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ABSTRACT Spiking neural P systems (SN P systems) abstract the structure and function of neurons and
nervous systems. By adopting some biological observations or mathematical considerations in SN P systems,
many variants have been proposed. In this work, through combining two interesting variants, SN P systems
with multiple channels (SNP-MC systems) and SN P systems with autapses (SNP-AU systems), we propose
SNP systemswithmultiple channels and autapses (SNP-MCA systems) and research their universality. SNP-
MCA systems are proved to be universal in the generation of numbers. For computing functions, a universal
SNP-MCA system with 25 neurons is constructed, which requires fewer neurons than the two variants.

INDEX TERMS Membrane computing, spiking neural P systems, multiple channels, autapses, universality.

I. INTRODUCTION
Membrane computing (also called P systems) simulates
the structure, function, and communication of cells in ani-
mals [1]. P systems can be classified as cell-like [2], [3], [4],
tissue-like [5], [6], [7], and neural-like. In 2003, as considered
by Web of Sciences, membrane computing was a fast-rising
topic in computer science, and in 2020, it was incorporated
in the AMSMathematics Subjects Classification under Com-
puter Science.
Spiking neural P systems (SN P systems) were proposed by

Ionescu et al. in 2006, and are regarded as a type of neural-
like P system. Directed graphs are usually used to describe
SN P systems, where nodes are neurons, and directed arcs
are synapses (connecting neurons). Some rules and spikes
are usually contained in neurons, where spikes can also be
transmitted through synapses. There are generally two kinds
of rules in neurons: spiking rules and forgetting rules. Spiking
rules have the form E/ac → ap; d , where E represents the
firing condition, c(p) is the number of spikes (denoted by a)
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the rule consumes (generates), and d is the delay time; and
forgetting rules remove c spikes and have the form ac → λ.
In the last 15 years, much research has been focused on SN P
systems, and some variants have been proposed.

SN P systems can generate and accept any recursively
enumerable set of numbers [8], can compute any Turing-
computable function [9], are capable of generating some
languages [10], and solving some practical problems [11].

Some variants based on biological observations have been
proposed, such as those with rules using the computational
power of synapses [12], [13], which are moved from neurons
onto synapses. SN P systems with delays on synapses were
proposed by considering the length of axons [14], where
postsynaptic neurons get spikes at different times. By intro-
ducing astrocytes, a kind of special cell in neuron systems,
the spike transmission in synapses can be controlled [15],
[16], and SN P systems with weights have been proposed for
multiple connections between two neurons, [17], [18].We use
the weight w to denote w synapses between neurons. SN P
systems with white-hole rules [19], [20] have been proposed
based on neural information rejection. When neurons fire, all
the spikes are consumed.
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Some variants are inspired bymathematical/computer con-
siderations. In SN P systems with thresholds [21], [22],
neurons fire when they have more spikes than the threshold.
Inspired by the concept of ‘‘positive’’ and ‘‘negative’’ num-
bers, SN P systems with anti-spikes were researched [23],
[24]. Spikes and anti-spikes cannot coexist in a neuron. Fuzzy
SN P systems use fuzzy logic and reasoning in spiking
rules [25]. Adopting request-response methods from com-
puters in communication, SN P systems with communication
on request [26] and with request rules [27] were researched.
Analogous to homogeneous units in computer science, homo-
geneous SN P systems were proposed, where neurons [28]
and even synapses [29] are unified.

Most such variants consider a global clock, i.e., they work
in synchronous mode. It has been proved that SN P systems
can also work in asynchronous or sequential mode, where
enabled rules can be kept unfired in asynchronous mode [30],
[31], and only one rule can and must be used in sequential
mode, no matter how many available rules exist [32], [33].
Two kinds of biologically inspired variants were proposed

in recent years: SN P systems with multiple channels (SNP-
MC systems) (2017) [34], [35], [36] and SN P systems with
autapses (SNP-AU systems) (2021) [37]. SNP-MC systems
introduce biological observations of multiple ion channels,
whose labels distinguish synapses. The spiking rules have
the form E/ac → ap(l), where the generated p spikes are
transmitted through synapses labeled l. Autapses are one
kind of special synapse, where synapses lead spikes back to
themselves. For SNP-AU systems, we remove the constraint
i ̸= j in the definition of synapses; hence one neuron can
transmit spikes to itself.

We propose a variant of SN P systems, spiking neural
P systems with multiple channels and autapses (SNP-MCA
systems), and research their computational power both in
generating numbers and computing functions.

The remainder of this work is structured as follows. Some
background knowledge is introduced in section II. SNP-MCA
systems are defined in section III. We prove the universality
of SNP-MCA systems in generating numbers in section IV,
and build a small universal SNP-MCA system in computing
functions in section V. Section VI reviews our conclusions.

II. PRELIMINARIES
We relate some knowledge in automata theory and register
machines.

In sections IV and V, the register machine is used in prov-
ing the universality of SNP-MCA systems. It has the form
M = (m,H , l0, lh, I ), where m is the number of registers, H
is the set of instruction labels, l0 is a starting label, lh is a
halting label, and I represents the instruction set. There are
ADD, SUB, and HALT instructions with respective forms li :

(ADD(r), lj, lk ), li:(SUB(r), lj, lk ), and lh:HALT . Instruction
li : (ADD(r), lj, lk ) increases the number stored in r by one,
and activates either lj or lk . Instruction li : (SUB(r), lj, lk )
subtracts one from r , activates lj if r is not empty, and

FIGURE 1. Universal register machine Mu.

otherwise activates lk . The instruction lh : HALT represents
the end of computation.

Register machines have been proved to characterize NRE
[38], which means they can generate Turing-computable
numbers, and deterministic register machines can compute
Turing-computable functions, where ADD has the form
li:(ADD(r), lj). A register machine Mu = (8,H , l0, lh, I ) has
8 registers and 23 labels, as shown in Figure 1 [39]. With
input g(x) in register 1 and y in register 2, Mu can compute
the function ϕx(y) = Mu(g(x), y), whose result is stored in
register 0.

III. SPIKING NEURAL P SYSTEMS WITH MULTIPLE
CHANNELS AND AUTAPSES
An SNP-MCA system is defined as a tuple,

5 = (O,L, σ1, . . . , σm, syn, in, out),

where
1) O = {a} represents the alphabet and a denotes a spike;
2) L = {1, . . . ,N } represents the set of channel labels;
3) σi = (ni,Ri) stands for the ith neuron, 1 ≤ i ≤ m, where
(a) ni is the initial number of spikes in σi;
(b) Ri, in the form of E/ac → ap(l), denotes the rules in

σi, whereE is a regular expression overO, and l is the channel
label (l ∈ L), c ≥ p ≥ 0;
4) The synapses are represented by syn ⊆ {1, 2, . . . ,m} ×

{1, 2, . . . ,m} × L × K , where K is the set of numbers of
synapses; hence a synapse is denoted by (i, j, l, k), where
1 ≤ i, j ≤ m, and k ∈ K is the number of synapses between
neurons σi and σj;

5) in and out stand for the input and output neuron, respec-
tively.

In SNP-MCA systems, rule E/ac → ap(l) fires when an ∈

L(E), and n(n ≥ c) is the number of spikes in σi. In this way,
using c spikes, p× k > 0 spikes are sent to the postsynaptic
neurons σj ∈ {σj|(i, j, l, k) ∈ syn}. Additionally, rules can
be expressed as ac → ap(l) for brevity when n = c. When
p = 0, after eliminating c spikes from neurons, no spikes
are sent out from neuron σi. Thus, channel labels are omitted
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FIGURE 2. ADD module based on SNP-MCA system.

when p = 0, and rules are represented by E/ac → λ. For
simplicity, when there is only one synapse labeled l between
neurons (or one autapse labeled l on a neuron), the expression
k = 1 can be omitted in directed graphs.

Autapses are special synapses that can lead the generated
spikes back to a neuron. Thus, the classical constraint (i, i) /∈

syn, as adopted in many SN P systems, is removed, and in
SNP-MCA systems, i can equal jwhen a synapse has the form
(i, j, l, k).
Similar to most SN P systems, SNP-MCA systems work

in synchronous mode, and rules work sequentially in a single
neuron. Thus, at each instant, one rule must be used if it is the
only one available in a neuron, and if more than one rule is
available, one of them is used non-deterministically.

In this work, Ngen(5) denotes a Turing-computable num-
ber generated by 5, and Ngen(SNPnmMClAa) stands for
numbers generated by SNP-MCA systems with m neurons,
each with up to n rules, l channels, and a autapses.

IV. COMPUTATIONAL COMPLETENESS
We prove that SNP-MCA systems are capable of generating
all sets of NRE(The family of recursively enumerable lan-
guages is denoted by RE and the family of Turing computable
sets of natural numbers is denoted by NRE).
Theorem 1: Ngen(SNP4∗MC2A1) = NRE .

Proof: It is straightforward that Ngen(SNP4∗MC2A1) ⊆

NRE . Hence we focus on proving Ngen(SNP4∗MC2A1) ⊇

NRE . We construct an SNP-MCA system with ADD, SUB,
and OUTPUT modules to simulate a register machine. 4n
spikes in neuron σr corresponds to the value n stored in
register r . ∗ means the SNP-MCA system is constructed with
an unbounded number of neurons.

A. ADD MODULE
The ADD module in Figure 2 simulates the ADD instruction
of the SNP-MCA system in the form of li : (ADD(r), lj, lk ).
Let us assume exactly four spikes exist in σli at a certain

instant. Then two rules are available: a4 → a4(1) and
a4 → a4(2). One of them will be used non-deterministically.
If the first is selected, four spikes are sent to both neuron σli
(denoting instruction li) and neuron σr (denoting register r),
simultaneously, through synapses (li, lj, 1, 1) and (li, r, 1, 1).
In this way, the number stored in register r is increased by
one, and instruction lj is activated. Similarly, if the second
rule is selected, then the number is increased by one, and
instruction lk is enabled.

FIGURE 3. SUB module based on SNP-MCA system.

TABLE 1. Computation of SUB module.

B. SUB MODULE
The SUB instruction has the form li : (SUB(r), lj, lk ), and is
shown in Figure 3.
With four spikes at instant t , using rule a4 → a(1), a spike

is sent from neuron σli to neurons σr and σli through synapse
(li, r, 1, 1) and autapse (li, li, 1, 5), respectively. Thus, neuron
σli gets five spikes and σr gets one spike at the next instant,
and a5 → a3(2) in neuron σli is available, which produces
three spikes and sends them to neurons σlj and σlk . Depending
on the number of spikes stored in register r , there are two
possible computations:

1) If 4n + 1 (n ≥ 1) spikes are contained in register r at
instant t+1, rule a(a4n)+/a5 → a(1) is active. A single
spike is sent to neuron σli after consuming five spikes
(only 4(n − 1) spikes are left). Thus, the number in
register r is reduced by one. With this spike and the
three spikes gotten from neuron σlj , lj is active, and the
remaining spikes in neuron σlk are removed by the rule
a3 → λ.

2) If the register contains a single spike at instant t + 1,
rule a → a(2) is enabled, the generated spike is sent
to neuron σlk , and instruction lk is active at the next
instant.

Table 1 shows the computation of the SUB module. The
two numbers in parentheses at the bottom of the table indicate
that four spikes should be changed at this instant. However,
these operations are the computation of some subsequent
instruction.

We can find there would be some interference between the
SUB modules, as shown in Figure 3. If one register could be
used by more than one instruction, the register would send
spikes to more than one post-synaptic neuron. For example,
SUB instructions l4 : (SUB(6), l5, l3) and l8 : (SUB(6), l9, l0)
both act on register 6. If instruction l4 is active, the generated
spike is sent to neuron σl5 (neuron σl3 ) if register 6 is not
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FIGURE 4. OUTPUT module based on SNP-MCA system.

FIGURE 5. Universal SNP-MCA system.

empty (empty) one instant later. Thus, with the three spikes
obtained from neuron σl4 , four spikes will be contained in
neuron σl5 (neuron σl3 ), which enables instruction l5 (l3). One
spike, as the interference, will also be simultaneously sent
from neuron σ6 to neuron σl9 (neuron σl0 ). Different from
neuron σl5 (neuron σl3 ), no other spikes will arrive at neuron
σl9 (neuron σl0 ). Thus, the single spike will be removed by
rule a → λ, and no undesired effect will appear.

C. OUTPUT MODULE
When instruction lh gets four spikes, the computation comes
to an end, and the result will be output through the OUTPUT
module, as shown in Figure 4.
After using four spikes, neuron σ1 gets two generated

spikes from neuron σh, enabling rule a2(a4n)+/a4 → a(1).
In this way, one spike is output for every four spikes, and the
result is the number of spikes that are sent out.

It can be seen that SNP-MCS systems can simulate register
machines. Hence Theorem 1 holds.

V. SMALL UNIVERSAL SNP-MCA SYSTEM FOR
COMPUTING FUNCTIONS
We build an SNP-MCA system based on a strongMu [39].
Theorem 2: A small universal SNP-MCA system with

25 neurons can be built to compute any set of Turing-
computable functions.

FIGURE 6. INPUT module based on SNP-MCA system in computing
functions.

Proof: Figure 5 gives the framework of the SNP-MCA
system, which includes four classes ofmodules. Similar to the
previous section, 4n spikes stand for the number n in registers.

A. INPUT MODULE
The INPUTmodule introduces a(0)g(x)a(0)y−1a to the system
and enables instruction l0, where (a)g(x) means that only one
spike arrives at neuron σin at each step within g(x) steps.
Because four spikes denote the number one, 4g(x) and 4y
spikes should be loaded into neurons σ1 (denoting register
1) and σ2 (register 2), respectively. The module is shown in
Figure 6.
When one spike arrives at neuron σin, using the rule

a → a(3), a spike is sent through autapse (in, in, 3, 4). Then
four spikes are sent back to neuron σin, which enables rule
a4 → a4(1). Four spikes are transmitted to neuron σ1 through
synapse (in, 1, 1, 1), and four spikes simultaneously return
to neuron σin through autapse (in, in, 1, 1). Thus, register
1 gets four spikes at each instant until the second spike gets
to the neuron. In this way, register 1 contains 4g(x) spikes.
After the second spike arrives from the environment, the
rule a5/a4 → a4(2) is available. Similarly, at each instant,
neuron σ2 gets four spikes through synapse (in, 2, 2, 1), and
four spikes return to neuron σin through (in, in, 2, 1). When
the third spike arrives, a total of 4y spikes are contained in
register 2. In this way, the rule a6 → a4(4) is enabled, which
consumes the last six spikes in neuron σin, sends four spikes
to neuron σl0 through synapse (in, l0, 4, 1), and activates
instruction l0. This means that the system begins to compute.

B. ADD MODULE
Different from non-deterministic mode, in computing mode,
after adding one to register r , the ADD module directly
activates instruction lj. Thus, with the module in Figure 7,
li : (ADD(r), lj) is realized successfully.
For computing functions, the SUB module in a small

universal SNP-MCA system is the same as the module in
Figure 3. The OUTPUT module in computing functions is
similar to the OUTPUT module in generating numbers in
Figure 4. The difference is that the computation result is
stored in register 0 instead of register 1.
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FIGURE 7. ADD module based on SNP-MCA system in computing
functions.

TABLE 2. Number of neurons in building the small universal SNP-MCA
system.

FIGURE 8. Instructions l17(ADD(2),l21) and l21 (ADD(3),l18).

Thus, we can find the SNP-MCA system has a total of
32 neurons: eight neurons corresponding to the eight regis-
ters, 23 neurons for the 23 instruction labels, and 1 additional
neuron in the INPUT module.

With some analysis, we can find that some optimization
modules can be used to save neurons.

C. ADD-ADD
In the small universal register machine proposed by
Korec [39], there is only one pair of consecutiveADD instruc-
tions, l17 and l21, whose function can be realized by a single
ADD-ADD module, as shown in Figure 8.
When four spikes arrive at neuron σl17 , rule a

4
→ a4(1)

is enabled. Then four spikes are sent through synapses
(l17, l18, 1, 1), (l17, 2, 1, 1), and (l17, 3, 1, 1). Simultaneously,
neurons σl18 , σ2, and σ3 each get four spikes at the next
instant. Thus, the numbers in registers 2 and 3 are increased
by one, and instruction l18 is active. In this way, the ADD-
ADD module realizes the function of these two instructions,
saving neuron σl21 .

When we combine the consecutive SUB (li : (SUB(r1),
lj, lk )) and ADD (ll : (ADD(r2), lg)) instructions, there are
two cases: lj = ll and lk = ll .

D. SUB-ADD-1: lj = ll
In the first case, lj = ll ; hence, after reducing the number in
register r1 by one (assuming it is not empty), the number in
register r2 is increased by one and lg is enabled. If register r1 is

FIGURE 9. SUB-ADD-1 module.

TABLE 3. Computation of SUB-ADD-1 module.

empty, instruction lk is activated, with no changes in registers
r1 and r2. We adopt the SUB-ADD-1 module in Figure 9 to
carry out these pairs of instructions.

When four spikes reach neuron σli at instant t , one spike
is sent to register r1 and to itself through synapse (li, r1, 1, 1)
and autapse (li, li, 1, 5). Thus, one spike arrives at neuron σr1 ,
and five spikes arrive at neuron σli (with weight k = 5 on the
autapse) at instant t+1.With the five spikes in neuron σli , rule
a5 → a3(2) is enabled, which sends three spikes to neurons
σlg , σlk , and σr2 at the next instant. For neuron σr1 , a different
rule would be available.

1) If neuron σr1 has 4n+ 1 (n ≥ 1) spikes, a(a4)+/a5 →

a(1) is enabled. After using five spikes, a spike is sent
to both σlg and r2 through synapses (r1, lg, 1, 1) and
(r1, r2, 1, 1). With the three spikes from σr1 , a total
of four spikes arrive at these two neurons at instant
t+2. Thus, the number stored in register r2 is increased,
and instruction lg is activated. The only three spikes in
neuron σlk , obtained from neuron σr1 , are removed by
using rule a3 → λ at the next instant.

2) If the neuron has only one spike, then register r1 had no
spikes at the previous instant. One spike is transmitted
to σlk using rule a → a(2). Thus, neuron σlk gets a total
of four spikes, which activate instruction lk . Neurons
σlg and σr2 each have only three spikes, which are
eliminated by using rules a3 → λ and a3(a4)∗/a3 → λ,
respectively.

To demonstrate the function of the SUB-ADD-1 module,
Table 3 shows its computation.
Through the above analysis, we can see that instructions

li : (SUB(r1), lj, lk ) and ll : (ADD(r2), lg), where lj = ll , are
simulated by the optimization module. As five pairs of these
consecutive instructions can be found inMu (l0 and l1, l4 and
l5, l6 and l7, l8 and l9, and l14 and l16), neurons σl1 , σl5 , σl7 ,
σl9 , and σl16 can be saved.
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FIGURE 10. SUB-ADD-2 module.

TABLE 4. Number of neurons saved with optimization modules.

TABLE 5. Number of neurons in universal SN P systems and some
variants in computing functions.

E. SUB-ADD-2: lk = ll
If lk = ll , only one pair of instructions can be found in Mu:
l15 and l20. Similar to SUB-ADD-1, the function of these
instructions can be carried out by the SUB-ADD-2 module
in Figure 10, and neuron σl20 can be removed.
By adopting these three optimization modules, seven neu-

rons can be saved.
Thus, for computing functions, 25 neurons are adopted to

build the small universal SNP-MCA system, and Theorem 2
holds.

VI. CONCLUSION
Dozens of variants of SN P systems have been studied during
the last 15 years, most based on biological observations or
mathematical considerations. Both SNP-MC systems [34]
and SNP-AU systems [37] adopt some new biological discov-
eries in nervous systems and nerve cells. We combined these
two mechanisms in one type of SN P system, SNP-MCA.
In section IV, SNP-MCA systems were proved capable of
generating any Turing-computable set of numbers. To com-
pute functions, we constructed a universal SNP-MCA system,
which has good computation ability. It requires only 25 neu-
rons, which is fewer than SN P systems, SNP-MC systems,
and SNP-AU systems.

In this work, the SNP-MCA systems worked in syn-
chronous mode. However, it has been proved that some SN
P systems can work in sequential or asynchronous mode.

SNP-MCA systems show their powerful computation ability
in synchronous mode. But what about sequential or asyn-
chronous mode? This would be interesting to explore.

Here, we only discussed the small universality of SNP-
MCA systems. The borderline between universality and non-
universality is also an interesting and challenging problem
to research, i.e., ‘‘big non-universal’’ SNP-MCA systems.
In addition, SNP-MCA systems have good computation abil-
ity, which provides a possible way to deal with some complex
real-world problems. Therefore, our future work will focus
on the application of SNP-MCA systems in some real-world
problems.
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