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ABSTRACT Physics-Informed Neural Networks (PINNs) have proven highly effective for solving
high-dimensional Partial Differential Equations (PDEs), having demonstrated tremendous potential in a
variety of challenging scenarios. However, traditional PINNs (vanilla PINNs), typically based on fully
connected neural networks (FCNN), often face issues with convergence and parameter redundancy. This
paper proposes a novel approach that utilizes a multi-input residual network, incorporating a multi-step
training paradigm to facilitate unsupervised training. This improved method, which we named MultiInNet
PINNs, can enhance the convergence speed and the stability of traditional PINNs. Our experiments
demonstrate that MultiInNet PINNs achieve better convergence with fewer parameters than other networks
like FCNN, ResNet, and UNet. Specifically, the multi-step training increases convergence speed by
approximately 45%, while the MultiInNet enhancement contributes an additional 50%, leading to a total
improvement of about 70%. This accelerated convergence speed allows PINNs to lower computational costs
by achieving faster convergence. Moreover, our MultiInNet PINNs provides a potential method for handling
initial and boundary conditions (I/BCs) separately within PINNs.

INDEX TERMS Physics-informed neural network, partial differential equations, multi-input residual
network, convergence speed, unsupervised learning.

I. INTRODUCTION
Various complex natural phenomena are often described by
partial differential equations (PDEs) that lack straightforward
analytical solutions. To tackle this, numerical methods
like Finite Difference Method (FDM) [1], Finite Volume
Method (FVM) [2], Smooth Particle Hydrodynamics (SPH)
[3], and others have been developed. Regardless of the
approach chosen, the core challenge lies in discretizing
these equations to solve [4], [5], [6], a process that is
time-intensive and significantly affects accuracy. Advances
in technology, particularly in GPUs, have enabled the use
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of finer meshes and smaller particle scales, facilitating more
complex discretization schemes. However, the computational
workload for intricate simulations remains substantial. Thus,
computational efficiency remains a crucial consideration,
especially for complex simulations [7].

Deep learning, a transformative paradigm, has displayed
remarkable efficacy across diverse domains, including
real-time object detection (e.g., YOLO [8]) and image
generation (e.g., diffusionmodels [9]). Its pervasive influence
extends beyond computer vision domains, progressively
infiltrating disciplines like molecular dynamics and, notably,
the realm of differential equations. For instance, Dissanayake
and Phan-Thien employed fully connected neural networks
to address both the linear poisson equation and the nonlinear
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FIGURE 1. PINNs solves the Burger/Schrödinger equation. (a) is the
visualization of the shallow PINNs neural network, (b) is the visualization
of the neural network after several layers, (c) is the prediction of vanilla
PINNs.

heat generation problem [10]. Concurrently, Lagaris et al.
have used decomposition strategies to ensure solutions adhere
to initial and boundary conditions, effectively using neural
networks to address differential equation challenges [11].
However, earlier efforts primarily focused on ubiquitous
problems or those abundant in readily available data.
Advancements in deep learning, facilitated by frameworks
like PyTorch and TensorFlow, alongside advances in auto-
matic differentiation techniques [12], has spawned innovative
network architectures [13], [14]. Physics-Informed Neural
Network (PINNs) [15] is a prominent example, lauded for
its prowess in tackling Partial Differential Equations (PDEs).
PINNs’ popularity has spurred the development of advanced
models [16], [17], [18], [19], [20], including DeepXDE [21],
an open-source toolkit by Lu et al. This comprehensive
library extends PINNs’ capabilities for solving diverse PDE
challenges. The continuous refinement of PINNs-inspired
strategies underscores their potential to transform PDE
problem-solving, evolving the field beyond common or
data-rich problems.

Despite the evident advantages of PINNs, they face
challenges in training dynamics, notably slow convergence
[22]. This issue often stems from intricate interactions among
diverse loss terms contributing to the collective training loss.
To thoroughly investigate the learning dynamics of network
parameters at different depths, we systematically truncate
the output of PINNs networks with varying depths. This
strategic approach provides insights into their learning trends.
For instance, when applying PINNs to solve the Burger
equation (as shown in Figure 1 left panel), the analysis of
truncated outputs unveils limited boundary learning tenden-
cies in shallower neural network layers. Conversely, deeper
layers exhibit progressively enhanced boundary awareness.
Expanding our investigation to the Schrödinger equation,
as shown in Figure 1 (right panel), confirms the consistent
learning trends observed in PINNs. Based on these outcomes,
it is plausible to suggest leveraging insights derived from
shallower layers to enhance the learning trajectory of deeper
layers.

In contrast to the recourse of adopting specialized acti-
vation functions to expedite convergence of PINNs [23],
[24], [25], our focus extends to the holistic backbone
network structure and training methodology. Thus, we intro-
duce multi-input residual network (MultiInNet), inspired
by the residual network [26]. This architecture is designed
to facilitate enhanced cross-layer information exchange,
foster collaborative learning, and tackle the challenge of
slow convergence encountered in solving partial differential
equations.

The specific contributions we have made can be
summarized in the following points:

• We explored the parameter learning of PINNs at various
depths through the visualization of truncated predictions
from distinct layers within the network architecture. The
findings suggest that the deeper layers of the network
exhibit a more pronounced capability in effectively
assimilating initial and boundary information

• In contrast to PINNs’ one-step training that involves all
network parameters, we propose a multi-step training
approach with fixed parameters. This novel strategy
has demonstrated an accelerated convergence rate for
PINNs.

• We introduce a novel residual-based backbone network
termed the ‘‘multi-input residual network.’’ This inno-
vation accelerates the convergence rate of PINNs and
concurrently reduces the network parameters compared
to the fully connected backbone.

The paper is structured as follows. Section II briefly
outlines the fundamental principles of PINNs. In Section III,
we provide an overview of the related works pertaining to
the convergence and initial/boundary conditions of PINNs.
Section IV presents numerical results and comparative
experiments of various backbone network PINNs to solve
different PDEs. Finally, in Section V, the efficacy of
our approach is verified through ablation experiments.
Finally, in Section VI, we outline our methodology and
briefly address any remaining concerns, highlighting possible
avenues for future research. All related code and data are
available on https://github.com/konanl/MultiIn-net_PINNs.

II. RELATED WORKS
A. INFLUENCE OF INITIAL/BOUNDARY
CONDITIONS(I/BCs)
Physics-Informed Neural Networks (PINNs) is significantly
affected by constraints imposed by initial/boundary condi-
tions (I/BCs), often resulting in unstable or slow convergence.
Twomain strategies have been employed to address this issue.
The first strategy involves optimizing weight parameters in
the loss function [22], [27], [28], [29]. Typically, priority is
given to optimizing PDE residuals during PINNs training.
To address this, practitioners often increase the relative
weight of the loss associated with I/BCs. This strategic
weighting emphasizes I/BCs during backpropagation and can
lead to favorable training outcomes. However, determining
the precise weighting parameters remains a challenge.
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Wang et al. proposed a dynamic adjustment method that
monitors the ratio of residuals to I/BCs loss components
and updates weights accordingly [22]. The second strategy
introduces a regularization term within the loss function
to prevent overfitting during training. This regularization
component penalizes PDE residuals, preventing excessive
optimization that could hinder other loss components during
gradient descent. For example, to counteract density-fitted
instability in one-dimensional shock tube problems using
vanilla PINNs, Liu et al. introduced a velocity gradient
penalty term within the loss function’s residual segment [30].

B. ACCELERATING THE CONVERGENCE OF PINNs
Efforts to expedite the convergence of PINNs can be grouped
into three primary directions. Firstly, research aims to
enhance PINNs’ initial states by optimizing data sampling
methods and initializing network parameters effectively.
For instance, Nabian et al. investigated the efficiency of
importance sampling [31], while Liu et al. introduced
the NRPINN framework, which leverages New Reptile
initialization for accelerated training and improved accuracy
[32]. Secondly, there is a focus on optimizing the net-
work architecture of PINNs, including designing activation
functions and backbone networks to improve convergence
speed and overall effectiveness. Lastly, fine-tuning the
multi-task loss function constitutes the third approach, often
involving careful weighting of various loss components
[28] or the use of tailored training strategies to facilitate
enhanced convergence [33]. Moreover, Recent studies have
demonstrated the application of Bayesian optimization in
solving physical systems [39], and numerous studies have
utilized Bayesian optimization techniques in optimizing the
parameter sets of neural networks [40], thereby striving for
accelerated convergence.

III. METHODOLOGY
A. PHYSICS-INFORMED NEURAL NETWORKS
Physics-informed neural network (PINNs) [15] is a
high-performance network paradigm for solving a wide
range of PDEs. Utilizing advanced deep learning framework
differentiation techniques [12], we can systematically
construct a problem-specific loss function through automatic
differentiation. This approach indirectly encapsulates the
underlying functional relationship between the fitted data
within defined boundaries, consequently, solving PDEs is
transformed into an optimization challenge of network
parameters. This transformation enables the indirect solution
of PDEs by optimizing neural networks. We consider the
general form of a partial differential equation with the
following initial and boundary conditions:

ut +N (ut (x, t); λ) = 0, x ∈ �, t ∈ [0,T ] (1)

u(x, 0) = f ic(x, 0), x ∈ �

u(x, t) = f bc(x, t), x ∈ ∂�, t ∈ [0,T ]

(2)

where x and t denote the coordinates in space and time,
respectively. Subscripts are employed to indicate partial
differentiations, while superscripted delineate distinct func-
tions. The operator N [·] represents either linear or nonlinear
differential operations. Furthermore, � signifies a subset
within RD, and ∂� pertains the boundary of �.
The primary goal of PINNs is to utilize the neural

network denoted as f (x, t; 2) to effectively approximate the
theoretical solution u(x, t) for a given set of PDEs. This
involves the formulation of distinct loss functions rooted
in the existing PDEs and I/BCs, and these loss functions,
in turn, serve as pivotal optimization targets within the
PINNs. Subsequently, under specific I/BCs, PINNs can be
used to deliver practical solutions. The residual form of
Equation (1) is as follows:

Rθ (x, t) :=
∂

∂t
f (x, t; θ ) +N [f (x, t; θ )] (3)

where Rθ (x, t) is referred to as the PDEs residual, and
this value quantifies the deviation from the actual PDEs,
so the aspiration is for its value to approach zero. The
training of the PINNs’ backbone network is executed through
gradient descent, utilizing a general composite loss function
formulated as follows:

L(θ ) = Lr (θ ) +

N∑
i=1

λiLi(θ ) (4)

where Lr (θ ) is the loss term to penalize the PDEs resid-
ual, and Li(θ ) denotes the supervision loss, commonly
instantiated through initial conditions, boundary conditions,
or supervised data loss (supervised data loss can only be
implemented if we have labeled data). In this paper, we exclu-
sively focus on training the model in an unsupervisedmanner,
meaning the absence of labeled datasets. Consequently, our
consideration solely pertains to the loss originating from
I/BCs, with the general form of these respective loss functions
as follows:

Lic(θ ) =
1
Nic

Nic∑
i=1

(I(x iic, t
i
ic))

2,

I(x iic, t
i
ic) = u(x iic, 0) − f ic(xi, 0) (5)

Lbc(θ ) =
1
Nbc

Nbc∑
i=1

(B(x ibc, t
i
bc))

2,

B(x ibc, t
i
bc) = u(x ibc, t

i
bc) − f bc(xi, ti) (6)

for the PDEs residual loss, the form is as follows:

Lr (θ ) =
1
Nr

Nr∑
i=1

(R(x ir , t
i
r ))

2 (7)

where {(x iic, 0)}
Nic
i=0,{(x

i
bc, t

i
bc)}

Nbc
i=0 denote the sampling points

for initial and boundary conditions, respectively. Further-
more, {(x ir , t

i
r )}

Nr
i=0 represents randomly selected training

points within the domain �. Notably, utilizing these sampled
points, Equation (5) (6) (7) correspond to the initial condition
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FIGURE 2. (a) is PINNs network model schematic, (b) is three types of backbone network diagrams of PINNs, left to right: Resnet, UNet, MultiIn-net, (c) is
the backbone network diagrams of MultiIn-net with correction.

loss, boundary condition, and PDEs residual, respectively.
Ultimately, in the training process of the PINNs, the objective
is to minimize the composite loss as much as possible, which
takes the following form:

L(θ ) = wr ∗ Lr (θ ) + wic ∗ Lic(θ ) + wbc ∗ Lbc(θ ) (8)

where wr ,wic,wbc symbolize the weights attributed to the
three aforementioned loss functions, respectively. Common
practice often entails judiciously enhancing the weights
of I/BCs loss functions, but this approach is eschewed in
this paper, where the weights are uniformly maintained at
one, with the exception of vanilla PINNs. The overarching
conceptual framework of PINNs is illustrated in Figure 2 (a).

B. BACKBONE NETWORK OF PINNs
Currently, most PINNs employ fully connected networks as
backbone, risking overfitting [34] and parameter redundancy.
In response, alternative backbone architectures, such as
ResNet, have been explored. We propose that crucial initial
and boundary conditions information is primarily captured in
deeper layers. Utilizing this insight, we enhance shallower
layers’ parameter learning, aiming to optimize convergence
and overall performance.

In this paper, we compare our proposed PINNs backbone
network with Resnet and UNet, focusing on parameters and
convergence speed. As depicted in Figure 2 (b), we illustrate
the network structure of ResNet, UNet, and our MultiInNet,
which inspired by residual networks and stood out with
dual or multiple input interfaces. This design aims to
allow information from deeper layers to influence shallower

ones, akin to an inverted residual architecture. To meet
PDE targets using both collocation and initial/boundary
condition samples [31], we employ multiple pairs of residual
connections, differing from ResNet’s single connection,
this strategy integrates information from various deep-layer
network parameters. Furthermore, further modified to filter
invalid information, ensuring information exchange promotes
gradient descent, we modify the network and further screen
residual connections, and the specific structure is shown in
Figure 2 (c).

C. TRAINING STRATEGY OF PINNs
In the initial stages of PINNs training, achieving a balanced
weighting between loss terms is crucial to prevent instability
and hindered convergence, especially with complex I/BCs
[35]. Several methodologies in related studies employ
specific training methods, notably greedy algorithms [36],
especially for training shallow networks, as opposed to
the conventional gradient descent algorithms. It’s important
to note that this paper exclusively employs the Adam
optimization algorithm [37] across all methodologies, with-
out delving into the exploration of specialized training
algorithms. Moreover, traditional PINNs training involves
optimizing all network parameters simultaneously. However,
we introduce a modification in this paper. We employ a
multi-step strategy where subsets of network parameters are
optimized at different stages. For instance, deep network
modules are pre-trained early in the process, followed by
individual optimization of distinct network layers according
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to network type. Finally, we fine-tune the overarching
parameters.

IV. NUMERICAL EXPERIMENTS
In this section, we perform numerical experiments to validate
our method against alternative approaches. For vanilla
PINNs, default training settings were utilized, comprising
8000 training steps, Adam optimizer with a learning rate of
10e-3, and a network structure of 4*20 (layers*neurons). The
training sampling points were systematically generated using
the Sobol sequence. Specifically, 1000 points were sampled
for the residual points, whereas the initial and boundary
conditions were set at half the scale of the sampling points.
From a fundamental perspective, the rationale behind having
fewer sampling points for the initial boundary conditions
compared to the residual points is justified. All three
network architectures (ResNet, UNet, and our enhanced
MultiInNet) follow the multi-step training strategy with
consistent training hyperparameters across various examples.
Notably, all experiments were conducted utilizing the GPU
RTX 3060.

We rigorously assessed the training complexity of diverse
network architectures by calculating both the average step
training time and the total training time. This evaluation
aimed to substantiate the validation of assessing convergence
speed based on the convergence step. The results of these
assessments are graphically depicted in Figure 3. To ensure
the robustness and reliability of our findings, we conducted
ten training iterations.Within the presented Figure 3, the solid
line represents the total training time, while the dashed line
illustrates the duration of each individual training step.

FIGURE 3. Statistical curve of training time for experiments: (a), (b), (c),
(d) are poisson equation, advection equation, convention-diffusion
equation and helmholtz equation respectively.

Moreover, with the exception of the corrected version
of MultiInNet, all examples employ the tanh(·) activation
function, which is widely used within the domain of PINNs.
In our experimental setup, a larger number of sample points

are allocated to the test set as compared to the training set.
The evaluation of the model is undertaken with the mean
square error (MSE) and the L2-error, both of which serve as
metrics for gauging the performance of the trained model.
The expressions for these metrics are as follows:

MSE =
1
N

N∑
i=1

|u(xi, ti) − û(xi, ti)|2 (9)

L2 − error =

√∑N
i=1 |u(xi, ti) − û(xi, ti)|2√∑N

i=1 |u(xi, ti)|2
(10)

where u signifies the reference solution, û denotes the predic-
tions of neural networks. The Mean MSE and L2-error of all
examples are presented in Table 1. Moreover, we compare the
magnitudes of various network parameters and the outcomes
of which are detailed in Table 2.

A. POISSON EQUATION
For the first example, consider the Poisson equation [38],
[41], which has the following general form,

−
d2u
dx2

= f (x), x ∈ [−L,L] (11)

and the boundary conditions as defined as u(−L) = u(L) = 0.
To maintain simplicity, we set the exact solution as u(x) =

sin(x2).
In this example, we exclusively consider the PDE residual

and boundary condition loss. The vanilla PINNs use a
weight ratio wr

wbc
of 0.1, while others maintain a ratio

of 1. Regarding the training strategy, exclusively the deep
network parameters are engaged in training until reaching
2000 epochs. Subsequently, solely the shallow network
parameters are involved in training from 2000 to 4000 epochs,
their loss functions’ convergence is shown in the left side of
Figure 4. Early-stage instability in the boundary condition
loss may stem from freezing shallow network parame-
ters, but overall loss convergence accelerates. Additionally,
we modify PINNs backbone networks into UNet, ResNet,
and MultiInNet, achieving notable convergence benefits
compared to vanilla PINNs’ fully connected networks, with
ResNet and MultiInNet showing convergence tendencies
around 1000 epochs.

B. ADVECTION EQUATION
Advection stands as a critical process within atmospheric
motion, with the governing equations incorporating an
advection term. We consider advection equation as follows:

∂u
∂t

+
∂u
∂x

= 0, x ∈ [0, 1], t ∈ [0, 0.5] (12)

and its I/BCs are the following:

u(0, x) = 2sin(πx)

u(t, 0) = −2sin(π t), u(t, 1) = 2sin(π t) (13)
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TABLE 1. Statistics of mean MSE of different PINNs.

TABLE 2. Statistics of L2-error of different PINNs.

TABLE 3. Statistics of network parameters.

FIGURE 4. Loss decay curve for different PINNs to solve the Poisson/Advection equation: (a) shows the loss decay curve of the Poisson equation,
(b) shows the loss decay curve of Advection equation.

and the exact solution of the advection equation in this
example is u(t, x) = 2sin(π(x − t)).

We need to consider three loss components (PDE residual,
initial condition, boundary condition) with weight ratios of
wr : wic : wbc = 1 : 10 : 10 for vanilla PINNs, while

othersmaintainweights at 1. The loss convergence is depicted
in the right side of Figure 4. Notably, the significant total
loss convergence starts when the I/BCs loss converge to a
certain extent, underscoring their crucial role in the PINNs
backbone network’s convergence. Similarly, our backbone’s
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FIGURE 5. Loss decay curve for different PINNs to solve the Convention-diffusion/Helmholtz equation: (a) shows the loss decay curve of the
Convention-diffusion equation, (b) shows the loss decay curve of Helmholtz equation.

FIGURE 6. Comparison of absolute error in the Helmholtz equation when
k is 10.

I/BCs loss exhibits faster convergence, contributing to the
overall accelerated convergence.

C. CONVENTION-DIFFUSION EQUATION
The convection-diffusion equation, a fundamental equation
of motion with wide applicability in various domains, repre-
sents a linear partial differential equation. Here, we address
the convection-diffusion equation in the following form,

∂u
∂t

+ c ·
∂u
∂x

= µ ·
∂2u
∂x2

, x ∈ [−L,L], t ∈ [0,T ] (14)

FIGURE 7. Comparison of loss convergence in the Helmholtz equation
when k is 10.

furthermore, we consider the following I/BCs,

u(0, x) =
0.1

√
0.1 · µ

exp(−
(x + 2)2

4 · 0.1 · µ
)

u(t, −L) = u(t,L) = 0 (15)

and we use the following parameter configuration c =

4.0, µ = 0.05,L = 4,T = 1.
The initial conditions in this instance exhibit greater

complexity compared to prior cases, potentially leading
to more challenging convergence. The results illustrate a
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FIGURE 8. One step train (left) vs. multi step train (right) for loss convergence of the Poisson/Advection equation ((a) is poisson equation, and (b) is
advection equation).

FIGURE 9. MultiInNet PINNs (up) vs. its corrected version (down) for loss
convergence of the Convention-diffusion/Helmhoz equation.

dynamic interplay between the initial conditions and PDE
residuals during early convergence stages. However, our
tailored training approach and selected backbone network
are designed to address these complexities, as evidenced
in left side of Figure 5. Our training strategy mitigates
initial hurdles, such as balancing the significance of the
initial condition loss and PDE loss. Conversely, UNet and

ResNet exhibit earlier convergence stagnation. Our corrected
MultiInNet surpasses these issues, achieving convergence
around 2500 iterations.

D. HELMHOLTZ EQUATION
In our final example, we consider the Helmholtz equation
[42], a fundamental elliptic partial differential equation that
characterizes the behavior of electromagnetic waves. The
equation is presented in the following form within this paper:

∂2u
∂x2

−
∂2u
∂y2

+ κ2u− q(x, y) = 0, x, y ∈ [−L,L] (16)

and we set L = 1.0, meanwhile q(x, y) as follows:

q(x, y) = −(a1π )2sin(a1πx)sin(a2πy)

− (a2π )2sin(a1πx)sin(a2πy)

+ κ2sin(a1πx)sin(a2πy)ω (17)

and for simplicity we take κ = ω = 1.0, boundary conditions
as follows:

u(−L, y) = u(L, y) = u(x, −L) = u(x,L) = 0 (18)

Similarly, for vanilla PINNs we set the weight ratio wr :

wic : wbc = 1 : 5 : 5, and all other ratios are equal to 1.
As before, the boundary conditions are complicated, which
means that the final level of convergence is often limited by
the convergence of the boundary conditions, as can be seen
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FIGURE 10. The loss convergence and prediction(absolute error) of the Poisson/Advection equation: (a) is Poisson equation, and (b) is Advection
equation. The left side of (a)/(b) is the first scenario(20 sample points), the right side is the second(200 sample points).

FIGURE 11. The loss convergence and absolute error of the Convention-diffusion/Helmholtz equation: (a) is Convention-diffusion, and (b) is Helmholtz
equation. The left side of (a)/(b) is the first scenario(20 sample points), the right side is the second(200 sample points).

in right side of Figure 5, however our corrected MultiInNet
converge to a better level.

Furthermore, to assess the model’s robustness and the
experiments’ generality, we incorporated a comparative
analysis of prediction and convergence across distinct
network structures in the scenario where κ = 10. In this
example, no multi-step training strategy is considered for
training, except for the vanilla PINNs. The outcomes of these
comparisons are represented in Figure 6 and Figure 7.

V. ABLATION EXPERIMENTS
To validate our training method’s effectiveness, we conduct
ablation experiments based on the previous section. The first
two experiments maintain the same hyperparameters as in
the previous section, except for the training method. For

UNet, multi-step training yields noticeable improvements.
However, for ResNet and MultiInNet (with corrections), due
to the presence of residual connections, we opt to fix the
first and last layers while employing multi-step training.
Achieving more precise subnetwork parameters might have
been possible but was not pursued. The next two experiments
investigate the correction’s impact on MultiInNet, and
the concluding experiment was conducted to investigate
the influence of diverse sample sizes on the convergence
tendencies exhibited by various network structures.

A. COMPARISON OF TRAINING METHODS
The comparison of loss convergence using one step training
method and using multi step training method for solving
poisson/advection equation is shown in Figure 8.
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B. INFLUENCE OF CORRECTION TO THE MultiInNet
The loss convergence comparison between MultiInNet
PINNs and its corrected version for solving the convection-
diffusion/Helmholtz equation is depicted in Figure 9 (without
employing any training strategy). Obviously, the modified
version shows improved convergence with a lower level of
loss compared to the original MultiInNet.

C. INFLUENCE OF SAMPLE SCALE
Furthermore, we scrutinize the effectiveness of the network
and trainingmethods across diverse configurations of training
sample points. To elucidate the convergence of training
loss, our experimental design encompasses two distinct
scenarios. The first scenario involves an examination with
a lesser number of sample points(20 points), while the
second scenario explores a more substantial set of training
sample points(200 points). The loss convergence and predic-
tion(absolute error) of poisson/advection equation is shown
as Figure 10, and convention-diffusion/helmholtz equation is
shown as Figure 11.

VI. CONCLUSION AND FUTURE WORK
In this study, we have observed significant boundary infor-
mation primarily present in deeper networks. Consequently,
we aimed to implement novel training methodologies and
backbone networks within PINNs, and this adaptation allows
the PINNs backbone to access initial and boundary infor-
mation from the outset of training, theoretically expediting
convergence. Our experimental findings affirm the effective-
ness of our approach, demonstrating that our devised training
method and network model (MultiInNet PINNs) notably
accelerate the convergence speed of PINNs. Nevertheless,
in scenarios where the problem entails exceedingly intricate
initial and boundary conditions, Resnet and MultiInNet will
struggle to converge, therefore, we’ve adapted MultiInNet to
circumvent the propagation of erroneous gradient informa-
tion, and this modification distinctly mitigates convergence
stagnation. In summary, this paper aims to provide a robust
training strategy and recommended networkmodel for PINNs
to enhance their convergence efficiency. Effectively utilizing
initial and boundary conditions to facilitate PINNs training
stands as a pivotal aspect and plays a fundamental role in
the generalization capabilities of PINNs. There are many
models, such as FNO (Fourier Neural Operator) [43] and
DeepONet (Deep Operator Networks) [44], exhibit inherent
generalization advantages when dealing with solving Partial
Differential Equations (PDEs). Related work has also been
done combining them with PINNs to enhance generalization
and overall performance [45], [46]. In our prospective
investigations, our primary focus will be on enhancing
the generalization capabilities of Physics-Informed Neural
Networks (PINNs). Strengthening their ability to generalize
is crucial for increasing their applicability in industrial
settings and unlocking their broader potential.
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