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ABSTRACT Scoliosis is a complicated spinal deformity, and millions of people are suffering from
this disease worldwide. Early detection and accurate scoliosis assessment are vital for effective clinical
management and patient outcomes. The Cobb Angle (CA) measurement is the most precise method for
calculating scoliotic curvature, which plays an essential role in diagnosing and treating scoliosis. This
letter has conducted a systematic review to analyze scoliosis detection by vertebra identification and
CA estimation using the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA)
guidelines. The major scientific databases such as Scopus, Web of Science (WoS), and IEEE Xplorer are
explored, where 2017-2023 publications are considered. The article selection process is based on keywords
like ‘‘Vertebra Identification,’’ ‘‘CA Estimation,’’ ‘‘Scoliosis Detection,’’ ‘‘Deep Learning (DL),’’ etc. After
rigorous analysis, 413 articles are extracted, and 44 are identified for final consideration. Further, several
investigations based on the previous work are discussed along with its Proposed Solutions (PS).

INDEX TERMS Vertebra identification, scoliosis detection, CA measurement, DL, convolutional neural
network (CNN).

I. INTRODUCTION
Scoliosis is defined as the deformation of the spine struc-
ture caused by ‘S’ or ‘C’ shaped curves in the spine [1].
It is a structural deviation of the spine involving lateral and
rotational curvatures, frequently emerging in young chil-
dren around puberty or slightly before, leading to functional
impairment. Individuals with scoliosis diagnosis might report
various symptoms, such as a curved spine, a hunchback
appearance, difficulty maintaining an upright posture, uneven
shoulder levels, and visual concerns related to body asymme-
try or deformity. Patients with this condition may suffer from
physical and psychological issues such as early-stage back
pain or discrimination due to biological differences [2], [3].
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At the time of diagnosis, orthopedists use manual examina-
tions to diagnose the curvature of the spine, but sometimes
it is challenging. The most common methods for clinical
scoliosis examination are Spinal X-ray, CT scan, or MRI,
as shown in Figure 1. For the treatment of identified scoliosis,
it is essential to check the spinal curvature angle using CA
measurement. The CA is frequently used to measure spinal
curvature and aid in scoliosis diagnosis.

To evaluate the extent of spinal deformities, clinicians
often rely on CA, which is determined using a back-to-front
X-ray (posteroanterior). These angles are calculated by iden-
tifying the most rotated vertebrae in relation to a horizontal
reference line in the upper and lower portions of the spine [4],
[5], [6]. The three main CAs curves of the entire spine are
the Proximal Thoracic (PT), Main Thoracic (MT), and Tho-
racolumbar/lumbar (TL). A structural PT curve is identified
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FIGURE 1. Samples of Scoliosis (a) X-ray, (b) CT-Scan, and (c) MRI.

when the residual coronal curve is equal to or exceeding
250 and T2 – T5 Kyphosis is greater than or equal to 200,
irrespective of the coronal flexibility. Similarly, a structural
MT curve is determined when the residual coronal curve
equals or exceeds 250 and Kyphosis measures T10 – L2
measures 200 or more. Likewise, the TL curve is recognized
when the residual coronal curve is greater than or equal to 250

and Kyphosis T10 – L2measures 200 or more [7]. A high risk
of scoliosis is indicated by the fact that one of them exceeds
10 degrees.

The CA cannot be measured manually because it is labo-
rious, operator-dependent, and subject to large inter and
intra-observer variability [8]. CA is known to vary from
person to person, with a range of 10 to 20 degrees for mild
scoliosis, 20 to 40 degrees for intermediate, and greater than
40 degrees for severe scoliosis [9]. It might be an arbitrary cri-
terion that ends up influencing patient treatment in the wrong
way. Therefore, it is imperative to use automatic estimates
to increase the CA measurement’s reproducibility [10]. Due
to the irregular nature of deformities (e.g., different positions
of curve and combinations) and the substantial variability in
X-rays (due to various equipment with different technicians),
these methods have a restricted level of precision and cannot
be directly applied in clinical scenarios [11]. With recent
developments in DL technologies, CA measurements can
directly or indirectly identify CA from X-rays (as shown in
Figure 2) that are limited to a single curve, but they are unable
to handle heterogeneous patterns of curves. To calculate the
CA, a line is drawn at the superior endplate, or top edge,
of the most tilted upper vertebra and at the inferior endplate,
or bottom edge, of the most tilted lower vertebra. After that,
lines are drawn at the most inclined vertebrae that are perpen-
dicular to each other. The angle measured at their intersection
is known as the CA. This process will produce two parallel
lines with an angle of ’0’ in a regular spine. The vertebrae in
scoliosis are angled in accordance with the degree of curva-
ture. The CA is the accepted measurement used to identify
scoliosis and determine whether a curvature is stabilized or is
becoming worse. After analyzing the previous studies, it is
identified that the measurement of the CA is insufficient.

FIGURE 2. CA measurement.

TABLE 1. Degree of CA measurement.

Consequently, some Machine Learning (ML) methods that
can recognize the CA automatically are required. The degree
of the CAmeasurement for the detection of Scoliosis is shown
in Table 1.

The latest advancements in medical Artificial Intelligence
(AI) are primarily led by DL models, illustrating effec-
tive outcomes throughout the most intricate diagnostic and
therapeutic research scenarios. Compared to conventional
methods (ML), DL techniques exhibit more promising results
in medical diseases like scoliosis, spondylosis, tumors, spinal
stenosis, vertebral fractures, degenerative disc disease, etc.
Such techniques could serve as valuable tools for aiding
physiotherapists and patients in accurately diagnosing and
determining the appropriate treatment path for scoliosis.

Getting an early prediction for scoliosis identification is
essential and challenging due to having fewer resources. This
study investigates different CNN models (i.e., U-Net, Deep
Residual UNet, Fully CNN, etc.) for automatic early predic-
tion of Scoliosis disease. Different datasets, CSI MICCAI,
X-ray, CTSpine1K, etc., are available to train the above-
mentioned models. These models may help the orthopedic
practitioner to diagnose scoliosis disease. In addition, it may
be helpful for the practitioner to recommend the patients
based on the degree of CA measurement. Further, this study
explored proposed solutions for the extracted investigations
based on previous work done by the researchers in this field.

Further, this paper is organized into the following sec-
tions. PRISMA guidelines-based extraction of articles for
the analysis of Scoliosis detection is discussed in section II.
Investigations extracted from the researcher’s previous work
are discussed in section III. Section IV presents the review
methodology of this critical review analysis. Section V
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FIGURE 3. Systematic review of the vertebra identification and CA
estimation for scoliosis detection.

TABLE 2. Search criteria.

includes proposed solutions for investigations addressed in
section III. Finally, this work is concluded in section VI with
its future perspective.

II. REVIEW PROCESS: PRISMA GUIDELINES
The critical review analysis for identifying vertebra and esti-
mation of CA to detect Scoliosis is discussed in this section.
All the phases of this critical review analysis are shown in
Figure 3. A total of 413 articles are collected from three
popular databases (such as IEEE, Scopus, andWoS) using the
keywords mentioned in Table 2. This process considered the
articles published from 2017 to 2023, as shown in Figure 4.
In the screening phase, all the collected manuscript (i.e.,
413) records are checked manually, and 64 are excluded due
to duplicate records. Further, the left records (413 - 64 =

349) are reviewed with their title and abstract, and 195 are
excluded due to unrelated to the present study. Next, in the
eligibility phase, from the left records (349-195 = 154),
110 articles are removed as they are out of scope. After
completing the process, the left articles (154-110=44) are
included in this study, as shown in Figure 5.

The article selection process for this proposed study is
based on quality content parameters like year, findings, rel-
evance, technology, research report, and availability. The

FIGURE 4. Number of published papers from 2017-2023.

FIGURE 5. Number of selected papers (2017-2023).

TABLE 3. Facts and figures.

full-text articles are filtered using eligibility and inclusion
criteria. As a result, 44 articles in total are included in the
systematic review. Table 3 represents these parameters based
on Eligibility and Inclusion standards.

III. BACKGROUND STUDY
This section performs a critical analysis of previous work
done by different researchers to measure the CA for Scoliosis
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using DL techniques (as shown in Table 4), along with the
various proposed investigations based on the literature.

A. ANALYSIS OF SCOLIOSIS DETECTION
Goral and Kose [1] developed a Decision Support System
based on DL, capable of diagnosing scoliosis and gener-
ating treatment plans following the Schroth method. The
system analyzed X-ray images to identify 68 specific ver-
tebrae points and calculate CA using an interpretable and
explainable Capsule Neural Network (CapsNet) model. The
CapsNet model achieved most significant evaluation results,
including Mean Squared Error (MSE) of 0.0038, Pearson
Correlation Coefficient (PCC) of 0.93, and Accuracy of
0.98. Liang et al. [2] presented a comprehensive two-stage
approach to address the challenges of avoiding reliance on
unreliable landmarks while maintaining adaptability for clin-
ical applications. The authors used two networks, LocNet
and SegNet, in the first identification stage to precisely
locate vertebrae and segment the complete spine, conse-
quently reducing false positives. Subsequently, the authors
also introduced the RegNet regression network to predict the
bending directions of the localized vertebrae precisely. Reg-
Net leverages RoIAlign-pooling to inherit cropped areas from
LocNet’s intermediate features, focusing solely on learn-
ing feature residuals. The proposed strategy demonstrated
considerable improvements, with a minimum improvement
of 16.81% and 6.15% on the well-known AASCE dataset.
As a result, the error rates for CMAE were 2.92 2.34,
and for SMAPE were 6.87 6.26%. Chen et al. [3] intro-
duced FCNN for identifying and localizing vertebra from
the CT images. The authors developed an FCN pipeline that
enables the system to train classification FCN precisely at
the vertebral level. They used MICCAI dataset for the exper-
imental work and reduced the localization error from 9.10 ±

7.20 to 4.33 ± 6.31. Kim et al. [4] suggested a DL-based
method for measuring CA, designed to be visually explain-
able and aligned with a clinician’s decision-making process.
Traditional DL techniques focused solely on estimating the
CA without providing clinically informative spinal structure
details. Conventional segmentation-based approaches offered
spinal structure information but had limitations in accurately
determining CA. The Digital Imaging Group in London,
Canada, supplied the spinal AP X-ray images and the cor-
responding labels for training and evaluation. All X-ray
images were sourced from individual patients, with 481 AP
X-ray images allocated for training and 128 for testing. The
training dataset was divided into 431 and 50 subsets for
actual training and validation. The labeled data encompassed
three CA and 68 landmarks representing the four corner
points of 12 thoracic and 5 lumbar vertebrae. Qin et al. [5]
introduced an end-to-end internal regression localization and
multi-label classification network to identify vertebra. The
authors employed a multi-label classification network to cap-
ture short- and long-context information about the vertebrae
simultaneously, enhancing the identification accuracy. The
evaluation was conducted on the MICCAI dataset, com-

prising 302 images divided into 242 training samples and
60 testing samples. This work achieved a 91.1% identification
rate and a 2.2 mm localization error.

Zou et al. [6] introduced an innovative DL approach
named Vertebra Localization and Tilt Estimation Net-
work (VLTENet). The suggested methodology combines a
High-Resolution Network with an FCN U-Net design to
increase the accuracy of the CA estimate. The network’s
main goals was to predict vertebral localization and tilt esti-
mation. The authors conducted experiments using both the
AASCE and a custom dataset to determine the effective-
ness of the discussed model. The outcomes showed that
the suggested method for automating scoliosis assessment
was effective. Chen et al. [8] discussed a novel technique
called Adaptive Error Correction Net (AEC-Net) for accu-
rately estimating CA from spinal X-ray images. The authors
proposed two innovative approaches: a) AEC-Net incorpo-
rates two separate networks for calculating landmarks and
CA independently, and b) introduced a unique loss function
within AEC-Net to compute the final CA based on the two
angles estimated above. The model was tested on a dataset
comprised of 581 spinal X-ray images, achieving impres-
sive results with 0.903, 0.906, and 0.945 for the PT (Pelvic
Tilt), MT (Main Thoracic), and TL (Thoracolumbar) angles,
respectively. Homg et al. [9] proposed a CNN method for
the CA measurement of the spine from the X-ray images.
They first reduced the image size and then chose the region of
interest by projecting the horizontal and vertical histograms.
For the segmentation of the vertebrae, the authors usedU-Net,
Dense U-Net, and Residual U-Net. They used 595 vertebrae
images for the experimental analysis and achieved 95.1%
Dice Coefficient Similarity (DSC). Liao et al. [10] proposed
an approach for detecting and localizing vertebrae in spinal
CT images for short- and long-range contextual information.
The authors introduced a robust and effective method that can
integrate contextual details from nearby and distant regions.
A 3-D multi-tasking FCNN was designed to extract the
short-range contextual information efficiently. For the exper-
imental work, the authors used a publically available dataset
consisted of 302 CT Scan images. Out of 302, 242 images
were used for training and 60 for testing with a size of 96 ×

256 × 256. The model was trained over 12 epochs with a
256 batch size and a 10-6 learning rate. After the training
of the model, 52.39% accuracy was achieved with a 7.03%
error rate. Zhang et al. [11] predicted coronal spine alignment
using smartphone-acquired radiograph images of scoliosis
patients. The authors selected a total of 367 patients who
regularly attended a scoliosis clinic and used smartphones
to capture the coronal X-ray images. The objective was to
develop an automated system for predicting CA regardless
of image quality and without restrictions on curve patterns.
The authors employed a neural network called SpineHRNet
to identify crucial landmarks such as endplates and end-
vertebrae. The model was trained on 294 randomly chosen
images for each cross-validation iteration, with the remaining
73 images reserved for testing. The study found statistically
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TABLE 4. Summary of the literature survey.

significant correlations (p< 0.01) between the predicted CAs
and the Ground Truth (GT). Compared to the GT, the mean
absolute error in the estimated CAs across various spinal
regions ranged from 3.73 to 4.150, with a standard deviation
ranging from 0.8 to 1.70.

Zhang et al. [12] presented the LPAQR-Net (Lightweight
Pyramid Attention Quick Refinement Network), an effec-
tive and precise technique for segmenting vertebrae. Three
essential components were included in LPAQR-Net: a) An
attention-based Atrous Spatial Pyramid Pooling (A-ASPP)
module was used to extract weighted pyramid contexts to
enhance the vertebrae segmentation, b) To balance speed and
accuracy, the authors developed the Lightweight Backbone
Network (LB-Net) to reduce the requirements of the network
andmemory utilization, c) Themodel included a collection of
Global Attention Refinement (GAR) modules for the refine-
ment of the features. The proposed model was trained on the
AASCE 2019 dataset that consisted of 431 X-ray images of
the spine. The 50 images were used for validation and 128 for
testing. The results showed an impressive performance, with
a 93.09% Dice Coefficient (DC), 87.13% Jaccard Coef-
ficient (JC), and 91.37% Sensitivity (SE). Xu et al. [13]
proposed the Residual UNet (RUnT), a fusion of the Residual
U-Net Feature Extraction Network and the Vision Trans-
former structure, aiming to swiftly and accurately segment
multiple spinal vertebrae. Initially, the proposed model was
utilized to extract profound vertebral features, preventing
gradient diffusion and enhancing the precision of vertebral
contour segmentation. Subsequently, an edge segmentation
module received multi-scale feature maps generated by the
residual structure, which offered abundant surface informa-
tion about the vertebrae. Two datasets (i.e., CTSpine1K and

VerSe 20) were used to evaluate the model. After training,
the model achieved an 88.4% Dice Similarity Coefficient
(DSC) on CTSpine1K and 81.5% on the VerSe 20 dataset.
Naik et al. [14] developed a framework that accurately deter-
mines vertebral levels in intraoperative settings, achieving
an average mean Point-to-Point Distance Error (mPDE) of
0.36mm. Themethod for identifying vertebral levels and pos-
ture estimation and measuring PDE and computational speed
fell well within the acceptable clinical range. This developed
system could assess spinal deformations between preoper-
ative and intraoperative images by individually registering
each vertebra. Although the framework’s main purpose is to
discover and recognize vertebral centroids in intraoperative
images, its adaptability enables it to expand its applications
to estimate other anatomical postures in various preoperative
and intraoperative imaging conditions. Tavana et al. [15]
suggested using DL techniques to classify different types
of spinal curvatures based on radiography images. Support
Vector Machines (SVM), k-nearest Neighbours (kNN), and
pre-trained neural network models such as Xception and
MobileNet V2 were used in this work. The dataset consisted
of 1000 AP (anterior-posterior)) X-ray images of the spine
were obtained from Tehran, Iran’s Shafa Hospital. Due to
the relatively limited size of this private dataset, transfer
learning was applied. According to the experiment’s findings,
pre-trained Deep Neural Networks distinguished between
C-shaped and S-shaped spine curvatures about 10% more
accurately than traditional methods for categorizing different
types of spine curvature, pre-trained models like Xcep-
tion and MobileNet V2 outperformed conventional machine
learning methods because of their automatic feature extrac-
tion abilities. SVM served as the key activation function for
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gradient control. In terms of accuracy, the proposed model
achieved rates of 92% for Artificial Neural Networks (ANN),
95% for SVM, 92% for KNN, and 96% for both MobileNet
V2 + SVM and Xception + SVM in the experimental
work.

Zhao et al. [16] proposed a fully automated U-Net
method for CA measurement to address the precision
issues associated with human measurements. They improved
the U-shaped network by incorporating multi-scale feature
fusion through the Inception Block, which replaced the
U-shaped network’s convolution kernel. Additionally, the
authors integrated CBAM into the U-shaped network to
enhance feature extraction accuracy. The authors suggested
an efficient automated CA measurement method based on
the segmented vertebrae. The authors conducted tests on
75 spinal X-ray images, achieving significant improvements
in the Dice coefficient—32.03%, 33.58%, 12.42%, 5.65%,
4.55%, 4.42%, and 3.27% higher compared to DeepLabV3+,
FCN8S, SegNet, U-Net, U-Net++, BASNet, and U2Net,
respectively. Meng et al. [17] introduced a method that com-
bines graph optimization and an anatomical consistency cycle
for accurately localizing, segmenting, and identifying verte-
brae. This approach specifically addresses the challenge of
identifying transitional vertebrae by incorporating the con-
figurations into a graphical model that integrates predictions
from local deep networks, resulting in highly anatomically
accurate outcomes. After refining the annotations, the authors
achieved an initial Dice score of 92.8%, which improved
to 96.5%. Wu et al. [18] discussed the use of a U-Net
model with non-square kernels for automating the detection
of adolescent scoliosis. The discussed approach involved two
main steps: The authors first used the U-Net architecture to
segment vertebrae. The second step in this work involved
filtering out undesirable landmarks and extracting landmark
coordinates from the segmented vertebrae using a non-
learning-based method. The authors evaluated the method’s
performance using the ground truths from the AASCE-
MICCAI challenge 2019 dataset. The findings showed a 9.2%
symmetric mean absolute percentage error, with variances
of less than 10 degrees occurring in 90% of the estimates.
Tang et al. [19] suggested a method for detecting scoliosis
based on feature extraction from a specific region of interest.
The proposed approach involved several steps: initially, the
authors gathered patient back images and enhanced them
through pre-processing. Subsequently, the authors segmented
the images based on the relevant back region, then extracted
the contour of the back, marked feature points, and assessed
the degree of scoliosis by examining the symmetry of posture
characteristics and calculating the CA of the spine’s midline.
The analysis of the experimental data demonstrated that this
scoliosis detection method provided an initial evaluation of
postural aspects. Specifically, when the patients had CA rang-
ing from 0 to 30 degrees, the error in scoliosis identification
fell within an acceptable range, typically between 0 and
4 degrees.

Ishikawa et al. [20] presented a DL algorithm to pre-
dict the CA. This study had two main objectives: (1) to
assess the performance of this DL algorithm in forecasting
the CA and (2) to evaluate the algorithm’s predictive accu-
racy. The study involved 100 patients potentially affected
by Adolescent Idiopathic Scoliosis (AIS). The mean abso-
lute error was 4.7, the root mean square error was 6.0,
and the correlation coefficient between the expected and
observed CA was 0.87. Sun et al. [21] explored the use of
DL-based key point detection technology to assess the CA
in cases of Idiopathic Scoliosis. 181 anterior-posterior spinal
X-rays were used in this investigation, including 16 cases
of adults without scoliosis and 165 cases of idiopathic sco-
liosis. After labelling each image, the authors randomly
selected 145 for training and 36 for testing. For the test
cases, manual measurements yielded a mean CA of 27.4◦

± 19.2◦ (ranging from 0.00 to 91.00◦), while automated
measurements resulted in a mean CA of 26.4◦

± 18.9◦

(ranging from 0.00 to 88.00◦). The automated approach took
an average of 4.45 seconds to measure each radiograph.
Abedi et al. [22] proposed an adaptive neuro-fuzzy interface
technique to calculate the primary thoracic Cobb and thoracic
kyphosis angles in teenage patients with idiopathic scoliosis
after surgery. The system’s reliability was used to evaluate
the root mean square errors, clinical corrective deviation
indices, and the ratio of projected post-operative angles to
actual post-operative angles seen after surgery. The results
indicated errors of 3.0◦ for post-operative CA and 6.3◦ for
thoracic kyphosis angles. Fraiwan et al. [23] discussed the
use of DL technology for detecting scoliosis and spondy-
lolisthesis from X-ray images. The authors gathered a dataset
of 338 actual X-ray images, comprising 188 cases of sco-
liosis, 79 cases of spondylolisthesis, and 71 from healthy
individuals. DL models were employed to perform binary
classifications among these three classes. The results on
this dataset showed an impressive performance, with the
highest mean accuracy reaching 96.73% and a maximum
accuracy of 98.02%. Tavana et al. [24] suggested an effective
ensemble technique for identifying the type of spinal curve
through the utilization of Deep Transfer Learning (DTL) and
a Soft Voting Classifier (SVC). The scoliosis resulted in a
C- or S-shaped deformity. For the experimental work, they
used a dataset consisting of 1000 AP spine X-rays from
the Shafa Hospital in Tehran, Iran. Deep transfer learning
was adopted due to the relatively small dataset size, and the
study assessed the accuracy of pre-trained networks such as
MobileNetV2, Xception, ResNet152, InceptionV3, and pre-
trained DenseNet121.Masood et al. [25] introduced amethod
involving DL techniques for vertebral body segmentation,
classifying spine disorders, and extracting spinal measure-
ments. The accuracy of the classification of spondylolisthesis
was 89% when they used the angular deviation metric, and it
was 93% when they evaluated the region of the lumbar curve
to identify the patients’ level of lumbar lordosis (LL). The
proposed approach utilized ResNet-UNet for the semantic

VOLUME 12, 2024 11175



R. Kumar et al.: Critical Analysis on Vertebra Identification and Cobb Angle Estimation

segmentation of vertebral bodies (VBs), achieving impres-
sive performance metrics with a Dice Similarity Coefficient
(DSC) of 0.97 and Intersection over Union (IoU) of 0.86.
Yao et al. [26] introduced a fully automated system for
measuring cervical spinal curvature using the CA method on
X-ray images. This system aims to alleviate the workload of
medical professionals and provide a foundation for surgical
decisions. The method employed a Hybrid Transformer Net-
work (HTN) that combined feature fusion, self-supervised
learning, and a self-attention mechanism. The authors used a
new dataset for cervical spondylosis along with the AASCE
MICCAI 2019 challenge dataset to assess the model’s perfor-
mance. The results of the experiments showed a Symmetric
Mean Absolute Percentage Error (SMAPE) of 11.06% and
a significant Pearson correlation coefficient of 0.9619 (p <

0.001).
Fatima et al. [27] proposed an automated approach for

vertebrae localization and segmentation to estimate CA and
assess curvature deformities. They applied YOLO techniques
on the Mendeley and CSI 2016 datasets for the experimental
work. In the result analysis, they achieved 98.04% Mean
Average Precision (mAP) for the Mendeley and 81.25%
for the CSI 2016 dataset. Additionally, this method effec-
tively classified Lumbar Lordosis using the corner point
Cobb estimation method, demonstrating high accuracy rates.
Sha et al. [28] presented a novel model based on YOLOv3-
tiny for identifying three different spinal fractures, i.e.,
cervical, thoracic, and lumbar fractures. To optimize the
model’s efficiency, the authors replaced YOLOv3-tiny’s con-
ventional convolutional layers with fire modules sourced
from SqueezeNet, reducing the model’s parameters and over-
all size. As a result of the experimentation, the downsized
model was a mere 13 MB, approximately one-third of the
size of YOLOv3-tiny, while maintaining robust lesion detec-
tion performance. The model achieved an impressive mAP
of 90.7% and an Intersection Over Union (IOU) of 91.3%.
Xuan et al. [29] introduced a set of DL techniques for
diagnosing spinal diseases using MRI images. In this work,
the authors used YOLOv3, YOLOv5, and PP-YOLOv2 for
the training. Based on the experiments, the PP-YOLOv2
model exhibited an impressive overall diagnostic accuracy of
90.08% for normal cases, IVD bulges, and spondylolisthesis.
This accuracy surpassed YOLOv3 and YOLOv5 by 27.5%
and 3.9%, respectively. In practical applications, this soft-
ware provided a supplementary diagnosis for an MRI image
of a patient with spinal disease in less than 14.5 seconds.
It achieved an accuracy rate of 90.08%, comparable to that
of expert doctors. This development significantly enhances
diagnostic efficiency, reduces the risk of missed or incorrect
diagnoses, and offers substantial societal benefits. Mush-
taq et al. [30] explored the localization and segmentation of
the lumbar spine, which is instrumental in studying lumbar
spine abnormalities. The authors employed YOLOv5, the
latest iteration in the YOLO family, as it offered a lightweight
and swift object detection solution. YOLOv5 achieved an

impressiveMean Average Precision (mAP) score of 0.975 for
accurately localizing the lumbar spine. The authors estab-
lished a connection between the angles and the region size,
determined from YOLOv5’s centroid calculations, to iden-
tify lumbar lordosis, achieving an accuracy rate of 74.5%.
For segmenting the vertebrae and the edges, the authors
processed cropped images extracted from YOLOv5 bound-
ing boxes through HED U-Net, a system that combines
edge detection and segmentation techniques. Subsequently,
the authors utilized a Harris corner detector to pinpoint the
corners of the vertebrae, enabling them to derive Lumbar
Lordotic Angles (LLAs) and lumbosacral angles (LSAs).
Zheng et al. [31] introduced the Automatic Detection and
Measurement of the Spinous Process (SP) Curve on Clinical
Ultrasound Spinal Images. They also introduced the Gradient
Vector Flow Snake model (GVF) for the automatic Spine
Position localization in transverse ultrasound images. For the
experimental work, 50 individuals with varying degrees of
scoliosis were tested, and two observers manually computed
SPA values from both ultrasound images and radiography.
The outcomes showed that the ultrasound and radiography
techniques had a strong linear association (r > 0.85). The
mean absolute differences (MADs) for the SPAs derived from
the two modalities were 3.4 ± 2.4 and 3.6 ±2.8, respectively.
Banerjee et al. [32] proposed a Multi-scale SIU-Net (Skip-
Inception U-Net) model for the identification and localization
of vertebrae. To determine the severity of scoliosis, this
architecture was created to automate and reliably identify
bone characteristics. The proposed architecture comprises
two primary components: a modified Inception block and
newly devised dense skip connections on the decoder side.
In this work, the authors used a dataset consisted of 109 spine
ultrasound images. The authors evaluated their model based
on the three metrics, i.e., Jaccard Index, Dice Coefficient,
and Euclidean distance. It was compared with three other
models: the fundamental U-net segmentation model, the
UNet++ model, and the MultiResUNet model. The results
demonstrated that the SIU-Net model produced the most
precise segmentation results, particularly in critical areas of
interest such as thoracic and lumbar bone characteristics.
Furthermore, this approach exhibited the lowest histogram
Euclidean distance (0.011) and the highest average Jaccard
score (0.781) and Dice score (0.883) when compared to the
other three models. Altini et al. [33] discussed the uses of
CNN, K-Means Clustering, and K-NN for segmenting and
recognizing vertebrae in CT scans. The proposed method
involved a two-phase approach: first, a fully automated binary
segmentation of the entire spine using a 3D CNN, and sec-
ond, a semi-automated process that utilized conventional
machine learning techniques to pinpoint the centroids of the
vertebrae. The authors utilized a dataset comprising 214 CT
scans from the VerSe’20 challenge for training, validation,
and testing purposes, and also gathered 12 additional CT
scans from patients with varying degrees of scoliosis from
a nearby medical facility to evaluate the robustness of the

11176 VOLUME 12, 2024



R. Kumar et al.: Critical Analysis on Vertebra Identification and Cobb Angle Estimation

segmentation and labeling algorithms. Notably, the vertebrae
identification phase achieved a Dice coefficient of 90.09%,
while the binary spine segmentation stage attained a binary
Dice coefficient of 89.17%. Le Van et al. [34] introduced
an autonomous system that used modified Vietnamese X-ray
images to recognize lumbar implants and identified scoliosis.
Due to the absence of appropriate X-ray medical imag-
ing resources, two alternative approaches were employed.
These approaches included utilizing transfer learning with
the pre-trainedmodels and pre-trained APIs.When compared
to the pre-trained API models, the outcomes revealed that
transfer learning was well-suited for the adapted Vietnamese
X-ray imaging data. Additionally, transfer learning produced
accurate results in a limited dataset of medical imaging while
requiring less time for model training. Further, DenseNet
has a high validation accuracy of 93.5% in comparison to
ResNet’s 8.25%, SqueezeNet’s 81.5%, and InspectionV3’s
87.5%. Fu et al. [35] presented a multi-task network for
the automatic estimation of the CA Measurement. The
authors proposed an automated architecture capable of esti-
mating 68 landmarks distributed across 17 vertebrae through
a combination of segmentation and landmark data. Addi-
tionally, the authors also take the spinal curvature defined
by 68 landmarks into consideration, to calculate the CA.
The effectiveness of this approach in enhancing landmark
estimation accuracy and reducing CA measurement errors
was demonstrated through extensive experiments involv-
ing 240 X-ray images. Kokabu et al. [36] suggested a Deep
CNN along with three-dimensional depth sensor imaging for
the detection of scoliosis. The authors employed Pearson’s
correlation coefficient analysis to establish the relationships
between the real and predicted CA. Mean absolute error and
root mean square error were used to evaluate the accuracy
of the network models’ predictions. The dataset, consisting
of 160 data files, was randomly divided into five datasets
(referred to as datasets 1, 2, 3, 4, and 5), and a five-fold cross-
validation was carried out on each dataset. The correlation
between the actual CA and the mean predicted CA was found
to be 0.91. The root mean square error was 5.4, and the mean
absolute error was 4.0. The mean projected CA achieved an
accuracy of 94% in recognizing CA greater than 100 and 89%
for angles exceeding 200 degrees.

Krizhevsky et al. [37] proposed an AI-powered platform
for Auto Analyses of Spine Alignment. The researchers
employed a large and deep CNN to classify a substan-
tial dataset of 1.2 million high-resolution images from
the ImageNet LSVRC-2010 competition into 1,000 differ-
ent categories. This proposed model achieved impressive
results on the test data, with top-1 and top-5 error rates of
37.5% and 17.0%, respectively. The researchers employed
non-saturating neurons and a highly efficient GPU imple-
mentation for convolution operations to expedite the training
process. Zhang et al. [38] introduced a Multi-Task Rela-
tional Learning Network (MRLN) that establishes connec-
tions between vertebrae and prioritizes three key tasks. The

authors utilized a dilation convolution group to expand the
receptive field and incorporated long short-term memory
(LSTM) to retain historical knowledge about the sequen-
tial relationships among vertebral bodies. In the decoder
phase, focusing on segmentation and localization tasks,
authors introduced a co-attention module to grasp correlation
information, namely localization-guided segmentation atten-
tion (LGSA) and segmentation-guided localization attention
(SGLA). Additionally, the authors employed a strategy to pre-
vent overfitting by jointly learning two tasks, allowing them
to correct and complement each other. For the experimental
analysis, the research team collected data from 407 patients
across multiple centers and from various manufacturers. The
data included diverse parameters such as a range of repeti-
tion times (TR) from 340 ms to 4,000 ms (with an average
of 1965 ms), echo times (TE) ranging from 8.072 ms to
147 ms (with an average of 66.834 ms), flip angles (FA)
between 90 and 180, slice thickness ranging from 0.88 mm
to 4 mm (with an average of 2.4483 mm), and in-plane pixel
spacing that varied. Tirindelli et al. [39] suggested a robotic
ultrasound technique for the automated detection of vertebral
levels. The proposed model combined force and ultrasonic
data to deliver tactile and visual feedback that enhanced
performance while working with potentially damaged data.
The robotic arm automatically scanned the volunteer’s back
along the spine, using force-ultrasound data to identify ver-
tebral levels. Vertebral level occurrences were indicated as
peaks in the force trace when the robot applied controlled
force to the patient’s back. To derive a 1D signal repre-
senting the likelihood of a vertebra being present at each
position along the spine, ultrasound data was processed using
a DL approach. Cheng et al. [40] proposed a two-stage DL
approach, Dense-U-Net, for automatically segmenting CT
vertebrae. In the first stage, the authors used a 2D-Dense-
U-Net to identify vertebrae by detecting the centroids in
2D slices with dense labeling. In the second stage, authors
employed a 3D-Dense-U-Net to segment the specific vertebra
within a region of interest determined based on the centroid
location. The authors resampled the resolution after merging
all segmented vertebrae to form a complete spine. The dataset
was collected from CSI 2014 and evaluated the model using
six metrics. For vertebrae segmentation, the model achieved a
dice coefficient of 0.953 ± 0.014, an intersection over union
of 0.911 ± 0.025, a Hausdorf distance of 4.013 ± 2.128 mm,
and pixel accuracy of 0.998 ± 0.001. Vertebrae localization
was evaluated with a location error of 1.69 ± 0.78 mm and a
detection rate of 100% using these metrics. The authors also
demonstrated the method’s generalizability by evaluating it
on the xVertSeg challenge dataset, achieving a location error
of 4.12 ± 2.31, a detection rate of 100%, and a dice coef-
ficient of 0.877 ± 0.035. Alrehily et al. [41] discussed the
experiments to see how well Computed Tomography (CT)
scans with scan projection radiography (SPR) for AIS evalu-
ation work. When compared to conventional radiography, the
proposed scanning modality emits less radiation. According
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to the study, a spinal deformity affected young children with
Adolescent Idiopathic Scoliosis (AIS). To monitor the defor-
mity, it is necessary to expose oneself to X-rays frequently,
but this can subsequently result in radiation-induced cancer.
The mean-variance between the established angle and the
CA measured was 2.75 (with a standard deviation of 1.46).
Compared to studies involving different imaging methods for
determining the CA, there was substantial consensus among
the observers (p-value = 0.861, 95% confidence interval:
0.70 to 0.95). Rehman et al. [42] described a method for pre-
dicting the shapes of vertebral bones using a DL framework in
combination with a conventional region-based level set. The
authors named this framework BFU-Net, which proved to be
a robust and valuable tool for effectively segmenting fractured
vertebrae. The proposedmethod underwent successful testing
on two challenging datasets: one comprising 25 CT image
data (comprising both healthy and fractured cases) from
the spine segmentation challenge CSI 2016 or xVertSeg.v1
challenge, and another with 20 CT scans (15 healthy and
5 fractured cases) from the spine segmentation challenge
CSI 2014. In the CSI 2014 dataset (encompassing lumbar
and thoracic regions), the dice score was 96.4 ± 0.8% for
non-fractured cases and 92.8 ± 1.9% for fractured cases.
Similarly, in the CSI 2016 datasets (including 10 annotated
CT datasets), the dice score for the overall 25 CT dataset was
95.4± 2.1%, and for the 15 CT datasets with provided ground
truths, it was 95.2 ± 1.9%.
Zhang et al. [43] introduced the CGARD-VCM method,

which combined the centroid method with a cascade gen-
tle AdaBoost classifier and region-based DRLSE (Distance
Regularized Level Set Evolution) to quantify spine curva-
ture. This approach considered vertebral images with diverse
perspectives, contrasts, and pathological abnormalities when
training the cascade gentle AdaBoost classifier to incorporate
more vertebral features. Furthermore, the identified vertebrae
were assigned numerical labels to distinguish and separate
the individual components of the spine. Alsiddiky et al. [44]
proposed an Analytical Transform Assisted Statistical Char-
acteristics Decomposition Model (ATS-CDM) for accurate
segmentation of spinal tumors. This paper demonstrates
the capability of automatic segmentation of lumbar spine
structures when high-resolution MRI data and large-scale
clinical datasets are accessible. The suggested analytical
transform-assisted approach has desirable qualities, including
strong noise resistance and suitability for analyzing with
inherent pictures. The most likely form parameters for each
subregion can be robustly selected using an optional model-
fitting approach. Based on the segmentation outcomes,
ATS-CDM demonstrated exceptional precision in segmenta-
tion across various individuals and spinal regions, achieved
a remarkable accuracy of 98.7% for bending and 98.88% for
segmentation. This translates into an average ROC grading of
94.2% ± 0.2% to 97.02% ± 0.2%, showcasing its high per-
formance. Chuang et al. [45] introduced an Efficient Triple
Output Network designed for vertebral segmentation and
identification. The innovative architecture, featuring three

distinct outputs, effectively utilizes memory resources while
delivering excellent segmentation outcomes. In the experi-
mental evaluation, the authors utilized the XvertSeg dataset,
comprising 15 individual spine data points along with lumbar
segmentation masks. This model demonstrated impressive
performance, achieving a Dice coefficient of 92.6% in the
segmentation task.Wang et al. [46] suggested Accurate Auto-
mated CA Estimation using Multi-View Extrapolation Net
(MVE-Net). The MVE-Net consists of three distinct compo-
nents: In the first section, the Joint-view net simultaneously
learns the Anteroposterior (AP) and Lateral (LAT) angles
by leveraging shared landmarks derived from a joint rep-
resentation. The second section, the Independent-view net,
focuses on learning the AP and LAT angles separately using
landmarks specific to each angle’s features. An Inter-error
correction net is employed to learn a combination function
and correct any errors from the first two networks to enhance
angle estimation accuracy. The model’s performance was
assessed using 526 X-ray images, resulting in Circular Mean
Absolute Error rates of 7.81% for the AP angle and 6.26% for
the LAT angle estimation.

B. PROPOSED INVESTIGATION
After rigorous analysis for Vertebrae Identification and Sco-
liosis Detection using DL, some investigations are observed
mentioned below:

• Investigation 1: What types of datasets are used for
Vertebra Identification and Scoliosis Detection?

• Investigation 2: What are the best-suited DL models
used by the researcher for Vertebra Identification and
Scoliosis Detection?

• Investigation 3: What are the challenges faced during
CA Measurement?

• Investigation 4:What open-source software is available
for Scoliosis Detection?

• Investigation 5:What are the several causes behind

Scoliosis disease?

• Investigation 6: What are the different age groups of
people affected?

• Investigation 7: What are the limitations of CA mea-
surement?

• Investigation 8: How can we address these limitations
in future research?

IV. RESEARCH METHODOLOGY
The methodology used to detect scoliosis and calculate the
CA from the various X-ray images by the various researchers
is shown in Figure 6. Multiple processes are involved in train-
ing a U-Net model to detect scoliosis, from data collection
and pre-processing to model training and evaluation. The first
stage is to gather the dataset that consists of both normal and
scoliosis-related X-ray images. Ground truth labels are also
included in the dataset to denote the existence and degree of
scoliosis. Further, this dataset is fed into the U-Net archi-
tecture. Depending on the dataset and available computing
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FIGURE 6. Deep residual U-net architecture for scoliosis detection.

ability, the number of layers, filters, and other hyperparame-
ters can be modified. To avoid overfitting, use the appropriate
dropout layers, normalization layers, and activation functions
(like ReLU). Train the U-Net model on the training dataset
using an optimizer like Adam or SGD. Evaluate the trained
model on the test dataset to assess its performance.

The following evaluation measures are frequently used:
accuracy, precision, recall, F1-score, and intersection over
union (IoU). The proposed architecture consists of three
stages:

A. ENCODING STAGE
During the encoding phase, a sequence of convolutional and
pooling layers slowly decreases the size of the input image.
Features from the input image are captured and extracted by
each convolutional layer. The network can collect patterns of
features since pooling layers minimize the spatial dimensions
of the feature maps.

B. DECODING STAGE
The traditional U-Net network combines low-level details
with high-level semantics via skip connections to enable
feature enhancement. On the other hand, these feature maps
may have redundant information in addition to characteristics
that are difficult to detect. Consequently, network perfor-
mance may be negatively impacted by directly combining the
encoder and decoder characteristics through skip links.

C. MAPPING LAYER
The mapping layer connects the matching feature maps from
the encoding and decoding phases. It helps with accurately

TABLE 5. Datasets used in scoliosis detection.

localizing objects in the segmentation task by facilitating the
merging of low-level and high-level characteristics. At the
same spatial resolution, skip connections link feature maps
straight from the encoding step to the decoding stage. With
the use of these links, the network may segment data using
both local and global context.

V. DISCUSSION
This section explains the Possible Solutions (PS) for investi-
gations discussed in section III.

Investigation 1: What types of datasets are used for Ver-
tebra Identification and Scoliosis Detection?

P.S: Specific aspects of scoliosis detection datasets can dif-
fer between research studies because they are determined by
the study’s aims, accessible data, and methodologies. Table 5
shows the different datasets used by various researchers in
their work. Here are some common criteria and traits found
in past scoliosis detection research datasets:

a) The main components of many scoliosis detection
datasets are lateral and posterior-anterior (PA) X-ray pictures
of the spine.

b) Annotations of ground truth for CA are crucial param-
eters for training scoliosis detection models and representing
the degree of spine curvature.

c) Data augmentation techniques, including rotation, flip-
ping, and scaling, are frequently used to improve model
generalization and boost dataset diversity.
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TABLE 6. Different DL techniques used in scoliosis detection.
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d) To preserve class balance and avoid model bias, both
positive sample cases with scoliosis and negative sample
cases without scoliosis are included.

Investigation 2:What are the best-suited DL models used
by the researcher for Vertebra Identification and Scoliosis
Detection?

P.S: After the critical analysis, different DL algorithms are
discussed in Table 6 for Vertebra Identification and Scoliosis
Detection.

In the field of medical image analysis, DL models have
demonstrated great potential, especially in tasks related to
vertebral segmentation and CA measurement. While measur-
ing the CA is critical for determining the severity of diseases
such as scoliosis, segmentation of vertebrae is an important
first step in identifying and analyzing spinal abnormalities.
The above-mentioned DL models are the best models for the
identification of scoliosis and CA measurement.

Investigation 3:What are the challenges faced during CA
Measurement?

P. S: To determine the CA, one draws lines that run parallel
to the upper edge of the upper vertebral body and the lower
edge of the lowest vertebra within the curved section of the
spine. Perpendicular lines are then extended from these paral-
lels, and the angle formed where these vertical lines intersect
referred to as the ‘angle of curvature’. Some of the challenges
that are faced during CAMeasurement are mentioned below:

a) The CA can be measured differently by different
observers, which could produce inconsistent findings. A per-
son’s unique interpretation of the vertebral endplates as well
as their experience and training may have an impact on this.

b) Changes in measurement procedures, weariness,
or developing interpretation standards can all lead to varia-
tions in measurements even from the same observer at various
periods.

c) CA measurements can be inaccurate because to varia-
tions in radiography techniques, including patient placement
and image quality. Errors may arise from uneven positioning
or poor image quality.

d) Three-dimensional spinal abnormalities may be more
complex than the CA can measure because it is a two-
dimensional measure. CA may not accurately represent all
the components of scoliosis in some circumstances.

Investigation 4: What open-source software is available
for Scoliosis Detection?

P.S: Scoliosis can be identified using several free
and open-source software programs, such as CobbMeter,
Surgimap, CAMS (Compute Aided Measurement System),
and the CA app. However, a lot of these systems mostly
depend on manual labour and human input for critical tasks
related to scoliosis recognition, like measuring angles or
recognizing landmarks. Scoliosis can be identified using a
number of free and open-source software programmes, such
as CobbMeter, Surgimap, CAMS (Compute Aided Measure-
ment System), and the CA app. However, a lot of these
systemsmostly depend onmanual labour and human input for
critical tasks related to scoliosis recognition, like measuring

FIGURE 7. Several causes behind scoliosis detection.

angles or recognising landmarks. Because observers differ,
this manual approach can be laborious and add variability.
Large datasets or the requirement for quick processing of a
large number of medical images might present difficulties for
open-source software, particularly in busy clinical environ-
ments with a high patient volume. On the other hand, as DL
models are developed, they may provide an automated and
effective solution by integrating easily with current healthcare
operations. Additionally, DL models have the capability to
offer enhanced insights into the decision-making processes
involved in scoliosis recognition.

Investigation 5: What are the several causes behind Scol-
iosis disease?

P.S: Various forms of scoliosis have distinct underlying
causes, as illustrated in Figure 7. Medical professionals dif-
ferentiate these curves into two categories: structural and
non-structural. In non-structural scoliosis, the spine exhibits
a curved appearance but functions normally. Several factors
can lead to non-structural scoliosis, such as leg length dis-
crepancies, muscle spasms, and inflammatory conditions like
appendicitis. In contrast, structural scoliosis is characterized
by a fixed and unalterable spine curvature. Some of the causes
of Scoliosis are mentioned below:

• Muscular Dystrophy
• Birth Defects
• Tumors
• Cerebral Palsy
• Genetic conditions like Marfan syndrome and Down
syndrome.

Investigation 6: What are the different age groups of
people affected?

P. S: Roughly six to nine million individuals in the United
States, constituting about 2 to 3 percent of the popula-
tion, were estimated to experience scoliosis. While scoliosis
can manifest in early childhood, it predominantly emerges
between the ages of 10 and 15, affecting both genders equally.
Notably, females have an eightfold higher likelihood of devel-
oping a curvature severe enough to necessitate treatment.
Each year, over 600,000 people with scoliosis seek medical
attention from private physicians, with approximately 30,000
children receiving braces and 38,000 individuals undergoing
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FIGURE 8. Age groups affected by scoliosis.

spinal fusion surgery. Some of the age groups that are affected
by Scoliosis (shown in Figure 8) are mentioned below:

• In Children
Scoliosis in children is categorized based on age as follows:

a. Infantile (0 to 3 years old).
b. Juvenile (3 to 10 years old).
c. Adolescent (11 years old and older, or from the onset

of puberty until skeletal maturity).

• In Adults
In the case of adults, the development or diagnosis of scoliosis
differs from that in children due to varying underlying causes
and treatment goals for individuals who have already reached
skeletal maturity. Adults with scoliosis can be categorized
into two groups:

a. Adult idiopathic scoliosis
b. Adult degenerative (or de novo) scoliosis

Although it is rare, adult scoliosis can also arise from illness,
surgery, or trauma.

• In Elderly
According to one study, 68% of healthy individuals over
the age of 65 who did not have low back discomfort had
scoliosis. The following are common causes of scoliosis in
older people:

a. Traumatic scoliosis (after injury or surgery)
b. A pre-existing adolescent scoliosis that has progressed
c. Degenerative (or de novo) scoliosis

Surgery is the only procedure that is advised to treat adult sco-
liosis. Surgery, however, can be far more difficult for adults
than for teenagers, particularly for older persons. Elderly
patients tend to have higher rates of surgical complications,
longer recovery times, and a greater probability of needing
revision procedures.

Investigation 7: What are the limitations of CA measure-
ment?

P.S: The datasets used to train DL models, as well as the
models themselves, have a number of limitations, despite the
fact that these algorithms can provide automated and effective
solutions for CA measurement. Some of the limitations are
mentioned below:

a) To achieve good generalisation across various scenarios,
DL models need to be trained on large diverse datasets. It can
be difficult to get a suitably large and diverse dataset for spine
images, though, particularly when it comes to a wide range of
age groups, ethnicities, and degrees of spinal abnormalities.

b) The model may not function well on cases that differ
from the training data if the dataset used for training is
biased towards particular demographics, imaging modalities,
or kinds of spinal abnormalities.

c) Measurements of CA frequently depend on manual
suggestions made by human observers. The annotation style
used by several specialists on the same images can vary
significantly. The model’s performance may be impacted by
noise introduced into the training set by this inconsistent
annotation process.

Investigation 8: How can we address these limitations in
future research?

P.S:By utilizing DL models and datasets, future research
on CA measurement may concentrate on resolving current
issues. The following are some suggestions for further study:

a) To ensure that models perform well in a variety of
patient groups, build datasets that cover a broad range of
demographic variables, including age, gender, and ethnicity.

b) To make sure the model learns to handle a variety
of challenging scenarios, include cases with different spinal
defects beyond traditional scoliosis.

c) Examine the creation of models that can manage dif-
ferent types of imaging, including CT, MRI, and X-rays.
The performance and generalizability of the model may be
enhanced by integrating data from other modalities.

VI. CONCLUSION AND FUTURE ASPECTS
Scoliosis detection andCAmeasurement have evolved signif-
icantly over time, from the past to the present, and continue
to advance into the future. Scoliosis detection and CA mea-
surement have come a long way, with advancements in
technology and medical understanding significantly improv-
ing diagnosis and treatment. In this work, we first introduce
the general overview of Scoliosis detection and CA measure-
ment. Further, a systematic review has been conducted on
Scoliosis detection, and PRISMA guidelines are followed for
rigorous analysis. More than 413 articles were collected from
this review process, and 44 were selected for the critical anal-
ysis. After rigorous analysis, a methodology is proposed with
different types of DL models and performance metrics used
by the researchers in their work. The various DL approaches
for scoliosis detection are then examined, and it has been
observed that DL techniques have achieved significant suc-
cess in the area of vertebra identification.

Further, the combination of advanced imaging techniques,
automation, and patient-friendly approaches offers promising
avenues for the early detection and management of scoliosis.
The future holds exciting prospects, including AI integra-
tion, genetic screening, patient-centric care, and regenerative
therapies, which promise to enhance the accuracy, accessi-
bility, and effectiveness of scoliosis management. Continued
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interaction between medical practitioners, researchers, and
technologists will make these upcoming advancements pos-
sible.
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