energy usage.
Bi-objective functions are utilized to optimize the smart grid
in the proposed model, which is described as follows;

1. Operating cost, the first objective function
This function minimizes the cost associated with the
operation of the smart grid, known as the operational
cost of the smart grid, as given in equation 10:

minOB1 =

C∑
c=1

µc

T∑
t=1

(
G∑
g=1

PRICEMT (c, t, g)

+

∑E

e=1
PRICEBattery(c, t, e)

+ PRICEUtility(c, t)) (10)

2. Energy Consumption, the second objective function
The energy utilized by the smart grid under study is
given by equation 11:

minOB2 =

∑H

h=1
ESMG(h) × TimeSMG(h)) (11)

V. SMART GRID CONSTRAINTS PERFORMANCE
AND METRICS
Some limits must be observed to operate the microgrid effec-
tively, known as constraints. Constraints impose bounds on
the smart grid that affect the overall efficiency. Technical
conditions for renewable sources and power balance con-
straints constitute the general constraints for the smart grid.
Smart Grid performancemetrics [35], [36] and constraints are
utilized in our model, which is described in the subsection:

A. POWER BALANCE
This constraint is used to model the generated power and load
required in our model. According to this constraint, the power

provided to the model must be equal to the power utilized by
consumers, as in equation 12.∑C

c=1
µc

∑T

t=1
((
∑G

g=1
PMT (c, t, g))+(

∑SC

sc=1
Psc(c, t, sc))

+ (
∑T

tv=1
VPtv(c, t,TV )) +

∑S

s=1
Pbattery(c, t, s)

× PGRIDBought (c, t)) =

∑C

c=1
µc

∑t

t=1
T (PRESLOAD(c, t)

× PCOMLOAD(c, t) + PINDLOAD(c, t) + PGRIDSell(c, t))

(12)

B. ELECTRICITY COST
The rate structure is one based on real-time pricing (RTP),
with tariffs changing throughout the day, every day, to reflect
the actual cost of energy. There would be no demand costs
with RTP, just energy prices that may change on an hourly
basis.

C. PEAK TO AVERAGE RATIO (PAR)
The Performance Assessment Ratio (PAR) represents the
proportion of the highest energy consumption level to the
average energy consumption level over a specific timeframe.
To decrease PAR and prevent peak power plant operations,
utility providers encourage customers to shift their energy
consumption from on-peak to off-peak timeslots. This PAR
reduction is beneficial for both utility companies and cus-
tomers due to two main reasons: first, it smoothens out the
load curve and reduces peaks in the demand load curve, and
second, it lowers the energy costs for consumers. The PAR
can be computed by dividing the highest energy consumption
level by the average energy consumption level during the
designated period.

PAR =
max(E tot (t))
1
T

∑T
t=1 Etot (t)

(13)

D. CARBON EMISSIONS
It represents the CO2 emissions in kg/kWh as in equation 14:

CO2 =
EPavg
µ × γ

(14)

where EPavg indicates the average monthly energy bill and
reflects the price per kWh. µ refers to the average price
per kWh, which is set to 0.2$, while γ represents the elec-
tricity emissions factor, which is almost 1.37.

E. USER COMFORT
This research investigates user comfort by assessing the
duration of time consumers must wait for an activity after
their energy consumption shifts from on-peak to off-peak
timeslots. As consumers transfer their loads to off-peak hours,
they may experience some level of discomfort. The analysis
highlights a trade-off between the costs of energy and waiting
time, wherein reducing energy costs may increase waiting
time and vice versa. The research emphasizes the importance
of minimizing the waiting time for consumers and identifies
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it as a critical factor in evaluating user comfort concerning
load switching between on-peak and off-peak timeslots; user
comfort is

waiting (Delay) =

∑T
t=1 |(Tunsch(t) − Tsch(t)|∑T

t=1 Tsch(t)
(15)

The User Comfort (UC) is calculated in terms of waiting
time/delay that an appliance faces due to scheduling and
unscheduling periods and the status of an appliance.

F. STORAGE SYSTEM
This section will go through the suggested energy storage
systems and their formulae. Because ESS has specific limits,
such as charging, the lowest and maximum charging levels
are represented by ESmin and ESmax, respectively. The state
of charge (SOC) is thought to be between 20% and 80% of
its maximal value. The stored energy of ESS is denoted by:

SE (t) = SE (t−1)+τ · ηESS · EEchar (t) −
τ · EEdischarge (t)

ηESS

(16)

where SE indicates energy stored and measured in (kWh) at
time t, ηESS implies ESS efficiency, τ defines the period in
hours, EEchar represents power provided by the solar and
wind systems to batteries and EEdischar means power sup-
plied from batteries to load. The following constraints have
been imposed to keep charging/discharging within limits and
to prevent deep discharge/overcharge.

EEchar ≤ EEcharmax ,EEdischar ≤ EEdischarmin , and S ≤ SEcharmax

(17)

We will detail the approaches we suggested in our study
in this part. zxvvvTo mimic optimization challenges, a non-
dominated genetic sorting algorithm (NSGA-II) is utilized.
The decision-making technique was used to choose the best
choice from among the non-dominated alternatives. We will
also go through the approaches that have been used in the
past. Three alternative scenarios demonstrating the optimal
value of operating cost and energy usage were presented for
the proposed algorithm’s outcome analysis. The NSGA-II
algorithm with renewable energy resources without RES was
the first scenario, while the same method with RES only is
the second scenario and optimum scheduling of RES and ESS
was the last scenario to reduce expenditures and energy usage.

VI. PROPOSED ALGORITHM
A. NSGA-II
In our proposed model to obtain Pareto fronts, we have
used non-dominating sorting genetic algorithm II (NSGA-II).
Using the concept of crowding distance and non-dominated
sorting, an optimal solution from the obtained Pareto fronts
is generated by NSGA-II.

The overall algorithm is illustrated in Figure 2.

B. BPSO ALGORITHM
The PSO algorithm is another approach for identifying the
best solutions within a given search area. While it is typi-
cally used in a continuous area, it can be adapted for use
in a discrete domain, which is known as BPSO. The four
primary determinants of BPSO are the particle’s initial posi-
tion, starting velocity, own best position, and global best
position. BPSO begins by creating a search space and ran-
domly distributing a population throughout the space. In each
step of the algorithm, the particle speeds are updated using
Equation (18),∑C24

t=1

∑I

i=1

∑C24

t=1

∑I

i=1
U t+1
1

=

∑C24

t=1

∑CI

i=1
UV t

1 (j) + Z1K1(Xibest, i(j))

+ Z2K2(Xigest, i (j) − X ti1(j)) (18)

where U is the inertia factor, U t
j is current velocity. U

t+1
i is

the velocity of a particle. Random numbers are k1 and k2,
while z1 is the local pull and z2 is the global pull. X ti is the
particle’s current position, Xigest is the local and Xigest is
the global best position. Equation (19) is used to map the
velocities of particles between 0 and 1.

sim
(
U t+1
i (j)

)
=

1

1 + exp(−U t+1
i (j))

(19)

C. BFO ALGORITHM
Bacterial foraging optimization (BFO) is a program that
takes inspiration from natural processes. This algorithm
has become popular among researchers due to its suc-
cess in solving practical problems. In the natural world,
bacteria swim towards the best sources of nutrients and
optimize their energy, and the BFO algorithm models this
process by considering several solutions, or ‘‘nutrients’’.
BFO follows a four-step process that is similar to the WDO
algorithm: reproduction, movement, elimination-dispersal,
and chemotaxis. BFO uses specific criteria to guide its
search process. Under the chemotaxis step, the system ini-
tializes the parameters and examines the initial positions of
the particles, before calculating new positions of the bac-
teria in the solution matrix. The swimming cycle is started
in the second phase to determine the appliances’ present
best state. Following this action, the reproduction cycle iter-
ates, selecting only the fittest options to create the new
population. The final step is to remove the least fitting
solutions and replace them with fresh random samples that
have a reduced likelihood. This is a crucial stage because it
eliminates the least fit options and reduces the likelihood of
recurrence.

The overall proposed model of the Microgrid operation
system is represented in Figure 3.

VII. SIMULATIONS AND RESULT ANALYSIS
In this part, we provided the simulation results of the
suggested NSGA-II approach, along with comparisons to
the other two met heuristics methods (PSO, and BFA).
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FIGURE 2. NSGA-II algorithm steps.

This system evaluates the integration of RESs, ESS, and the
performance of the NSGA-II algorithm in three situations.
The first scenario includes neither RES nor ESS, whereas the
second includes just RES and the third includes both RES
and ESS where the first objective function, is the system’s
operational cost, and the second objective function, energy
consumption in a smart grid with ESSs, is investigated.
A user with 6 passive appliances and an ESS is regarded
as a source to implement the proposed NSGA-II. To sup-
port the load of the prosumers, we have made the power
supply of the electric utility companies (EUCs) accessible
24 hours a day. To fulfill the needs of residential customers,
the suggested model includes MTs, PVs, WTs, and batteries.
The suggested model is simulated using the MATLAB 2021b
software version, and the simulation time is varied depend-
ing on the case under study. The day-ahead 24-hour values
of wind speed and solar irradiance are shown in Figure 4.
Figures (5)-(8) illustrate the eruptive grid signals (forecast
temperature, Purchased energy cost (RTP), battery charging

levels, and overall load demands) utilized in the proposed
study. PV system power production is mostly determined
by solar irradiation and ambient temperature. As shown in
Figure 9, we examined 90% of the total RE in any schedul-
ing time window. In addition, of the 90% of RE utilized
for charging the ESS, 30% is consumed in each time slot.
Figure 10 displays the NSGA-II algorithm solutions for this
situation, with iteration 110 picked as the best response by
the decision-making process since it is the closest to the ideal
point.

At a certain time and by utilizing only the NSGA-II,
it can reduce the energy consumption from 0.976KWh
to 0.937kWh with 0.1$/kW average operating cost.

VIII. SCENARIO 1
Wewill not employRES and ESS in this case; instead, wewill
schedule the appliances using the scheduling algorithms. As a
consequence, the cost, PAR, carbon emissions, and UC are
calculated below.
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FIGURE 3. The proposed model of the microgrid operation.

FIGURE 4. Solar intensity and speed of wind.

A. ELECTRICITY COST
Figure 11 illustrates the power cost of planned and unsched-
uled loads in the absence of RES and ESS. In time slot 9, the
maximum cost of the unscheduled is 70 cents. The highest

FIGURE 5. Daily forecast temperatures.

cost of power in PSO is 66 cents in time slots 19, 21,
and 23. In BFA, the maximum cost of power in time
slot 9 is 58 cents. In the instance of NSGA, the time
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FIGURE 6. Purchased energy cost.

FIGURE 7. Daily battery storage.

FIGURE 8. Overall load demand.

slot 19 is 56 cents. In terms of electricity bill minimiza-
tion, the suggested NSGA algorithm outperforms previous
heuristic methods. The total cost of power in unplanned
load is 740 cents, whereas the costs of BFA, PSO, and
NSGA are 705, 683, and 672 cents, respectively. Overall,
power costs demonstrate that BFA, PSO, and NSGA each
save 4.7%, 7.7%, and 9.18%, respectively. Nevertheless,
when total cost reduction is involved, the NSGA method
offers the best results when compared with other algorithms
in this circumstance. Table 2 shows the cost comparison
for Scenario 1.

FIGURE 9. The expected RE and ESS charging level.

FIGURE 10. Scenario 1 By NSGA-II.

FIGURE 11. Cost reduction for scenario 1.

TABLE 2. Comparison of scenario 1 cost.

B. PAR
Figure 12 illustrates the PAR of the unscheduled and sched-
uled load. Results show that PAR for the unscheduled is
2.62 while PAR for the scheduled algorithms is: 2.34 by PSO,

VOLUME 12, 2024 18845



B. S. Mahdi et al.: Optimization of Operating Cost and Energy Consumption in a Smart Grid

2.26 by BFA, and 2.12 by NSGA respectively. As a result,
the percentage reduction for the algorithms is 10% for the
PSO, 13.1% for the BFA, and 18.4% for the NSGA. The
comparison of PAR in scenario 1 is shown in Table 3.

FIGURE 12. PAR reduction in scenario 1.

TABLE 3. Comparison of scenario 1 par.

C. CARBON EMISSIONS
Figure 13 demonstrates the comparable carbon emissions of
planned and unscheduled loads without RES and ESS. The
results reveal that carbon emissions from heuristic methods
are lower than those from unplanned loads. Maximum carbon
emissions in unplanned time slot 21 are 162 pounds. In the
case of BFA, it is 156 pounds in time slot 21, whereas it is
152 pounds in time slot 21 for PSO. It is 150 pounds in time
slot 21 according to NSGA schedule. In unplanned load, the
total carbon emissions are 3206 pounds. It is 2904, 2890, and
2861 pounds for BFA, PSO, and NSGA, respectively. As a
consequence, overall carbon emissions in BFA are decreased
by 9.41%, in PSO by 9.85%, and in NSGA by 10.7%. How-
ever, in this circumstance, the NSGA algorithm produces the
greatest results in terms of lowering carbon emissions. Table 4
compares carbon emissions in Scenario 1.

TABLE 4. Comparison of scenario 1 carbon emission.

IX. SCENARIO 2
In this particular case, the incorporation of exclusively
Renewable Energy Sources (RES) without Energy Stor-
age Systems (ESS) into the residential vicinity is assessed
based on the factors of electricity costs, Peak-to-Average
Ratio (PAR), and carbon dioxide emissions.

FIGURE 13. Carbon emissions reduction in scenario 1.

A. ELECTRICITY COST
Figure 14 illustrates the electricity expenses incurred by
both scheduled and unscheduled loads using only Renewable
Energy Sources (RES). Table 5 displays the evaluated costs
and their comparison within scenario 2.

FIGURE 14. Cost reduction for scenario 2.

TABLE 5. Comparison of scenario 2 cost.

B. PAR
Figure 15 illustrates the peak-to-average ratio (PAR) of
unscheduled and scheduled loads, and the comparison of PAR
in scenario 2 is presented in Table 6.

C. CARBON EMISSIONS
Figure 16 depicts the carbon emissions resulting from sched-
uled and unscheduled loads when only RES is integrated. The
corresponding comparison of carbon emissions in scenario 2
is presented in Table 7.
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FIGURE 15. PAR reduction in scenario 2.

TABLE 6. Comparison of scenario 2 par.

FIGURE 16. Carbon emissions reduction in scenario 2.

TABLE 7. Comparison of scenario 2 carbon emissions.

X. SCENARIO 3
In this particular case, the combination of renewable energy
sources (RES) and energy storage systems (ESS) in a local
area is assessed based on four factors: electricity bill, PAR,
carbon emissions, and UC.

A. ELECTRICITY COST
To evaluate the impact of RES and ESS integration on elec-
tricity costs, Figure 17 displays the comparison of scheduled
and unscheduled load costs with RES alone. The assessed
costs and their comparison for scenario 3 are also presented
in Table 8.

FIGURE 17. Cost reduction for scenario 3.

TABLE 8. Comparison of scenario 3 cost.

B. PAR
The PAR comparison of scheduled and unscheduled load is
illustrated in Figure 18. Additionally, Table 8 presents the
PAR evaluation and comparison of scenario 3 which inte-
grates both RES and ESS into the local area.

FIGURE 18. PAR reduction in scenario 3.

TABLE 9. Comparison of scenario 3 par.

C. CARBON EMISSIONS
Figure 19 depicts the carbon emissions associatedwith sched-
uled and unscheduled loads when integrating RES and ESS
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in the local area. The comparison of carbon emissions in
scenario 2 is tabulated in Table 10.

FIGURE 19. Carbon emissions reduction in scenario 3.

TABLE 10. Comparison of scenario 3 carbon emissions.

D. USER COMFORT
User Comfort is manipulated in terms of waiting time in this
paper. Waiting time is the amount of time a user waits before
turning on an appliance. For a reduced power cost, users
must use their appliances according to the desired timetable.
If a user is more concerned with saving money, he will have
to sacrifice his comfort. Figures 20, 21, and 22 show the
average waiting time for the PSO, BFA, and NSGA algo-
rithms, respectively. The results reveal that NSGA has shorter
waiting time than other algorithms. In certain instances, the
PSO and BFA have short waiting periods, however the NSGA
algorithm has the shortest waiting time in practically all
situations.

FIGURE 20. UC by PSO.

XI. COMPARAISON STUDY
As shown in Table 11 and in scenario involving both renew-
able energy sources (RES) and energy storage systems (ESS),
the NSGA algorithm consistently outperforms PSO and BFA,
providing optimal solutions with significant cost, PAR, and

FIGURE 21. UC by BFA.

FIGURE 22. UC by NSGA.

TABLE 11. Comparison of all metric parameters.

CO2 reductions. The choice of algorithm depends on specific
priorities, such as cost minimization, environmental impact
reduction, or peak-to-average ratio improvement.

Scenario-1: (without RES and ESS)
NSGA demonstrates the highest cost reduction of 9.2%,

with notable reductions in PAR (18.4%) and CO2
emissions (10.7%).

PSO and BFA also exhibit substantial improvements over
the UnScheduled scenario.

Scenario-2: (with RES and without ESS)
NSGA continues to outperform other algorithms, achiev-

ing a 10.4% cost reduction and significant improvements in
PAR and CO2 reduction.

BFA and PSO show competitive results, with BFA provid-
ing the highest CO2 reduction (21.5%).
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Scenario-3: (with both RES and ESS)
NSGA maintains its superior performance, achieving the

highest cost reduction (19.0%), PAR reduction (30.7%), and
CO2 reduction (21.7%).

BFA follows closely, demonstrating substantial improve-
ments in all metrics.

PSO exhibits competitive results, especially in cost and
PAR reduction.

XII. CONCLUSION
This research has presented an optimized model for the
effective management of energy in a smart grid, integrating
renewable energy resources (RERs) such as PV arrays, Micro
Turbines (MTs), electrical energy storage systems (ESSs),
and a Utility grid (UG). The inherent unpredictability of
renewable resources was characterized using the beta Prob-
ability Density Function (PDF). The primary objectives of
the study were to minimize the operational costs and energy
consumption within a smart grid, as outlined in three distinct
scenarios. Following the optimization of objective functions
by the NSGA-II algorithm, the decision-making process
facilitated the selection of the most optimal solution.

Incorporating renewable energy resources and the optimal
scheduling of ESSs, the NSGA-II algorithm was employed
to achieve cost and energy consumption reductions in the
specified scenario. Specifically, for NSGA-II, the operational
cost was recorded at 0.15 $/kW, with an energy consumption
of 0.939 kWh. The outcomes of the study demonstrate the
superior performance of the proposed algorithm compared
to benchmark algorithms, showcasing reductions in energy
cost, carbon emissions, and peak-to-average ratio (PAR).
For instance, in scenario-2, the electricity bill witnessed a
decrease of 16.4%, PAR reduced by 24.6%, and carbon emis-
sions reduced by 15.2%.

Through comprehensive simulation and results analysis,
it can be concluded that the proposed model holds significant
merit in optimizing operational costs and enhancing energy
efficiency within an intelligent grid.
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