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ABSTRACT Deep learning based approaches have been used to improve image quality in cone-beam
computed tomography (CBCT), a medical imaging technique often used in applications such as
image-guided radiation therapy, implant dentistry or orthopaedics. While deep learning methods have been
applied to reduce various types of CBCT image artifacts arising from motion, metal objects, or low-dose
acquisition, a comprehensive review summarizing the successes and shortcomings of these approaches, with
a primary focus on the type of artifacts rather than the architecture of neural networks, is lacking in the
literature. In this review, the data generation and simulation pipelines, as well as artifact reduction techniques
are specifically investigated for each type of artifact. We provide an overview of deep learning techniques that
have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT through the
use of projection- and/or volume-domain optimizations, or by introducing neural networks directly within
the CBCT reconstruction algorithms. Research gaps are identified to suggest avenues for future exploration.
One of the key findings of this work is an observed trend towards the use of generative models including
GANSs and score-based or diffusion models, accompanied with the need for more diverse and open training
datasets and simulations.

INDEX TERMS Cone-beam computed tomography (CBCT), deep learning, artifacts.

I. INTRODUCTION track motion) CBCT scans in IGRT [2] improves patient

Cone-beam computed tomography (CBCT) is an imaging
technique to acquire volumetric scans in medical domains
such as implant dentistry, orthopaedics, or image-guided
radiation therapy (IGRT). In particular, in the case of
IGRT, on-board imaging mounted directly on radiotherapy
machines is used to assess a patient,s current anatomy
before radiation treatment sessions. Changes in anatomy
during the treatment period and since the acquisition of the
planning CT (pCT) can lead to inefficiencies in the treatment
process. Recent research has demonstrated that utilizing 3D
or 4D (volumetric data with additional time dimension to
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positioning and dose calculation for radiotherapy sessions.

The quality of CBCT scans suffers from similar types of
artifacts as for spiral/helical CT scans, including those arising
from beam hardening and scatter effects, metal implants, and
patient motion. In addition, new artifacts arise due to the
cone-beam geometry. Further, minimizing the radiation dose
in radiotherapy is important for the safety of the patients.
However, reducing the imaging dose per scan, acquiring
fewer X-ray projections, or acquiring projection data from a
limited angle can result in streak artifacts.

This paper provides an overview of the current body of
research on artifact reduction in 3D and 4D CBCT with
applications including, but not limited to, IGRT, aiming to
improve scan quality while also minimizing the imaging
radiation dose. The significant variation in the methods
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FIGURE 1. Visual Abstract: An illustration of the CBCT acquisition process in IGRT for lung CBCT and the application of deep learning for artifact
correction. The diagram depicts the acquisition of 2D projections (initial corrections such as scatter corrections have already been applied), including
(optionally) time- and motion-related information (e.g. breathing amplitude signal), standard CBCT reconstruction (typically 2D— 3D), and DL-based
components for image enhancement. Incorporating acquired temporal and motion information provides the opportunity to apply a projection binning
which can be used to reconstruct 4D CBCT images (3D images at various states of motion). During the course of CBCT reconstruction, several types of
artifacts (e.g. arising from cone-beam geometry, low dose, sparse view or limited angle scans, scatter, metal or beam hardening) can be mitigated through
DL-based optimization in the projection and/or volume domain, or by improving (parts of) the reconstruction algorithm itself using neural networks. The

illustration of a commerical radiotherapy system is adapted from [1].

and techniques used to mitigate different types of artifacts
suggests to organize the literature based on the type of
artifact. For instance, sparse-view artifacts can be addressed
in the projection domain by interpolating new projections, but
refining the original projections is not beneficial; however,
motion artifact mitigation is possible through projection
refinement. Furthermore, the survey aims to present a clear
picture of all necessary steps in the artifact mitigation process
for all relevant types of artifacts individually.

In particular, we review the current state-of-the-art research
which uses deep learning (DL) [3] to reduce various artifacts
in CBCT scans, and we categorize the research based on the
types of artifacts they address. While Ref. [4] focuses broadly
on the use of DL methods in IGRT, the closest literature
reviews to our work are presented in references [5], [6], [7].
The first survey [5] is focused on synthetic CT generation
from various types of input scans, including CBCT, with
the aim to enhance the scan quality. Its content partially
overlaps with what we present in Section III. However, it does
not cover all the other artifacts which can degrade CBCT
image quality as discussed after Section III. Ref. [6] discusses
supervised, self-supervised, and unsupervised techniques for
artifact reduction in CT scans, and it covers unrolling the
reconstruction, as well as optimization methods in both the
projection (raw 2D X-ray images) and volume (reconstructed
3D images) domains. However, it is essential to note that
Ref. [6] primarily focuses on CT scans, which differs from
the main focus of this work, namely CBCT scans. The
third survey [7] provides an in-depth literature analysis,
considering criteria such as anatomy, loss functions, model
architectures, and training methods for supervised learning
specifically applied to CBCT scans. In our work, instead of
dividing the literature based on the deep learning methods,
we group the research based on the type of artifacts,
discussing results employing projection- and/or volume-
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domain optimization, dividing the methods based on the type
of supervision, and also including research addressing time-
resolved 4D CBCT reconstruction.

Artifacts in CBCT images can principally be reduced
by optimizations in the projection, volume, or dual-domain
(both projections and volumes), as well as by DL-enabled
reconstruction (see Figure 1). This survey presents an
overview of deep learning techniques able to reduce artifacts
in 3D as well as time-resolved 4D CBCT using optimizations
in the above domains, and through novel CBCT reconstruc-
tion methods. Furthermore, it addresses the challenges and
limitations associated with these approaches and provides
recommendations for future research directions.

This survey organizes the literature according to the type
of artifacts which is addressed, and presents and contrasts the
methodologies used within each specific artifact group (see
Figure 2). The remainder of this paper is organized as follows:
Section II briefly summarizes the basic aspects of CBCT
acquisition and the assessment of scan quality. Thereafter, the
literature is discussed based on different types of artifacts (as
outlined in [8], [9]) as follows: Section III presents methods
attempting to improve CBCT image quality by reducing
artifacts generated because of the cone-beam geometry and
by bringing the CBCT quality closer to the one of CT scans.
The subsequent sections focus on various methods to address
artifacts resulting from reduced acquisition dose. Firstly,
Section IV discusses techniques that lower the dose per X-ray
projection to achieve dose reduction. This is followed by
Section V, which explains methods for artifact reduction
when acquiring fewer projections by uniformly dropping
some of them (sparse-view reconstruction). Section VI
explores artifact reduction methods specifically for CBCT
scans acquired from a limited angular range. The paper
then proceeds to discuss methods targeting scatter and beam
hardening artifacts in Section VII. Section VIII is dedicated

VOLUME 12, 2024



M. Amirian et al.: Artifact Reduction in 3D and 4D Cone-Beam Computed Tomography Images

IEEE Access

Information GANs and

fusion, Applications CoiR ]
prior-based based on GANs
and physical CNNs
modeling
Dual-domain
optimization Cycle-GANs
olector Biomechanical
and volume V. e
domain Sparse-View pays
modeling

optimization

Artifact
Reduction
in CBCT Phase- and
time-resolved
methods

VI. Limited
angle

VIII. Metal Motion-

resolved
methods

FIGURE 2. Visualisation of the content of this survey and the literature
covered.

to research on reducing metal artifacts. Section IX focuses
on motion compensation techniques for 3D and 4D CBCT.
The main trends in the recent literature on using deep
learning-based architectures for CBCT artifact mitigation are
presented in Section X, complemented with a discussion
concerning the connections amongst the methods used for
various types of artifacts and recommendations for future
work. Finally, the paper concludes with Section XI.

Il. PRELIMINARIES

This section briefly reviews the basics of CBCT reconstruc-
tion and evaluation methods employed in artifact reduction
and scan quality assessment.

A. CONE-BEAM GEOMETRY RECONSTRUCTION AND
DEEP LEARNING
CBCT scans are acquired by means of an imaging system
consisting of an X-ray source and a flat-panel (2D) detector
mounted on a gantry system which rotates around the
body region of interest. Several hundred 2D X-ray images
are acquired at various angles. These projections can be
acquired from a limited angular range (so-called short
scan) or a full 360° trajectory (full scan). Following the
acquisition, a volumetric 3D image is reconstructed from
the 2D projection images. Several methods exist to solve
this ill-posed inverse problem. The most popular one is
based on an analytic method developed by Feldkamp, Davis,
and Kress (FDK [10]) which provides a fast and reliable
approximation of the inverse Radon transform. Alternatively,
iterative algebraic reconstruction techniques (ART [11]) have
become popular as well. Moreover, by tracking the patients’
motion, e.g. by capturing an external or internal breathing
signal, and dividing the projections based on the motion state,
it is possible to reconstruct 4D (motion-resolved) volumetric
images. 4D scans include both the 3D volumetric information
as well as their temporal dynamics.

In a nutshell, deep learning based approaches can be
deployed at various stages of the CBCT reconstruction
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process. Firstly, deep neural networks can be trained to
correct the acquired 2D projections (projection domain
correction); secondly, they can be used to correct the
reconstructed CBCT volumetric images (volume domain
correction); and thirdly, the two approaches can be combined
into a dual-domain correction. Another approach is to aug-
ment or replace (parts of) the 2D-3D CBCT reconstruction
itself with deep learning based components. The components
of the FDK algorithm were mapped into a deep neural
network by means of a novel deep learning enabled cone
beam back-projection layer [12], [13]. The backward pass
of the layer is computed as a forward projection operation.
This approach thus permits joint optimization of correction
steps in both volume and projection domain. An open source
implementation of differentiable reconstruction functions is
available [14]. The networks are often trained in a supervised
fashion by comparing reconstructed CBCT images with
an artifact-free ground truth. Unsupervised [15], [16] and
self-supervised [17], [18] learning approaches have been
employed as well.

While datasets of 3D or 4D CBCT scans obtained from
phantoms, animals or human subjects are available for train-
ing, they generally lack ground truth information required for
deep learning based artifact mitigation employing supervised
learning. To overcome this, artificial or simulated CBCT data
is often used, obtained e.g. by means of forward projecting
existing CT scans in a CBCT setup and manual incorporation
of artifacts. For example, motion artifacts can be included
by sampling CBCT projections at scan angles and time steps
matching interpolated phases of a given 4D CT scan.

The general acquisition and reconstruction process of
CBCT scans, including deep learning based corrections,
is summarized in the visual abstract in Figure 1.

B. EVALUATION METRICS

Several metrics have been utilized in the literature to evaluate
the quality of CBCT scans enhanced by deep learning-
based techniques. The main qualitative evaluation metrics,
computed between a reconstructed volume (with artifacts)
and the ground truth reference, can be divided into two main
groups as follows, according to [7]:

« Image Similarity Metrics: These metrics compute the
similarity between scans and include (mean) absolute
error (ME and MAE), (root) mean squared error (MSE
and RMSE), (peak) signal-to-noise ratio (SNR and
PSNR), structural similarity (SSIM) [19], and Dice
coefficient [20].

o Dosimetric Similarity Metrics: These metrics measure
the consistency in dosimetry using a pair of scans,
such as dose difference pass rate (DPR); dose—volume
histogram (DVH), and gamma pass rate (GPR).

In addition to the metrics mentioned above, metal artifact
index (MAI [21]), and streak index (SI [22]) have been used
in the literature to measure the level of specific artifacts
in CT and CBCT scans. For motion, visual information
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fidelity (VIF) [23] or autofocus (sharpness) metrics have been
employed, among others.

C. CLINICAL EVALUATION

The numerical evaluation metrics mentioned above compute
the similarity of the improved CBCT compared with a
reference, or report the level of the presence of artifacts,
scan sharpness, or other quality criteria. Ideally, these metrics
should reflect the scan quality; hence, they should correspond
to the preference of the experts in using the scans in clinical
routine. However, it is essential to note likely inconsistencies
between simulated (where ground truth references exist) and
real-world clinical data, so clinical evaluations are necessary
to ensure the applicability of the presented methods for
practical applications. A clinical evaluation can be conducted
by completing surveys with experts such as medical doctors
or radiation physicists to directly assess the level of artifacts
and the performance of the artifact reduction techniques, and
the applicability of the improved images in various clinical
tasks such as dose calculation, soft-tissue segmentation, and
patient positioning [24].

lll. CONE-BEAM IMAGE QUALITY

Cone-beam geometry and the size of the flat-panel detector
result in the coverage of larger body areas but at lower
resolution and degradation in scan quality compared to
fan-beam CT scan acquisition. Consequently, significant
attention and extensive research has been directed at improv-
ing the quality of CBCT scans, often referred to as removing
cone-beam or geometry artifacts in the literature. One of
the initial approaches to enhance CBCT quality involves
employing supervised learning and training a 39-layer deep
convolutional neural network (CNN) to map input CBCT
scans to the corresponding planning CT as ground truth
(reference) volumes [25]. This mapping of CBCT images to
match correpsonding CT images is often called synthetic CT
(sCT) from CBCT.

A. APPLICATIONS BASED ON CNNS

Researchers have explored several CNN-based architectures
with various supervised training objectives to enhance CBCT
quality. For instance, denoising has been targeted through
solving the multi-agent consensus equilibrium (MACE) prob-
lem and multi-slice information fusion techniques [26]. CNN
models have demonstrated the ability to reduce ring artifacts
from flat-panel CBCT scans using pre-corrected and artifact-
free scans as ground truth [27]. Geometric artifacts caused
by misalignment of the CBCT system were reduced using
a modified fully convolutional neural network (M-FCNN),
without using any pooling layers [28]. A further approach
used a 3D block-based residual encoder-decoder convolu-
tional neural network (RED-CNN) architecture coupled with
a bilateral 3D filter and a 2D-based Landweber iteration
to successfully remove Poisson noise while preserving the
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image structure at tissue edges [29]. Training 3D models
using a multi-task learning objective improved the quality
of CBCTs by producing high-quality synthetic CT (sCT)
scans from noisy and artifact-ridden scans for segmenting
organs-at-risk (OARs) [30]. Lately, using InceptionV3 [31]
as a backbone has proven beneficial in reducing the artifacts
observed in CBCT short scans due to the misalignment of the
detection plane around the z-axis [32].

B. GANS AND CONDITIONAL GANS

Researchers have used self-supervised and unsupervised
techniques to eliminate the need for paired CBCT and CT
scans in supervised learning and to consider anatomical
changes between the acquisition of planning CT (pCT)
and CBCT. These techniques mainly involve training
auto-encoders, (conditional) generative adversarial networks
(GANSs [33]), and cycle-consistent generative adversarial
networks (Cycle-GANs [34]). Combining auto-encoders and
GANs as a complementary approach to reweighting in
analytical and iterative reconstruction methods has improved
the quality of CBCT scans [35]. Training conditional GANs
has shown promising results in enhancing the quality of
CBCT through style transfer, effectively removing artifacts
and discrepancies between CBCT and pCT for average
tumor localization [36] and adaptive therapy [37]. Moreover,
a more advanced GAN variant called temporal coherent
generative adversarial network (TecoGAN) also improves the
quality of simulated 4D CBCT scans by considering the time
dependencies and motion for quality enhancement [38], [39].

C. CYCLE-GANS

Using Cycle-GANSs for unpaired translation from CBCT to
pCT has received significant attention among researchers.
Notably, Cycle-GANs have successfully generated
high-quality synthetic CT scans from CBCT for various
organs, including prostate [40], lung [41], and abdominal
scans [42]. A novel architecture inspired by contrastive
unpaired translation (CUT [43]), trained in an unsupervised
manner, improves the quality of CBCT scans by addressing
fringe artifacts and noise degradation for dose calculation
in adaptive radiotherapy [15]. The combination of binary
cross-entropy, gradient difference, and identity losses with
Cycle-GANs has further improved the quality of head and
neck CBCT scans [44]. Introducing the residual block
concept in the implementation of Res-Cycle-GAN has
demonstrated advancements in the quality of sCT scans [45].
Moreover, researchers have explored the combination of a
Cycle-GAN with classical image processing techniques [46]
and U-Net [47] architectures [16] in two-step approaches.
These approaches aim to initially reduce artifacts and
subsequently generate sCT scans to improve the quality. Ulti-
mately, researchers demonstrated that trained Cycle-GANs
enhance the quality of CBCT scans and achieve high accuracy
in volumetric-modulated arc photon therapy (VMAT) [48].
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D. ALTERNATIVE METHODS

In addition to adopting mainstream trends and computer
vision architectures for artifact reduction in CBCT scans,
researchers have explored creative methods specifically
tailored to CBCT reconstruction using deep learning and
neural networks. For instance, U-Nets have been optimized
for spectral blending of independently reconstructed sagittal
and coronal views to enhance the CBCT quality [49].
Neural networks have also been integrated into the core
of the reconstruction algorithms in the Feldkamp, Davis
and Kress (FDK) technique to introduce the NN-FDK
technique for CBCT quality improvement [5S0]. Another
novel architecture, known as the iterative reconstruction
network (AirNet), incorporates several variants in selecting
projections based on random-phase (RP), prior-guided (PG),
and all-phases (AP) for reconstruction [51]. Geometry-
guided deep learning (GDL [52]), and its multi-beamlet-
based approach (GMDL [53]) are additional examples of
leveraging deep learning to enhance the reconstruction
geometry effectively. Finally, CNNs have been employed to
predict the quality of the scans and accordingly dynamically
adapt the C-arm source trajectory in the imaging acquisition
process to avoid generating artifacts in the final scans [54].

IV. LOW DOSE

The reduction of the acquisition dose in CBCT scans,
which leads to the increased presence of artifacts, has been
addressed through various approaches such as adjusting the
radiation dose per X-ray projection [55], increasing the
acquisition speed or collecting fewer projections [56]. Early
research focused on low-dose artifact reduction primarily
by removing artifacts in the volume domain using deep
CNNs with U-Net architectures. The studies demonstrated
the potential of decreasing the overall radiation dose through
both dose reduction methods mentioned above [55], [56].
Moreover, a combination of 2D and 3D concatenating
convolutional encoder-decoder (CCE-3D) with a structural
sensitive loss (SSL) was employed to denoise low-dose
CBCT scans and remove artifacts in both projection and
volume domains. This approach showed promising results in
improving the quality of CBCT scans based on several met-
rics, such as PSNR and SSIM, and with greater improvements
reported in the projection domain compared with the volume
domain [57]. In addition, a CNN-based iterative reconstruc-
tion framework was integrated with a plug-and-play proximal
gradient descent framework to leverage DL-based denoising
algorithms and enhance CBCT reconstruction [56]. Training
models inspired by self-supervised learning approaches for
inpainting and denoising Poisson and Gaussian noise have
shown promising results in removing low-dose artifacts [58].
Similarly, models optimized for removing Gaussian noise
and addressing view aliasing artifacts through 2D iterations
with 3D kernels have been developed [59]. Furthermore,
researchers combined a non-subsampled contourlet trans-
form (NSCT) and a Sobel filter with U-Net architectures,

VOLUME 12, 2024

referred to as NCS-Unet, to improve the quality of low-dose
CBCT scans by enhancing both low- and high-frequency
components [60].

V. SPARSE-VIEW

This section summarizes research aiming at reducing artifacts
in CBCT reconstruction occurring from using uniformly
downsampled full-scan (360°) projections, primarily with
the goal of dose reduction. Sparse-view artifact reduction
is closely related to mitigation of artifacts caused by
limited angle acquisition and breathing-phase-correlated 4D
reconstruction, which will be reviewed in the upcoming
sections VI and IX, respectively. While the underlying
motivations for sparse-view (acquisition dose reduction),
limited angle (geometric constraints), and 4D (time resolved
imaging) acquisition are different, in all cases artifacts are
created due to the lack of projections from various angles.
Decreasing the number of projections and the resulting
data insufficiency for the reconstruction algorithm results in
artifacts appearing in the shape of symmetric and uniform
streaks, as depicted in Figure 3.

A. PROJECTION AND VOLUME DOMAIN OPTIMIZATION

The body of literature on sparse-view artifact reduction
using deep learning has been consistently growing since
2019, when initial research demonstrated the opportunity to
reproduce the original image quality with using as few as
one-seventh of the projections with symmetric CNN’s as
post-processing operation in the volume domain [61]. Sim-
ilarly, using a multi-scale residual dense network (MS-RDN)
successfully improved the quality of CBCTs reconstructed
from one-third of the projections [62]. In addition to training
in the volume domain, the intensities of under-sampled
projections can be corrected using deformation vector
fields (DVFs) to match the original data, resulting in
negligible streak artifacts after reconstruction [63]. Similarly,
symmetric residual CNN’s (SR-CNN) can enhance the
sharpness of the edges in anatomical structures reconstructed
from sparse-view projections with total variation (TV)
regularization in half-fan scans [61]. Furthermore, a counter-
based total variational CBCT reconstruction using a U-Net
architecture enhances the smoothed edges in lung CT recon-
structed scans from half-fan projections [64]. In Ref. [65],
a Reconstruction-Friendly Interpolation Network (RFI-Net)
is developed, which uses a 3D-2D attention network to
learn inter-projection relations for synthesizing missing
projections, and then introduces a novel Ramp-Filter loss to
constrain a frequency consistency between the synthesized
and real projections. The authors of [66] developed a dual-
domain attention-guided network framework (Dual-AGNet)
which works in both projection and reconstruction domains,
featuring spatial attention modules and a joint loss function.

B. DUAL-DOMAIN OPTIMIZATION
Though interpolating missing data in the projections and
removing artifacts in the volume domain are straightforward

10285



IEEE Access

M. Amirian et al.: Artifact Reduction in 3D and 4D Cone-Beam Computed Tomography Images

approaches to sparse-view artifact reduction, combining both
and backpropagating the error through the reconstruction
algorithm is not trivial. Despite the complexity involved,
researchers attempted to unroll the proximal gradient descent
algorithm for reconstruction and backpropagate the gradient
through a U-Net architecture to reduce streak artifacts in [67].
Since optimization in the volume domain and projection
interpolation are regression problems with different or the
same data channels as input and output, autoencoder-decoder
architectures have also gained popularity for artifact reduc-
tion [68]. To avoid complications regarding backpropaga-
tion through the reconstruction (back-projection) algorithm,
DEER is introduced as an efficient end-to-end model for
directly reconstructing CBCT scans from few-view pro-
jections [69]. Furthermore, DeepOrganNet could fine-tune
the lung mesh by skipping the reconstruction step and
avoiding sparse-view artifacts appearing on organ mesh [70].
Furthermore, the recent deep intensity field network (DIF-
Net) model uses the latent representation (feature maps) of
the 2D projections coupled with a view-specific query for
extracting information from the projections. This information
is then fed through cross-view fusion and intensity regression
models to reconstruct a volume without artifacts [71].

C. INFORMATION FUSION, PRIOR-BASED AND PHYSICAL

MODELING

Recent research trends seek to minimize sparse-view artifacts
by incorporating multi-slice [72] and scale [73] information
fusion techniques, as well as combining information from
different scan views (coronal, axial, and sagittal) [74]. As the
computational resources have become more powerful, deep
learning for sparse-view artifact reduction has extended from
2D models for single slice processing to 3D models and
processing of 4D CBCT scans [72]. The use of prior (planing)
CT and CBCT volumes to enhance the trained models, such
as regularized iterative optimization reconstruction (PRIOR-
Net [75]) and merge-encoder CNN (MeCNN [73]) have
recently become popular for sparse-view artifact reduc-
tion. Researchers have also investigated using perception-
aware [76] and physics-based [75] methods. The learning
paradigm has expanded beyond purely supervised learning
to different tasks, such as denoising (DRUNet [77]), artifact
reduction [78], self-supervised by dropping projections [18]
and unsupervised learning through training conditional and
generative adversarial networks (GANs) [79].

VI. LIMITED ANGLE

Besides lowering the imaging dose through uniformly
downsampled projections, another approach to reducing
the number of acquired projections and scanning dose is
scanning the body from a limited angle. Such scan settings
are especially common when using a full-fan acquisition
technique in a short-scan, where reconstruction is performed
using projections from an angular range covering less than
360 degrees. Although Parker weights [80] can be utilized
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to compensate for the loss of mass in the resulting CBCT
scans, artifacts still appear due to the smaller number of
acquired projections when scans are acquired from limited
angles. One of the initial attempts used learnable Parker
weights in the projection domain to address the mass
loss in the angular range from 180° + 6 to 360° (@
being the fan angle) [12]. A subsequent study optimized a
deep artifact correction model (DAC) using a 3D-ResUnet
architecture to create high-quality scans and improve artifacts
in limited-angle circular tomosynthesis (cTS), confirming the
potential for quality enhancement in the volume domain [81].
Further research demonstrated that combining FDK-based
reconstruction with a neural network can achieve outstanding
performance in 3D CBCT reconstruction from projections
acquired from only 145° [82].

Supervised learning, frequently implemented through
training U-Net architectures, for shading corrections in
CBCT volumes with a narrow field of view (FOV) notably
improved the quality of reconstructed CBCT scans, using CT
scans as ground truth [83]. Another approach involves using
a prior based on a fully sampled CT or CBCT and training
a 2D3D-RegNet, which demonstrates the effectiveness of
using a patient-specific prior for limited-angle sparseness
artifact reduction [84]. A conventional method for 4D CBCT
reconstruction is dividing the projections based on the
breathing phases and then reconstructing the body volume
in those phases. As a result of using only a subset of the
projections for each motion state, sparseness artifacts are
prevalent for this special case of limited angle acquisition.
These artifacts have been addressed in the projection domain
by interpolating the projections from different breathing
phases [85]. In the volume domain, transfer learning, layer
freezing, and fine-tuning have been employed to adapt
the trained DL models to individual patients and mitigate
sparseness artifacts [86].

VII. SCATTER AND BEAM HARDENING

Large cone angles within the CBCT geometry setup have
been observed to contribute to scatter artifacts, which have
been addressed in the projection domain by leveraging
Monte Carlo photon transport simulations to compute ground
truth projections for supervised learning [89]. A CNN-
based deep scatter estimation (DSE [89]) architecture,
as well as a scatter correction network (ScatterNet [87])
are the results of research endeavors using supervised
learning for artifact correction in the projection domain. The
DSE model has demonstrated the potential to accurately
emulate scatter artifacts and reduce the computational burden
of using Monte-Carlo simulations while being orders of
magnitude faster [90]. ScatterNet is considerably faster
than the classical methods and might allow for on-the-fly
shading correction [87]. ScatterNet, in combination with
shading correction, also showed satisfactory results for
dose calculation using volumetric modulated arc radiation
therapy (VMAT), but yielded unsatisfactory outcomes for
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# ‘e

Motion artifacts in simulated (left) and real (middle and right) CBCT scans [24]

FIGURE 3. Examples of different kinds of artifacts appearing in CBCT scans. Shown are several artifact-free motion states obtained with a
simulated 4D CBCT scan (1st row), sparse-view artifacts at various sub-sampling rates (2nd row), limited-angle, scatter and metal artifacts (3rd

row), as well as motion artifacts (4th row).

intensity-modulated proton therapy (IMPT). Despite the
abundant research work on scatter artifact corrections, studies
tackling beam hardening are scarce. One such study involved
training a U-Net-based architecture to predict monoenergetic
X-ray projections from polyenergetic X-ray projections using
supervised learning on Monte Carlo simulation-based ground
truth in the projection domain [91].

Compared with the classical fast adaptive scatter kernel
superposition (fASKS) scatter reduction technique [92],
a U-Net-based architecture outperformed in scatter artifact
reduction for both full-fan and half-fan scans based on several
metrics [93]. Additionally, a U-Net-based model trained on
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simulated CBCT projections has shown comparable perfor-
mance to a validated empirical scatter correction technique
in dose calculation for correcting the scatter artifacts in head
and neck scans, computing the corrected volumes in less
than 5 seconds [94]. Besides classical approaches of scatter
artifact reduction, CT scans have been used as ground truth
volumes for training a modified U-Net architecture with a
multi-objective loss function specifically targeting scatter
artifact reduction in esophagus scans [95].

Apart from supervised learning methods, researchers have
also trained Cycle-GAN models to improve the quality
of CBCT scans, remove scatter artifacts, and generate
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SCT. In particular, Cycle-GAN has demonstrated superior
performance compared to similar techniques using deep con-
volutional generative adversarial networks (DCGAN [96])
and progressive growing GANs (PGGAN [97]) [98].

VIIl. METAL

Metal objects and implants in the patient’s body result in
scattered radiation reaching the detector, leading to streak
artifacts. In the early research addressing metal artifacts,
a CNN-based regression model has been trained to predict
the detectability rank of metal implants to recommend
out-of-plane angulation for C-arm source trajectories [99].
Further research in this area has proposed predicting the
X-ray spectral shift after the localization of metal objects to
define the optimal C-arm source-detector orbit [100]. The
metal artifact avoidance (MAA) technique uses low-dose
scout projections to roughly localize metal objects for the
identification of a circular or non-circular orbit of C-arm
source-detector to minimize variations in spectral shift and
avoid metal artifacts [101].

Researchers have also employed supervised learning for
reducing metal artifacts and estimating the deviation of
the voxel values after inserting neuroelectrodes [102]. Self-
supervised learning approaches, focused on training models
for inpainting the regions affected by metal artifacts, have
demonstrated improvements in simultaneously tackling metal
artifact reduction while preserving the essential anatomical
structures near the inserted implants [88]. In addition to
supervised and self-supervised techniques, various types
of GANs have been employed in the literature for metal
artifact reduction. Optimized conventional GANs can reduce
metal artifacts in high-resolution and physically realistic CT
scans, with good generalization to clinical CBCT imaging
technologies for inner-ear scans [103]. Conditional GANS,
inspired by the pix2pix-GAN [104], have successfully
reduced metal artifacts in spine CBCT scans, enabling precise
recovery of fiducial markers located outside the C-arm’s
field-of-view (FOV) [105]. A Cycle-GAN has also been
employed to efficiently reduce metal artifacts by generating
synthetic CT (sCT) from Megavolt CBCT (MVCBCT) and
improving the quality of CBCT scans [106].

IX. MOTION

Many of the state-of-the-art volumetric reconstruction tech-
niques for CBCT rely heavily on the initial assumption
that the projections are acquired from a stationary object.
However, this assumption is often violated because of
periodic respiratory and cardiac motions or non-voluntary
and non-periodic movement of air bubbles in the abdominal
area. When reconstructing CBCT volumes using projections
acquired from various body states under motion, motion
streak artifacts appear in the reconstructed volume, as shown
in Figure 3. The severity of the resulting artifacts is
positively correlated with the intensity of motion. The
most common approach to tackle motion artifacts in CBCT
scans is dividing the projections based on the motion
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state (motion-resolved [107], [108], [109], [110], [111],
[112]), periodic motion state (phase-resolved [111], [113],
[114]) or acquisition time (time-resolved [115], [116]), and
then reconstruct multiple volumes based on each batch of
projections to generate a 4D CBCT.

A. MOTION-RESOLVED METHODS

A novel approach using CNNs to predict the missing
projections in motion-resolved 4D-CBCT combined with
a bin-sharing technique to accelerate the acquisition pro-
cess, substantially removed streak artifacts compared with
standard conjugate gradient reconstruction [107]. Training
a residual U-Net also reduces the streak artifacts appearing
in 4D-CBCT by addressing the sparseness of the pro-
jections acquired in each breathing phase [108]. Residual
dense networks (RDNs [110]) have successfully improved
sparseness artifacts using an in-house lung and liver dataset,
as well as a public dataset of the SPARE challenge [117],
[118]. Similar research demonstrates that combining the
information of the different breathing phases to train a
prior-guided CNN can effectively reduce artifacts in motion-
resolved 4D-CBCT scans [109]. In addition to training single
models, researchers attempted to optimize a cascade of spatial
and temporal CNN models to combine spatial and temporal
information for maximum artifact removal and to avoid
errors in the tomographic information [112]. A dual-encoder
CNN (DeCNN) architecture simultaneously processes and
combines the information of 4D motion-resolved volumes
and the averaged volume, thereby improving the sharpness
of the edges in moving and fixed tissues in 4D-CBCT [119].

B. PHASE- AND TIME-RESOLVED METHODS

Phase-resolved CBCT is a specific case of motion-resolved
CBCT, where projections are selected based on the different
phases of body volume under periodic, respiratory, or car-
diac motion. Motion compensation learning-induced sparse
tensor constraint reconstruction (MCL-STCR) was shown to
improve 4D-CBCT scans for all motion phases [120]. 3D-
CNNs have shown to effectively mitigate sparse-view arti-
facts in motion-compensated 4D-CBCT scans reconstructed
using FDK, thereby enhancing the overall quality [114]. N-
Net uses the prior volume reconstructed using all projections
to remove streak artifacts. CycN-Net combines the temporal
correlation among the phase-resolved scans to reduce streak
artifacts that are caused by sparse-view sampled motion-
resolved projections [111]. Furthermore, training a patient-
specific GAN-based model on phase-resolved 4D-CBCT
to reproduce CT quality using CBCT scans demonstrates
improvements when applied to test set projections acquired
from the same patient [113]. In addition to motion- and phase-
resolved methods, training a U-Net can remove sparseness
artifacts from time-resolved 4D-CBCT without requiring
any prior information [115]. GANs have also demonstrated
the capacity of estimating sCT scans from time-resolved
4D-CBCT and the average 3D-CBCT volume, resulting in
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a comparable improvement in dose calculation using both
strategies [116].

C. BIOMECHANICAL AND PHYSICAL MODELING

In addition to phase-, motion-, and time-resolved techniques,
researchers have also explored targeting motion artifacts by
physically modeling the motion using a deformation-vector-
field (DVF) and by optimizing an autofocus metric (i.e.,
maximizing some measure of sharpness). The simultane-
ous motion estimation and image reconstruction (SMEIR)
model, as well as its biomechanical modeling-guided version
(SMEIR-Bio), are examples of models developed for motion
effect prediction in lung 4D CBCT scans [121]. These
models have also been enhanced using a U-Net-based DVF
optimization technique, leveraging a population-based deep
learning scheme to improve the accuracy of intra-lung
DVF prediction (SMEIR-Unet) in the same research work.
By incorporating the reference phase in 4D CBCT as an
extra channel to their model, training a 4D U-Net for
motion estimation, with fine-tuning the estimated DVFs,
the performance of SMEIR models increases for motion
artifact reduction [122]. CNN-based architectures have been
optimized to estimate deformable motion and predict the
motion intensity on 8 x 8 grids covering the axial slice,
followed by a preconditioning technique to favor more
likely motion intensities [123]. CNNs have also been trained
for motion compensation in CBCT scans to solve the
high-dimensional and no-convex problem of optimizing the
autofocus metric [124].

D. ALTERNATIVE METHODS

The autofocus metric has also been replaced with the
context-aware deep learning-based visual information
fidelity (CADL-VIF) image similarity metric to optimize
multi-resolution CNNs [125]. This approach aims to
improve motion degradation and compute sharp scans
while preserving the tissue structures by optimizing visual
information fidelity (VIF) without requiring motion-free
ground truth. An alternative to the autofocus metric is
using contrastive loss to train GAN architectures to enhance
the quality of 4D-CBCT scans and to reduce streak
and motion artifacts [15]. To address the slow speed of
reconstruction and to compensate for the errors of 4D-
CBCT due to the severe intraphase undersampling, a feature-
compensated deformable convolutional network (FeaCo-
DCN [126]) model has been proposed. It achieves nearly
real-time reconstruction and accurate CBCT, outperforming
the previous method applied to the SPARE Challenge [117],
[118]. Besides the numerous research studies addressing
motion in 4D CBCT, which requires recording the patient’s
breathing curve, researchers have also simulated motion in
CBCT scans based on the estimation of DVFs according to
4D CT ground truth scans [127]. They subsequently trained
a dual-domain model to mitigate 3D CBCT motion artifacts
in the projection and volume domains. The clinical validation
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FIGURE 4. A visual summary of the distribution of the covered research
literature in CBCT artifact mitigation using deep learning, separately for
two time periods, (a) based on three generic deep learning architecture
categories given a broad categorization by artifact type, and (b) based on
the distribution according to the type of artifact.

on real-world CBCT images yielded positive feedback from
clinical experts, demonstrating the effectiveness of their
approach for motion compensation [24]. In addition to
all methods to reduce motion artifacts, researchers have
successfully used an artifact-driven slice sampling technique
to avoid artifacts caused by moving air bubbles in the
segmentation of the female pelvis [128].

X. DISCUSSION AND RECOMMENDATIONS

The previous sections have outlined the methodology and
the complete workflow employed for deep learning based
mitigation of artifacts in CBCT scans, addressing each
specific type of artifact separately. This section presents
a summary, emphasizing the central role of various deep
learning approaches. The objective is to offer a compre-
hensive review of the architectures employed for different
artifact types, highlighting both the promising aspects and the
limitations in the current literature.

In general, a trend is observed in shifting from conventional
supervised learning with CNNs and U-Net-type architectures
to exploring more modern learning paradigms such as GANS,
and investigating self-supervised and unsupervised methods,
leveraging e.g. Cycle-GANsS, as depicted in Figure 4. In par-
ticular, Cycle-GAN-based architectures offer the appealing
feature of enabling model training without needing paired
labeled data [131]. However, they come with high data
requirements, rising attention toward methods and projects
for data collection, synthetical data generation, dataset
merging from diverse sources, and data homogenization.
This trend suggests the rise of research works attempting
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TABLE 1. Summary of a subset of studies per artifact type, based on recency and number of citations. The table provides details about artifact category,

publication year, study title, anatomic site, model type, number of patients, GPU hardware, and whether the code was published.

Artifact type Year Title Anatomic Model Patients GPU Published
site Hardware code?
image quality 2019  Paired cycle-GAN-based image correction for quantitative  brain, cycle 44 NVIDIA -
cone-beam computed tomography [45] pelvis GAN TITAN XP
2019  CBCT correction using a cycle-consistent generative ad-  pelvis cycle 33 NVIDIA -
versarial network and unpaired training to enable photon GAN Tesla P100
and proton dose calculation [48]
low-dose 2019  Computationally efficient deep neural network for com-  abdomen U-Net 10 NVIDIA -
puted tomography image reconstruction [67] GTX 1080 Ti
2020 Neural networks-based regularization for large-scale med-  cardiac U-Net 19 - -
ical image reconstruction [55]
2023  Sub-volume-based Denoising Diffusion Probabilistic — breast diffusion - 128x -
sparse-view Model for Cone-beam CT Reconstruction from model NVIDIA
SR Incomplete Data [129] Tesla V100
2023 Learning Deep Intensity Field for Extremely Sparse-View  knee learned - NVIDIARTX yes
CBCT Reconstruction [71] recon- 3090
struction
2020  Self-contained deep learning-based boosting of 4D cone-  liver, residual 20 NVIDIA yes
beam CT reconstruction [110] lung dense GeForce RTX
network 2080 Ti
2020 Deep Efficient End-to-End Reconstruction (DEER) Net-  breast GAN 42 NVIDIA yes
work for Few-View Breast CT Image Reconstruction [69] Titan RTX
limited-angle 2020 C-arm orbits for metal artifact avoidance (MAA) in cone-  chest U-Net 0 NVIDIA -
beam CT [101] phantom TITAN X
scatter 2019  Real-time scatter estimation for medical CT using thedeep  head, U-Net 21 NVIDIA -
scatter estimation: Method and robustness analysis with  thorax, Quadro
respect to different anatomies, dose levels, tube voltages,  pelvis P6000
and data truncation [90]
metal 2021 Inner-ear augmented metal artifact reduction temporal ~GAN 597 11 GB GPU -
with simulation-based 3D generative adversarial  bone
networks [130] images
motion 2022  Enhancement of 4-D Cone-Beam Computed Tomography  lung CNNs 26 NVIDIA -
(4D-CBCT) Using a Dual-Encoder Convolutional Neural Titan RTX
Network (DeCNN) [119]
2022 Deep learning-based motion compensation for four-  thorax CNNs 18 NVIDIA yes
dimensional cone-beam computed tomography (4D- Tesla V100S
CBCT) reconstruction [114]

at the adaptation of generative models including GANS,
Cycle-GAN:S, as well as scored-based models [132], [133], in
upcoming research endeavors. A recent example [129], which
employs denoising diffusion probabilistic models [134],
[135] for sparse-view CBCT reconstruction, demonstrates a
lot of potential for future research, however at the expense
of tremendous compute resources (up to 128 GPUs, see also
Table 1). On the other hand, less computationally intense,
U-Net-based, architectures have demonstrated their merit in
successfully addressing artifacts across all categories, making
them a highly recommended and robust baseline approach for
artifact mitigation.

In the context of this survey, the primary DL-based
architectures used in the literature can be divided into four key
categories: CNNs, U-Nets, GANs, and cycle-GANs. Here,
we categorize architectures with multi-scale information
fusion, i.e. including connections from the network’s input
(encoding) layers to output (decoding) layers (such as [67])
under the category U-Net, while those without such direct
connections (such as autoencoders [136]) are categorized as
CNNs. DL-based models generally require medium to large
datasets for training, validation and testing through clinical
evaluation. While medium-sized datasets, including multiple
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patients, can serve as starting points for training CNNs and
U-Nets [83], GANs perform better using datasets containing
at least dozens of patient scans [42]. This trend generalizes
to 3D and 4D reconstruction, where larger input sizes and
a higher number of scans become essential, in particular for
4D [122]. A review of the studies presented in Table 1 reveals
that the majority of research was conducted with fewer than
50 patients. This relatively small number of patients can
pose challenges for validating the approach across a diverse
population. Consequently, the robustness of these models
warrants further scrutiny to ensure their ability to generalize
well across various human anatomies.

CNN architectures, known for their stable convergence
and versatility, demonstrate a wide range of applications
for artifact reduction through adapting different vision
backbones [32] and incorporating diverse architectural com-
ponents such as attention blocks [24]. However, in terms
of multi-scale information fusion, they are inferior to
U-Nets and their variants (e.g., U-Net++ [137]), which
demonstrate a fast convergence in supervised learning due
to the internal architectural connections between different
layers enhancing the multi-resolution information fusion [7].
Since CNNs and U-Nets are predominantly being trained in
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a supervised manner, their learning technique necessitates
explicitly labeled data to define the task. On the other hand,
generative models (GANs), incorporating an adversarial loss,
also offer potential applications in generating high-quality
synthetic scans to meet the data needs of the deep learning-
based architectures [36]. Moverover, Cycle-GANs compute
the inverse path of artifact reduction automatically, using
a cycle-consistent loss, thus being able to learn artifact
reduction without the need for paired artifact-free ground
truth [48].

Only four of the papers presented in Table 1 provide
a public code repository to reproduce their results. This
highlights a considerable shortage of open science prac-
tices, such as sharing code, to promote transparency and
reproducibility in research. It is strongly recommended for
researchers to share their code publicly to enhance the
credibility and reproducibility of their work and accelerate
scientific progress in this field.

XI. CONCLUSION

We presented a survey on the application of deep learning
and convolutional neural networks to reduce various types
of artifacts in CBCT scans. We categorized the existing
literature based on the type of artifacts they address as well as
the methodology employed. Figure 4b illustrates the amount
of the recent research works based on the type of artifacts. It is
observed that there has been considerable growth in artifact
reduction research compared with focusing more generically
on scan quality after 2021. The opportunity of reducing the
imaging dose with the help of compensating for artifacts
when using low-dose scans, sparse-view, and limited-angle
acquisition techniques have gained substantial attention due
to the ease of simulation and computing the ground truth,
especially for sparse-view and limited-angle approaches.

However, metal and scatter artifacts have received less
attention. This may also be due to the challenges involved
in computing the ground truth for metal artifacts, or the
high computational cost of Monte-Carlo simulation for
scatter artifacts. We expect that the research community
could profit from open-source accurate and fast artifact
simulations for training models (as before with XCAT [138]).
The development of such simulations could also serve
as a driving force for physics-based artifact modeling or
training physics-informed neural networks (PINN) [139] for
artifact reduction. These simulations would benefit from
GPU implementations for data generation to enable on-
the-fly integration into the training pipelines with neural
networks. In addition to simulations, there is a research gap
for open-source data augmentation techniques, such as [140]
and [141], also based on incorporating simulated artifacts into
real datasets.

In addition to simulation and augmentation tools for
modelling, the research community would benefit from
the availability of open-source datasets. Researchers are
still reporting results on phantoms and cadavers, indicating
a need for more diverse and realistic publicly available

VOLUME 12, 2024

datasets. Nevertheless, despite the lack of open-source 4D
CBCT datasets with raw projections and breathing curves,
there is an increase of motion artifact reduction research
in recent literature. The collection and sharing of up-to-
date benchmark datasets on a large scale, similar to the
SPARSE [117], [118] and SynthRAD [142] challenges,
would enhance the quality of many research works and
provide the opportunity for fair and accurate comparison of
different approaches. Furthermore, many studies suffer from
a lack of clinical evaluation. The availability of open-source
standard clinical evaluation platforms would be of significant
help in addressing this issue.

In terms of methodology, there has been a noticeable
trend of moving beyond supervised learning towards self-
supervised, unsupervised, and domain adaptation methods
in recent years. Researchers have started incorporating
more physically inspired ideas into the neural networks
and utilizing prior patient knowledge to personalize the
models for specific anatomies. One of the drawbacks often
observed in the current literature is the absence of ablation
studies. For example, in the case of approaches employing
dual-domain optimization in both projection and volume
domains, the performance gained in each domain should
be estimated separately. Besides artifact reduction after the
CBCT acquisition, adapting the acquisition process itself
using neural networks, such as C-arm trajectory adjustments
applied to metal artifact reduction, present a further exciting
avenue for future research.

In summary, substantial progress has been made in
recent years transferring state-of-the-art methods from deep
learning based computer vision to the domain of CBCT
imaging and in particular the amelioration of prevalent
imaging artifacts, with a clear potential to improve diagnosis
and treatment in clinical practice.
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