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ABSTRACT This study delves into the nuanced patterns of shock and recovery in transit ridership during
and after the COVID-19 pandemic, aiming to illuminate the resilience exhibited by various geographic areas.
This resilience is measured by the ability of transportation systems to withstand, adapt to, and bounce back
from unforeseen shocks. In this research, smart card big data were exploited to track real-time mobility
dynamics and economic activity within the city of Seoul, Korea. The approach employed multivariate
two-dimensional functional data analysis and a hierarchical clustering method to examine both boarding and
alighting patterns, taking into account multi-scalar temporal units, monthly and hourly demand fluctuations.
The findings present distinct varied shock-and-recovery patterns across areas in transit ridership based on the
socioeconomic characteristics of specific areas. These characteristics encompass factors such as industry and
land-use composition, income levels, population density, and proximity to points of interest. Additionally,
this methodology proves effective in identifying abnormal surges in demand linked to local large-scale
development projects.

INDEX TERMS COVID-19, functional data analysis, MFPCA, public transit ridership, resilience.

I. INTRODUCTION
The unforeseen aftermath of the COVID-19 pandemic
imposed a formidable stress test on different socioeconomic
systems across countries. The transportation sector was
one of the sectors that experienced harsh damage from
the COVID-19 pandemic. As it unfolded, the pandemic
revealed fluctuating patterns in transportation systems, and
underscored the diverse challenges in mobility. Amidst the
unprecedented situation, transportation researchers and poli-
cymakers embarked on inquiries to delineate and comprehend

The associate editor coordinating the review of this manuscript and

approving it for publication was Jesus Felez .

the patterns of shock and recovery. They sought to frame these
patterns within the broader concept of ‘‘resilience’’, aiming to
understand the capacity of transportation systems to endure,
adapt and recover from unforeseen shocks.

The majority of the relevant research focuses on the impact
of the spread of the pandemic itself and consequent reserva-
tion towards crowded locales and various policy interventions
on transportation demand and ridership patterns. Major
interest was placed on the drop and recovery of passenger
flows as the pandemic trembled transportation systems, and
the manner in which these effects manifested themselves
differently depending on local characteristics. One strand
of research has focused on the influence of lockdowns and
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interpersonal distancing measures as policy tools, and the
bounceback of passenger movements immediately following
the relaxation of such impositions [1], [2]. Persistent shifts
in economic activity and transportation usage necessitates
the examination of patterns over a longer period of time
in order to achieve a comprehensive analysis of the new
equilibria. Another strand of literature primarily explores the
overall impact of the pandemic on transportation demand,
specifically its drop and recovery at the system level [3],
[4], [5]. The heterogeneity of such impacts by location
requires further study to accurately measure and analyze the
socioeconomic and policy implications of the pandemic.

In this study, the concept of ‘‘differential resilience’’
[6] is adopted to enhance the discussion and applied on
different timescales. Using transit ridership as a particularly
compelling measure of neighborhood economic activity, the
varied responses and adaptive and restorative capacities
exhibited by urban neighborhoods in the face of large-scale
external shocks are explored. Specifically, focus is placed
on the following questions: 1) Do neighborhoods respond
to the unexpected shock in varied patterns?; 2) Which
socioeconomic and spatial characteristics contribute to the
heterogeneity of resilience in the metropolis? By analyzing
the variations in transit ridership, this research aims to
uncover the underlying factors and characteristics that
contributed to the divergent responses exhibited by each
neighborhood and shed light on the multifaceted nature of
differential resilience at a broader temporal and spatial scale.

This research posits a novel approach to effectively
answer these intricate complexities as thus. By employing
a considerably wider spatiotemporal range of data from
January 2019 to May 2023, both the macroscopic shifts
before and after the pandemic can be effectively captured, and
a lens through which differential resilience can be measured
and analyzed is formulated. Smart card big data were utilized
to trace the real-time dynamics of human mobility and
economic activity during and after the COVID-19 pandemic.
Moreover, the analytical powers of functional data analysis
(FDA) and the hierarchical clustering method allow for an
assessment of the varied spatiotemporal changes in Seoul’s
metro systems during the analysis period. This innovative
multivariate two-dimensional approach is able to capture
the changes in hourly and monthly transit demand for both
boarding and alighting simultaneously.

This research presents notable differential resilience pat-
terns among stations in Seoul. Among others, industry and
land-use makeup, income level, population density, and
proximity to points of interest (POIs) are identified as relevant
factors for explaining this differential resilience. Using this
knowledge, the resilience of neighborhoods vis-Ã -vis their
respective characteristics and functions within the urban
sphere is discussed, and valuable insights that can contribute
to the ex-ante establishment of policies to reinforce resilience
and equity in view of future similar shocks are offered. The
potential of FDA in spotting outliers which display unique

and distinguishable patterns are also confirmed in the context
of passenger flows.

The rest of this paper is structured as follows: first, a review
of past literature on the COVID-19 pandemic, the resilience
of transportation systems, and the applications of FDA in
transportation studies is provided. Then this research’s main
methodological approach is introduced and presented as
a model to examine differential dynamics of transit use
resilience across neighborhoods in Seoul. The next section
discusses the results of themodel. The final section concludes
with a discussion on the limitations of this research and
opportunities for future research.

II. LITERATURE REVIEW
A. THE COVID-19 PANDEMIC AND DIFFERENTIAL
RESILIENCE IN TRANSPORTATION SYSTEMS
The COVID-19 pandemic functioned as a devastating shock
in our society, and brought about unexpected changes in the
transportation sector. In addition to lockdown restrictions
suppressing the overall level of travel demand, the impact
of the COVID-19 pandemic on traffic demand displayed
significant variability contingent upon transportation modes,
with public transportation notably experiencing the most
substantial decline [7]. This marked contrast in demand
reduction across modes triggered a noteworthy shift in modal
share dynamics away from public transportation to private
cars and more active modes [8], [9], [10]. The pandemic
instilled a sense of reservation among passengers regarding
the use of public transit due to concerns over potential
transmission vectors, particularly dense crowds and shared
surfaces, leading individuals to opt for private vehicles as
a means of reducing contact with others [11]. For example,
more than half of the passengers studied by Nikolaidou
et al. [12] reduced their reliance on public transportation or
abstained from using it altogether during the pandemic due
to concerns with being in crowded, potentially unsanitary
vehicles for extended periods of time. Notably, in the case
of Budapest, the share of other modes rose, while only the
modal share of public transportation plummeted from 43% to
18%, a shift which began before proper lockdown measures
were implemented [13]. The preference for ride-hailing and
ride-sharing services also tended to decrease, primarily owing
to the heightened risk of transmission in enclosed vehicles,
even with reduced passenger interactions [14]. The decrease
in passenger movement was also varied depending on the
distance and purpose of travel, with passengers travelling
significantly shorter distances and making less trips for
shopping purposes [15].

The transition from public transit to private cars during the
pandemic exhibited varying patterns based on socioeconomic
characteristics. Lower-income populations, in particular,
continued to rely on public transportation and paratransit
services, given the financial challenges associated with
owning and operating personal vehicles, thereby facing a
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higher risk of infectious disease transmission compared
to their higher-income counterparts [1], [11], [16]. During
crises involving nationwide travel restrictions, individuals
typically curtailed less-essential trips first [17]. In China,
as confirmed by Zhou and Lee [18], recreational activities and
social visits experienced the most significant declines during
the peak of the epidemic compared to the pre-COVID-19
period. Conversely, shopping trips, characterized by shorter
trip distances and durations and foci on acquiring food and
essential items, did not witness a decline and even exhibited
slight increases, becoming the primary purpose of trips during
the pandemic [11], [15]. However, the specific patterns
of change varied from one country to another, contingent
upon the implementation of distancing measures and travel
restrictions as well as cultural attitudes and responses [19].

As the spread of the COVID-19 slowed down and lock-
down measures were subsequently lifted, economic activity
began to return to a new ‘‘normal’’, and travel volumes and
public transportation ridership levels were observed to follow
the recovery in hand in many cases. Notably, this provided
an incredibly unique setting where one can observe how a
bounce-back of the transportation system proceeds over time.
Even though there is just a limited number of studies on
this yet, they have presented a surprisingly common finding
that the pace and magnitude of the recovery are revealed
to vary across regions serving different functions within the
city [16]. Fernández Pozo et al. [20] manually divided the
eight-month peak pandemic period in Madrid, Spain into
seven distinct phases, from the pre-pandemic to the end
of lockdown measures, and analyzed public transport ticket
validation data by mode, station, ticket type, and income
to find that there exists a variation in daily total ridership
recovery patterns depending on those factors. Sharma et al.
[3] created a counterfactual scenario to estimate demand
without the influence of the pandemic and performed a
mixture of spatial lag and geographically weighted regression
to confirm the existence of spatial clusters and identify
elements in the built environment, socioeconomic conditions,
and public risk perception levels whose spatial distributions
can account for the spatial heterogeneity of changes in
ridership over time. Ammoury et al. [21] analyzed ridership
patterns from both transit supply and demand perspectives
and explored the influence of socioeconomic factors such
as income, age, and education level, as well as locational
factors including adjacency to a local university, hospitals,
and supermarkets. While these studies investigated the extent
to which the effect of relaxation of lockdown policies and
interpersonal distancing regulationsmanifested themselves in
different socioeconomic groups, the coverage was limited to
only the initial stages of the post-pandemic period, usually
no later than 2022. However, this paper examines the entire
trends and patterns of the long-term recovery of economic
activity and passenger flows as global systems fully settle into
the ‘‘new normality’’ throughout all stages of the COVID-19
pandemic.

In the literature of differential resilience, researchers
acknowledge and measure the spatial diversity in resilience,
which refers to a system’s inherent capacity to maintain,
revert to, or adapt its functionalities in the aftermath of an
external shock [6]. The series of disruptions and recoveries
observed in the transportation sector during the COVID-19
provided an opportunity to capture the temporal dynamics of
the regional resilience of transportation systems. The focus
of existing research on regional resilience includes economic
activity in view of external shocks. Giannakis andBruggeman
[22] and Sensier et al. [23] analyzed regional disparities in
the impact of the Great Recession on economic activity and
emphasized the comparison of local resilience levels relative
to the overall average. Moreover, they explored the existence
of spatial autocorrelation and the influence of the interplay of
a range of factors such as industry makeup, demography, and
migration patterns using multilevel regression. Research on
the regional resilience of transportationmovementsmerit par-
ticular attention. Dobruszkes and Van Hamme [24] quantified
through multiple regression the relationship between changes
in economic output and air travel movements in view of the
Great Recession at the country level to find globally shared
patterns, and offered nuanced explanations for outlying
cases whose trajectories diverged from it. Potter et al. [25]
identified differences in the resilience of rail freight flows
in response to exogenous disturbances in the infrastructure,
market, and macroeconomy that occurred during a multi-
year period. Ziedan et al. [5] aggregated monthly transit
ridership trajectories in the United States at the metropolitan
level and compared trends among them using changepoint
analysis to find that metropolitan areas where the return of
ridership levels was most prominent were those that offered
fare-free transit for extended periods. This paper exemplifies
a comprehensive analysis, assessing the differential resilience
to COVID-19 across sub-sections of a large city by comparing
travel demand changes before, during, and after the event.

B. APPLICATIONS OF FDA IN TRANSPORTATION STUDIES
Even though the newly emerged phenomena of varied
recovery patterns in transportation systems during the
COVID-19 pandemic are consistent with the concept of
differential resilience, researchers still lack a methodological
framework that can quantify and measure the temporal
patterns of recovery over time. In the specific context
of the COVID-19 pandemic, numerous research endeavors
have been undertaken to assess the changes in public
transit ridership. As can be seen in Table 1, data from
various sources have been employed, including surveys
[8], mobile location data [2], [26], counting stations [13],
and online service usage information [4]. Another key
method through which data-based travel pattern analysis
is performed is automatic fare collection (AFC) records.
For example, Luo [27] aggregated AFC transactions to the
journey level and extracted key behavioral characteristics
from their trajectories. Based on this data, k-means clustering
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was applied to identify passenger groups which exhibited
similar shifts in behavioral patterns since the pandemic
began. Jiao et al. [28] analyzed the regional discrepancies in
the impact of the pandemic on public transit (PT) ridership
in the Greater Austin area by using multivariate k-means
clustering and geographically weighted regression (GWR) to
compare percentage changes in ridership with demographic
characteristics, distance from the city center and PT stop
density. Liu et al. [29] used transit navigation app data and
built a logistic model to find that communities with higher
proportions of essential workers, vulnerable populations, and
more coronavirus internet searches maintained higher levels
of minimal demand during COVID-19.

As the process of resilience proceeds on time, FDA can
serve as an effective methodological framework through
which the varied patterns of resilience across places can
be examined. Seya et al. [30] employed an approach that
harnessed the capabilities of FDA by transforming multi-year
land price data into functional data. This allowed for the
identification of the areas benefiting from railway line
projects, leveraging the unique attributes of FDA. Jung and
Song [31] applied the FDA approach to analyze and cluster
the time dynamics of neighborhood changes. Furthermore,
an extended multivariate FDA was employed, allowing for
the simultaneous consideration of multiple socioeconomic
variables. The current body of knowledge in FDA-based
approaches to travel behavior and public transit demand
analysis is limited. Building upon previous studies that used
discrete data in its raw form [32], [33], Park et al. [34] and
Wang and Tsung [35] applied FDA methodology to cluster
metro stations. Their approach analyzed average annual
hourly demand without considering extended shifts measured
over longer-term periods. Jung et al. [36] defined the average
travel time between metro stations as transit accessibility, and
clustered them to elucidate shared characteristics using FDA.
Furthermore, Galvani et al. [37] and Roy et al. [38] applied
functional data approaches to analyze the spatiotemporal
patterns of bicycle ridership.

A summary of relevant literature is presented in Table 1.
This paper makes several significant contributions to the

existing literature. Firstly, it investigates the evolution of
travel demand throughout all stages of the COVID-19 pan-
demic, from the initial stage to the ‘‘new normal’’ stage after
recovery—around May 2023. Secondly, it employs a two-
dimensional analysis, encompassing both monthly demand
variations and hourly fluctuations for both boarding and
alighting. Thirdly, the implementation of the FDA method
enables the functionalization of temporal demand changes,
adding a nuanced perspective to the analysis. Lastly, the paper
utilizes hierarchical clustering methods to effectively group,
categorize, and compare different regions within the city
and identify the relevant socioeconomic and geographical
factors for each cluster. To the best of the authors’ knowledge,
this paper represents the first comprehensive and intensive
analysis covering these aspects in the field.

III. DATA DESCRIPTION
A. FUNCTIONAL DATA: SEOUL METRO PASSENGER
VOLUME
To identify changes in transit demand over time, the boarding
and alighting passenger volume data by station provided
by the smart card operator (‘‘T-money’’) were utilized.
Specifically, this study focused on stations in the Seoul
Metropolitan metro system located within the boundary of
Seoul proper. To maintain consistency, stations which are
connected to lines which began service during the analysis
period were excluded. The data are anonymized to exhibit no
personal information, and aggregated at the station level by
hour.

One of the concerns raised in the literature regarding
the use of smart card data is the issue of under- or
mis-representation of transit demand and passenger move-
ment due to: (1) cash payments, (2) the absence of automated
gates at some stations or exits, (3) fare evasion, and (4)
measurement error [40], [41], [42]. However, those cases
are not likely to take place on the Seoul metro system.
Smart cards are the only payment method available for the
Seoul metro [43]. Even passengers seeking to pay by cash
are issued temporary smart cards to use the system. All
stations in the system are fully gated at both entrances and
exits, so fare evasion is exceptionally rare. According to the
Seoul Metropolitan Government [44], the overall incidence
number of wrongful entries at metro gates in 2015 stood at
only 0.0014% and 0.0021% for metro lines 1–4 and 5–8,
respectively. Among those cases, only 33.21% stem from not
tapping the smart cards, and the remainder are from misuse
of discount cards intended for seniors or students, which does
not alter the tagging statistics. Measurement errors resulting
in unrecorded transactions are also very uncommon. A study
on the smart card data of Seoul from 1 October 2015 to
12 November 2015 [45] reported negligible transaction
errors, approaching zero percent for boardings whereas the
incidence of missing alighting taggings was measured at only
0.003%. Given the circumstances of widespread smart card
use for fare collection in the Seoul metro system, patterns
found in the smart card data would well represent the overall
transit demand and passenger movement.

In total, the dataset comprised 294 stations whose locations
are depicted in the Appendix (Fig. 43). The data encompass
attributes such as date (year and month), line, station ID,
station name, and boarding and alighting passenger volume.
Passenger volume is the average of the cumulative count of
passengers throughout the respectivemonth during each hour.
The analysis period spans from 1 January 2019 to 31 May
2023, with the examination focusing on the hours between
06:00 and 23:00. To analyze the impact of COVID-19 on
passenger travel patterns, volume level is defined as the
percentage ratio of the passenger volume for each month
relative to the passenger volume recorded during the same
month in 2019, which represents the baseline pre-pandemic
values. The utilization of this ratio can also mitigate temporal
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TABLE 1. Summary of relevant literature on public transit ridership analysis of COVID-19 impact.
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FIGURE 1. Average daily metro passenger boarding volume and volume
level by month.

fluctuations in the time series data, enhancing the robustness
of the analysis.

As can be seen in Fig. 1, during the pre-pandemic
era (before February 2020), the average daily ridership,
calculated across all analyzed stations, amounted to approx-
imately 5.5 million passengers. In the early stage of the
pandemic (February 2020–October 2021), as confirmed cases
of COVID-19 began to rise dramatically and interpersonal
distancing policies were implemented, ridership declined
significantly to around 3.4 million passengers, denoting
a reduction of approximately 40% compared to the pre-
pandemic period. Subsequently, throughout the COVID-19
period, the transportation systemwitnessed recurrent patterns
of transient recuperation and subsequent decline in response
to the progression of infectious transmission and alterations
in distancing directives. With the beginning of step-by-
step recovery in November 2021 and the complete lifting
of interpersonal distancing policies in April 2022, metro
passenger volume gradually rose, recovering to volume levels
exceeding 80% during the late stages of the pandemic
(November 2021–December 2022). Notably, commencing
from February 2023, following the relaxation of mask
mandates in public spaces, passenger volumes exhibited
stabilization, surmounting the threshold of 5 million pas-
sengers. This resurgence signifies an impressive rebound
to nearly 90% of pre-pandemic passenger volume in the
post-pandemic era (after January 2023). This observed trend
is broadly evident across Seoul’s metro stations, albeit subject
to notable divergences contingent on the neighborhood
attributes encompassing the vicinity of each station.

Table 2 shows the average boarding volume and volume
level during different times of day. Compared to the pre-
pandemic period, early-stage reduction showed a pronounced
decline, hovering around 70% volume level. This reduc-
tion can be attributed to the rigorous implementation of
interpersonal distancing measures and lockdown protocols.
Subsequently, a modest recovery ensued during the late stage
of the pandemic, restoring the volume level to approximately
80%. After the pandemic, a substantial rebound ranging from
86.79% to 96.74% was observed. This overall trend was

evident; however, variations in the degree to which it was
observed varied across different times of day. During the
morning peak hours (07:00–09:00) and evening peak hours
(17:00–19:00), elevated boarding volumes and volume levels
were observed compared to other time segments post the
early stage of COVID-19. These peak hours exhibited a
milder decline and expedited recuperation, achieving volume
levels of 96.63% to 96.74% following the pandemic. In the
daytime non-peak hours (09:00–17:00), the volume level fell
to 70.21%, which is about eight percentage points lower
than the peak-time values and corresponds to a reduction
of approximately 86,500 passengers per hour. This value
recovered to 94.15% in the post-pandemic months. At
nighttime (20:00–22:00), the initial reduction mirrored that
of the non-peak hours; however, recovery remained sluggish,
and the volume level remained below 90% even in the
post-pandemic period. The substantial reduction in non-peak
hours and slow recovery show that the pandemic’s impact on
non-commuter trips, including leisure and recreational trips,
is much greater than that on commuter-oriented trips.

FIGURE 2. Heatmap of city-wide average volume level.

FIGURE 3. Surface plot of city-wide average volume level.

Fig. 2 and Fig. 3 depict the average volume level of
all stations, representing the general ridership changes over
time compared to the pre-pandemic period. The initial
pandemic wave, commencing in February 2020, coincided
with a notable decrease in volume level during March
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TABLE 2. Average metro passenger boarding volume and volume level changes by time of day.

2020. Subsequent pandemic waves resulted in lower peaks
in August and December 2020, and July 2021. Only in
February 2023 did the system-wide average volume levels
exceed 100%, stabilizing to values between 90% and 100%
thereafter. As shown in Table 2, significant fluctuations were
evident in hourly patterns. During the morning and evening
peak hours, the decline in ridership remained comparatively
modest, rebounding to volume levels ranging from 104.12%
to 116.23% in February 2023. Conversely, a substantial
reduction to 50% and almost 30% in comparison to previous
passenger volumes was recorded during the non-peak hours
and the nighttime hours respectively. The degree of recu-
peration remains modest, with only 85% of the pre-existing
passenger flow having been reinstated in nighttime hours.
Noteworthy recovery in early 2023 was observed during
morning and evening peak hours. In addition, except for the
difference of about an hour due to travel time, the average
boarding and alighting pattern exhibited a similar trend across
the entire network.

B. REGIONAL EXPLANATORY VARIABLES
Regional explanatory variables include land use, socioeco-
nomic characteristics, and POIs. Land use data1 provided by
the Korean Ministry of Land, Infrastructure, and Transport
includes five categories for zones: high density residen-
tial (ResHigh variable), low density residential (ResLow
variable), commercial (Comm variable), industrial (Indust
variable), and greenspace. In line with previous research [46],
[47], [48], a buffer of 500 meters was applied to each metro
station2 to represent the direct catchment area. The proportion
of each zone category within the respective catchment area
for each station was calculated (Fig. 4). The data are current
as of March 2022.

Regional socioeconomic characteristics were also included,
namely household income (Income variable), population
density (PopDen variable), and the density of foodser-
vice establishments (Foodservice variable). Household
income data are available on the Korean Water Resources

1http://vworld.kr/dtmk/dtmk_ntads_s002.do?dsId=30300
2http://data.seoul.go.kr/dataList/OA-21232/S/1/datasetView.do

FIGURE 4. Land use zones makeup of metro station catchment areas.

Corporation data platform,3 and population density is derived
from the latest census report.4 As both are gathered at the
dong level (smallest level administrative divisions), they were
converted to the station level by calculating average of dong
level values in the direct catchment area weighted by area.
The density of hospitality venues is calculated by counting the
number of relevant businesses including restaurants, cafes,
bakeries, and bars within the catchment area of each station
and dividing that figure by the area of the catchment area. The
business location data5 are provided by the Korean Ministry
of the Interior and Safety. Table 3 displays the units and value
ranges of each continuous variable included.

To integrate the POI data as binary variables, a total of
36 stations are identified to be adjacent to major universities
with campus sizes exceeding seven thousand students (Univ
variable). Three Intercity bus stations (Express Bus Terminal,
Nambu Terminal, and Dong Seoul Terminal) and six
high-speed rail stations (Seoul, Yongsan, Cheongnyangni,
Suseo, Yeongdeungpo, Sangbong), all connected to the

3https://www.bigdata-environment.kr/user/data_market/detail.do?id=
8cee0160-2dff-11ea-9713-eb3e5186fb38

4https://data.seoul.go.kr/dataList/10584/S/2/datasetView.do
5https://www.localdata.go.kr/
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TABLE 3. Summary of continuous explanatory variables.

FIGURE 5. Correlation plot between continuous explanatory variables.

metro, were also marked as intercity transportation hubs
(Tr_hub variable).
Before proceeding with the modeling process, an assess-

ment of multicollinearity was conducted for the socioeco-
nomic and land use variables. Given that the sum of the
ratio of all land use zones always amounts to 100%, the
Greenspace variable was excluded from further analysis.
Fig. 5 presents a correlation plot depicting the relationships
among all the variables used in the study. All correlation
values between variables lie between −0.44 and 0.63.

IV. METHODOLOGY
A. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
FDA is a statistical analysis method that operates on data
represented as functions, rather than discrete values. Unlike
conventional statistical techniques, FDA can effectively
analyze complex and high-dimensional data by leveraging
functional data representations, enabling the recognition
of patterns within voluminous and intricate datasets [49].
Given recent advancements in data collection, processing,
and storage technologies, FDA emerges as a promising data
analysis approach, particularly in contexts where time series
data are prevalent. This study aims to analyze the trend of
change over time—when and how much the values decrease

FIGURE 6. Flow chart of analysis.

and recover based on discretized data aggregated by month
and hour, so an FDA-based approach is appropriate.

FDA encompasses various methods, including functional
regression, functional clustering, and time warping. Among
them, Functional Principal Component Analysis (FPCA)
serves as a dimension reduction technique that transforms
infinite-dimensional functional data into finite-dimensional
vector data. Most existing studies employed FPCA for one-
dimensional analysis. Extending FPCA to two dimensions
presents computational complexities. Nevertheless, it offers
the advantage of analyzing data from a broader perspective by
simultaneously considering two axes. In this study, analysis
was performed both on the month-to-month scale to see
the long-term demand reduction caused by COVID-19 and
subsequent recovery, and the time of day to identify how
such changes differ in the peak, non-peak, and morning and
afternoon.

Before delving into the methodology, Table. 4 presents
the notations used in this paper and an overall flowchart
is provided in Fig. 6. The initial step in FPCA involves
converting discrete data with continuous characteristics, such
as time series and longitudinal data, into functions. The
volume level Yijk for 1 hour at tjk = (t1j , t

2
k ) ∈ � (jth time

in the time of day axis, in k th month in the month axis), for
the ith metro station can be expressed as

Yijk = Xi(tjk ) + ϵijk , for i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,U ,

k = 1, 2, . . . ,V (1)
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TABLE 4. Notations.

where Xi(t) denotes a function as the dimension of obser-
vation extends to infinity, and ϵ represents random error
satisfying the mean-zero condition and uncorrelated across
time. Subsequently, centering is performed by subtracting
the overall average function E(Xi(t)) = µ(t), where t =

(t1, t2) across all stations, resulting in the function X (t) −

µ(t) denoted as X c(t). Eigenanalysis is then conducted on
the covariance function to estimate the functional principal
components. As per Mercer’s theorem, the covariance
function can be decomposed into the form

6(s, t) = Cov
(
X c(s),X c(t)

)
=

∞∑
m=1

λmφm(s)φm(t), (2)

s = (s1, s2), s, t ∈ �,

where λm denotes non-negative eigenvalues and φm(t) signi-
fies the corresponding orthonormal eigenfunctions arranged
in descending order. The eigenfunctions are often formulated
using basis functions such as B-splines when dealing with
discretely observed data [50]. In two-dimensional FPCA,

the introduction of an additional dimension necessitates the
establishment of a new basis system for the basis functions
used in functional data smoothing. A suitable approach
for this purpose is the tensor-product of B-spline bases,
especially when all data share the same sampling points and
have regular domain structures, such as rectangular shapes
[51]. It is important to note that the following descriptions
are limited to cases where the value Yijk is available for all
j = 1, 2, . . . ,U and k = 1, 2, . . . ,V without any missing
data points; this condition holds true for the ridership data
used in this study.

The mth eigenfunction or φm(t), also called the functional
principal component (FPC), is calculated through eigende-
composition as follows.

φm(t1, t2) =

θ1∑
p=1

θ2∑
q=1

γmpqb(1)p (t1)b(2)q (t2)

= b1(t1)⊤Cmb2(t2)

= γm
⊤b(t1, t2), (3)
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where

b(t1, t2) = vec
(
b1(t1) ⊗ b2(t2)

)
,

Cm = (γmpq) : matrix of spline coefficients of

mth eigenfunction (FPC) φm,

γm = vec(Cm).

The tensor-product of b1 = (b(1)1 , . . . , b(1)θ1
)⊤, and b2 =

(b(2)1 , . . . , b(2)θ2
)⊤ are basis functions on the time of day axis,

and month axis with θ1, and θ2 number of splines (usually
given values), respectively.

The function Xi(t) for each metro can then be expressed as

Xi(t1, t2) = µ(t1, t2) +

∞∑
m=1

αimφm(t1, t2), (4)

where

αim =

∫
�

(Xi(t) − µ(t)) φm(t)dt (5)

refers to the FPC score representing the weight of each
eigenfunction in the linear combination.

If Xi(t1, t2) is approximated by finding the M value, which
is the number of top-few eigenfunctions that capture most of
the variation (i.e., the number of FPCs), it can be expressed
as

Xi(t1, t2) ≈ µ(t1, t2) +

M∑
m=1

αimφm(t1, t2). (6)

By determining the appropriate value of M , the data
can be effectively reduced to an M -dimensional vector ai,
retaining as much of the data variance as possible. Two
common methods for selectingM are: 1) using the minimum
M that accounts for over 90% of the data variance, and
2) employing the scree test, which analyzes the eigenvalues
plotted against their order to identify the ‘‘elbow point’’
where further eigenvalue reduction decreases significantly
compared to previous ones [35], [52].
Since this study focuses on both boarding and alight-

ing data for analysis, a multivariate functional principal
component analysis (MFPCA) methodology was adopted.
Performing FPCA separately on each data can result in
the potential correlation between the two elements being
misrepresented in the subsequent phases of analysis [53].
Considering each ridership data entry as a vector of two items,
namely boarding and alighting volume levels, the resulting
functional principal components of MFPCA are also in a
vector form of the same dimensions, with each element being
defined as a function. The two functions share the same
loading value for each entry, allowing the MFPCA to capture
the relationship between the two variables and enabling a
more nuanced and rigorous understanding of metro ridership
resilience.

B. HIERARCHICAL CLUSTERING
Functional clustering is conducted to group together stations
with similar patterns of ridership fluctuations, and by using
vector-type data consisting of M FPC scores for each
station calculated through FPCA. Clustering is a technique
that groups data into similar clusters, employing various
methodologies such as centroid-based, density-based, and
connectivity-based approaches. Hierarchical clustering is
a form of connectivity-based clustering which uses an
agglomerative method that reduces the number of clusters in
a bottom-up fashion by successively merging two clusters.
Initially, each station constitutes its own cluster, resulting in
as many clusters as the number of metro stations. As the
process iterates, clusters are combined until only one cluster
containing all individuals remains. To facilitate the clustering
process, a distance matrix is calculated to determine the
dissimilarity between each cluster. Two clusters with the
greatest similarity (shortest distance) are merged into one,
and this process is repeated by continually updating the
distance matrix and integrating the closest cluster pair.
Various methods can be employed to measure the distance
between clusters, such as the distance between centroids,
or the shortest, longest, or average distances between stations
in the two clusters. In this study, Ward’s (minimum variation)
method was applied, which minimizes the error sum of
squares within groups that increase when two clusters are
combined.

The distance between two clusters G1 and G2, 1(G1,G2),
can be expressed using Equation (7) [54]. Vector η̄G is the
average of FPC score vector ai of station i belonging to the
cluster G, and nG signifies the number of metro stations in
cluster G.

1(G1,G2) =

∑
i∈G1∪G2

∥ ai − η̄G1∪G2 ∥
2

−

∑
i∈G1

∥ ai − η̄G1 ∥
2

−

∑
i∈G2

∥ ai − η̄G2 ∥
2

=
nG1nG2

nG1 + nG2

∥ η̄G1 − η̄G2 ∥
2 (7)

Upon completing the cluster formation process, a dendro-
gram is constructed to visually represent the sequence of
cluster formations and the interrelationships between each
cluster in a tree structure. The clustering outcome of this study
is depicted as a dendrogram in Fig. 9. The x-axis corresponds
to each metro station in this analysis, and the y-axis indicates
1(G1,G2). The height of the branches on the dendrogram
reflects the similarity between the connected clusters. Lower
branch heights indicate earlier-formed clusters, whereas
higher y-axis values denote clusters that have merged despite
significant differences. As the last step, the data are divided
into several clusters by selecting a cutting height, whereby
the entire stations can be partitioned into the desired number
of clusters. This process allows for the creation of distinct
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FIGURE 7. Scree plot for determining the appropriate number of FPCs.

groups based on the underlying patterns and relationships
identified during the clustering analysis.

V. ANALYSIS RESULTS
A. FPC PROFILES
The process of centering in FPCA yields the average across
all metro stations, as illustrated in Fig. 2 and Fig. 3 in
the previous section. After centering, FPCs were computed
through eigendecomposition. To determine the appropriate
number of FPCs M , a scree test was performed. Fig. 7
portrays the scree plot, indicating an evident elbow point
at 5 FPCs. These FPCs collectively account for a cumulative
variance of 84%, distributed in ascending order of FPC as
follows: 55.34%, 11.26%, 9.43%, 5.28%, and 2.70%.

Each FPC is visually depicted in Fig. 8, with distinct
roles attributed to each. FPC1, boasting the highest variance
explanatory power, exhibits a slight positive trend throughout
the entire period with minimal temporal variation. FPC2
primarily captures the divergence between morning and
afternoon patterns, showcasing contrasting boarding and
alighting behaviors. FPC3 clearly shows a significant reduc-
tion of ridership following the initial drop at the breakout
of COVID-19 in early 2020 and the recovery pattern after
the end of the pandemic (i.e., new normal). Meanwhile,
FPC4 and FPC5 complexly express aspects according to
time and period, and also play a role in distinguishing
between peak and non-peak hours. Remarkably, an unusual
observation pertains to early morning alighting patterns,
a pattern elaborated further in the forthcoming segments. This
observation linked to the influence of site-specific events
surrounding the stations, rather than being attributable to the
pandemic’s effects.

B. CLUSTER GROUPS
The classification framework was established based on
the assessment of five distinct FPC scores. Subsequently,

FIGURE 8. Heatmap of five FPC values (φ).

hierarchical clustering was employed to analyze these score
values. The dendrogram illustrated in Fig. 9 provided a
guiding structure for segmenting the data. Initially, the cluster
group was divided into four primary partitions, which were
further refined into eleven subgroups to achieve a more
intricate clustering. The spatial distribution of stations across
these eleven clusters is visually represented in the map
provided in Fig. 44 (in the Appendix).

Upon analyzing the individual FPC scores depicted in
Fig. 10, where each scatter plot portrays two of the five FPC
score axes, the demarcation of cluster group boundaries is
predominantly influenced by FPC1 as shown in the first row
and first column. Notably, Group B exhibits the highest FPC1
scores, followed by Group A, C, and D in descending order.
It can be deduced that cluster groups with elevated FPC1
scores encompass stations that showcase a swifter recovery of
volume levels, signifying a higher level of overall resilience.

Whereas Groups A and B share comparable FPC1
scores, Group A demonstrates slightly higher FPC2 values,
as demonstrated in the FPC1 vs. FPC2 graph (top-left panel)
in Fig. 10. Recalling that FPC2 elucidates divergent boarding
and alighting behavior across different hours of the day,
GroupA encompasses stations where the recovery or increase
in morning alightings and evening boardings has outpaced
other hours of the day, relative to Group B. These patterns
are also reflected in the average volume levels for each
cluster group, as depicted in Fig. 11 and Fig. 12. A more
comprehensive elaboration on the distinct characteristics of
each cluster group is provided below.

1) GROUP A
Stations belonging to Group A saw an overall decline of
ridership in both peak and non-peak hours during the early
stages of the pandemic, which was then followed by a
recovery of peak-time travel beginning in late 2022. This
recovery was most prominent in the morning peak for
alightings and the evening peak for boardings, peaking at a
volume level greater than 140%. The location of these stations
corresponds to areas where businesses and hospitality venues
are primarily located, specifically those with high recovery or
increases in commuter flows during the analysis period.
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FIGURE 9. Dendrogram of hierarchical clustering.

FIGURE 10. Scatter plots of FPC pairs.

2) GROUP B
Cluster B pertains to stations that exhibited amarginal decline
in ridership during the initial phases of the study duration.
Remarkably, the recovery trajectory for this group outpaced
that of other groups. By early- to mid-2022, these sta-
tions had successfully surpassed the pre-pandemic ridership
benchmarks. Furthermore, by February 2023, these stations
achieved a noteworthy upsurge, with volume level exceeding
160% during both morning and evening peak hours. This
cluster group’s remarkable resilience, characterized by a
minor decrease in ridership and a swift resurgence likely
stems from specific localized conditions, such as ongoing
residential and commercial development initiatives or the
introduction of new transit lines and services.

FIGURE 11. Average volume level heatmaps of cluster groups.

3) GROUP C
The volume levels of stations in Group C experienced a more
pronounced collapse at the onset of COVID-19 and failed to
return to 2019 levels as of early 2023. Although peak-time
volume levels retained higher values compared to the rest of
the day, it is not until early 2023 that this is achieved.

4) GROUP D
Group D comprises stations hardest hit by the pandemic,
characterized by smaller resilience of volume levels at peak
hours compared to other groups and extremely low minimum
values. At no period of time does the volume of passenger
flows exceed that of 2019 for all hours of the day.

C. CLUSTERS
Learning from the cluster group traits identified, the stations
were further categorized into eleven clusters. Specifically,
Groups A, B, and D were divided into three clusters, and
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FIGURE 12. Average volume level surface plots of cluster groups.

Group C was split into two clusters. Fig. 45 in the Appendix
depicts the average volume level of each cluster. To explore
the relevant socioeconomic and locational factors associated
with each cluster and its ridership shift patterns, a multiple
linear regression model was constructed in line with existing
literature on neighborhood characteristics and cluster anal-
ysis [46], [55]. For each cluster, a distinct linear regression
model was formulated, where the explanatory variables are
the socioeconomic and locational variables explored above
and the response variable is a binary value indicating whether
a station belonged to that cluster. All regression analyses were
performed using the R stats package. It needs to be noted
that because of the nature in which linear regression models
are fitted, clusters with very few members are difficult to
explain.When one or few stations exhibited highly distinctive
ridership patterns and were thus given its own cluster, exoge-
nous factors that led to such unique patterns including urban

FIGURE 13. Location of Cluster A1.

FIGURE 14. Volume level surface plot of Cluster A1.

development and PT service changes were identified and
described.

1) CLUSTER A1
The first cluster consists of three stations in the Seongsu
area in the eastern part of the city, and one in Yeouido,
an island on the Han river (Fig. 13). The regression results
identify the proportion of industrial zones as the primarily
significant variable and indicate a low positive correlation
with a coefficient of 0.258. Volume levels of both boardings
and alightings at these stations plummeted in early 2020,
and increased considerably throughout the analysis period to
values over 160% for evening-peak boardings and morning-
peak alightings, respectively (Fig. 14 and Fig. 15). This cor-
rectly suggests a growth of these areas as hubs of economic
activity and subsequent increases in commuter movements.
During the analysis period multiple large corporations and
start-ups moved their headquarters into these areas. Despite
the COVID-19 pandemic’s general suppression of passenger
flows, the development around stations in Cluster A1 resulted
in consistent increases in ridership to well above 2019 levels.

2) CLUSTER A2
Cluster A2 includes two stations in the southern part of
Seoul (Fig. 16). These stations underwent a distinctively
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FIGURE 15. Monthly volume level graph for Cluster A1.

FIGURE 16. Location of Cluster A2.

sharp rise in the number of alighting passengers in the early
morning hours, before 07:00 (Fig. 17 and Fig. 18). These
are highly unique patterns not found in other clusters, and
the factors contributing to such a shift are found outside
the regression model. At both of these stations, large-scale
housing developments of high-density residential complexes
commenced during the analysis period, and the beginnings of
their early-morning ridership hikes match those of the dates
when the developments started. Around Sinbanpo station,
located in the central southern part of the city, housing
development of a 3,000-household residential complex began
in April of 2020 and was still ongoing as of May 2023.
Likewise, near Guryong station, housing development of

FIGURE 17. Volume level surface plot of Cluster A2.

FIGURE 18. Monthly alighting volume level graph for Cluster A2.

FIGURE 19. Location of Cluster A3.

a 6,700-household complex started in June 2020. This
result confirms that multivariate multidimensional FDA is an
effective tool to identify unique cases of exceptional volume
level changes driven by urban redevelopment.

3) CLUSTER A3
Cluster A3 encompasses a total of seventeen stations, making
up the majority of Group A. The spatial distribution of these
stations (Fig. 19), alongwith their alignment to the population
density and income variables, points to their positioning
within the sub-centers of the city of Seoul or local hubs
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FIGURE 20. Volume level surface plot of Cluster A3.

FIGURE 21. Monthly alighting volume level graph for Clusters A3 and D2.

FIGURE 22. Location of Clusters B1 and B2.

of commercial and service functions, often characterized by
substantial office spaces.

Significantly, the bounceback of ridership in these areas
has exceeded that of stations located in central business
districts (CBDs) of the city (e.g., Cluster D2), extending
not only to peak hours but also encompassing non-peak
hours (Fig. 20 and Fig. 21). These outcomes suggest that
considering the enduring recuperation trends observed in
recent months, the presence of secondary cores as essential
activity centers may assume a more prominent role than prior
to the pandemic.

FIGURE 23. Volume level surface plot of Cluster B1.

FIGURE 24. Volume level surface plot of Cluster B2.

FIGURE 25. Monthly alighting volume level graph for Clusters B1 and B2.

4) CLUSTERS B1 AND B2
Clusters B1 and B2 experienced significant hikes in peak
travel volumes throughout the analysis period in opposite
passenger flow directions. Cluster B1, which consists solely
of Magok station at the western end of the city, saw a large
rise in alightings in the morning peak hours and boardings in
the evening peak hours (Fig. 23) alike Cluster A1, whereas
Cluster B2, whose only member is Yangwon station located
at the eastern end of the city (Fig. 22), experienced increases
in morning-peak boardings and evening-peak alightings
(Fig. 24). In both cases the volume levels reached apices of
over 270%, indicating nearly triple the hourly passenger flow
of the same month in 2019 (Fig. 25).

The area surrounding Cluster B1 forms the commercial
and business center of an ongoing large-scale development
project encompassing 33.6 hectares which includes research
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FIGURE 26. Location of Cluster B3 and Metro Line 9 Extension.

FIGURE 27. Volume level surface plot of Cluster B3.

complexes and high-density commercial zones. The analysis
period aligns with the period whenmuch of these commercial
buildings completed construction and businesses began to
establish themselves in them, leading to a consistent and
substantial increase in commuter flows at this station. On
the other hand, Cluster B2 is adjacent to a major new
public housing project area with more than three thousand
households, into which residents began to move in August
2021. The comparison of these clusters clearly shows the
distinction between commercial and residential development
areas.

5) CLUSTER B3
Cluster B3 showcases a minimal decrease in overall volume
levels. Instead, the volume levels exceed 100% during
morning and afternoon peak times throughout most of the
analysis period, indicating that demand during the COVID-19
pandemic exceeded that of the year 2019 (Fig. 27 and
Fig. 28). The selected stations within this cluster can
be categorized into two distinct groups. The first group
comprises seven stations situated along the eastern portion of
metro line 9. This segment forms the third phase of the line’s
construction, and only commenced operation in December
2018. Consequently, the observed increase in demand is
largely attributed to the low usage in the initial stage of

FIGURE 28. Monthly alighting volume level graph for Cluster B3.

FIGURE 29. Location of Cluster C1.

operation of this newly introduced segment in 2019. The
alignment of this extension project is highlighted in Fig. 26.

The second group of stations pertains to the new adjacent
residential and commercial development projects positioned
in the southeastern and western parts of the city. These factors
have notably contributed to the increased demand observed in
these stations.

6) CLUSTERS C1 AND C2
Comparison of these two clusters highlights the difference
between residential areas with high density and high incomes
and those with low density and low incomes. Cluster C1
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FIGURE 30. Volume level surface plot of Cluster C1.

FIGURE 31. Location of Cluster C2.

FIGURE 32. Volume level surface plot of Cluster C2.

corresponds with the Gangnam district, where the largest
agglomeration of businesses and residences in Seoul can be
found (Fig. 29). Deviating from previous clusters examined,
volume level trends for boardings and alightings in this
cluster exhibit resilience in both morning and evening peak
hours, figures for which recovered to 100% by the end of
the analysis period after having previously dipped to 50%.
On the contrary, non-peak volume levels have yet to recover
their 2019 values, suggesting that travel unrelated to business
activity was much less resilient (Fig. 30). This may be
attributed to the large number of both residents and businesses
in this area as is further evidenced by the regression results

FIGURE 33. Monthly volume level graph for Clusters C1 and C2.

FIGURE 34. Hourly volume level graph for Clusters A3 and C2.

where the high density residential and income variables show
high correlation coefficients of 0.256 and 0.682 respectively
with p-values of less than 0.05.

Cluster C2 aligns most closely with the income vari-
able, followed by the population density and low-density
residential variables. Stations in this cluster are located in
areas where low-rise residences are tightly packed together,
primarily in the northeast of the city (Fig. 31). As with
Cluster C1, the initial impact at the onset of the pandemic is
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FIGURE 35. Location of Cluster D1.

noticeable, especially during the non-peak hours. However,
the recovery of morning alightings and evening boardings
is not as swift and significant, owing to the predominantly
residential nature of these areas (Fig. 32 and Fig. 33).

Fig. 34 illustrates a comparative analysis between Cluster
A2 (secondary commercial cores) and Cluster C2 (residential
areas). Both regions exhibit an overall decrease attributed to
the pandemic, with notably larger reductions during non-peak
hours (40–50%) compared to peak hours. Moreover, the
reduction in morning peak boarding and afternoon peak
alightings in residential areas (Cluster C2), as well as
morning peak alightings and afternoon peak boardings in
commercial areas (Cluster A3), is relatively modest. This
suggests that, during the analyzed timeframe, individuals
engaged in minimal travel activities beyond their usual
commuting routines. The demand recovery in residential
areas (Cluster C2) is observed exclusively in relation to
commuting activities, whereas Cluster A3, representing
secondary centers within the city, demonstrated a robust
recovery exceeding 100% volume levels for most hours
of the day. Despite the recovery, both areas experienced
substantial reductions in nighttime volume levels compared
to pre-pandemic levels, and the recuperation process has been
characterized by a gradual pace.

7) CLUSTER D1
Assignment into Cluster D1 strongly correlates with theUniv
variable. Fig. 35 provides a comparison of the placement of
Cluster D1 and the locations of major universities in Seoul.
These stations served a significant portion of university
students and local residents who sought low-price residential
options in proximity to educational institutions. The demand
for regular commuting from these areas, represented in
the data as morning boardings and evening alightings,
closely mirrors the city-wide average. However, morning
alightings and evening boardings notably fall below the
average and have not witnessed substantial recovery post-
pandemic (Fig. 36 and Fig. 37). This observation suggests a

FIGURE 36. Volume level surface plot of Cluster D1.

FIGURE 37. Monthly volume level graph for Cluster D1 and city-wide
average.

decline in the number of students attending in-person classes
on a daily basis, attributable to the widespread adoption of
remote classes and a reduction in face-to-face extracurricular
activities.

8) CLUSTER D2
Cluster D2’s distribution aligns itself closely with the central
Jongno area and parts of the Gangnam area (Fig. 38).
These are Seoul’s primary CBDs, as is evidenced by
the positive correlation with the Comm and Foodservice
variables, whereas there exists a negative correlation between
assignment to this cluster and the PopDen variable. This is
an area dominated by commercial zones with extremely low
resident population density. The introduction of work-from-
home and interpersonal distancing policies greatly lowered
commuter demand in these areas initially. As interpersonal
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FIGURE 38. Location of Cluster D2.

FIGURE 39. Volume level surface plot of Cluster D2.

FIGURE 40. Monthly alighting volume level graph for Cluster D2 and
city-wide average.

distancing restrictions were loosened commuters in these
areas slowly began to return, up to volume levels of 105% for
morning arrivals and 95% for evening departures by February
2023. On the contrary, such patterns are not observed during
the afternoon and night hours, as non-work travel exhibits a
much weaker resilience (Fig. 40).

In addition, the major intercity transportation hubs are
assigned to this cluster, including Seoul station and the
three intercity bus stations. Demand for long distance travel
fell sharply during the pandemic period. Note the slower
pace of recovery especially in non-peak hours compared to
sub-centers of the city in Cluster A3 (Fig. 39).

FIGURE 41. Location of Cluster D3.

FIGURE 42. Volume level surface plot of stations in Cluster D3.

9) CLUSTER D3
All three stations in Cluster D3 (Fig. 41) exhibited consistent
and substantial declines in ridership throughout the analysis
period, deviating from the typical resilience pattern observed
in other clusters. The unique circumstances surrounding each
station shed light on these divergent trends (Fig. 42).
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In the case of Gaewha station, situated at the western
extremity of the city, the introduction of a new light metro
played a pivotal role in reshaping its ridership dynamics.
This new transport option displaced metropolitan buses
connected to Gaewha station as the primary means through
which residents fromwestern suburbs accessed central Seoul.
Consequently, this station witnessed a decline in ridership as
the new metro system gained prominence.

Myeongdong station, located in the heart of the city
and in close proximity to one of Seoul’s most renowned
shopping districts, had been a magnet for foreign tourists
prior to the pandemic. As global border closures imposed
an unprecedented hindrance to foreign tourism, Myeongdong
station experienced a drastic shift in its ranking within the
transit system, plummeting from being the twenty-seventh
most frequented station in 2019 to dropping below the top one
hundred during the pandemic. Unfortunately, the resurgence
of foreign tourist inflows to its pre-pandemic levels has yet to
be realized.

Gubanpo station, located in the southern part of Seoul,
underwent a distinct ridership decline due to this unique
set of circumstances. After a large-scale residential redevel-
opment began there in mid-2021, a substantial number of
former residents of the 3,500-household neighborhood were
relocated during the analysis period. This sudden outflow of
resident population coincides with the period during which
the station’s ridership dropped significantly.

In summary, these three stations in Cluster D3 experienced
ridership decreases due to specific factors such as the
introduction of new transportation modes, the absence of
foreign tourism, and the impact of residential redevelopment.

D. DISCUSSIONS
Through an analysis of volume level patterns since the
onset of the COVID-19 pandemic employing multivari-
ate two-dimensional functional data analysis, a spectrum
of valuable insights emerges regarding the resilience of
neighborhoods to such shocks. The pandemic’s overarching
influence on metro ridership becomes evident through a
significant reduction during the initial months of the analysis
period, followed by a gradual recovery over subsequent
months.

Furthermore, commuting trips have exhibited a propensity
to return to pre-pandemic patterns as remote work trends
waned and more individuals reintegrated into traditional
office environments. In contrast, non-peak hours have not
witnessed a commensurate level of recovery in volume
levels. Moreover, areas with differing densities of residentials
demonstrate varying rates of peak-time volume level recovery
due to disparities in the concentration.

In comparison, business and commercial districts experi-
enced a notably sharper decline in volume levels starting in
early 2020. This decline can be traced back to the adoption
of remote work arrangements and public apprehension
about densely populated regions. It is noteworthy that the
recuperation of non-peak demand within these areas has

FIGURE 43. Boundary of Seoul and locations of target stations.

FIGURE 44. Location and assigned cluster of metro stations.

been substantially limited even into the year 2023. This is
especially the case in CBDswhere the impact of the decreases
in international and intercity travel are more prevalent, and
the recovery of regional sub-centers has proven to be more
pronounced than that of the CBDs.

Remarkably, unique circumstances, such as the initiation
or completion of large-scale development projects, have
led to a significant surge in travel demand, surpassing
pre-pandemic levels, despite the prevailing challenges. The
process of delineating and grouping stations that showcase
such exceptional patterns within the clustering framework,
enables a more profound and nuanced exploration of
the underlying factors that contribute to these distinctive
trends.

VI. CONCLUSION
In this paper, the shock-and-recovery process of transit
ridership before, during, and after the COVID-19 pandemic
was examined. Adopting the analytical framework of mul-
tivariate FDA, the varied patterns of resilience in transit
ridership from 2020 to 2023 in Seoul were investigated. The
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FIGURE 45. Volume level heatmap of each cluster.

findings in this paper illuminate the heterogeneous nature
of transit ridership patterns across neighborhoods during
the analysis period. The analysis model was formulated by
transforming ridership data into a two-dimensional format
consisting of month and time-of-day axes and exploring
concurrent boardings and alightings together in a multivariate
context. Through the application of FPCA on smart card data
and augmenting these results with hierarchical clustering,
distinctive shared characteristics of each cluster were able
to be identified. The clustering process serves to categorize
stations exhibiting similar passenger flow patterns, and the
regression analysis assists in pinpointing the underlying

socioeconomic and land use factors that link each cluster.
Further, the model was able to effectively identify stations
with significantly divergent ridership patterns caused by
extraordinary circumstances as outliers.

The insights gained from this research have illuminated
regional disparities in resilience, providing a foundation for
the development of targeted and contextually relevant ex-ante
mitigation strategies. The findings derived from this study
would help urban planners and policymakers proactively
design measures that foster resilient neighborhoods and
contingency plans for unexpected extreme events like the
COVID-19 pandemic and other forms.

A handful of opportunities for further research present
themselves:

1) The expansion of the geographical scope of research to
the metropolitan level with the maximum commuting
range may offer more comprehensive insights with
regards to peak-time commuter flow patterns.

2) The inclusion of different modes of transportation such
as buses, automobiles, and shared mobility services
could also provide a finer analysis that takes into
account nuances such as modal shifts incurred by the
pandemic.

3) Whereas the COVID-19 pandemic was a universal
phenomenon, its impact was not necessarily geograph-
ically uniform, especially in the early stages where
infection mainly occurred in clusters in limited areas.
As such, the deployment of spatial regression models
could be used to capture these geographical aspects of
resilience.

4) More sophisticated FDA techniques such as functional
regression could allow the researcher to explore the
interactions between socioeconomic factors and PT
ridership.

APPENDIX
See Figures 43–45.
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