
Received 14 December 2023, accepted 28 December 2023, date of publication 12 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3353201

Probabilistic Temporal Fusion Transformers for
Large-Scale KPI Anomaly Detection
HAORAN LUO 1, (Member, IEEE), YONGKUN ZHENG1, KANG CHEN 1, (Member, IEEE),
AND SHUO ZHAO2
1Research Institute of China Telecom Company Ltd., Guangzhou 510630, China
2China Telecom Corporation Ltd., Xicheng, Beijing 100033, China

Corresponding author: Haoran Luo (luohr1@chinatelecom.cn)

This work was supported by China Telecom Company.

ABSTRACT This paper introduces a new generic and scalable framework for large-scale time series
prediction and unsupervised anomaly detection. The most common approach of state-of-the-art time series
anomaly detection techniques, which are mostly based on neural networks, is to train a network per time
series. However, a typical modern microservice system consists of hundreds of active nodes/instances.
To monitor the performance of such a system, we often need to keep track of thousands of time series
describing different aspects of the system, including CPU usage, call latency, and workloads. We introduce a
newmethodology for grouping metrics that share the same type, predicting hundreds of metrics concurrently
with a single neural network model with shared parameters. The model also integrates the probabilistic
representations and Temporal Fusion Transformers for better performance. In a real-world dataset, our
proposed model achieved up to 50% improvement in terms of MSE.

INDEX TERMS Deep learning, time series, anomaly diagnosis, microservice systems.

I. INTRODUCTION
Modern microservice systems consist of thousands of ser-
vices, grouped by hundreds of subsystems. Generally, each
service runs on a different container, and those containers
can be dynamically created or destroyed according to some
scaling configurations. It is challenging for the operator to
detect operational issues and perform swift troubleshooting
in such a complex environment.

During runtime, an operator can extract the metrics
generated by nodes and services, such as CPU/Mem usage,
Network I/O and the number of requests per second.
Combining the observations from different timestamps forms
some time series; by analyzing such series, an operator can
decide whether the system is in an abnormal state; predicting
the future values of time series also helps the operator
discover the hidden risks before it actually break the system.

Traditional time series analysis methods require intensive
human effort. To analyze the performance of a certain service,
an operator must observe the time series generated by that
service, then set the thresholds manually according to his/her

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

experience. However, in modern microservice systems, the
great quantity of pods and containers makes the manual
method unacceptable. Operators require an unsupervised
method, which could automatically extract proper thresholds
from previous time series with minimal human inference.

A rich body of literature investigates unsupervised time-
series anomaly detection tasks. Xu et.al. proposed a model
Donut [1] based on variational auto-encoders (VAE), which
achieved 0.9 F-score in an unsupervised training setup. Ma
et. al. proposed an approach based on a one-hot support
vector machine to identify unforeseen or abnormal sections in
a time series. Other unsupervisedmethods, such as clustering,
are also being actively researched according to [2].

However, as the size of modern microservice system
growing larger, the above methods reached a performance
bottleneck. For example, training a single VAE or clustering
model is not trivial; training different models (especially
neural networks) for hundreds of sequences and predict them
simultaneously becomes unacceptable in modern production
settings. Therefore, we try to find a universal model for the
same type of metrics in a microservice system.

Themodel should have the ability to effectively distinguish
the ‘‘static’’ parts in different time series, and itself should

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 9123

https://orcid.org/0000-0002-1951-6678
https://orcid.org/0000-0003-4358-2445
https://orcid.org/0000-0002-2471-6375

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

be complex enough to hold time series with different
characteristics. A competitive model is Temporal Fusion
Transformer(TFT) [3], which integrates static info and LSTM
layers into transformer structure, and combines them via
residual layers. Based on the idea of TFT, we tested and
optimized it according to the requirements in production
environment of microservice system.

The contributions of this paper can be summarized as
follows.

• We show that Temporal Fusion Transformers can be
the state-of-the-art model for unsupervised anomaly
detection tasks in the DevOps field. We prove this by
comparison with other models on real-world datasets
collected from production.

• We enhance the Temporal Fusion Transformer model by
integrating input sequences in a probabilistic way, which
improves performance.

• We propose a framework called TFTOps that is suitable
for near real-time, concurrent anomaly detection of
hundreds of different series.

II. RELATED WORK
In this section, we will discuss the development of anomaly
detection methods and the usage of these methods in
DevOps/AIOps domain.

A. ANOMALY DETECTION
Anomaly detection is an active field of research in which
many applications and solutions being proposed every year
in the past decades.

A natural solution to the time series anomaly detection
problem is to utilize the ‘‘normal’’ time series to build amodel
capable of predicting the following items when the system
is running normally. Given such a model and an observation
of time series, one can use the observation as the model’s
input, and get the prediction indicating what the following
values could be under the system’s ‘‘normal’’ situation. If the
observed values of future time series violate the predicted
ones, the operator shouldmark the timestamp as ‘‘abnormal’’.
Under this setup, two essential problems need resolving.

• Finding a good model that can correctly predict our
target sequence. Depending on the characteristics of
different targets, ‘‘good’’ models often vary in scales,
costs, and even methodologies.

• Finding a method to examine whether a violation
case is ‘‘abnormal’’, or just a false positive/outlier.
Such methods mainly refer to various thresholding
techniques, including static and dynamic (or self-
adaptive) thresholding.

Traditional time series analysis methods often tend to use
simple statistic methods to model time series. Early in the
1990s, the ARIMA model [4] was proposed. The full name
of ARIMA is ‘‘AutoRegressive IntegratedMoving Average’’,
which uses a differencing operation (or ‘‘integrate’’) to
eliminate the non-stationarity if possible. To deal with

seasonal components, a seasonal-differencing technique is
also introduced. Given input, an ARIMA model generates
a scalar value, and operators often compare the prediction
with a static threshold to determine whether the prediction-
observation pair is abnormal.

The naïve ARIMA method experiences difficulties when
dealing with complex time series. However, the series can
be non-stationary even after the integration process. Running
a second-order differencing yt∗ = yt − 2yt−1 + yt+2
helps to eliminate other components, but the complexity of
an ARIMA model is still challenged by many real-world
datasets.

On the other hand, some efforts were made to decompose
the time series into different interpretable components. Gen-
erally speaking, one can write a time series as a composition
of 4 series: a level component, a trend component (T),
a seasonal component (S), and an error term (E), which
is the gap between the model and actual observations.
Different models make different underlying mathematical
assumptions about the methods to compute and combine
those components, forming a family that is called ETS
models. Hyndman et. al. [5] provides a detailed view of the
ETS family.

However, these traditional models suffer from performance
degradation when the target becomes complex, or when we
are unable to provide accurate prior knowledge. For example,
consider a time series describing the number of customers in
a resort. One can easily conclude that it should be busy on
weekends, and have fewer customers during weekdays, thus
the seasonal component in ARIMA/ETS should have a period
of 7 days. However, this assumption breaks when Christmas
is coming. The input of traditional models only includes the
target series itself and several hyper-parameters. Their lack of
conditional inputs makes the models harder to generalize to
different circumstances.

Since the 2010s, there has been a growing interest in
neural network-based methods for various machine learning
applications, including time series prediction and anomaly
detection. As the previous example suggests, time series often
come with prior knowledge, while neural networks are well-
suited to incorporate this information into the models. Thanks
to its nature, one can skip the intensive work of choosing
feasible features from all sorts of prior knowledge, and let the
stacked layers in neural networks do the job automatically.

During past decades, researchers have proposed a variety
of neural network models, and it is hard to thoroughly
introduce every different directions. To make a comparison
with our proposed TFTOps, we mainly focus on the works
that are close to our model in target, approach, and scalability
potential. In other words, we introduce somemodels that have
the following properties:

1) Uses Deep neural network (DNN) to perform time
sequence prediction. This ensures that the model is
somehow generalizable enough to capture fuzzy and
versatile sequences.

9124 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

2) Integrates static information and other ‘‘known’’ vari-
ables with input. These information, acting as prior
knowledge, will contribute to the model’s overall
performance.

3) Directly predict the future value of the sequence
(unsupervised), other than only predicting a manually
attached ‘‘anomaly’’ label. This ensures the availability
of model when exact anomaly labels can hardly be
retrieved.

Condition 1) and 3) indicate a task called multi-horizon
sequence forecasting. Given a time sequence as input, the
DNN model should generate its prediction for the possible
values ahead.

In the field of DNN, there are two main approaches to
solve the multi-horizon forecasting task. The first approach
in this direction features the autoregressive models such
as Seq2seq [6] and DeepAR [7]. Autoregressive models
usually base on Long-short Term Memory (LSTM) cells
[8] and their variations, such as GRU [9]. Deep AR [7]
uses stacked LSTM layers to generate parameters (mean and
variation) of a Gaussian distribution, then samples from that
distribution to determine the one-step-ahead output. Deep
State-Space models [10] implements a similar approach,
while modeling the Gaussian distribution parameters with a
Variational Autoencoder(VAE) [11]. More recent researches
focus on Transformers, for example [12] proposed the
use of transformers in time series tasks and introduced
convolutional layers to reduce memory footprints. Fan et.al.
[13] proposed a multi-modal attention mechanism to enhance
LSTM encoders, which provides better context to a bi-LSTM
decoder. These models are built to solve the ‘‘one-step-
ahead’’ prediction problem: accept the previous sequence as
input from 0..t , then predict the value of t + 1. After that,
one should send the prediction at t + 1 back to the model
to get the next timestep after t + 1, which is t + 2. This
process is repeated, until all timesteps t + 1, . . . , t + n are
iteratively generated. While straightforward, the efficiency
of these models can be the bottleneck in certain situations.
Inevitably, wemust call themodel n times to get n predictions,
which results in anO(n) complexity. Caching the decoder part
can mitigate the problem.

On the contrary, non-autoregressive models generate a
sequence of forecasts for a fixed number of horizons concur-
rently. A typical model also resembles the normal approach
of using an encoder to generate a hidden representation
for the whole input. Common choices of encoders include
feed-forward CNN,Autoencoder [14], LSTM, transformer,
or a combination of these models [15]. Upon generating
the representation vector, a decoder will process it to
acquire future predictions. The whole model is end-to-end
trainable. For example, the Multi-horizon Quantile Recurrent
Forecaster (MQRNN) [16] proposed two different encoder
structures (CNN and LSTM), and generated output based on
the encoded sequence via anMLP for each horizon. Temporal
Fusion Trasnformers [3], unlike [12], directly predicts the
t + 1 . . . t + n timesteps using a transformer-based model

in a single pass. Note that both models (MQRNN and TFT)
generate the whole group of multi-horizon output at the
same time, avoiding the self-regression scheme. Besides,
both models chose ‘‘known’’ variables as extra input of their
decoders, which satisfies 2).

In terms of model structure, our TFTOps mainly inherits
ideas from TFT model [3] and [17]’s probabilistic input.

B. ANOMALY DETECTION IN AIOPS
DevOps relies on different aspects to monitor the status
of system. Main datasources include Application logs [18],
distributed traces [19] and KPI metrics. More comprehensive
results can be found in [20]. In this paper, we mainly focus
on researches about KPI metrics (time series).

Currently, the most widely accepted toolchains include
Prometheus [21] and Grafana [22] which have user-friendly
interfaces and supported by a powerful query language
(PromQL [23]). However, those platforms currently only
support naïve models as built-in functions, such as linear
regression and statistical tests. These approaches are suitable
for most periodic data, while failing to solve complex cases
where an assumption of underlying data distribution is
unavailable.

In the past decades, machine learning approaches are
intensively investigated for metric prediction. Supervised
methods include decision trees [24], [25], [26] or Bayesian
classifiers [27], [28], [29]. While achieving high accuracy in
some cases, the performance of supervised methods heavily
depends on accurately labeled data. Unsupervised methods
include LOF(local outlier factor) [30], clustering [31] and
PCA [32] are developed for the cases where labeled data is
unavailable.

Being successful in other fields, such as computer graphics
and machine translation, neural network methods are gaining
notice in the AIOps context since 2015. For example, Monni
et. al. [33] built an anomaly detector based on restricted
Boltzmannmachine [34]; Lin et. al. using a Learning-to-Rank
model [35] to combine the result of LSTM and random forest.
In more recent researches, attention mechanism also took
place in predicting long-term time series [36], [37]. Except
directly predicting the target, operators can also use neural
networks to generate reliable fake sequences [38] to augment
the dataset. However, the performance of neural networks is
often a concern to the operators.

Generally speaking, previous researchers mainly focused
on predicting the trend of KPIs(Key Performance Indi-
cators). For example, Microsoft’s Spectral Residual CNN
KPI anomaly detection model [39] treats each KPI time
sequence separately: an independent model is trained on
each KPI sequence. Since KPI sequences can be defined
quite differently, using different model parameters to predict
them is a natural choice. Also, since the number of such
KPI sequences is few, one can easily afford the cost of
training and hosting several models. However, in typical
microservice settings, there are hundreds of pods and services
hosted for different purposes. When the operators try to make

VOLUME 12, 2024 9125

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

fine-grained predictions, they will likely meet a dilemma:
using a neural network to accurately track a pod/service’s
metric, such as disk and memory usage, often consumes more
resources than the pod/service itself. This dilemma prevents
neural network models from participating in fine-grained
prediction tasks.

Recently, transformer-based models have shown superior
performance in neural machine translation and other text-
related fields. Its power in processing sequences also attracts
the attention of researchers in time-series fields. Since
2020, transformer-based models have formed a line of
research on long-term time series forecasting. For example,
Informer [40] proposed an efficient ProbSparse self-attention
mechanism, which solved the performance cap of long time
series(output length > 50); Autoformer [41] proposed a
decomposition architecture and auto-correlation mechanism
to further aggregate sub-series level representations.

However, in DevOps settings, it is doubtful that long-term
time series forecasting is necessary. As proposed by [40],
the prediction error quickly rises as the output sequence
length increases. In production environments, DevOps tends
to shrink the length directly instead. Discovering abnormal
circumstances hours ahead is good enough; in this case,
a shorter time series(output length < 50) would suffice.
Despite using similar transformer and self-attention mech-
anisms, this paper mainly explores another dimension: the
‘‘width’’ of transformer models in the practical DevOps
field. In other words, this refers to the ability to compute a
group of similar metrics using the same model structure and
parameters.

III. METHODOLOGY
This section describes the architecture and training scheme of
our proposed model TFTOps.

A. NETWORK ARCHITECTURE
The model consists of three main parts: The input embedding
layer, the Input LSTM layer, and the temporal self-attention
layer. The architecture is shown in Fig.1, and each com-
ponents are connected according to Algorithm 1. In the
following sections, we will also present the structure of each
component in a bottom-up order. Also, we will explain the
rationales behind our choices.

B. MULTI-INPUT AND PREPROCESSING
We begin with basic attributes that defines a model: input and
expected output.

In a microservice system, the metrics time series are often
strongly entangled together. For example, for a service S,
a growing network traffic indicates its load is increasing
and will naturally lead to a peak in CPU usage and disk
I/O. Depending on the system architecture, such inter-
relationships often tend to have some delay, making it even
more valuable in predicting future metrics.

As in [3], we divide the input into two parts: ‘‘static input’’
and ‘‘variable input’’. The general rules of division are:

Algorithm 1 Forward Pass of TFTOps Model
Require: Input variables vobs, vknown, vstatic

ξ(i) ← InputGRN (v(i)): Feed variable inputs vobs, vknown
into GRN units to get encoded feature for variable i.
ξ̃ ← VSelect(ξ , vstatic): Encoded features ξ enter a
variable selection network VSelect, where we combine
them with static inputs vstatic, and acquire the merged
feature.
φ̃ ← LSTM (ξ̃ , vstatic), 8← GRN (φ̃, ξ̃): An LSTM layer
plus a residual layer for extracting low-level information.
ψ ← Attn(8), ψ̃ ← LayerNorm(φ̃ + GLU (ψ)):
A masked self-attention layer for modeling high-level
dependencies. Another residual connection to restore low-
level info.
ŷ← Dense(ψ̃): The final dense output layer.

TABLE 1. An example of categorical variables.

• Static inputs
In Prometheus, each time series has some associated
attributes (‘‘labels’’). Labels are read-only categorical
variables describing the features of a given time
series created upon the initialization of that series.
When extracting metrics from a server/pod, the node
exporter automatically attaches labels to the metrics;
maintainers can also customize the labels. For example,
the following time series from Prometheus’ node
exporter has 4 pre-defined static inputs: business, fstype,
instance(IP), and mountpoint.

node_filesystem_avail_bytes{
business=‘‘k8s’’,
fstype=‘‘ext4’’,
instance=‘‘10.17.xx.xx’’,
mountpoint=‘‘/local’’
}

These inputs are valuable in predicting future disk
usage. The ‘‘Business’’ label is manually assigned and
represents the department to which the node belongs.
Therefore, we collect all of the time series under the
same metric from a microservice system and define
4 categorical variables according to the unique values
in the node exporter. After choosing those categorical
variables, we transform them into one-hot features while
maintaining a mapping for all the unique values we saw
in this process. See 1 for an example.

• Variable inputs
Variable inputs are the main components that build
up a time series. In our monitoring system, there are
2 types of input that will change over time: values of

9126 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

FIGURE 1. The architecture of our TFTOps model. Blue dashed lines denote skip connections. Cells with the same color shares the same weight across
different timesteps.

different metrics and the timestamp that produces these
values. Many other variables, such as hour, day of the
week, and whether it is a holiday, can be generated
from timestamps. We denote the metrics as ‘‘observed
variables’’ and timestamp-related inputs as ‘‘known
variables’’.
The main difference between those 2 types of inputs is
whether we can ‘‘foresee’’ the exact future value. Since
Prometheus periodically fetches metrics from sources,
we have a fixed timestamp-delta between neighboring
observations. We can conduct the value precisely and
generate other fields, such as the hour/day of the week,
for any future timesteps. On the other hand, the future
value of metrics remains unknown, as it’s our model’s
job to predict them.

Therefore, unlike traditional RNN-based models, the input
dimensionality of the transformer encoder and decoder in
TFTOps are NOT the same. We resolved this by the same
variable selection network in [3], which conceptually serves
as a trainable weighted average among input features.

As shown in figure 1, the variable features (yellow) are
fed into two Gated Residual Networks(GRN). As in [3], the

GRN block is a basic building block of our model. In this
process, two types of GRNs are used: one(green) processes
the observed variable inputs(input range is [1..t]), and another
GRN(blue) processes the known variable inputs(input range
is [1..t + τ]).

C. GATED RESIDUAL NETWORKS
The idea behind GRN is like a residual network: the model
chooses to apply a non-linear process when needed. As in 2,
a GRN unit receives two vectors as its input: a primary input
a, and an optional context c. We compute the layer’s output
as follows:

GRN(a, c) = LayerNorm(a+ GLU(η1))

η1 = W1η2 + b1
η2 = ELU (W2a+W3c+ b2),

where GLU stands for Gated Linear Units [42], and ELU
stands for Exponential Linear Unit. If we do not provide the
context, then context c is replaced with a zero vector c = 0

GLU (x) = σ (Wg1x + bg1)⊙ (Wg2x + bg2)

VOLUME 12, 2024 9127

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

FIGURE 2. The detailed architecture of a GRN Unit. Each GRN unit
contains 2 ‘‘linear+activation’’ structure, a LayerNorm, and a skip
connection. Contextual input (c) is optional, and does not present in the
skip connection.

FIGURE 3. The architecture of input embedding layer. GRN layers with the
same color share the same group of parameters.

⊙ means element-wise Hadamard product. Through a GLU
layer, the model can suppress any useless feature in x, which
means doing variable selection in a differentiable way.

The ELU activation is conceptually similar with the ReLU
activation, but is smooth and differentiable:

ELU(x) =

{
x x > 0
α(exp(x)− 1) x ≤ 0

D. INPUT EMBEDDING LAYER
This layer is the first part of tft model, and it directly process
the input features of various types and shapes. It consists of
embedding layers and a variable selection network. 3

1) EMBEDDING LAYERS
Each different input variable i ∈ {1, 2, . . . ,m} uses its own
embedding layer. The input variable, no matter it is one-hot
or real-valued, is linearly transformed into a fixed-dimension
vector ξ (i)t ∈ Rdmodel :

ξ
(i)
t = W (i)X (i)

t

An additional layer of GRN introduces a non-linear
process, transforming ξ (i)t into ξ̃

(i)
:

ξ̃
(i)
t = GRN

ξ
(i)
t
ξ
(i)
t

For each variable i, the weights of linear transform W (i)

and GRNξ (i) are shared across all timesteps t .

2) VARIABLE SELECTION NETWORK

After the embedding layer, the transformed ξ̃
(i)
t s are fed into

a variable selection network. The variable selection network
flattens the output of different variables from embedding
layer, and builts its own input4t :

4t = [ξ (1)
T

t , ξ
(2)T
t , . . . , ξ

(mχ)T

t]

Also in this layer, a context vector cs from static inputs is
introduced to build a weight vector:

vχ t = Softmax(GRN(4t , cs))

We combine the weight vχ t with the GRN-transformed

feature ξ̃
(i)
t to get the final output at timestep t:

ξ̃ t =

mχ∑
j=1

v(i)χ t ξ̃
(i)
t , ξ̃ t ∈ Rdmodel

After that, each timestep, regardless of how many input
features it has, is transformed into a vector with fixed
dimension Rdmodel , and is ready for further computations.

E. PROBABILISTIC INPUT
The observation frequency in AIOps is much higher than
in traditional time-series prediction tasks (such as grocery
sales [43] and climate change). Most monitoring systems
collect metric values on a minute-level basis; thus, a typical
period (a day) would contain 24 ∗ 60 = 1440 data points.
Neither sequential models (RNNs) nor transformer models
can easily handle such a long input series. A workaround is to
resample the whole series with a larger interval; however, this
resampling means ignoring (or averaging) all the observed
values in between, which is not advantageous.

To resolve this problem, we leverage the ‘‘probabilistic
input’’ idea from [17] to enhance the previous input schema.
We illustrate this probabilistic pre-processing method by a
real-world task below.

One of our clients has a Prometheus monitoring system
whose retrieving interval (the time difference between two
neighboring data points) is 1t = 60s. They wish to predict
the disk usage after 4 hours, which would introduce a gigantic
decoder (ldecoder = 240) and an encoder even larger than
ldecoder . To shrink the size of the encoder, we performed the
following pre-processing steps to implement the ‘‘probabilis-
tic input’’ scheme:

1) Firstly, we manually determine an interval I according
to domain knowledge. For example, in this task,
we choose I = 20, which is combining 20 inputs into
ONE distributional input.

2) Secondly, we normalize the real-valued inputs. After
normalization, the model split the values into nbins =
10 bins. nbins is a hyperparameter determined through
grid search, and its typical search range is [0.05, 0.3] ∗
I , where I is the previously mentioned aggregation
interval. Let b(t) : R → Rnbins be the binarization

9128 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

function which maps the real-valued inputs x(t) to one-
hot input b(t).

3) Cut the input sequence according to the previously
mentioned interval I . Each timestamp t now corre-
sponds to a time window that starts from t − I + 1 and
ends with t itself. We transform the values in a window
into a one-hot vector, then take an average to build a
probabilistic input series:

Px(t) =
1
I
[b(t − I + 1)+ b(t − I + 2)+ . . .+ b(t)]

Similarly, for preceding inputs Px(t + k), we have:

Px(t + k) =
1
I
[b(t + k(I − 1)+ 1)+ . . .+ b(t + kI)]

After the pre-processing, each time window (RI)in our
input series is transformed into a single vector R1×nbins .
Concatenating those new vectors, we get a new time series
Px . This new time series Px has a period length of I ·1t; each
element in this new time series can be viewed as a sample
from a multinoulli distribution. Note that we only transform
the encoder inputs; the output sequence of the decoder is
sub-sampled by I as usual. In order to predict the value of
our time series after 4 hours, our new decoder only needs
to process 12 timesteps after the sub-sampling, while each
timestep has more features. As our input embedding layer
suggests, adding features to our current input only affects
the dimensionality of Ws and the variable selection network.
Therefore, the addition of probabilistic inputs will only have
a negligible impact on the efficiency of the model compared
to a model sampled with interval I . Compared to the original
model without interval sampling, the overall efficiency of the
model is greatly improved as the length of the encoder is
reduced by 20×.

We apply a linear layer to transform the Rnbins vector Pj
into a Rdmodel vector ξ

(Pj)
t . Then, this new feature is fed into

its own GRN like other non-probabilistic features:

ξ̃
(Pj)
t = GRN

ξ̃
(Pj) (ξ

(Pj)
t)

The processed ξ̃
(Pj)
t is then feed into the variable selection

layer along with the original feature ξ̃
(j)
t . We also keep

the original feature alongside the probabilistic feature for
capturing the exact value, which is beneficial especially when
the feature itself is a target for prediction.

Note that we only use the ‘‘probabilistic’’ pre-processing
scheme when dealing with observed variables. Known
variables, which often tightly related with timestamps, are
resampled with a larger interval as usual.

F. INPUT LSTM
As in figure 1, the outputs of the input embedding layer at
every timestep (ξ̃) are fed into an LSTM encoder/decoder.
This LSTM network [44] helps the model to capture the
hidden informations in consecutive values.

The LSTM output at each timestep (encoder and decoder)
is denoted as φ(t). As in [3], a residual layer is used for

robustness, which we mark as blue dashed lines. The residual
layer directly sends ξ̃ into the LSTM output. On the other
hand, if our model find the LSTM encoder/decoder is not
beneficial, the Gated Linear Unit(GLU) activation would
suppress its impact:

φ̃(t, n) = LayerNorm
(
ξ̃ t+n + GLU(φ(t, n))

)
The produced output φ̃(t, n) is merged with the static

information via a GRN layer. As in input embedding layer,
the static information serves as context in GRN:

θ (t, n) = GRN(φ̃(t, n), ce)

Through input embedding and LSTM, we extract the local
information and put them into θ (t, n)

We concatenate θ(t, n) from different timesteps to build the
input of Temporal self-attention layer2(t):

2(t) = [θ (t,−k)T , . . . , θ (t, τ)]T

After this layer, informations in the series short-term
relationships are extracted into the output features.

G. MULTI-HEAD ATTENTION
As in TFT [3], TFTOps implements a self-attention mecha-
nism. This mechanism, which is inherited from the original
Transformer model [45], helps the model learn the long-term
relationships among input timesteps.

Generally speaking, the attention mechanism is a scaler
upon ‘‘values’’ V ∈ RN×dV . The scaling factor is determined
by relationships between ‘‘keys’’ K ∈ RN×dattn and
‘‘queries’’ Q ∈ RN×dattn :

Attention(Q,K ,V) = A(Q,K)V

where A() is the ‘‘attention function’’. The most common
choice for A() is the scaled dot-product function:

A(Q,K) = Softmax(QK)T /
√
dattn

Multi-head attention layers are built by replicating the
dot-product attention several times. A single dot-product
attention is called a ‘‘head’’, and the number of heads
is denoted by a hyperparameter mH . All heads share the
same input tuple(Q,K,V), but rescale it by different, head-
specific weightW (h)

Q ,W
(h)
K ,W

(h)
V before calling the attention

mechanism:

Hh = Attention(QW (h)
Q ,KW

(h)
K ,VW

(h)
V)

After done computing all Hh, the values are linearly
combined through another weight matrix WH to build the
final output of multi-head attention:

InterpretableMultiHead(Q,K,V) = [H1, . . . ,HmH]WH .

We made the same adjustments against traditional multi-
head attention layers, as in [3]. The core idea is to ‘‘force’’ all
heads to use the same value of V andWV . The weight matrix
for keysWK and queriesWQ remain different among heads,

VOLUME 12, 2024 9129

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

FIGURE 4. The architecture of our probabilistic input scheme. The probabilistic feature is extracted across a
sub-sampled time window. The dashed vertical line marks the end of a sub-sampled window, where the other
non-probabilistic variables (including ‘‘known’’ and ‘‘observed’’ variables) are extracted. After processed by its
own GRU layer, each variable equally enters the variable selection layer.

and we average their scales before multiplicating them with
VWV :

H̃ = Ã(Q,K)VWV

=

{
1
H

mH∑
h=1

A
(
QW (h)

Q ,KW
(h)
K

)}
VWV)

=
1
H

mH∑
h=1

Attention
(
QW (h)

Q ,KW
(h)
K ,VWV

)
Thus, each head attends to the same input features

corresponding V while learning different patterns through
their own W (h)

Q and W (h)
K . This approach is similar to

convolutional neural networks(CNNs). Here, attention heads
act like convolutional kernels in CNN, and the number of
heads mH is comparable with the number of ‘‘channels’’ in
convolution layers. By this way, the total number of trainable
parameters and computation overhead are both decreased.

H. MULTI-HEAD SELF-ATTENTION LAYER
By feeding the output of GRNs into aforementioned
interpretable self-attention layer, we model the long-term
dependencies with a stacked multi-head self-attention.

We apply interpretable multi-head self-attention only once.
All previous GRN results, range from the first timestep in
input sequence to the last timestep of prediction (t ∈ [0..t +
τ]), are fed into the self-attention layer 2. The same 2(t)
is fed into all three slots: query, key and value. Note that,
to prevent leaking of training data, the decoder timesteps in

self-attentions aremasked [12], [45]. For example, at timestep
t+τ−1, the model sees only the input from t ∈ [0..t+τ−2],
but not t + τ . This ensures a causal information flow.

B(t) = InterpretableMultiHead(2(t),2(t),2(t))

B(t) has the same dimensionality as 2(t). We decompose
it into B(t) = [β(t,−k)T , . . . ,β(t, τ)]T

This self-attention layer can also be stacked, as mentioned
in [45].When stacking, the following layer directly deals with
the output of previous self-attention layer; this time, we do not
include residual connection and/or static contexts.

Again, in order to preserve the local information learned
by RNN, we use a residual connection. This is marked with
blue dashed line in 1. The transformer output and the residual
are concatenated channel-wise, then fed into another GRN
block(blue):

ψ(t, n) = GRN
(
LayerNorm

(
θ̃ t+n + GLU(β(t, n))

))
I. OUTPUT LAYER AND QUANTILE LOSS
We provide another skip connection which skips the entire
transformer block, directly connect the output of LSTM to
the dense layer.

ψ̃(t, n) = LayerNorm
(
φ̃t,n + GLU(ψ(t, n))

)
This new embedding ψ̃(t, n) passes through a linear layer

to produce the final output prediction at this timestep. Given
current timestep t and the future timesteps we want to predict

9130 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

0 < τ < τmax , we have:

ŷ(t, τ) = W ψ̃(t, n)+ b

The shape of prediction at timestep τ (ŷ(t, τ)) is Rntarget ,
where ntarget denotes the number of features that we want to
predict.

To better fit the requirements of anomaly detection,
we choose the averaged quantile loss. We define a sequence
of nq quantiles between (0, 1): 0 < q1 < q2 < . . . <

qnq < 1. The output dense layer is enlarged channel-wise
to get outputs at each quantile, which makes the output shape
become ŷ ∈ Rntarget×nq . For each quantile qi, its output ŷq is
the i-th dimension of ŷ. We define the output value and its
corresponding ‘‘quantile loss’’ function QL(y, ŷq, q) as:

ŷq(t, τ) = Wqψ̃(t, n)+ bq (1)

QL(y, ŷ, q) = q(y− ŷq)+ + (1− q)(ŷq − y)+ (2)

The quantile q is customizable according to the require-
ments of different jobs and domain knowledge. For example,
a common choice is 0.1, 0.5, 0.9, which means we have a
pessimistic estimation (q = 0.1), a balanced estimation (q =
0.5), and an optimistic estimation (q=0.9). The pessimistic
and optimistic predictions work as lower/upper bounds of the
observed value. On the other hand, when given the quantile
0.5, the model acts as a standard regression model with
L1 loss.

Our final loss is the average loss across all quantiles
q1, . . . , qn.

J. OUTPUT SCHEMES AND DETECTION MODES
There are two primary use cases of TFTOps.

Firstly, we can automatically get an adaptive threshold
for a certain metric with the quantile loss function. As the
quantile loss function suggests, quantile q = 0.5 is the
output of a standard regression model; at higher quantiles
(0.5 < q < 1), the model tends to output a higher
prediction to avoid being heavily punished by the loss
function. Likewise, lower quantiles (0 < q < 0.5) would lead
to a lower prediction. Assuming our model can accurately
predict the metric value in ‘‘normal’’ cases (quantile q =
0.5), then any value higher than the highest quantile (q =
0.9) or lower than the lowest quantile (q = 0.1) can
be considered ‘‘abnormal’’. We can adjust the quantiles to
balance precision and recall. Generally speaking, squeezing
the upper and lower quantiles towards 0.5 improves recall
but harms precision, for it would introduce some false
positives; stretch them towards 0 or 1 will improve precision
instead. For robustness, the ‘‘abnormal state’’ alert should be
triggered when the prediction violates the rules above for a
consecutive certain period. Typically, we choose the period as
5∗sampling_interval, whichmeans 5× consecutive violations
will trigger an alarm in Prometheus.

Secondly, the TFTOps model itself can also serve as a
prediction model. Traditionally, such prediction is retrieved
by extracting trends via simple regression models (such as

linear regression) from the last hours, then extending the
extracted trend. However, this naïvemethod does not consider
external messages such as date or time, thus introducing a
high chance of false alarms. In our TFTOps model, the loss
function for the ‘‘normal’’ quantile (q = 0.5) is the same as
the traditional L1 loss. The prediction at this quantile is also
suitable for directly forecasting the metric in the near future.
With a user-defined threshold, the TFTOps model can predict
abnormal cases (for example, CPU use rate > 80%) several
minutes before the anomaly happens.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
We implemented TFTOps under tensorflow framework.
Both training and prediction are performed inside the same
kubernetes pod, which is hosted on a node with Intel(R)
Xeon(R) Gold 6278C and no GPUs.

Our dataset is retrieved from a Prometheus platform which
monitors a working kubernetes cluster with hundreds of
nodes and thousands of running pods. Because prometheus
uses an in-memory TSDB database, which is a temporary
storage and does not guarantee persistence, our training set
is periodically retrieved from a PostgreSQL database, which
serves as a persistent data storage of Prometheus.

B. DATASET OVERVIEW
1) PROMETHEUS NODE EXPORTER (PNE)
The Prometheus monitoring platform scrapes metrics from
node_exporters in kubernetes system every 20 seconds.

Our first experiment chose ‘‘node_filesystem_free_bytes’’
metric as the target. The metric indicates the amount of free
space in each mounted device on k8s nodes. This metric
is tightly connected with system load, thus receives great
attention from our operators. This metric would certainly
go up as system load increases; however, there are many
reasons to cause the increase of metric, and their severity
differs greatly. For example, when the system load is reaching
a local peak, an increase in node_filesystem_free_bytes is
perfectly normal; when the system is experiencing a DDoS
attack, or some bug occurs in load-balancing components,
an increase in the same metric would eventually break the
system. Discriminating the two different cases is proved to
be a challenge, and we tried to resolve it by TFTOps.

We can easily find other useful metrics in node_exporter,
such as node_network_receive_bytes_total which could be
useful in predicting future values.We integrated thosemetrics
in a group of experiment to clarify whether providing extra
time series are helpful in this job.

Generally speaking, the sequences are very likely to
be monotonic in given time window, which makes the
traditional methods (ARIMA, ETS) suitable for this task.
However, traditional approaches require fitting a model per
prediction task, greatly slowing down the prediction process.
On contrary, inference through a neural network is more
efficient.

VOLUME 12, 2024 9131

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

TABLE 2. Features of PNE dataset.

The input variables are extracted directly from Prometheus
sequence, which contains a set of labels to describe the
sequence’s properties. We used PromQL to extract the
whole sequence as a list of data points extract at different
time from different servers. Each point contains timestamp,
value(bytes), and a set of descriptive variables indicating the
situation of the source. We use the following variables in our
experiment:

Note that, since the same timestamp will definitely not
appear in both train and test datatsets, we do NOT use the
timestamp itself as a feature.

2) REDIS CONNECT(RDC)
The second experiment aims to predict the number of active
connections per redis job in a redis cluster. In out production
Redis cluster, a crontab job is running to retrieve the number
of connections once per minute, and send the message to a
kafka topic for further analysis. Originally, the operators use
a na’́ive alert system based on thresholding, which is proved
to be annoying, since the alert is triggered by false positives
from time to time. We directly consume the topic, and record
the historical values in a database. This metric is somehow
proportional to the system’s KPI because it is closely
related system load and user traffic. Traditional temporal-
filtering based models failed to deal with such KPI-related
metrics.

Due to the nature of redis connections, most of sequences
in this dataset are oscillatory. Traditional methods fails
to converge (ARIMA), or performs poorly (ETS) when
processing such sequences.

We use the following variables in our experiment:

TABLE 3. Features of RDC dataset.

3) BENCHMARKS
We compare TFTOps to different types of models for
multi-horizon forecasting. For models which base on neural
networks, we used roughly the same number of search
iterations to conduct hyperparameter optimization over a pre-
defined search space centered around their default parameters
(mentioned by their lrespective paper).

A brief introduction of relevant models and their source
code (if available):
• ARIMA [4]: ARIMA is a traditional statistical model
for time series analysis. Note that there is no guarantee
that all input sequences should be stationary; for the non-
stationary sequences which cause the ARIMAmodels to
fail, we use the last observed value as a substitution.

• ETS: Another traditional statistical model, which
decomposes time series into error, trend and seasonal
components. Both ARIMA and ETS does NOT require
additional features.

• MQRNN [16]: A recurrent network for multi-horizon
forecasting. Its encoder is the same as seq2seq LSTM
encoder (but without attention) and uses the same
hyperparameter search space.

• RoughAE [14]: A neural network model based on the
denoising autoencoder.

• DTDL [15]: A dictionary-learning neural network
model, which uses LSTM layers as the autoencoder.

• DeepAR [7]1: A popular time series prediction frame-
work based on RNN. The main difference between
DeepAR and Seq2Seq is that DeepAR introduces
distributions as output at each timestep.

• ConvTrans [12]2: A model based on transformer [45]
structure and LogSparse convolutional self-attention
layers. LogSparse layer reduces the number of dot
products per self-attention layer.

For the models that we failed to find open-source
implementations, we tried to replicate the model structure in
their paper to our best effort.

Most neural network models are based on either LSTM
recurrent networks [44] or transformers [45]. For seq2seq
models, the decoder input (output of former timestep)
is concatenated with ‘‘known’’ variables; other networks
already integrated static and extra sequences in their inputs.

In our experiments, we include both variations of TFTOps:
• TFTOps: The original TFT model, which is similar
with [3].

• TFTOps(prob): The TFT model with extra binned and
probabilistic inputs.

C. EVALUATION
The effectiveness of the prediction model can be assessed
from two different aspects. First, we want the prediction to
be precise when the system runs normally. Second, we want

1https://github.com/jdb78/pytorch-forecasting
2https://github.com/mlpotter/Transformer_Time_Series

9132 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

the prediction model to raise an alert when the system is in
an erroneous state.

The first requirement is evaluated by computing the
average L1 distance between the following two metric values:
the value predicted by the TFTOps model, and the real value
in the timestamp on which the prediction was made.

Per timestamp i, the mean absolute errorMAE(i) is defined
as:

MAE(t + τ) = |ŷ(t0)(t + τ)− y(t + τ)|

The final evaluation metric is the average over timesteps
and sequences:

MAE =
1

nτmax

n∑
i=1

τmax∑
τ=1

MAE(i)(t + τ)

Note that y is taken from the normalized sequence. The
per-sequence loss

∑τmax
τ=1MAE(i)(t + τ) resembles the metric

MAE% of this sequence, which is usually defined as

MAE% =

∑τmax
τ=1 |A(ŷ

(t0)(t + τ)+ B)− y′(t + τ)|

|
∑τmax
τ=1 |y

′(t + τ)

where y′ is the raw value retrieved from data source (without
normalization) and A, B are two factors for reverting the
normalization process.

We modified the output layer of those neural network
models to enable quantile loss function. Different quantiles
are trained in the same training loop, while their MAEs are
cauculated separately.

The second requirement is evaluated by investigating
the errorneous states in daily maintainence, or injecting
exceptions into system and examine the supervised methods
such as record and precision. We do not consider the F-metric
due to the great difference between the number of normal
and abnormal cases. Even after we injected exceptions in the
system, abnormal cases were still extremely rare.

D. IMPLEMENTATION
This subsection describes the implementation details of
TFTOps model in production envirionment.

1) AUTO UPDATE
The statistic of time series in a prouction system is always
shifting over time. As a result, the predictior model must also
have a updating routine.

In our production deployment, training and prediction
are ran on different, independent processes. The update are
scheduled once per week. We fetch the most recent data
from databses to train TFTOps model; after training is done,
the best model is saved to file system, and a message is
send through RabbitMQmessage queue.When the prediction
process receives that message via polling, it will trigger a
‘‘reload’’ function which causes the prediction process to
discard the old model and reload the new model from disk.

TABLE 4. Experiment results on PNE dataset.

2) DATASET ERROR HANDLING
In production environments, each model corresponds to
2 weeks/onemonth of training data. It is nearly impossible for
the microservice system to keep a consistent state for weeks.
In our cases, Kubernetes pods (or their exporters) and Redis
jobs are dynamically created and destroyed over time. As a
result, we must deal with ‘‘dirty’’ data.

• Prometheus metrics: Prometheus node-exporters gen-
erate a metric (kube_node_status_condition) to track
the state of each node. As we wish to model
the system’s normal and steady state, the met-
rics generated while kube_node_status_condition
{condition=’Ready’, status=’true’} ̸= 1 (which means
the node is not ready) are discarded from the training
set.

• Redis Connect: For each Redis job, other than inferring
the mean and variance directly from the training set,
we observe a longer range (6 months) to retrieve a
better estimation of mean and variance. If the job was
started in 6 months, the observation becomes its full
lifespan. Besides rescaling the input/output, we also
use this observation to rule out outliers. Outliers are
replaced with µ ± 3σ . In our systems, the number of
connections per Redis job is tracked by Kafka messages.
A scheduled producer fetches the status of Redis clusters
and uploads them to the given topic. Both fetch and
upload procedures are prone to errors during network
fluctuations. Therefore, we observedmissing data points
occasionally. When the number of consecutive missing
observations is relatively small (≤ 5, 5 minutes),
we assume the system is running normally. In this case,
we use the latest visible observation for filling in the
missing values. Therefore, our pre-processing step can
generate training data generated across the gap. On the
contrary, when a wider gap (> 5) appears, we assume
that the system’s state is questionable, thus discarding
the missing observations.

E. RESULTS: EVALUATION ON TEST DATASETS
TheMAE results of models mentioned in previous section are
shown in Table 4 and Table 5.

Generally speaking, the performance of modern models
is better than traditional ARIMA/ETS models. It is worth
noticing that neural network models are especially good at

VOLUME 12, 2024 9133

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

TABLE 5. Experiment results on RDC dataset.

predicting quantiles: all the neural network models’ quantile
losses(q=0.1 and q=0.9) are far better than that of ETS.

Among all of neural network models, we can conduct that
TFTOps achieves excellent MAE in both datasets, exceeding
other SOTA models, and is especially good for the RDC
dataset which keeps oscillating.

The probabilistic input scheme for TFTOps also have pos-
itive effect on MAE; however, this scheme introduces some
extra parameters and requires slightly more computations in
preprocessing and embedding extraction phases. However,
due to the probabilistic features are vectorized and fed into
the variable selection layer, the extra cost is trivial.

F. RESULTS: THE ROBUSTNESS OF TFTOPS AGAINST
NOISE
When building a metric prediction system in real world, the
developers have a variety of static or variable features to
choose from. For example, when predicting the CPU usage,
one can easily acquire the following features from many
sources, especially from prometheus node-exporter:
• CPU model, generation and performance benchmarks
(static)

• The number of processes running on the same machine
(variable)

• The network load of the same machine (variable)
• KPI of related services (variable) . . .
Feature without impacts are considered ‘‘noise’’ and is

harmful to the model. Generally, one would run a grid-
search to validate the effectiveness of each feature and find
the optimal set of features. However, training all sorts of
deep-learning models require a non-trivial amount of time.
To metigate this problem, the model itself should be robust
against the noise.

We designed a new dataset PNENoise based on PNE to
test different model’s ability to filter noise. In PNENoise, new
artificial noise features are concatenated to each row. Those
‘‘noise’’ features are sampled from following distributions to
reflect various situations:
• Uniform: a uniform distribution between [0,1].
• Normal: a normal distribution N (0, 1).
• Periodic normal: a normal distribution whose centroid
is a function of time t . This reflects some periodic
component. We chose N (5sin(t/24), 1).

• Random category: a randomly assigned ‘‘class’’ from
0, 1, 2, 3, 4. This is a static feature.

TABLE 6. Results on PNENoise dataset.

To evaluate the robustness, we re-train different models
(except ARIMA and ETS) on the PNENoise dataset from
scratch and compare their performance on the MAE(q =
0.5) metric. The increased percentage on MAE(q = 0.5)
quantifies the model’s robustness against noise; a lesser
increase means better robustness. Note that, we use the same
hyperparameter search space when training the models on
PNENoise.

Results are shown in Table 6. It can be conducted that,
traditional neural-network basedmethods(MQRNN,DeepAR
and ConvTrans) suffers from noisy features, while
RoughAE/DTDL and TFTOps are only slightly affected. The
implementation of RoughAE and DTDL directly addressed
the robustness problem and solving it by model designations
such as rough inputs [14] and dictionary learning [15], thus
achieved better robustness. However, their performances
are slightly worse than deep neural networks. The TFTOps
model, on the other hand, maintains robustness while
enhancing its performance.

G. RESULTS: EVALUATION ON REAL ENVIRONMENT
As mentioned in [7], the quantile loss function and outputs
naturally becomes a good detector of anomalies. Every time
the real observed target violates the prediction (a target value
that is even higher than the upper quantile or lower than the
lower quantile) indicates that the sequence is in an abnormal
state.

We performed the evaluation on the production environ-
ment which generates RDC dataset. The TFTOps model was
kept serving for a month. During that period, the operators
recorded 17 abnormal incidents. When TFTOps model
reports an anomaly, we check that whether an abnormal
incident happens within a 10-minute range (true positive) or
not(false positive).

The confusion matrix and evaluation result is shown in
table 7 and table 8.

We can conclude that the model successfully extinguishes
most of anomalies at a cost of relatively low precision.

Shifting the quantile loss (q=0.1/q=0.9) towards 0/1
should improve precision while lowering recall. The selection
of quantile will greatly influence the performance of model in
production schemes. A practical solution is to predict many
quantiles(for example, q=[0.05, 0.1, 0.15. . . ,0.95]), and
select a proper quantile as detector of anomalies according
to real situations.

To illustrate the conclusion above, we re-trained the model
using the same dataset and hyperparameters, only altered

9134 VOLUME 12, 2024

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

TABLE 7. confusion matrix of RDC system evaluation.

TABLE 8. Production results on RDC system.

TABLE 9. Confusion matrix of new quantiles for RDC.

TABLE 10. Production results on RDC(new quantiles).

the quantiles to q = [0.05, 0.5, 0.95]. The new model’s
confusionmatrix andmetrics are shown in table 9 and table 10
Shifting the quantile loss (q=0.1/q=0.9) towards 0/1

should improve precision while lowering recall. The selection
of quantile will greatly influence the performance of model in
production schemes. A practical solution is to predict many
quantiles(for example, q=[0.05, 0.1, 0.15. . . ,0.95]), and
select a proper quantile as detector of anomalies according
to real situations.

Our investigation shows that in our production setting,
human operators slightly favor recall over precision. There-
fore, we chose q = [0.1, 0.5, 0.9] even when other choice
([0.05, 0.5, 0.9]) has a higher F1 score.

More generally, the choice between recall and precision
is determined by the nature of the system that generates our
metrics. When it is easy to validate whether an actual error
occurs, or every occurence of the error tends to have critical
consequences, operators favor recall over precision; when the

TABLE 11. Efficiency on prediction stage.

error can be resolved automatically, operators tend to favor
precision over recall to eliminate false positives.

H. EFFICIENCY
The time cost on prediction stage of TFTOps model is listed
in table 11.

The column ‘‘Avg. time’’ is the average time to process a
slice of data, which contains metrics generated by the whole
system (#Seq ∗ lencoder), and the model should make (#Seq ∗
ldecoder) predictions.
When a forward pass is run, the data flows through an

LSTM layer and a stack of self-attention layers. The time
complexity ties closely with the total sequence length of
encoder and decoder, le + ld . For LSTM, its complexity
is O(le + ld), which is ruled out by self-attention layer’s
complexity O((le + ld)2). Depending on the degree of
parallelism, the LSTM layer generally costs more time when
(le + ld) is relatively small, which is our case. Note that,
except the LSTM layer, the model is purely feed-forward (the
result generated by LSTM does not feedback into previous
layers), thus the performance of pre-processing and output
dense layers are theoretically better than LSTM; In the
prediction stage, the prediction time is roughly linear with
number of sequences in the system (n = #Seq). Thus, the
overall complexity is O(n(le + ld))(for shorter sequences) or
O(n(le + ld)2)(for longer sequences).

In the PNE dataset task, we retrieve data every 5 minutes;
in RDC dataset task, we retrieve data once per minute.
According to table 11, in both cases, the efficiency of TFTOps
model meets our production requirements.

V. CONCLUSION
We proposed TFTOps, a variant of Temporal Fusion
Transformer [3] designed for AIOps unsupervised anomaly
detection tasks. We also improve TFTOps by introducing
probabilistic inputs, which further boosts the accuracy of
TFTOps in our experiments. Our findings prove that the
TFT model concept is well-suited for a modern multi-metric
monitoring setup, satisfying requirements on both accuracy
and efficiency.

The merits of TFTOps includes:

• Flexiblity. User can include various features (real-
valued / categorical / probabilistic, variable / static)
in their hypothesis. TFTOps provides an elegant way
to blend the features into its training and prediction
process.

• Robustness. If the new feature is proven to be noise,
the TFTOps model has stronger robustness compared to
other neural network models. Therefore, it shortens the
time-consuming scheme of feature selection. With little

VOLUME 12, 2024 9135

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

effort, the operators can generate valuable predictions
with the off-the-shelf TFTOps model.

VI. FUTURE WORKS
In our experiments, we treat each sequence independently
(except they share some categorical static inputs). Intuitively,
in k8s or other cluster settings, introducing features from
‘‘related’’ nodes would be beneficial for the accuracy of
our model. Besides, other possible data sources, such as
embedded system logs, can be used as a feature. We leave
both directions for future works.

APPENDIX
A. HYPERPARAMETERS
We use the following grid search scheme for the optimal
hyperparameters in experiments on both PNE and RDC
datasets.

The parameter name, search space and effect of hyperpa-
rameters are listed below:

• Dropout rate: {0.1, 0.2}. This parameter controls
probability of dropout in GLU layer before gating layer
and layer normalization.

• Hidden layer size: {4, 8, 16, 32}. This controls the size
of vector input/output of hidden layer(dmodel).

• Learning rate: {0.1, 0.01, 0.001}. Fine-grained tuning
can be conducted according to dataset to further improve
the result.

• #heads: {4,6,8}. The number of heads in multi-head
attention layers.

• Stack size: {1,2,3,4}. the number of stacking self-
attention (SA) layers.

For the PNE dataset, optimal hyperparameters are:

• Dropout rate: 0.2
• Learning rate: 0.001
• Hidden layer size: 8
• #heads: 4
• Stack size: 4

For the RDC dataset, optimal hyperparameters are:

• Dropout rate: 0.1
• Learning rate: 0.01
• Hidden layer size: 8
• #heads: 4
• Stack size: 2

According to our observations, both datasets does not
require a large embedding/feature space. On the other
hand, they do need to stack some self-attention layers
to achieve the optimal performance. Intuitively, higher
dimension of embeddings means we can extract rich
information from input features(static and variable). How-
ever, for our dataset, the inter-relationship among different
timesteps of the metric itself seems to be more important,
which is mainly modeled by the LSTM and Transformer
layers.

REFERENCES
[1] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,

D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao, ‘‘Unsupervised
anomaly detection via variational auto-encoder for seasonal kpis in web
applications,’’ in Proceedings of the 2018 World Wide Web Conference,
ser. WWW ’18. Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee, 2018, pp. 187–196,
doi: 10.1145/3178876.3185996.

[2] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Ying Wah, ‘‘Time-series
clustering—A decade review,’’ Inf. Syst., vol. 53, pp. 16–38, Oct. 2015.

[3] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, ‘‘Temporal fusion transformers
for interpretable multi-horizon time series forecasting,’’ Int. J. Forecasting,
vol. 37, no. 4, pp. 1748–1764, Oct. 2021.

[4] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[5] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice. Melbourne, VIC, Australia: OTexts, 2018.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. 27th Int. Conf. Neural Inf. Process. Syst.,
vol. 27, 2014, pp. 3104–3112.

[7] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, ‘‘DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,’’ Int. J.
Forecasting, vol. 36, no. 3, pp. 1181–1191, Jul. 2020.

[8] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation
of gated recurrent neural networks on sequence modeling,’’ CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[10] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, ‘‘Deep state space models for time series forecasting,’’
in Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process.
Syst. (NeurIPS), vol. 31, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, andR.Garnett, Eds.Montréal, QC, Canada,
Dec. 2018, pp. 7796–7805. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/hash/5cf68969fb67aa6082363a6d4e6468e2-
Abstract.html

[11] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2020,
arXiv:1312.6114.

[12] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
‘‘Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting,’’ in Proc. Adv. Neural Inf. Process.
Syst., Annu. Conf. Neural Inf. Processing Syst. (NeurIPS), vol. 32,
Vancouver, BC, Canada, Dec. 2019, pp. 5244–5254. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/hash/6775a0635c302542da2c3
2aa19d86be0-Abstract.html

[13] C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, R. Yuan, D. Wu, W. Wang,
J. Pei, and H. Huang, ‘‘Multi-horizon time series forecasting with temporal
attention learning,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 2527–2535.

[14] M. Khodayar, O. Kaynak, and M. E. Khodayar, ‘‘Rough deep neural
architecture for short-term wind speed forecasting,’’ IEEE Trans. Ind.
Informat., vol. 13, no. 6, pp. 2770–2779, Dec. 2017.

[15] M. Khodayar, J. Wang, and Z. Wang, ‘‘Energy disaggregation via deep
temporal dictionary learning,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 5, pp. 1696–1709, May 2020.

[16] R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, ‘‘A multi-
horizon quantile recurrent forecaster,’’ 2017, arXiv:1711.11053.

[17] F. Ayed, L. Stella, T. Januschowski, and J. Gasthaus, ‘‘Anomaly detection
at scale: The case for deep distributional time series models,’’ in Proc.
Int. Conf. Service-Oriented Comput. Cham, Switzerland: Springer, 2020,
pp. 97–109.

[18] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
‘‘Anomaly detection using program control flow graph mining from
execution logs,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 215–224.

[19] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, ‘‘Unsupervised detection of microservice
trace anomalies through service-level deep Bayesian networks,’’ in Proc.
IEEE 31st Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2020, pp. 48–58.

[20] J. Soldani andA. Brogi, ‘‘Anomaly detection and failure root cause analysis
in (micro) service-based cloud applications: A survey,’’ ACM Comput.
Surv., vol. 55, no. 3, pp. 1–39, Mar. 2023.

9136 VOLUME 12, 2024

http://dx.doi.org/10.1145/3178876.3185996

H. Luo et al.: Probabilistic Temporal Fusion Transformers for Large-Scale KPI Anomaly Detection

[21] B. Rabenstein and J. Volz, Prometheus: A Next-Generation Monitoring
System (Talk). Dublin, Republic of Ireland: USENIX Association,
May 2015.

[22] Grafana: The Open-Source Platform for Monitoring and Observabil-
ity. Accessed: Jan. 15, 2024. [Online]. Available: https://github.com/
grafana/grafana

[23] Prometheus. Querying Basics: Prometheus. Accessed: Jan. 15, 2024.
[Online]. Available: https://prometheus.io/docs/prometheus/latest/
querying/basics/

[24] S. Fu, ‘‘Performance metric selection for autonomic anomaly detection
on cloud computing systems,’’ in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Dec. 2011, pp. 1–5.

[25] G. Jung, G. Swint, J. Parekh, C. Pu, and A. Sahai, ‘‘Detecting bottleneck
in n-tier it applications through analysis,’’ in Proc. Int. Workshop Distrib.
Syst., Oper. Manage. Cham, Switzerland: Springer, 2006, pp. 149–160.

[26] J. Parekh, G. Jung, G. Swint, C. Pu, and A. Sahai, ‘‘Issues in bottleneck
detection in multi-tier enterprise applications,’’ in Proc. 14th IEEE Int.
Workshop Quality Service, Jun. 2006, pp. 302–303.

[27] Y. Tan, Online Performance Anomaly Prediction and Prevention for
Complex Distributed Systems. Raleigh, NC, USA: North Carolina State
Univ., 2012.

[28] X. Gu and H. Wang, ‘‘Online anomaly prediction for robust cluster
systems,’’ in Proc. IEEE 25th Int. Conf. Data Eng., Mar. 2009,
pp. 1000–1011.

[29] R. Powers, M. Goldszmidt, and I. Cohen, ‘‘Short term performance
forecasting in enterprise systems,’’ in Proc. 11th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2005, pp. 801–807.

[30] T. Wang, W. Zhang, J. Wei, and H. Zhong, ‘‘Workload-aware online
anomaly detection in enterprise applications with local outlier factor,’’ in
Proc. IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012, pp. 25–34.

[31] D. J. Dean, H. Nguyen, and X. Gu, ‘‘UBL: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems,’’ in
Proc. 9th Int. Conf. Autonomic Comput., Sep. 2012, pp. 191–200.

[32] R. J. Hyndman, E. Wang, and N. Laptev, ‘‘Large-scale unusual time series
detection,’’ in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW),
Nov. 2015, pp. 1616–1619.

[33] C. Monni, M. Pezzè, and G. Prisco, ‘‘An RBM anomaly detector for
the cloud,’’ in Proc. 12th IEEE Conf. Softw. Test., Validation Verification
(ICST), Apr. 2019, pp. 148–159.

[34] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[35] T.-Y. Liu, ‘‘Learning to rank for information retrieval,’’ Found. Trends Inf.
Retr., vol. 3, no. 3, pp. 225–331, 2009.

[36] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, ‘‘GeoMAN: Multi-level
attention networks for geo-sensory time series prediction,’’ in Proc. 27th
Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 3428–3434.

[37] Y. Liu, C. Gong, L. Yang, and Y. Chen, ‘‘DSTP-RNN: A dual-
stage two-phase attention-based recurrent neural network for long-term
and multivariate time series prediction,’’ Expert Syst. Appl., vol. 143,
Apr. 2020, Art. no. 113082, doi: 10.1016/j.eswa.2019.113082.

[38] C. Wang, K. Wu, T. Zhou, G. Yu, and Z. Cai, ‘‘TSAGen: Synthetic time
series generation for KPI anomaly detection,’’ IEEE Trans. Netw. Service
Manage., vol. 19, no. 1, pp. 130–145, Mar. 2022.

[39] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, ‘‘Time-series anomaly detection service at
Microsoft,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2019, pp. 3009–3017.

[40] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
‘‘Informer: Beyond efficient transformer for long sequence time-series
forecasting,’’ in Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, May 2021,
pp. 11106–11115.

[41] J. Xu et al., ‘‘Autoformer: Decomposition transformers with auto-
correlation for long-term series forecasting,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 22419–22430.

[42] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accurate
deep network learning by exponential linear units (ELUs),’’ 2015,
arXiv:1511.07289.

[43] C. Favorita. (2018). Corporacion Favorita Grocery Sales Forecast-
ing Competition. [Online]. Available: https://www.kaggle.com/c/favorita-
grocery-sales-forecasting/

[44] A. Graves, A.-R.Mohamed, andG. Hinton, ‘‘Speech recognition with deep
recurrent neural networks,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645–6649.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst., vol. 30,
Long Beach, CA, USA, Dec. 2017, pp. 5998–6008. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053
c1c4a845aa-Abstract.html

HAORAN LUO (Member, IEEE) was born
in Fujian, China, in 1996. He received the
B.S. and M.S. degrees in computer sci-
ence from Shanghai Jiao Tong University,
Shanghai, China, in 2018 and 2021, respec-
tively. From 2018 to 2019, he was an Intern
with Bosch (China) Investment Company Ltd.
From 2019 to 2020, he was an Intern with
the Algorithm Department, 360 Digitech Inc.,
Shanghai. He has been a Researcher with the

China Telecom Research Institute, Guangzhou, China, since 2021. His
research interests include machine learning, devOps, AIOps, and natural
language processing.

YONGKUN ZHENG was born in Shantou, Guang-
dong, China, in 1990. He received the M.S.
degree in software engineering from Southeast
University, in 2016. From 2014 to 2015, he was an
Intern with the Cloud Computing Center, Chinese
Academy of Sciences, engaged in research on
the application of big data in remote sensing
technology. In 2015, he was an Intern with Baidu,
engaged in data analysis. Since 2016, he has been
a Researcher with the China Telecom Research

Institute, Guangzhou, China. His main research interests include AIOps,
devOps, and big data analytics.

KANG CHEN (Member, IEEE) was born in
Anhui, China, in 1972. He received the B.S.
degree from Nanjing University, Nanjing, China,
in 1993, and the M.S. degree in computer science
from JinanUniversity, Guangzhou, China, in 1999.
Since 1999, he has been a Researcher with the
China Telecom Research Institute, Guangzhou.
His research interests include big data andmachine
learning.

SHUO ZHAO was born in Jilin, China, in 1988.
He received the B.S. degree in computer science
and technology and the M.S. degree in computer
science from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2011 and
2014, respectively. Since 2014, he has been an IT
Engineer with China Telecom Corporation Ltd.,
Beijing. His research interests include machine
learning and AIOps.

VOLUME 12, 2024 9137

http://dx.doi.org/10.1016/j.eswa.2019.113082

