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ABSTRACT With the rapid development of information communication and mobile device technologies,
smart devices have become increasingly popular, providing convenience to households and enhancing the
level of intelligence in daily life. This trend is also driving innovation and progress in various fields, including
healthcare, transportation, and industry. However, as technology continues to proliferate, network security
concerns have become increasingly prominent, making the protection of digital life and data security an
urgent priority. Intrusion detection has always played an important role in the field of network security.
Traditional intrusion detection systems predominantly rely on anomaly detection technology to identify
potential intrusions by detecting abnormal patterns in network traffic. With technological advancements,
machine learning-based methods have emerged as the cornerstone of modern intrusion detection, enabling
more precise identification of abnormal behaviors and potential intrusions by learning the patterns of normal
network traffic. In response to these challenges, this paper introduces an innovative intrusion detection
model that amalgamates the Attention-CNN-BiLSTM (ACBL) and Temporal Convolutional Network (TCN)
architectures. The ACBL and TCN models excel in processing spatial and temporal features within network
traffic data, respectively. This integration harnesses diverse neural network structures to elevate overall model
performance and accuracy. Furthermore, a unique approach inspired by dung beetles’ natural behavior,
incorporating Tent mapping-enhanced Dung Beetle Optimization Algorithm (TDBO), is leveraged for both
optimizing feature selection parameters and searching for optimal model hyperparameters. The feature
selection parameters obtained from TDBO are then combined with the importance ranking from the Random
Forest algorithm, ensuring optimal features can be better selected to enhance model performance. This
paper introduces a novel intrusion detection model, the TDBO-ACBLTmodel, and validates its performance
using the UNSW-NW15 dataset. TDBO excels in feature selection compared to common algorithms and
achieves superior parameter optimization accuracy over Harris’s HawkOptimization (HHO), Particle Swarm
Optimization (PSO), and Dung Beetle Optimization (DBO). The proposed model achieves higher accuracy
than prevalent machine learning models.

INDEX TERMS Intrusion detection, network security, machine learning, deep learning, model fusion, dung
beetle optimization algorithm DBO.

I. INTRODUCTION
With the rapid advancement of technologies such as the
Internet of Things (IoT), big data, and artificial intelligence,
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networks are becoming increasingly complex, emphasizing
the growing significance of network security. A central
challenge in network is the provision of robust and potent
intrusion detection systems [1]. An intrusion detection
system serves as a pivotal component in network security
infrastructure, capable of real-time monitoring of network
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traffic and issuing alerts or taking actions upon detecting
anomalous traffic. Thus, it safeguards the confidentiality,
integrity, and availability of hosts and networks [2].
Network intrusion detection methods can be broadly

categorized into two main types: misuse detection and
anomaly detection. Misuse detection involves constructing
an intrusion model based on known abnormal behaviors,
designating actions conforming to this model as intrusions.
This model typically exhibits a low false-positive rate
and a high detection rate. On the other hand, anomaly
detection entails building a model of normal network traffic
behavior and identifying deviations from this established
norm as potential intrusions. While this detection method
can recognize unknown attacks, it is associated with a
higher false-positive rate. Nevertheless, it remains effective
in detecting both known and unknown attacks [3].

Traditional intrusion detection systems encounter signif-
icant challenges in dealing with the constantly evolving
landscape of network threats. Current methodologies mainly
rely on machine learning and deep learning techniques.
Machine learning models manually extract features from net-
work traffic to construct models, exhibiting low false-positive
rates and high detection rates. Deep learning, as a subset of
machine learning, utilizes neural networks for automatic fea-
ture extraction, thereby enhancing modeling and predictive
capabilities in the field of intrusion detection.

However, existing models face limitations in addressing
the inherent trade-off between high-dimensional feature
spaces and the balance between false positives and detection
accuracy. Thesemodels struggle to find equilibrium, resulting
in suboptimal performance, especially when confronted
with complex and dynamically changing network threats.
Additionally, the model’s performance heavily relies on
parameter settings, and manual adjustments can increase the
complexity of the work. Population-based intelligent opti-
mization algorithms optimize objectives based on collective
behavior, providing advantages in hyperparameter search
and feature selection compared to other methods. Typically
used for global search, these algorithms help avoid local
optima, facilitating the discovery of superior hyperparameter
configurations and identifying crucial features for the task.
DBO, as a recent and efficient population-based intelligent
algorithm, introduces new possibilities in this context.

In this paper, we attempt to address these issues and
develop a more efficient detection model. Our contributions
are outlined below:

1) We propose the innovative ACBL-TCN model, which
integrates ACBL and TCN models. ACBL combines
attention mechanism, CNN and BiLSTM, focusing
on capturing spatial features in network traffic data.
It places special emphasis on the detection of anoma-
lous behaviors and attack patterns in network flows.
In contrast, TCN primarily extracts temporal features
from network traffic data. This unique fusion model
effectively improves the detection rate while reducing
the false alarm rate.

2) Faced with the challenges posed by high-dimensional
feature spaces andmodel parameter settings, we employ
the Tent-improvedDungBeetle Optimization algorithm
(TDBO) for hyperparameter tuning and feature
selection. In the feature selection stage, we integrate
it with Random Forest. This facilitates the easier
selection of more crucial features, thereby enhancing
the efficiency and performance of the model.

3) We introduce a novel intrusion detection model, the
TDBO-ACBLT model, which leverages TDBO for
hyperparameter tuning and feature selection. The
model is evaluated using the UNSW-NW15 dataset
and experimentally compared with other commonly
used feature selection methods, population-based intel-
ligent optimization algorithms, ACBL, TCN, and other
machine learning models. The results demonstrate that
TDBO-ACBLT exhibits a lower false-positive rate and
higher accuracy.

Introduction to relevant sections of the paper: The first
section provides the research background and its significance.
The second section delves into the relevant literature,
outlining their strengths and limitations. The third section
provides an overview of the DBO algorithm and the Tent
algorithm, elucidating how Tent is utilized in conjunction
with DBO. The fourth section comprehensively describes the
model’s structure and the methodologies employed. The fifth
section describes the experimental design and evaluation of
the model. Finally, in the sixth section, the paper summarizes
the research findings and outlines potential avenues for future
research.

II. RELATED WORK
A novel Intrusion Detection System (IDS) model is intro-
duced, which integrates deep learning (DL) with meta-
heuristic optimization algorithms. The model employs a
Convolutional Neural Network (CNN) for efficient feature
extraction, followed by a fully connected layer to detect
malicious activities [4]. To enhance feature selection, the
article proposes a refined version of the reptile search
algorithm (RSA), addressing issues related to premature
convergence and balancing the exploration-exploitation
trade-off. The model achieves higher accuracy compared to
seven other algorithms.

A hybrid feature selection method, IGRF-RFE, designed
for multi-class network anomaly detection using a multilayer
perceptron (MLP) network, is introduced. The proposed
approach strategically leverages the strengths of two fil-
tering methods, namely information gain (IG) and random
forest (RF), in the initial stage to effectively reduce the
search space of feature subsets. Less crucial features are
eliminated, thereby enhancing the relevance of the selected
features. In the second stage, a machine learning-based
wrapper method, recursive feature elimination (RFE), is used
to further reduce the feature dimensions while considering
the correlation of similar features. Experimental results on the
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UNSW-NB15 dataset show significantly improved anomaly
detection accuracy [5].

A network intrusion detection system employing a
wrapper-based feature selection method named TS-RF [6].
The model combines Tabu Search as a feature search method
and Random Forest as a learning algorithm, reducing the
complexity of high-dimensional data and enhancing the
accuracy and efficiency of intrusion detection. Experimental
results on the UNSW-NB15 dataset demonstrate that TS-RF
improves accuracy, significantly reduces feature space, low-
ers misclassification rates, and enhances detection accuracy
for attacks with low sample counts.

The research utilizes a range of machine learning classi-
fiers, such as K-Nearest Neighbour (KNN), Support Vector
Machine (SVM), Naive Bayes (NB), Random Forest (RF),
Decision Tree (DT), and Stochastic Gradient Descent (SGD),
to detect multi-class intrusion attacks within the Internet of
Things (IoT) on the MQTT-IOT-IDS2020 dataset [7]. The
classifiers demonstrate an overall accuracy ranging from
97.58% to 99.98%.

A feature selection approach utilizing Genetic Algori-
thm (GA) applied to the NSL-KDD dataset is presented [8].
This approach combines Logistic Regression (LR) and
Decision Tree (DT) to enhance the detection rate (DR) and
accuracy (ACC) of intrusion detection systems. By synergis-
tically leveraging LR and DT, the model efficiently processes
a larger set of variables while maintaining high accuracy
and recognition rates. The Genetic Algorithm is used to
select optimal attribute subsets, and the results confirm the
effectiveness of this approach.

The study employs Genetic Algorithm (GA) for feature
selection, incorporating the Random Forest (RF) model
into the GA fitness function. Various classifiers, includ-
ing RF, Linear Regression (LR), Naïve Bayes (NB), Deci-
sion Tree (DT), Extra-Trees (ET), and Extreme Gradient
Boosting (XGB), are utilized in the intrusion detection
process [9]. Experimental results on the UNSW-NB15
dataset indicate that GA-RF achieves an accuracy of 87.61%
and an Area Under the Curve (AUC) of 0.98 in binary
classification.

It is proposed to employ two adaptive search techniques,
Genetic Algorithm and Particle Swarm Optimization, with
the aim of enhancing the efficiency of 1D-CNN in intrusion
detection systems [10]. The findings demonstrate notable
enhancements in terms of accuracy, precision, recall, and
F1 score. The Moth–Flame Optimizer (MFO) as the search
algorithm and the Decision Tree (DT) as the evaluation
algorithm in model [11]. This innovative framework focuses
on identifying the optimal feature subset with minimal
network traffic features while ensuring maximum accuracy in
intrusion detection. To enhance the MFO, new operators are
introduced, and the cosine similarity measure is utilized for
binary conversion, overcoming limitations associated with
the traditional sigmoid function. It is evaluated on three net-
work datasets (KDDCUPP9, NSL-KDD and UNSW-NB15)
and compared with existing frameworks in terms of accuracy,

F-score, true positive rate (TPR) and false positive rate (FPR).
The results show superiority in many aspects.

Developing an effective anomaly intrusion detection
system utilizing evolutionary and machine learning tech-
niques is the objective of the study. The emphasis is on
specific attack features for precise discrimination between
normal and malicious activities, achieving high accuracy
and rapid learning speed [12]. A novel algorithm, Chaotic
Adaptive Grasshopper Optimization Algorithm (CAGOA),
incorporating a chaos concept, is employed for parameter
optimization in Support Vector Machines (SVM). Further-
more, the research introduces a hybrid algorithm, ECAGOA,
merging Ensemble of Feature Selection (EFS) and CAGOA,
demonstrating superior performance in terms of accuracy,
detection rate, and false alarm rate.

Introducing a hybrid FDO-XGBoost approach to address
the common issue of false positive detections in network
intrusion detection systems (NIDS) [13]. The proposed
method leverages the FDO-XGBoost hybrid model, inte-
grating machine learning and swarm intelligence opti-
mization algorithms to enhance the overall classification
accuracy of NIDS. The FDO, a fitness-dependent optimizer
inspired by particle optimization (PSO) and bee swarming,
is employed to dynamically optimize the parameters of
the XGBoost classifier. Notably, the model demonstrates
increased accuracy in detecting various types of attacks,
particularly minority attack groups.The experimental results
highlight the superior performance of the FDO-XGBoost
model compared to other methods, suggesting poten-
tial applications of swarm intelligence approaches in
NIDS. The research employs Particle Swarm Optimiza-
tion (PSO) as the feature selection method and utilizes
Naïve Bayes as the classifier, resulting in a higher level of
accuracy [14].

Introducing an advanced variant, the BWO-BOA integrates
the Butterfly Optimization Algorithm (BOA) with Black
Widow Optimization (BWO) [15]. This novel approach
introduces a dynamic adaptive search strategy in the
global search phase of BOA and employs the movement
search process of BWO as the local search. Addition-
ally, a small probability mutation strategy is applied to
filter redundant features, addressing challenges associ-
ated with BOA converging to a local optimum during
the local search phase. Experimental results affirm the
effectiveness of the BWO-BOA algorithm in improving
feature selection model performance for network intru-
sion detection, leading to significant reductions in feature
dimensions.

A hybrid feature selection optimization method that
combines an improved binary Grey Wolf Optimization
algorithm (bGWO) with a binary Particle Swarm Optimiza-
tion algorithm (bPSO) is proposed [16]. In terms of feature
selection, the paper introduces an enhanced bGWO through
an improved position change technique and the incorporation
of a multi-objective fitness function aimed at selecting the
most important feature subset. Additionally, the combination
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of bGWO and bPSO further boosts the effectiveness of
the Intrusion Detection System (IDS). Experimental results
demonstrate significant improvements in detection accuracy,
detection rate, false alarm rate, feature quantity, and process-
ing time compared to existing technologies.

The research introduces a robust intrusion detection
model, termed the Remora Whale Optimization (RWO)-
based Hybrid deep model. The model integrates the
Remora Optimization Algorithm (ROA) and Whale Opti-
mization Algorithm (WOA), forming the RWO optimization
algorithm [17]. The methodology involves preprocessing
input data through Z-score data normalization, transforming
data using the holoentropy method, and extracting effective
features using Convolutional Neural Network (CNN). Fea-
ture selection is performed using the RV coefficient, and
intrusion detection is executed with a Hybrid deep model
comprising Deep Maxout Network and Deep Auto Encoder.
The proposed approach surpasses existing methods, demon-
strating outstanding performance in testing accuracy (0.938),
precision (0.920), recall (0.932), and F1-score (0.926).

Proposing an efficient hybrid intrusion detection model,
the method employs the Enhanced Genetic Algorithm and
Particle Swarm Optimization (EGA-PSO) for advanced
feature selection. Additionally, it integrates the Improved
Random Forest (IRF) technique to mitigate overfitting
concerns [18]. The model is evaluated using the NSL-KDD
dataset and compared with existing machine learning meth-
ods (SVM, RF, LR, NB, LDA, CART). The obtained
results indicate superior performance compared to the men-
tioned machine learning methods. The primary contributions
include addressing data imbalance, overfitting issues, and
enhancing detection accuracy through EGA-PSO and IRF
methods.

Table 1 shows comparative analysis of the proposed
models, considering limitations and advantages.

In summary, numerous machine learning integrated swarm
intelligence optimization algorithms have been proposed
for network intrusion detection in recent years. However,
most of them still exhibit certain limitations. For instance,
many algorithms lack sufficient improvements to better
adapt to the intrusion detection environment, potentially
leading to convergence to local optima. While the combi-
nation of population optimization algorithms and machine
learning yields favorable performance, experiments often
neglect time-related analyses, limiting the comprehensive
assessment of model efficiency. In the context of intrusion
detection, the use of a single machine learning model
may not be optimal for addressing the complexities of the
environment.

To address these issues, we propose the integration
of Tent Dung Beetle Optimization (TDBO) and ACBLT,
assessing the performance of this hybrid model across
various aspects. By effectively optimizing the ACBLT model
using TDBO, we evaluated the algorithm’s performance
on the UNSW-NB15 dataset and observed a significant
enhancement in its effectiveness.

FIGURE 1. TDBO framework flow chart.

III. TENT DUNG BEETLE OPTIMIZATION
In this study, we optimized the Dung Beetle Optimiza-
tion (DBO) algorithm using the Tentmapping. Figure 1 shows
TDBO framework flow chart.

A. DUNG BEETLE OPTIMIZATION ALGOIRITHM
TheDungBeetle Optimization (DBO) algorithm is a heuristic
optimization algorithm inspired by the foraging behavior of
dung beetles [19]. This algorithm has excellent optimization
capabilities and fast convergence speed. Within a dung
beetle population, the differences in abundance of individuals
seeking food result in variations in individual fitness. Based
on fitness ranking, individuals are categorized into four
roles: ball-roller dung beetles, brood ball, small dung beetles,
and thief dung beetles, sorted from high to low fitness.
Roller dung beetles are individuals with higher fitness, and
their primary goal is to move dung balls to a suitable
location for reproduction. Female dung beetles will slightly
relocate the dung ball of a roller dung beetle and lay
their eggs on it, creating a brood ball. After hatching,
small dung beetles search for food around the brood ball.
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TABLE 1. Comparative analysis of proposed models, considering limitations and advantages.

Thief dung beetles, on the other hand, attempt to steal dung
balls from other dung beetles. Each role corresponds to
specific positional adjustment strategies. After each foraging
event, an individual’s fitness ranking determines its role in the
next foraging event. Through this role assignment mechanism
based on fitness ranking, individuals optimize their foraging
behavior strategies, finding positions that are suitable for the
survival and reproduction of the population.

1) Ball-Roller Dung Beetles: Ball-roller dung beetles roll
food balls to a location suitable for reproduction. They
navigate and roll food balls in a straight line, guided by
celestial cues like the sun, moon, and polarized light.
In the absence of light, their path may become curved
or even circular. When encountering obstacles, ball-
roller dung beetles may climb onto the food ball and
dance to determine the direction of movement. The
position update formula for ball-roller dung beetles is
as follows:

xi(t + 1)

=

{
xi(t)+α · k · xi(t − 1)+b · 1x, if R < 0.9
xi(t)+tan(θ) · |xi(t)−xi(t − 1)|, if R ≥ 0.9

(1)

1x = |xi(t) − Xw| (2)

where xi(t) represents the position information of the
i-th dung beetle at the t-th iteration, k ∈ (0, 0.2]

represents a constant, which is expressed as a deflection
coefficient, b ∈ (0, 1) is a constant, α represents
the natural coefficient assigned a value of -1 or 1,
Xw represents the global worst position, 1x is used
to simulate light intensity changes. When R ≥

0.9 indicates that the dung beetle needs to adjust
its direction when it encounters an obstacle, and θ

indicates the deflection angle.
2) Brood Ball Dung Beetles: Brood ball dung beetles are

another category of high-fitness individuals whose goal
is to move food balls to a suitable location for laying
eggs. They relocate the food ball to a new position and
lay eggs on it, creating a brood ball. After hatching,
small dung beetles search for food around the brood
ball. The position update formula for brood ball dung
beetles is as follows:{

Lb∗
= max(X∗(1 − R),Lb)

Ub∗
= min(X∗(1 + R),Ub)

(3)

R = 1 −
t

Tmax
(4)

xi(t + 1) = X∗
+b1 · (xi(t) − Lb∗)+b2 · (xi(t)−Ub∗)

(5)

where X∗ represents the current local optimal position,
Lb∗ and Ub∗ respectively indicate the lower and upper
bounds of the oviposition area, Tmax represents the
maximum number of iterations, Lb and Ub represent
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the lower and upper bounds of the optimization
problem, b1 and b2 represent two independent random
variables with a size of 1 × D, where D represents the
dimension.

3) Small DungBeetles: Small dung beetles search for food
by rolling food balls. Some food balls are used for egg
laying and raising the next generation, while the rest
serve as a source of food. They bury food balls, and
female beetles lay eggs in them. The food balls provide
a place for larval growth and essential nourishment.
The position update formula for small dung beetles is
as follows:{
Lbb = max(Xb × (1 − R),Lb)
Ubb = min(Xb × (1 + R),Ub)

(6)

xi(t + 1) = xi(t)+C1 · (xi(t)−Lbb)+C2 · (xi(t)−Ubb)

(7)

where Xb represents the global optimal position,
Lbb and Ubb respectively indicate the lower and upper
bounds of the best foraging area. C1 represents a
random number following a normal distribution, and
C2 represents a random variable belonging to the
range (0, 1).

4) Thief Dung Beetles: Some dung beetles exhibit the
behavior of stealing food balls from other dung beetles.
They may compete with other dung beetles to acquire
food balls for their own purposes. The position update
formula for thief dung beetles is as follows:

xi(t + 1) = Xb+S · g · (|xi(t)−X∗
|+|xi(t) − Xb|)

(8)

where S represents a constant value and g is a 1 × D
random vector following a normal distribution.

B. TENT OPTIMIZATION FOR DBO ALGORITHM
Tent mapping is a technique employed in Tent Dung
Beetle Optimization (TDBO). The initial population of
DBO is randomly generated, which may result in poor
population quality. We utilize the Tent chaotic algorithm
for population initialization because it can generate
Gaussian-distributed random numbers, exhibiting good
randomness and exploratory characteristics. This enhances
population diversity and initial quality, ensuring an even
distribution of initial solutions in the solution space, thereby
improving optimization performance. Tent mapping formula
is as follows:

Xt+1 =


Xt
b

, if 0 ≤ Xt < a

1 − Xt
1 − b

, if a ≤ Xt < 1
(9)

where Xt represents the value of X at time t , and a is
randomly chosen from (0.5, 1). In out study, we set X0 = 0.5.
We employ Equation 10 to obtain the initial values for the

DBO population. For values that exceed the boundaries,
we apply Equation 11 for normalization.

xi(t) = Xt · (Ub− Lb) + Lb (10)

xi(t) =

{
Lb, if xi(t) < Lb
Ub, if xi(t) > Ub

(11)

IV. THE PROPOSED MODEL
In this section, we introduce an intrusion detection model
named ‘‘TDBO-ACBLT.’’ The model integrates the strengths
of TDBO and ACBLT, resulting in higher accuracy in
identifying intrusion detection attacks. The TDBO algorithm
is employed for feature selection and hyperparameter search.
The combination of TDBO and the advantages of random for-
est in feature selection enhances the selection of high-quality
features and reduces model complexity. This contributes to
the reduction of memory and time required for training
and deploying the model. Hyperparameter search enables us
to obtain the optimal model, improving accuracy. ACBLT
combines the strengths of ACBL and TCN, identifying
features in both spatial and temporal dimensions, adapting
well to diverse environments, and demonstrating effective
performance. For better understanding, Figure 2 shows the
overall structure of the proposed intrusion detection model.

FIGURE 2. Overall structure of the model.

A. DATASET AND PREPROCESSING
To evaluate various intrusion detection models, researchers
typically employ a variety of datasets. The UNSW-NB15
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dataset [20], provided by the Australian Centre for Cyber
Security’s Network Security Research Group (ACCS), com-
prises 2.54 million network traffic samples across nine attack
categories. Each sample contains 49 features, two of which
are class label features. In this study, the UNSW-NB15
dataset is used to train and test the proposed model.

Data preprocessing is essential for machine learning and
deep learning projects. Its objective is to transform raw
data into a format suitable for model training, cleaning and
reducing noise to enhance model performance. Figure 3
shows the data preprocessing process conducted on the
UNSW-NB15 dataset.

First, we used publicly available network traffic datasets,
which included both training and testing sets stored in
CSV files, with network traffic features in PCAP format.
We loaded these datasets using Python’s Pandas library.
Afterward, we performed data cleaning and removed irrel-
evant columns. This process involved checking for missing
values or duplicates in the data. Fortunately, our dataset
had no missing values. We also removed two irrelevant
columns, namely ‘id’ and ‘attack_cat,’ to simplify the dataset
and eliminate information unrelated to the research task.
To enable deep neural networks to process these features,
we encoded non-numeric features. Categorical features like
‘proto,’ ’service,’ and ‘state’ were transformed into numerical
values using LabelEncoder, making them understandable
and processable by the model. Subsequently, we normalized
the data to achieve uniform scales across various features.
This was achieved by using MinMaxScaler to scale the
input data, enhancing the model’s learning efficiency and
performance. Finally, to address the issue of data imbalance,
we applied the SMOTE-ENN method. This involved gen-
erating synthetic samples for the minority class while also
removing some synthetic samples. The goal was to achieve
a more balanced dataset, thereby improving the model’s
ability to effectively learn from the minority class. Table 2
presents the traffic distribution diagram before and after data
preprocessing.

B. FEATURE SELECTION AND HYPERPARAMETER SEARCH
The TDBO algorithm initially generates a population of
dung beetles using TENT for initialization. Each population
represents a solution, represented by a vector of dimensions
equal to the sum of the number of features in the dataset
and the number of hyperparameters to be searched. The
population size is denoted by pop, and the dimensionality is
denoted by dim. The dataset in this study has 42 features, and
the number of hyperparameters is 6. The specific parameter
settings are as Table 3.

In the quest for optimal population parameters guided
by fitness, with accuracy serving as the fitness criterion in
this study, the population parameters of TDBO are divided
into two parts to fulfill different functions. The first portion
of the population parameters is utilized for hyperparameter
search, employing linear mapping to automatically convert
population parameters into hyperparameters, aiming to obtain

FIGURE 3. Data preprocessing process.

optimal hyperparameters and enhance model performance.
The second portion of the population parameters is employed
for feature selection. Utilizing a combination of logarithmic
mapping, random forest feature importance ranking, and
Boolean mapping, these parameters are transformed into
a binary sequence of 0s and 1s. Here, 0 denotes the
exclusion of a particular feature, and 1 indicates its inclusion.
This approach favors the selection of features with greater
importance, thereby improving algorithm efficiency and
accelerating convergence.

1) HYPERPARAMETER SEARCH
For the hyperparameter sequence of TDBO, we perform
hyperparameter mapping to initialize the model’s hyper-
parameters. The corresponding hyperparameters and their
search ranges are shown in Table 4. Here, ‘‘Hidden Size’’
represents the size of the hidden layer in Bi-LSTM, ‘‘Kernel
Size’’ indicates the convolutional layer size in the TCN
model, ‘‘Dropout1’’ corresponds to ACBL parameters, and
‘‘Dropout2’’ corresponds to TCN parameters. Population
parameters belonging to the [LB, RB] range are denoted
as X , and the model hyperparameter values Y fall within
the [MinValue,MaxValue] range. The linearmapping formula
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TABLE 2. Traffic distribution before and after data preprocessing.

TABLE 3. TDBO parameter settings.

TABLE 4. Hyperparameter value range.

FIGURE 4. Feature selection parameter mapping process.

below allows us to obtain value Y .
Y − MinValue

MaxValue − MinValue
=

X − LB
RB − LB

(12)

2) FEATURE SELECTION
For the feature selection sequence of TDBO, we apply
sigmoid processing and combine it with random forest
for feature selection. Figure 4 shows the feature selection
process.

1) After data preprocessing, we used a random forest
classifier to comprehensively evaluate the importance
of each feature. Features were ranked based on their

FIGURE 5. Feature selection relationship diagram.

importance, with highly important features receiving a
lower numerical rank (e.g., 42 for the most important)
and less important features receiving a higher numer-
ical rank (e.g., 1 for the least important). The results
of this feature ranking are represented as rank(i) in
[1, 42], where i represents the feature’s index. We then
transformed these ranking values into feature_sort(i),
denoted as fs(i). The specific transformation is as
follows:

fs(i) =
rank(i)
10

(13)

2) We first perform sigmoid mapping on the parameter
X obtained by TDBO to the range [0, 1], denoted
as Pa. Next, We use the following logarithmic mapping
formula:

bf (i) =
ln(1 + Pa(i) · fs(i))

ln(1 + fs(i))
(14)

Since we are dealing with 42 processed features, the
values of fs(i) fall between 0.1 and 4.2. Figure 5 illus-
trates the relationship betweenPa and fs, corresponding
to changes in bf . From the graph, it is evident that
Pa and fs are positively correlated. We also find that
in the case of bf = 0.5, representing the boundary
between selection and non-selection, when fs = 0.1,
the required Pa is 0.4881, and when fs = 4.2, the
required Pa is 0.3048. Consequently, features with
higher rankings will be more likely to be selected.

3) To obtain binary selection data (0 or 1) based on
the continuous values, a boolean mapping is applied.
In this mapping, 0 represents the feature is not selected,
and 1 represents the feature is selected. The specific
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FIGURE 6. ACBL-TCN fusion model structure diagram.

formula for this mapping is as follows:

Result =

{
0, if bf ≤ 0.5
1, if bf > 0.5

(15)

C. ACBL-TCN MODEL
ACBL-TCN, consisting of two primary components: the
ACBL branch (Attention-CNN-BiLSTM) and the TCN
branch (Temporal Convolutional Network). The following
provides a detailed breakdown of these components and their
collaborative functioning within the fusion model. Figure 6
shows ACBL-TCN fusion model structure diagram. The
variables k_size and h_size are the search parameters that will
be mentioned later.

1) ATTENTION-CNN-BILSTM PART
The ACBL model, tailored for efficient spatiotemporal
pattern learning in network traffic data, seamlessly inte-
grates convolutional and sequential processing through a
fusion of 1D convolutional layers and a Bidirectional Long
Short-Term Memory (BiLSTM) layer enhanced with an
attention mechanism.

Commencing the architecture are two 1D convolutional
layers capturing hierarchical spatial features within the input
data. The Rectified Linear Unit (ReLU) activation function
introduces non-linearity after each convolutional operation.
Subsequently, a max-pooling layer downsamples spatial
dimensions, enhancing computational efficiency while pre-
serving essential features.

To capture temporal dependencies effectively, the pro-
cessed data undergoes reshaping using the permute operation
before entering the BiLSTM layer. The BiLSTM, a bidi-
rectional variant of the Long Short-Term Memory network,
adeptly captures both past and future temporal relationships
in sequential data. To counteract overfitting, dropconnect
regularization selectively applies to the BiLSTM weights,
contributing to robustness during training.

The attention mechanism, implemented through the
AdditiveAttention class, replaces the traditional time-step
selection process in BiLSTM. It dynamically assigns weights
to different parts of the input sequence, enabling the model to
focus on salient information and improve its ability to discern
relevant spatiotemporal patterns.

The ACBL model seamlessly integrates spatial and
temporal processing through convolutional and sequential
operations. The incorporation of attention mechanisms and
dropconnect regularization enhances the model’s capacity to
learn intricate patterns in network traffic data.

2) TCN PART
The TCN model, meticulously crafted to capture intricate
temporal patterns in time series data, seamlessly integrates
convolutional operations with hierarchical temporal process-
ing. This integration is achieved through a stack of Causal
Convolutional Layers, precisely designed to extract diverse
temporal features across multiple scales.

Commencing the model architecture are three Causal
Convolutional Layers, each tailored to capture specific ranges
of temporal relationships in a causally ordered manner. The
kernel sizes and dilations are carefully selected to ensure
effective feature extraction, preventing future information
from influencing the current time step. After each convo-
lutional operation, ReLU activation functions and dropout
layers are strategically employed to introduce non-linearity
and address overfitting concerns.

To aggregate the temporal features effectively, a global
average pooling operation is employed, summarizing the
crucial information gleaned from the Causal Convolutional
Layers. This operation enhances computational efficiency
while preserving essential temporal patterns.
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The TCN model excels at capturing intricate temporal
relationships by employing a series of causally ordered
convolutional layers, allowing it to discern temporal depen-
dencies at various scales. The systematic use of activation
functions and dropout layers contributes to the model’s adapt-
ability and robustness during training. The incorporation of
global average pooling enhances its ability to extract essential
temporal features, contributing to its overall effectiveness in
temporal pattern learning.

3) MODEL FUSION
The fusion model relies on fully connected layers for fusion,
which receives features from the ACBL branch and TCN
branch and their combined representations, and produces the
final prediction. The fusion process employs a method of
learning weights to effectively blend the contributions from
the ACBL and TCN branches, facilitating a comprehensive
representation of intricate spatiotemporal patterns. This fully
connected layer proficiently integrates temporal and spatial
features, endowing the intrusion detection model with robust
modeling capabilities.

V. EXPERIMENT RESULTS
In this chapter, we present the experimental results and
conduct an in-depth evaluation. First, we define the primary
evaluation metrics that will be used to measure the perfor-
mance of different models or methods. Next, we describe
the experimental environment, including hardware configura-
tion, operating system, programming language and libraries.
Finally, we compare the performance results of different
models or methods and provide analysis and discussion.
During the TDBO search, our model is trained with the
number of epochs (num_epoch) set to 150, using accuracy
as the fitness metric. Once the optimal parameters are found,
it will be adjusted to 500 for further training.

A. EVALUATION METRICS
In classification experiments, it is essential to employ appro-
priate evaluation metrics to assess the performance of the
classification algorithm. Commonly used indicators include
accuracy, precision, true positive rate, false positive rate,
F1 score, ROC curve, and AUC. These metrics collectively
offer a comprehensive evaluation of classifier performance.
The confusion matrix, presented in Table 5, serves as a
vital tool for evaluating classification models, especially in
binary or multi-class scenarios. Effectively illustrating the
relationship between classifier predictions and actual results.

TABLE 5. Confusion matrix.

In this study, normal network traffic is designated as the
negative class, and network attack traffic is labeled as the
positive class. The meanings are as follows:

• True Positives (TP): The model correctly identifies
actual network attacks, meaning it accurately predicts an
attack.

• False Positives (FP): The model incorrectly classifies
cases that are actually normal behavior as network
attacks, meaning it erroneously predicts normal behav-
ior as an attack.

• True Negatives (TN): The model correctly identifies
actual normal behavior, meaning it accurately predicts
normal.

• False Negatives (FN): The model incorrectly classifies
actual network attacks as normal behavior, meaning it
erroneously predicts an attack as normal.

The evaluation metrics utilized are as follows:
Accuracy represents the proportion of correctly classified

samples out of the total samples. The formula for accuracy is
as follows:

accuracy =
TP+ TN

TP+ FP+ TN + FN
(16)

Precision measures the accuracy of a classifier in pre-
dicting positive samples, representing the ratio of correctly
predicted positives to the total predicted positives. Higher
precision indicates more accurate positive predictions. The
formula for precision is as follows:

precision =
TP

TP+ FP
(17)

True Positive Rate (TPR), also known as recall, rep-
resenting the ratio of correctly predicted positives to the
total actual positives. A higher true positive rate indicates
better identification of positive examples by the classifier. Its
calculation method is as follows:

TPR =
TP

TP+ FN
(18)

The False Positive Rate (FPR) refers to the ratio of
the number of samples incorrectly predicted as positive
samples by the classifier to the total number of actual
negative samples. The smaller the false positive rate, the more
accurately the classifier can identify negative examples. Its
calculation method is as follows:

FPR =
FP

TN + FP
(19)

The F1 score is the harmonic mean of precision and
recall, allowing it to consider both precision and recall. Its
calculation method is as follows:

f1_score =
2 · precision · recall
precision + recall

(20)

The ROC curve visually depicts a classifier’s ability to
distinguish between positive and negative samples, while the
AUC summarizes its overall performance. A higher AUC
signifies better classifier performance, with values ranging
from 0.5 (random guessing) to 1 (excellent discrimination).
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B. EXPERIMENT ENVIRONMENT
The experimental environment and tools utilized in our
experiments are outlined in Table 6 as follows:

TABLE 6. Experiment environment.

C. COMPARISON OF DIFFERENT FEATURE SELECTION
METHODS
In this section, we conducted experiments using various
feature selection strategies, including Recursive Feature
Elimination (RFE), Random forest, KBest, LaSSO and PCA.
The number of selected features was set to 20 for all methods.

Figure 7 displays the confusion matrices for six feature
selectionmethods. It can be observed that the proposedmodel
exhibits larger numbers on themain diagonal of the confusion
matrix, indicating superior performance. Table 7 provides
a comparison of methods. In comparison to other feature
selection methods, the proposed model demonstrates higher
accuracy, reaching 97.32%. This suggests that employing
TDBO for feature selection outperformsmany othermethods.

TABLE 7. Performance comparison under different feature selection
strategies.

D. COMPARISON OF DIFFERENT SWARM INTELLIGENCE
OPTIMIZATION ALGORITHMS
This section aims to compare the performance of differ-
ent swarm intelligence optimization algorithms under the
same hyperparameter settings. We conducted experiments
using various swarm optimization algorithms, including the
Harris’s Hawk Optimization algorithm (HHO) proposed in
2019 [21], Particle Swarm Optimization (PSO) proposed in
1995 [22], Dung Beetle Optimization (DBO), Tent Dung
Beetle Optimization (TDBO), Dung Beetle Optimization
with direct linear mapping feature selection (TDBO-linear-
mapping), and Dung Beetle Optimization with random
feature importance ranking (TDBO-random-importance).

To improve efficiency, we randomly selected approxi-
mately 5% of the data for testing in each experiment, with
a population size of 30 and 30 iterations. Additionally,
the parameters for the PSO algorithm were set to c1=1.5,
c2=2.0, and w=1.

Upon examining Figure 8, it becomes evident that with an
increase in the number of iterations, the model’s accuracy

FIGURE 7. Confusion matrix under different feature selection strategies.

FIGURE 8. Comparison of iteration counts and accuracy for different
swarm intelligence optimization algorithms.

consistently exhibits an upward trajectory. Particularly note-
worthy is the substantial accuracy improvement achieved by
the model employing the Dung Beetle Optimization (DBO)
algorithm. In the comparative analysis of the curves for
TDBO, TDBO with linear mapping feature selection, and
TDBO with random feature importance ranking, we observe
that the TDBO curve is significantly higher than the other
curves, indicating the superiority of the TDBO curve over
other optimization algorithms. Figure 9 illustrates the best
fitness and the average time required for all iterations. The
utilization of TDBO results in relatively shorter execution
times compared to other algorithms, thus contributing to
improved algorithm efficiency.

E. COMPARISON WITH MACHINE LEARNING MODELS
In this section, we conduct a comprehensive analysis of the
model’s training and evaluation results in comparison with
other machine learning models.
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FIGURE 9. Comparison of accuracy and time of different swarm
intelligent optimization algorithms.

We compared the accuracy (ACC) of common machine
learning models (NB, LR, DT, KNN, SVM, ADABOOST,
LSTM, CNN, DNN) with and without feature selection,
as shown in Figure 10. Most models experienced a moderate
increase in accuracy after feature selection, indicating its pos-
itive impact. Particularly, the proposed model demonstrated a
significant accuracy improvement when feature selection was
applied, emphasizing its effectiveness.

Furthermore, we evaluated our model against other mod-
els using Receiver Operating Characteristic (ROC) curves
(Figure 11), providing an intuitive performance assessment
for positive and negative samples. Our model exhibited the
smoothest curve, with an AUC of 1.000, indicating outstand-
ing performance and excellent classification capability. The
practicality and wide applicability of our model have been
confirmed.

FIGURE 10. Comparison of model accuracy with and without feature
selection.

F. ABLATION EXPERIMENT
In this section, we conducted ablation experiments to
compare different models with the same hyperparameter
settings. The hyperparameters used were the optimal ones
obtained by our model, as shown in Table 8, while the optimal
features were illustrated in Figure 12.

FIGURE 11. Comparison of ROC curves for different models.

TABLE 8. Optimal Hyperparameters.

FIGURE 12. Comparison before and after feature selection.

Firstly, we present the loss and accuracy plots for the
model across 500 epochs. Observing Figure 13(a), as the
training progresses, the model’s loss gradually decreases
and eventually stabilizes. In Figure 13(b), the training set
accuracy gradually improves. However, it is worth noting
that the accuracy on the test set initially increases with the
number of epochs, reaching its peak around 100 epochs
but then experiences a slight decline. This observation
suggests that the model may start overfitting the training
data after a certain number of epochs, resulting in a
decrease in performance on the test data. Choosing the right
number of epochs is beneficial to prevent overfitting and
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FIGURE 13. Changes in loss and accuracy obtained from training with
optimal Hyperparameters.

improve efficiency, especially when training multiple models
in swarm intelligence optimization algorithms.

We employed a variety of models for experimental com-
parisons, including standalone ACBL models, standalone
TCN models, the ACBL-TCN integrated model, ACBL
models with SMOTEENN, TCN models with SMOTEENN,
ACBL-TCN models with SMOTEENN, and the ACBL-TCN
model incorporating both SMOTEENN and feature selection,
denoted as TDBO-ACBT. The results in Table 9 indicate
that as the model complexity increases, its performance
gradually improves. The accuracy increased by 8% compared
to ACBL and 9% compared to TCN, while the false positive
rate decreased by approximately 18%. This demonstrates the
rationality and effectiveness of our model design.

TABLE 9. Performance comparison of different models with the same
Hyperparameters.

G. COMPARISON ON THE SAME DATASET
We performed a comprehensive comparison and analysis of
various models using the identical dataset, as detailed in
Table 10. The results show that our proposed model has
a significant advantage in terms of accuracy (ACC), false
positive rate (FPR), true positive rate (TPR), and F1 score.

Specifically, our model achieved an accuracy of 0.9732,
which is significantly higher than the other comparedmodels.
This reflects that our model can more accurately classify
and identify anomalous behavior in network traffic data.
Furthermore, our model has an FPR of only 0.0219, indi-
cating it has a very low probability of misclassifying normal
traffic as anomalies. Additionally, our model also performed
excellently in TPR and F1 score, reaching 0.9682 and 0.9727,
respectively, further ensuring its efficiency in anomaly
detection tasks.

In contrast, the other compared models exhibit vary-
ing degrees of limitations in these evaluation metrics.

TABLE 10. Comparison of models on the same dataset.

In particular, some models have relatively high false positive
rates (FPR), which can result in a high rate of false alarms.
This indicates that the TDBO-ACBLT model effectively
identifies optimal hyperparameters and features, showcasing
robust generalization capabilities. The efficiency of feature
selection arises from its combination with random forests,
making important features more readily accessible. The syn-
ergy of TDBO’s powerful search capabilities with ACBLT’s
robust spatiotemporal feature extraction contributes to the
model’s formidable generalization prowess.

VI. CONCLUSION
In this study, we introduce a model named TDBO-ACBLT,
which combines ACBL and TCN with the TDBO algorithm.
The ACBLT model effectively captures spatiotemporal
features of network traffic data, utilizing the enhanced Dung
Beetle Optimization algorithm (TDBO) for hyperparameter
tuning, and incorporating TDBO and random forests for
feature selection. This innovative approach integrates diverse
neural network architectures with an advanced population
optimization algorithm, addressing complex intrusion detec-
tion problems. The design goal of our proposed model
is to achieve higher accuracy and lower false positive
rates. Experimental results on the UNSW-NW15 dataset
demonstrate superior performance compared to other fea-
ture selection methods, yielding more outstanding features.
In comparison to other population optimization algorithms,
the optimized Dung Beetle Optimization (TDBO) algorithm
exhibits higher efficiency and accuracy. Furthermore, our
model outperforms traditional machine learning methods,
with an increased accuracy of 1.6% reaching 97.32% after
feature selection. In the ablation experiments, as the model
complexity increases, its performance consistently improves.
In summary, our model holds significant value in various
aspects, making it a noteworthy contribution to the field.

Future research will focus on the following directions:
(1) Applying the proposed method to more complex scenar-
ios, including systems with large-scale datasets and a high
proportion of irrelevant features, to validate its generalization
capability. (2) Exploring new optimization techniques to
enhance Dung Beetle Optimization (DBO), thereby further
improving the model’s performance and efficiency.
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