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ABSTRACT This article introduces an innovative approach to the navigation of autonomous underwater
vehicles (AUVs) in inspection and data acquisition missions within underwater wireless sensor networks
(UWSNs). We combine at least five underwater navigation techniques to accomplish this mission,
adapted from related works. These five techniques are employed to address at least four main challenges
identified in inspection and data acquisition missions in UWSNs involving the use of AUVs, namely:
communication constraints, energy usage optimization, precise navigation, and effective data acquisition.
Limited simulations conducted demonstrate the reliability of the proposed model. The model successfully
navigates to the target point in 3D coordinates X Y Z, assuming the launch point as d0 (10 40 40), and
reaches the q-goal target point (45 45 0) within 21 seconds, with the addition of uattractive and urepulsive
(magnetic beacon attraction force and repulsion force as simulation of underwater current disturbance factor).
Furthermore, in the inspection and data acquisition mission in UWSN simulated as node points (o) in pink,
AUV (*) in blue effectively follows the predetermined points while acquiring data, as indicated by green lines
(-) within just 5 seconds, achievable by increasing the value of α (angle of attack) of the target node to reduce
delay time. The evaluation of the experimental simulations has raised issues and future research challenges,
including the development of environmental simulation challenges that can closely resemble real conditions,
the measurement of energy usage effectiveness to reach each target point, and the potential development of
underwater recharging techniques. Furthermore, there is a need for advanced precise navigation and the
advancement of effective data acquisition techniques.

INDEX TERMS Underwater wireless sensor network (UWSN), autonomous underwater vehicle (AUV),
navigation techniques, data acquisition, constraints, optimization.

I. INTRODUCTION
Underwater wireless sensor network (UWSN) have garnered
significant attention in various applications such as environ-
mental monitoring [1], [2], [3], [4], underwater exploration
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[5], and infrastructure inspection [6]. These networks hold
great potential for real-time data collection and remote
monitoring in the underwater environment [7], [8]. With
the ability to utilize multiple sensors over a wide area,
UWSNs enable researchers and industries to gain valuable
insights into the underwater ecosystem, study marine life,
assess the health of underwater structures, and monitor
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environmental parameters [9]. The use of UWSNs has proven
to be a crucial tool in enhancing our understanding of the
underwater domain and facilitating efficient management and
conservation efforts [10].
Effective navigation in AUVs is crucial for the successful

execution of missions in UWSNs [9], [10], [11]. AUVs play
a vital role in performing various tasks such as underwater
surveys, data collection, and maintenance operations in
UWSNs [12]. With the ability to operate autonomously,
AUVs need to have strong navigation capabilities to navigate
through complex underwater environments and achieve mis-
sion objectives [13], [14]. Accurate and reliable navigation
ensures optimal path planning, efficient resource utilization,
and precise data acquisition [15]. By leveraging advanced
navigation techniques, AUVs can move safely, adapt to
changes in underwater conditions, and effectively contribute
to the overall success of UWSN missions [16].

This paper focuses on proposing advanced navigation
techniques for AUVs with the aim of enhancing inspection
capabilities and enabling efficient data acquisition in UWSNs
[17], [18]. By developing and implementing cutting-edge
navigation algorithms and strategies, AUVs can effectively
navigate and explore underwater environments, facilitating
in-depth inspection and data collection [17]. These advanced
techniques aim to optimize AUV path planning, improve
localization accuracy, enable obstacle avoidance, and sim-
plify the data collection process. The integration of advanced
navigation techniques from previous research empowers
AUVs to perform complex tasks, ensuring precise inspection
and efficient data acquisition, thereby enhancing the overall
performance and effectiveness of UWSNs [18].

Furthermore, our paper also provides an in-depth analysis
of challenges and requirements in underwater navigation
[15], considering factors such as communication limita-
tions [19], underwater topography, and energy constraints
[20]. Navigation in underwater environments poses unique
challenges due to signal attenuation and distortion, limited
visibility, and complex topography [21]. Communication
limitations require careful consideration to ensure reliable
data transmission and efficient command execution [22].
Understanding and adapting to underwater topography are
crucial for safe and efficient navigation [23], considering
movement across various depths, currents, and obstacles
[24]. Additionally, energy constraints [20] play a vital role
in designing navigation strategies [25] that optimize power
consumption and maximize the duration of underwater
vehicle missions [26]. By addressing these challenges and
requirements, this paper aims to provide valuable insights
and solutions to enhance the effectiveness and reliability of
underwater navigation system.

Several navigation techniques [27], including path plan-
ning [28], sensor fusion-based localization [29], simul-
taneous localization and mapping (SLAM) [30], neural
network-assisted SLAM (NN-SLAM) [31], cooperative
localization [32], and obstacle avoidance strategies [9],

have been explored. Additionally, we review data collection
strategies specifically designed for applications in UWSN
and the underwater Internet of Things (IoUT) [33], [34],
where path planning involves determining the most optimal
route for AUVs, considering factors such as efficiency [27],
security, and mission objectives [28].
Advanced localization techniques enable AUVs to accu-

rately determine their positions in the underwater environ-
ment [29], [30], [31], facilitating precise navigation and
effective data collection [9], [32]. This includes obstacle
avoidance algorithms, crucial to ensuring AUVs can navigate
underwater obstacles, reducing the risk of collisions, and
maintaining mission continuity [35]. Additionally, data col-
lection strategies are developed to enable AUVs to efficiently
collect and transmit sensor data [33], considering factors
such as data relevance, storage capacity, and communication
limitations [34].

In general, this research aims to provide a comprehensive
understanding of how to enhance the efficiency, accuracy,
and reliability of AUV navigation in complex underwater
environments. It reviews and outlines various navigation
techniques developed for routine data collection missions
in UWSNs, while investigating the potential applications
of these navigation techniques in real-world environments
using mathematical approaches and simulations. Addition-
ally, we conduct experiments to evaluate and validate the
effectiveness of the proposed techniques, demonstrating their
potential to improve AUV-based inspection performance and
data collection in UWSNs. The overall contributions of this
paper are summarized in the following points:
• We conduct a survey on AUV navigation techniques
and categorized them based on underwater mission
requirements

• We present a comparative analysis of several AUV
navigation techniques

• We propose specific navigation techniques for inspec-
tion and data acquisition missions in UWSNs by
evaluating various techniques and adapting them based
on mission requirements

• We use mathematical approaches and simulations to
validate the effectiveness of the proposed techniques

The rest of this paper is organized as follows. Section II
highlights various relevant studies, categorizing them based
on their strengths, particularly focusing on precise navigation
techniques and effective data acquisition. Section III explains
the reference architecture, which is adapted to develop new
forms of navigation techniques, effective data acquisition,
and overall mission planning. Then, in Section IV we present
the problem formulation, which identifies and categorizes
common issues, aligning them with the needs of navigation
and effective data acquisition missions in UWSN. Next,
in Section Vwe explain the proposed scheme, which includes
technical proposals and designs aimed at addressing the
formulated problems. Next, we present performance evalu-
ation in Section VI, which demonstrates the effectiveness
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of the proposed technical solutions through simulations
and discussions on model performance results. Section VII
presents Open Issues and Research Challenges, which
reveals findings from the evaluation of model performance
tests, indicating open issues and opportunities for further
development of the tested model. Finally, Section VIII draws
the conclusion.

II. RELATED WORK
Several studies related to navigation for inspection and data
acquisition in UWSNs, based on our review, are divided
into two major groups: those specifically addressing AUV
navigation techniques and those addressing sensor-based data
collection techniques.

The first group focuses on AUV navigation techniques.
In their research, Maurelli et al. [11] employed a machine-
learning (ML) regression approach based on ultra-short-
base-line (USBL) sensor outputs, Nad et al. [13] utilized a
computer-vision (CV) approach for companion AUV mis-
sions with divers, Thompson et al. [14] introduced the coop-
erative simultaneous-localization-and-mapping (C-SLAM)
localization method, Salavasidis et al. [15] employed a
random process root-mean-square-error (RMSE) approach
as the core algorithm for AUV navigation through complex
underwater environments, Hernandez et al. [16] used adaptive
algorithms and real-time online movement planning to
control and monitor AUV missions, Claus et al. [17]
applied ML regression for closed-loop odometry navigation,
similarly Wang et al. [18], Zhuo et al. [20] used ML
regression for path planning navigation, adaptive algorithms
by Ferri et al. [26] and Zhang et al. [27], deep-learning with
convolutional-neural-network (DL-CNN) by Sun et al. [28],
Bucci et al. [29], Yuan et al. [35], and reinforcement-learning
(RL) by Khan et al. [34].
Furthermore, Vagale et al. [36] conducted a review on route

planning and collision avoidance for autonomous-surface-
vehicles (ASVs), another form of AUV distinguished by its
operation on the water surface. Li et al. [37] carried out com-
prehensive research on AUV control using trajectory tracking
strategies. Hou et al. [31] conducted a literature study on
underwater localization and mapping using artificial neural
network algorithms. Salavasidis et al. [38] developed a navi-
gation method utilizing information about the seafloor topog-
raphy or morphology. In another work, Salavasidis et al. [39]
developed a navigation method utilizing underwater topog-
raphy information with a coarse-resolution map to support
crossing in the Arctic latitudinal valleys. Keane et al. [40]
developed a navigation method enabling AUVs to accu-
rately navigate to a target using only inter-beacon distance
information. Panda et al. [41] conducted a comprehensive
review of various path planning algorithms used by AUVs.
Gallimore et al. [42] surveyed the use of magnetic beacons
and automatic target discovery using scalar magnetometers
on small AUVs. Fortuna et al. [43] conducted a compre-
hensive review of unmanned underwater robotics, covering

various aspects including structural design, materials, sen-
sors, actuators, and navigation control. Kepper et al. [44]
developed navigation solutions for AUVs using micro-
electro-mechanical systems (MEMS) technology based on
inertial measurement units (IMUs) with position estima-
tion model-based mathematical calculations and one-way
acoustic signal travel time measurements. King et al. [45]
developed a method enabling AUVs to follow previously
taught paths. Matsuda et al. [46] developed navigation meth-
ods based on parent-child relationships to coordinate multiple
AUVs in autonomous underwater surveys. In another work,
Matsuda et al. [47] developed a navigation method allowing
multiple AUVs to conduct extensive seafloor surveys using
alternating marker-based navigation. To facilitate identifica-
tion, we summarized the initial identification of the above
research in Table 1.
Furthermore, references discussing data acquisition tech-

niques in UWSNs are directly summarized in Table 2 for
easy content identification in each paper. This facilitates a
straightforward comparison and selection of methods that
align with mission requirements.

III. REFERENCE ARCHITECTURE
A. MISSION PLANNING
Based on the aforementioned related research, especially
those focusing on navigation techniques, some of them are
considered suitable for implementation in missions in UWSN
involving inspection and data acquisition. These navigation
techniques have the potential to enhance the navigation
capabilities of AUVs, enabling them to move efficiently and
accurately in the underwater environment.

By integrating these techniques, AUVs can optimize
path planning, avoid collisions, and enhance overall nav-
igation performance, thereby improving the success and
effectiveness of inspection and data acquisition missions in
UWSN.

Adopting Vagale et al. [36] who utilized vehicle dynamics
calculations and algorithms to find collision-free routes.
There are at least three autonomous vehicle dynamics modes,
namely:
Definition 1: Fully Activated System: If instantaneous

acceleration can be achieved in any direction v, then the
system is considered a fully activated system. This can also
mean that the rank R(v) = dim(v).
Definition 2: Less Activated System: If instantaneous

acceleration cannot be achieved in every direction v, then the
system is considered a less activated system. This can also
mean that the rank R(v)<dim(v).
Definition 3: Degree of Less Activation: The degree of less

activation is the number of configurations that cannot be
directly controlled. Expressed as: rank dim(v) - R(v).

By neglecting the environmental disturbance factor,
we employ the local compact form dynamic linearization
(local-CFDL) approach to control the initial movement of
the AUV towards the designated starting point in the UWSN
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TABLE 1. Comparison of several AUV control algorithms that can be considered, taking into account mission requirements and data collection
optimization in UWSNs.

TABLE 2. Comparison of several data acquisition techniques in related UWSN studies.

(node-1) in the equation:

1y(t + 1) = ∅(t)1u(t)+ ξ (t), (1)

where t , represents the operational time of the AUV, 1y(t +
1) = y(t + 1)−y(t), indicates the increase in output at

the next time step, 1u(t) = u(t)−u(t − 1), represents the
increase in current input, ∅(t), denotes the partial derivative
of the unknown nonlinear scalar function f (·), with respect
to the control input, while ξ (t), represents the nonlinear
uncertainty residue from the modified linear data model and
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FIGURE 1. The stage of launching AUV from the vessel to UWSNs.

will be estimated collectively in the next control design
process.

The illustration and approach in the AUV launching stage
from the vessel to UWSNs are depicted in Figure 1.

Furthermore, in advanced algorithms, machine learning
(ML) is used to model the surrounding environment of
autonomous vehicles, including objects, other vehicles, and
potential obstacles. Data obtained from sensors mounted on
the vehicle can be used to train a model that can understand
the environment. ML is also employed to assist autonomous
vehicles in making complex decisions.

The orientation-based approach refers to a method that
focuses on the direction or orientation of autonomous
vehicles in route planning and collision avoidance. The
orientation-based approach includes techniques such as speed
constraints, directional control, and histogram vector fields.

After the AUV reaches the first node in the UWSN,
we adopt the approach used by Li et al. in [37], which employs
a tracking navigation strategy. This approach considers five
tracking-based control algorithms, including proportional-
integral-derivative (PID), model-predictive-control (MPC),
sliding-mode-control (SMC), adaptive-control (AC), and
artificial-neural-network-control (ANN-control).

Among the five available algorithms, we consider using
AC based on navigation goals and the nature of the environ-
ment faced. This is because AC is a control approach capable
of adapting control parameters dynamically to changes in the
environment around the AUV.

To enhance the precision of our AUV in tracking
trajectories and address potential uncertainties, we combine
our AC with sensor node-based localization, as applied by
Hou et al. in [31]. They introduced an acoustic-magnetic-
beacon system for simultaneous-localization-and-mapping
(AMB-SLAM) in controlled AUV navigation. An illustration
of the combined AC navigation and AMB-SLAM localiza-
tion can be seen in Figure 2.
Assuming that each node in the UWSN serves as a

landmark that needs to be marked by the AUV using a
magnetic beacon. Node 1 is considered as the starting point,

FIGURE 2. The combination of AC navigation and AMB-SLAM localization.

where the vehicle’s position is at (0, 0, 0). Furthermore, with
the assistance of AMB-SLAM sensing, position information
is continuously updated and observed using the extended
Kalman filter (EKF) algorithm. Mathematically, the starting
point of the magnetic beacon scan to node i can be
written as:

bni (k) = bni (k − 1), (2)

where bni (k), represents the location of the i-th node at time k .
After extracting sensor data and performing data association,
the AMB-SLAM algorithm goes through three stages. First,
the state when the AUV predicts using the output values
from the sensors. Second, the estimated state is updated
based on the landmark positions. Third, when the AUV’s
kinematic model is known, the relative vehicle position can
be determined, and estimates for the next trajectory can be
made. The relative vehicle position is weighted based on the
three inputs using the EKF filter, where the angle positions
and local coordinates of the AUV are described using the
equations:

Xv(k) = [pv(k) φv(k)]T , (3)

where Pv, represents the covariance matrix:

Pv =

σ
2
xvxv σ 2

xvyv σ 2
xvφv

σ 2
xvyv σ 2

yvyv σ 2
yvφv

σ 2
xvφv σ 2

yvφv σ 2
φφxv

 , (4)

In these equations, Xv(k), represents the state of AUV
motion at time k , where pv(k), is the position of AUV, and
φv(k), is the direction angle of AUV at time k .
Furthermore, pv(k) = [xv(k) yv(k)], is assumed as

the coordinates of the n-th feature, denoted as xm(k) =
(xb(k), yb(k))T . This allows the neighboring landmark bea-
cons to be expressed in the equation:

Xm(k) = [xb(a), yb(1) . . . , xb(k), yb(k)]T , (5)
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Adding the covariance matrix Pm, the equation becomes:

Pm =



σ 2
x1x1 σ 2

x1y1 · · · σ 2
x1xk σ 2

x1yk

σ 2
x1y1 σ 2

y1y1 · · · σ 2
y1xk σ 2

y1yk
...

...
...

...
...

σ 2
x1xk σ 2

y1xn · · · σ 2
xkxk σ 2

xkyk

σ 2
x1yk σ 2

y1yk · · · σ 2
xkyk σ 2

ykyk


, (6)

The equation Pm, represents the diagonal elements
of the covariance matrix, indicating the interconnection
information among landmarks. Assuming that the node
positions remain constant and unchanged allows for the
re-observation of landmarks. Consequently, the construction
of a trajectory based on landmarks can be expressed in the
equation:

Xa(k) = [Xv(k) Xm(k)]T . (7)

If changes in the AUVs state are represented by con-
secutive directional changes, the changes in the horizontal
and vertical path directions can be written as 1X =

[1x 1y 1φ]T . The relative position of the AUV can be
found using the calculation:

X (k) =

[
xv(k)

xb(k)

]

=

[
x(k) y(k) φ(k) xb(k)

]T

=


x(k − 1)+1x · cos(φ(k − 1))

x(k − 1)+1x · sin(φ(k − 1))

φ(k − 1)+1φ

xb(k − 1)

 . (8)

From the above equation and by adding the Jacobian
matrix, the formula can be represented as:

F =


1 0 −1x · sin(φ(k − 1)) 0
0 1 1y · cos(φ(k − 1)) 0
0 0 1 0
0 0 0 1

 , (9)

where the observation values are the relative position of
the AUV to the node. If the characteristics of the observed
quantities and state variables are defined, then (xbi, ybi),
represents the relative position of the AUV. Then, based on
the estimated AUV position obtained by detecting beacons
from node bi, we can estimate the observation values using
the equation:

Ẑ = h(X (k)) =

[√
(Xbi − x(k))2 + (ybi − y(k))2

arctan( ybi−y(k)xbi−x(k)
)− φ(k))

]
. (10)

In addition to magnetic beacons, acoustic beacons are
also added to the AUV frame. Acoustic beacons are used to
observe the distance and angle between the AUV and the next

node in the UWSN. To achieve this, the Jacobian matrix is
used, and the equation can be written as:

H =

[
x(k)−xbi

r
y(k)−ybi 0 x(k)−xbi

r
y(k)−ybi

r
y(k)−xbi

r2
x(k)−xbi

r2
0 y(k)−ybi

r2
x(k)−xbi

r2

]
.

(11)

where r2 = [xbi − x(k)]2 + [ybi − y(k)]2, and r , represents
the distance between the node and AUV. As the position
of random magnetic signals can vary due to environmental
influences, one of the standard nonlinear filtering problems,
the Jacobian matrix and Kalman filter are employed in the
AUV state measurement equation.

In its movement process, where the AUV continuously
explores new environments and discovers new nodes, the
automatic update of existing beacon positions is crucial.
Therefore, a method is needed to expand the state variable
dimensions, add new nodes to the previous landmark
mapping, estimate the next nodes, and map the traversed
nodes to build an accurate mapping. Assuming the correct
size z = [r φ]T , of the new feature, (x, y) representing the
AUV position, and r , φ representing the relative position and
angle between the AUV and the new node, the position of the
new node can be expressed in the equation:

Xb = u(X , z) =
[
x + r cos(φ + ϕ0)
y+ r sin(φ + ϕ0)

]
. (12)

Following these steps, a path mapping is created, with
nodes functioning as landmarks or markers. In subsequent
mission operations, this can be used as a guide for AUV
navigation using path tracking algorithms.

Faced with an unpredictable underwater environment and
limitedmapping results, we adapted themethod developed by
Salavasidis et al. in [38]. They devised a navigation method
using information about the topography or morphology of the
seafloor to support AUV navigation in a changing environ-
ment with minimal mapping. They employed side-scan sonar
and the doppler-velocity-log (DVL) approach to measure
distances based on wave reflection time.

Measurement results heavily depend on the sonar used. For
instance, measurements above the ship could be a scalar value
rk when only one basic distance measurement is available at
a given time or a vector containing distances up to Nr , rk =[
rk,1 . . . rk,Nr

]T . To compensate for the vehicle’s attitude and
the sonar beam’s orientation, the basic distance measurement
rk,i can be projected into 3D space using the equation:

XNEDrk ,i =

XNXE
XD


rk i

= ℜ(ψk , φk , θk ) · q̂ri · rk,i, (13)

where ℜ(ψk , φk , θk ) represents the rotation matrix parame-
ters at time k , q̂ri is the unit vector in the i-beam direction,
XNEDrk , i is the 3-Dimensional location where the i-beam
intersects with the object, rk, i is expressed in meters, and
XNEDrk ,i is also expressed in meters. With this additional
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FIGURE 3. The homing technique employs circle trilateration based on
side-scan sonar.

technique, the AUV can avoid collisions with underwater
objects along the UWSN path.

After executing an inspection mission and data collection
in the UWSN, the AUV is designed to return to the surface
placement ship for data retrieval and recharging. We adopted
the method developed by Keane et al. in [40], allowing
the AUV to accurately navigate towards a target location
using distance and orientation information from nodes. This
method works by applying the principles of the Pythagorean
theorem, trilateration, and median filtering.

By applying the Pythagorean theorem and the depth vector
to create a virtual 2D flat geometry, the formation of a
circle with the vehicle’s location as the center of mass and
the reported distance as the circle’s radius is possible. This
approach simplifies the solution from a 3D sphere to a 2D
circle, utilizing accurate depth measurements from the AUV
and known sonar depth information. A two-dimensional
trilateration method is used to estimate the beacon’s position
based on the intersection of three or more distance circles,
with the AUV’s position as the center and the reported
distance as the circle radius. Through brute-force iteration,
a search is conducted for as many intersections as possible
that meet the requirements, and the results are considered a
Gaussian distribution representing the localization outcome.
The median of the x and y coordinates is taken separately
as the filtering result to select the most likely beacon location.
The Homing technique we developed, which utilizes circle
intersection theory based on side-scan sonar, is illustrated
in Figure 3.

B. DATA COLLECTION
In UWSN, data collection techniques play a crucial role
due to the unique challenges posed by the underwater

environment [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63], [64]. One
such technique involves the use of autonomous underwater
vehicles (AUVs) equipped with sensors to gather data from
distant underwater nodes [54]. These AUVs navigate the
network [55], following predefined paths using adaptive
algorithms [56], to collect data from various locations
[57]. This data collection technique ensures comprehensive
coverage and timely data acquisition in UWSN.

Data collection in UWSN using adaptive algorithms aims
to optimize the process of gathering data from various
sensors [65]. Adaptive algorithms ensure efficient resource
utilization by selecting the most valuable data packets based
on mission requirements [66]. This approach minimizes
energy consumption and maximizes the overall network
throughput [65], [66], [67].

In some cases, to achieve reliable and efficient data
collection in UWSN, especially in situations where nodes
are damaged or unreliable, sophisticated data collection
algorithms can be employed [68]. These algorithms use
redundancy and error correction methods to overcome node
failures and ensure accurate data collection. By dynamically
adapting to changes in network conditions and avoiding
problematic nodes, these algorithms enhance the reliability
and efficiency of data collection throughout UWSN [69].

Distributed data collection systems in UWSN leverage
the collaborative capabilities [70] of various sensors to
collect and process data [71]. These systems consist of
distributed sensor networks, where each sensor collects data
from its environment and collaborates with neighboring
sensors to exchange and gather the collected data [72]. This
collaborative approach enables efficient data collection [73],
improves network scalability, and enhances overall system
performance [74].

We assume that the positions of sensors, previously
identified in the deploymentmission, aremapped as reference
points that will be sequentially traversed by the AUV when
conducting data retrieval missions in UWSN, ultimately
returning to the surface ship (return point). The AUVmust be
capable of determining the route based on considerations of
which sensors will collect data. For a clearer understanding,
please refer to the illustration below adapted from the
research by Wei et al. [51].
Adapting from Wei et al. [51], the adaptive intelligent

power collection scheme considers factors such as sensor
locations, distances, and data importance levels to determine
the optimal route for the AUV. By utilizing intelligent
decision-making techniques, the AUV can choose a route
that minimizes energy consumption and maximizes data
collection efficiency.

Additionally, the alternating-anchor-nodes-selection-and-
flow-routing (AANSFR) algorithm [51] is employed. This
algorithm is considered effective for route planning if it can
maximize the number of nodes obtained by the AUV while
minimizing energy usage. The AANSFR algorithm can be
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expressed using the following equation:

maxmin
j∈N

(
Ej − ρj

)
, (14a)

s.t.
∑
j∈N

fij = (1− xi)

(∑
k∈N

fki + gi

)
+ ximi ∀i ∈ N ,

(14b)

ρj =
(
µjxj + γj

)∑
i∈N

fij + gjµjxj +
∑
k∈N

fjkϵjk , (14c)

ρj ≤ Ej ∀j ∈ N , (14d)

xi ∈ {0, 1} ∀i ∈ N , (14e)

fij ≥ 0 ∀i, j ∈ N , (14f)∑
i∈N

xi = k. (14g)

where xj represents the selection of Anchor-Nodes (AN),
xj = 1 & means node j is chosen as an AN, k is the total
number of ANs predetermined, mi is the MI data flow from
node i, xifij is constraint (14b), and ximi is constraint (14c).
Furthermore, using the optimization function, the above

equations can be written as follows:

max z, (15a)

s.t. mi ≥ 0 ∀i ∈ N , (15b)

mi ≤ xiCMI ∀i ∈ N , (15c)

fij ≥ 0 ∀i, j ∈ N , (15d)

fij ≤ Cij(1− xi) ∀i, j ∈ N , (15e)∑
j∈N

fij + mi =
∑
k∈N

fki + gi ∀i ∈ N , (15f)

ρj =
∑
i∈N

fijγij + µxj +
∑
k∈N

fjkϵjk ∀j ∈ N , (15g)

z ≤ Ej − ρj ∀j ∈ N , (15h)

xi ∈ {0, 1} ∀i ∈ N (15i)∑
i∈N

xi = k. (15j)

where CMI is the MI channel capacity, and Cij is the acoustic
channel capacity between node i and j.
Discussion about sensor basics, data acquisition funda-

mentals, and related terminology is a crucial component
of data acquisition systems [75]. Understanding sensor
technology and data acquisition techniques is key to
designing and implementing an efficient data acquisition
system. This involves knowledge of various types of sensors,
operational principles of sensors, and techniques used to
collect, process, and transmit data from these sensors.
Accurate data acquisition relies on a strong understanding of
these fundamentals and the application of appropriate data
acquisition techniques [76].

Wireless sensors play a vital role in data acquisition
systems, enabling them to collect data from various envi-
ronments without the need for physical cable connections
[77]. Equipped with internal communication capabilities,

these sensors can autonomously collect data and wirelessly
transmit it to central processing units or data storage devices.
This wireless data acquisition approach eliminates the need
for physical cable installations, reduces costs, and allows for
flexible sensor deployment in various applications [78].

Data fusion in wireless sensor networks involves inte-
grating and processing data from various sensors to obtain
more accurate and comprehensive information about the
environment [79]. By combining data from various sensors,
redundant information can be eliminated, and the reliability
and accuracy of the generated data can be improved [80].
Data fusion techniques in wireless sensor networks assist
in decision-making, anomaly detection, and enhancing the
overall performance of data acquisition systems [81].

Machine Learning (ML) techniques have proven to sig-
nificantly enhance data analysis in various fields, including
data obtained from wireless sensor networks. ML techniques
enable the extraction of valuable insights from large datasets,
aiding in identifying patterns, making predictions, and
optimizing system performance [82], [83], [84], [85], [86],
[87], [88], [89], [90], [91].

Based on the literature review we conducted, we can
outline the mission to be carried out by an AUV in
autonomously navigating for inspection and data acquisition
in an UWSN. An illustration of this mission can be seen in
Figure 4. The mission involves a series of tasks, including
the movement of the AUV to reach specified locations,
conducting inspections, and collecting necessary data in the
context of the underwater environment.

IV. PROBLEM FORMULATION
The navigation of AUVs in UWSNs poses significant
challenges due to the complex underwater environment. The
main goal is to develop effective navigation techniques to
enable AUVs to autonomously inspect and acquire data in
UWSNs. Key challenges involve addressing communication
constraints, optimizing energy usage, and ensuring accurate
navigation under various underwater conditions.

Additionally, the formulation must consider the need for
robust data acquisition methods and the impact of varied
environmental factors on AUV navigation. The objective is
to create a comprehensive framework to enhance autonomy,
efficiency, and reliability in AUV navigation within UWSNs
for inspection and data acquisition purposes.

V. PROPOSED SCHEME
In the previous section, at least four main problems were
mentioned that require contributions to their resolution,
namely:

Constraint 1. Communication Constraint: Considering
the underwater environment with signal-absorbing proper-
ties, we propose that the entire communication process be
carried out entirely on the surface environment while the
AUV is still on the carrier ship. Before deployment, it is
ensured that the mission commands are precise. It is assumed
that the operator has exact information about the UWSN, and
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FIGURE 4. AUV mission planning for inspection and data acquisition in UWSNs.

by neglecting the environmental disturbance factor, the AUV
is given a mission to reach the initial target point (See (1)
and (2)).
Constraint 2. Energy Usage Optimization: After the

AUV reaches the first node in the UWSN, the AC and
AMB-SLAM navigation techniques are employed, assisted
by magnetic beacons and acoustic beacons (See (3), (4)
and (5)). Some studies indicate that this method is the most
effective for power and data transfer due to minimal power
loss.

Using a potential field-based control algorithm, where
the potential field is employed to regulate the movement
of the robot or object in a specific environment based on
attractive (pulling) and repulsive (pushing) potentials. In this
context, the attractive potential is generated by the desired
goal (q-goal), while the repulsive potential is generated by
surrounding objects (o-d) (See Algorithm 1).
Constraint 3. Accurate Navigation: We assume that the

positions of all nodes have been mapped, and we design
precise navigation tailored to the positions and distances
between nodes. We implement the Homing (concentration)
control algorithm using a motion method toward specific
points. This algorithm works by moving the object sequen-
tially toward each goal with control parameters determined
by variables (alpha) and (dt). The object is attracted to
each goal using attractive potential (alpha), and the position
displacement occurs at time intervals dt. This process is

FIGURE 5. The launch of the AUV to the target (node-1) with the starting
point at coordinates (10 40 40) and the target location at coordinates
(45 45 0), was achieved in a relative time of 21 seconds.

repeated until the object reaches the specified goal (See
Algorithm 2).

Constraint 4. Effective Data Acquisition: By implement-
ing the Homing control algorithm to dynamically direct the
movement of AUV towards specific points based on the level
of information importance at each point, the effectiveness of
data acquisition will be enhanced (See (14g) and (15j)).

As a whole, the implementation of this dynamic Homing
control algorithm can bring significant benefits in the context
of AUV for data acquisition. Directing AUV movement
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Algorithm 1 Potential Field-Based Adaptive-Control (AC)
Navigation
1: initialize:
2: (qgoal, dsg, qoi, ζ, η, α)
3: (d0, od , uatt , ur , u, datt , urepulsive)
4: parameters:
5: qgoal ← [5, 5, 40]
6: dsg← 10
7: qoi← 25
8: ζ ← 0.5
9: η← 5
10: α← 0.05
11: main loop:
12: while Plane did not reach the target:
13: Compute uatt (attractive potential) from (2∼3)
14: Compute ur (repulsive potential)
15: Compute u (total potential)
16: Determine d0 (changes)
17: Update d0
18: Compute uatt
19: Compute datt
20: if Distance ≤ safe distance: then
21: Compute uatt (with the potential gradient)
22: if Distance ≥ safedistance : then
23: Compute uatt (with the potential gradient)
24: Compute ur
25: if Distance ≤ influencedistance : then
26: Compute ur
27: show result
28: end If

FIGURE 6. In the localization and data acquisition mission on UWSN the
nodes are denoted as (o) pink, adapting the AMB-SLAM technique we
add uattractive and urepulsive (as attractive and repulsive forces of
magnetic beacons). It can be seen that the displacement of the aircraft in
(*) blue is very precise with the moment of inertia notation (-) in green.

based on the level of information importance at each point
not only enhances observation accuracy but also optimizes
the time and power used, ensuring that the collected data
has maximum value according to mission or research
objectives.

Algorithm 2 Homing Control Using Motion Towards
Specific Points Method
1: initialize:
2: (qgoal, dsg, qoi, ζ, η, α)
3: (d0, od , uatt , ur , u, datt , urepulsive)
4: parameters:
5: qgoal ← [0, 0, 50]
6: dsg← 5
7: qoi← 15
8: ζ ← 1
9: η← 1

10: α← 0.2
11: dt ← 0.005
12: Compute uatt from (2∼3)
13: main loop:
14: while Current goal index ≤ size(od, 1) do
15: while ∥d0− Current goal∥ > 0.1 do
16: Compute d0x = d0x − α (current goal x)
17: Compute d0y = d0y − α (current goal y)
18: Compute d0z = d0z − α (current goal z)
19: end while
20: Current goal index = Current goal index + 1
21: end while
22: movement toward final goal qgoal:
23: while ∥d0− qgoal∥ > 0.1 do
24: Compute d0x = d0x − α (final goal x)
25: Compute d0y = d0y − α (final goal y)
26: Compute d0z = d0z − α (final goal z)
27: show result
28: end while=()

FIGURE 7. Assumed vessel position (Homing point) at (5 5 40) obtained
from SONAR Triliteration, and AUV location at (−40 30 0), with travel time
of 26 seconds.

VI. PERFORMANCE EVALUATION
Next, we simulated the proposed AUV navigation technique
based on node tracking in UWSN (See Algorithm 1),
assuming the operator already has the coordinates of the
destination point, allowing the initial coordinates of the AUV
to be expressed in the order X Y Z (0, 0, 0).

In this simulation, we observed how the AUV could reach
the target with minimal delay time. By calculating constant
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FIGURE 8. The AUV performed continuous data acquisition indicated by the red (-) notation with data acquisition
greater than the number of pink (o) notation nodes traversed, it is possible that the AUV also collected aircraft
inertial and angle-of-attack data.

speed and the time needed to reach the target, the relative
distance between the launch location and the target can be
estimated, disregarding the launch angle. The simulation
results are presented in Figure 5.

Considering the efficiency of energy use, in the next
simulation corresponding to the AUV mission to collect data
on UWSN nodes, we mark the vehicle with (*) in blue,
UWSN node points (o) in pink, and the trajectory occurs as
the AUV moves from one node to another with (-) in green.
Refer to the simulation in Figure 6.

At the same time, simulation 6 addresses Constraint 3
(Accurate Navigation), where it is evident that the aircraft is
able to move from one node to the next without unnecessary
maneuvers. Furthermore, through simulation 7, we aim to
demonstrate the effectiveness and accuracy of the homing
technique using the trilateration SONAR approach (See
Figure 3). If the Homing coordinates are known, the aircraft
will be able to effectively return to the mothership; see the
simulation in Figure 7.

Finally, to address Constraint 4 (regarding Effective Data
Acquisition), we implemented (Algorithm 2), as indicated
by the notation (-) in red with data acquisition notations
ranging from 1 to n from nodes 1 to 5 or more, depending
on the number of nodes in the UWSN. This means that the
AUV continuously and effectively performs data acquisition
throughout the journey from the deployment point to the
Homing point.

VII. OPEN ISSUES AND RESEARCH CHALLENGES
From the experiments we conducted, there are several open
issues and future research challenges that we encountered,
with at least four main issues including:
1) Environmental Challenges: In this study, we ignored

the dynamic underwater environmental factors. There-
fore, in future research, the development of dynamic
simulation environments adapted to the actual operating

environment is expected. This way, the created simula-
tions can approach real scenarios.

2) Measurement of Energy Usage Effectiveness and
Recharging: In Simulation 6, we did not measure the
power required to reach each target point. We only glob-
ally demonstrated the effectiveness of the navigation
system, assuming that with effective navigation, energy
efficiency can be achieved. Based on this discussion,
there is an opportunity for future development to
simulate effective power usage and even simultaneous
recharging during power acquisition operations in
UWSN. This is considering that the use of magnetic
beacons allows power transfer during operations in the
underwater environment with an induction system.

3) Advanced Development of Precise Navigation: In the
mission scenario we conducted, we ignored obsta-
cles and collision avoidance schemes with underwater
objects. Therefore, we hope for further development
of precise navigation involving a reinforcement learning
approach to the precise navigation system. This involves
simulating training and testing for data collection
mission scenarios in UWSN, incorporating obstacle
avoidance elements, and autonomous system adaptation
based on repeated training.

4) Advanced Development of Effective Data Acquisition:
In this mission scenario, we did not involve the use
of Fusion sensors on the AUV. In the future, we hope
for further development and research in effective data
acquisition in UWSN, also involving the use of Fusion
sensors (such as MEMS and IMU). This way, during
missions, diverse data about the AUV’s experiences
(such as movement, attack angle, pressure at each depth,
light intensity received at each depth degree, and other
useful data in the fields of underwater vehicle research,
navigation, and data acquisition in underwater commu-
nication networks) can be obtained simultaneously.
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VIII. CONCLUSION
From the overall research stages that were conducted, several
conclusions can be drawn regarding the development of
navigation techniques for inspection and data acquisition
in UWSN designed for AUVs. One of the key findings
is the necessity to develop a dynamic simulation envi-
ronment capable of depicting actual operational conditions
underwater. Moreover, the system’s effectiveness requires
detailed enhancement, and it is essential to develop mission
scenarios by introducing obstacle elements based on real
conditions in the environment. The reduction of human
involvement as mission controllers through the incorporation
of reinforcement learning into the system is also deemed
crucial, enabling the navigation system to dynamically
adapt to mission requirements. Considering the future, the
involvement of Fusion sensors should be taken into account
to enrich acquired data, enabling its utilization for training
the developed model. Despite this, the overall research stages
have provided valuable insights, emphasizing the importance
of mission planning, optimization of energy usage, precise
navigation, and effective data acquisition in UWSN. These
insights contribute significantly to the potential development
of similar research in the future.
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