
Received 10 December 2023, accepted 3 January 2024, date of publication 12 January 2024, date of current version 22 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3353613

OPACA: Toward an Open, Language- and
Platform-Independent API for
Containerized Agents
BENJAMIN ACAR 1, TOBIAS KÜSTER 2, OSKAR F. KUPKE2, ROBERT K. STREHLOW2,
MARC GUERREIRO AUGUSTO 1, FIKRET SIVRIKAYA 2, AND SAHIN ALBAYRAK 1
1Chair of Agent Technology, Technische Universität Berlin, 10623 Berlin, Germany
2GT-ARC gGmbH, 10587 Berlin, Germany

Corresponding author: Benjamin Acar (benjamin.acar@dai-labor.de)

This paper is based on the research conducted in the gemeinwohlorientierter KI-Anwendungen (Go-KI) project (Offenes Innovationslabor
KI zur Förderung gemeinwohlorientierter KI-Anwendungen), funded by the German Federal Ministry of Labour and Social Affairs
(BMAS) under the funding reference number DKI.00.00032.21. Furthermore, we acknowledge support by the German Research
Foundation and the Open Access Publication Fund of TU Berlin.

ABSTRACT While multi-agent frameworks can provide many advanced features, they often suffer from
not being able to seamlessly interact with the outside world, e.g., with web-services or other multi-agent
frameworks. This may be one factor that hinders a broader application of multi-agent systems in production
systems. A possible solution to this problem is the combination of multi-agent systems with the concepts of
micro-services and containerization, providing language-agnostic open interfaces, as well as encapsulation
and modularity. In this paper, we propose an API and reference implementation that can be employed by
multi-agent systems based on different languages and frameworks. Each agent component is encapsulated
in a container and is accessed through its parent runtime platform, which takes care of aspects such as
authentication, input validation, monitoring and other infrastructure tasks. Multiple runtime platforms can
then be connected to form systems of distributed, heterogeneous multi-agent societies.

INDEX TERMS Multi-agent systems, microservices, Kubernetes, Docker, API.

I. INTRODUCTION
Over the last few decades, the field of Multi-Agent System
(MAS) has advanced considerably, and many frameworks
have been developed to implement them [1], [2]. How-
ever, despite many advanced features and capabilities, they
have mostly remained an academic subject with limited
application in productive systems, e.g. in industry. One
possible hindrance is the lack of standardized interfaces and
interoperability presented by typical multi-agent frameworks.
Instead, industry usually favours microservice-architectures,
often in combination with virtualization and containerization
techniques, decoupling the individual parts of the system
from each other and the execution environment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

However, it is noticeable that the development of
microservice-based MAS frameworks has been relatively
limited. Such frameworks represent a promising area of future
research and innovation, since the benefits of scalability,
modularity, and fault-tolerance provided by microservices
and containerization have the potential to significantly
enhance the capabilities and performance of MAS. There-
fore, we decided to develop a new framework, called
OPACA (Open, Language- and Platform-Independent API
for Containerized Agents), embodying the principles of
a microservices architecture, where agents are deployed
in Docker containers or Kubernetes pods, while retaining
typical properties of agents, such as being more autonomous
and dynamic than traditional microservices.

Designed to be small, loosely coupled and independently
deployable, different microservice components represent
individual groups of agents, while the containerization with

10012

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6206-8869
https://orcid.org/0000-0002-9381-9458
https://orcid.org/0000-0002-1136-5465
https://orcid.org/0000-0003-0067-4761
https://orcid.org/0000-0001-5092-4584
https://orcid.org/0000-0002-1899-2808


B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

Docker and Kubernetes acts to isolate the environment in
which an application runs. Thus, each group of agents in
the MAS can operate autonomously and make decisions
based on its own set of rules and goals. By using each
other’s REST interface, the agents can communicate with
each other, share information and collaborate on complex
tasks. The interactions between these agents are facilitated
by a platform, which acts as a conductor, responsible for
orchestrating the information flow through the MAS.

The main benefits of combining microservices and con-
tainerization with multi-agent systems are:

• It greatly improves scalability, allowing the system
to easily adapt to changing requirements by simply
adding or removing microservices/agents as needed.
This dynamic scalability allows the system to efficiently
handle both small and large operations, ensuring optimal
resource allocation and eliminating bottlenecks.

• The ability to isolate failures increases the robustness
and reliability of the MAS as a whole. DevOps
practices are enabled by the flexibility of microservice
architecture [3]. Updates and enhancements can bemade
to individual agents without affecting the entire system.

Overall, our MAS is a significant step towards modern
MAS. In this paper, we will give a brief overview of our
framework and the concepts applied.

The remainder of this paper is structured as follows.
In Sections II we will provide more background on the
fundamental concepts in this paper, and have a look at similar
approaches in Section III. Thereafter, in Section IV we will
present the approach we follow in this work and discuss
an implementation in Section V. Finally, we will perform a
preliminary evaluation of our approach in Section VI before
wrapping up in Section VII.

II. BACKGROUND
The popularity of distributed artificial intelligence (DAI)
has grown over the past years. Rather than looking at a
single entity, DAI looks at many entities interacting with
each other, promising to significantly affect many areas,
including cognitive science, distributed systems, human-
computer interaction, and others [4]. Parallel artificial
intelligence (AI), distributed problem solving (DPS), and
MAS have been the main areas of DAI research. Parallel
AI typically refers to techniques, such as multiprocessing or
clustering, that accelerate operations to solve a common task.
Distributed problem solving explores how to solve a problem
by combining the resources and expertise of many computing
entities, similar to parallel AI.

A network of individual agents is defined as a MAS.
In such a system, the agents can share information and
communicate with each other to solve problems that are
beyond the scope of a single agent [5]. The efficiency
of MAS results from the intrinsic partitioning of these
networks, which divides larger work into numerous smaller
tasks and assigns each of these tasks to different agents [6].

FIGURE 1. Agent swarms, perceiving and changing their environment by
performing actions.

A popular definition of agents refers to autonomous entities
that can act intelligently and perceive their environment.
Communication between agents is crucial, whether the
communication partners are human or artificial [7].

According to [5], common properties of such agents
include:

• Situatedness: the agent is able to interact with its
environment.

• Autonomy: the agent acts independently.
• Inferential capability: the agent is able to follow abstract
goals.

• Responsiveness: the agent responses to changes on its
environment.

• Pro-activeness: the agent pursues its goals, rather than
just responding to its environment.

• Social behaviour: the agent interacts with other agents.
• Other properties such as mobility, temporal continuity,
collaborative behaviour, etc.

Therefore, what makes MAS unique is that each compo-
nent is autonomous, self-interested, and focused on achieving
its own goals [7]. A visualization of MAS can be found in
Fig. 1.
Compared to this, programming classical functional

applications is different. Functional software is designed
to take input, process it, and then produce output, just
like a mathematical function [8]. In practice, however, this
simple structure is often insufficient for the realization of
complex applications. Instead of an input - compute - output
relationship, there is often a continuous interaction between
the application and its environment, for example when we
think of operating systems [8]. In this case, MAS come
into account. The development of MAS requires expertise
from various fields, including concurrent programming to
deal with task coordination executed on various machines,
AI techniques to give systems the ability to deal with

VOLUME 12, 2024 10013



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

unexpected situations and act independently, and software
engineering techniques to structure the development pro-
cess [7]. MAS research focuses on the results of distributed
computing. It asks new questions about how agents must
communicate with each other to coordinate their actions and
solve challenging tasks [7].

Microservices, on the other hand, offer a new concept of
deployments. Unlike classic monolithic software approaches,
only narrow areas of a software are combined to form a
microservice. Every microservice fulfills only a few tasks
and is therefore particularly less complex. This has the
advantage that microservices are easy to manage, especially
during development. Microservice architectures have proven
to be reliable and because of their small and independent
components. They also address the need for easier mainte-
nance and greater flexibility in the programming languages,
frameworks, and technologies used. Decoupling components
allows groups to work in parallel on bigger systems,
without interfering with each other, granting organizations
to achieve fast-paced development cycles [9], [10]. Studies
have shown that the usage of microservices in common
organizations is high [11]. The REST protocol plays an
important role here because it is widely used as an interface
inmicroservice architectures [12], [13]. Formore information
about microservices, see [14].

On the other hand, Multi Agent Systems (MAS) promote
the idea of systems in which agents serve as intelligent
entities, able to perceive their environment, make decisions,
and take actions to achieve specific goals. Previous studies
have shown fundamental similarities between microservices
and MAS [15]. Therefore, concepts are established to bring
these two development paradigms together, in order to
leverage the capabilities of both [15] and [16].

III. RELATED WORK
In the past, many studies have introduced frameworks for
developing multi-agent systems.

Charpenay et al. introduces Hypermedea [17], an open
source framework designed for Web and Web of Things
(WoT) agents. Hypermedea is a powerful and versatile
solution built on the foundation of JaCaMo, a multi-agent
oriented programming platform. At its core, Hypermedea
is a collection of artifacts. Each artifact contributes to the
functionality of the framework. Retrieving RDF represen-
tations of resources is the purpose of the Linked Data
artifact. Next comes the Ontology artifact. It processes OWL
definitions found in incoming named graphs and actively
listens for changes in the knowledge base. In addition, this
artifact performs OWL reasoning. Taking advantage of the
meta-programming capability of Jason, the planner artifact
is the center of attention. It exposes synthesized plans as
observable properties. Finally, there is a Thing artifact class.
Its purpose is to reflect the presence of various ‘‘things’’ in
the environment.

Boissier et al. [18] explore the fusion of three program-
ming paradigms: agent-oriented, organization-oriented, and

environment-oriented. The goal is to create a comprehensive
framework that combines these paradigms to facilitate the
development of complex multi-agent systems. To accomplish
this, the JaCaMo platform is used as the basic infrastructure,
utilizing three pre-existing platforms: Jason, Moise, and
CArtAgO. Within CArtAgO, software environments can be
designed and programmed as dynamic sets of computational
entities known as artifacts. These artifacts are assembled
in workspaces. These workspaces can be distributed across
different nodes in a network. Meanwhile, Jason includes an
agent-oriented programming language called AgentSpeak,
which serves as a platform for constructing multi-agent
systems. Finally, the Moise framework is the implementation
of a programming model specifically designed for the
organizational aspect of these systems.

However, the frameworks seem cumbersome, with mul-
tiple, individually complex components. There is also the
question of how to deploy such components in real production
environments. This may be one of the reasons why, despite
the fact that agent systems are derived from successful
concepts in sociology, their application in industry is limited.

According to Dastani et al. [19] it is common to say that
industry needs tools and technologies that behave predictably.
In contrast, agents and multi-agent systems are generally
considered to be intelligent and adaptive systems, which
are often considered to behave unpredictably. In addition,
complete control over the execution of their software systems
is often preferred by developers in the industry. Most existing
programming languages rely on interpreters to perform
complex choices, like deliberation and control, on behalf of
the programmer. Furthermore, the industry has a tendency
to depend on standard software technologies and a general
resistance to paradigm changes in software technologies and
methods.

In contrast, microservices have found their way in broad
software engineering [11]. Previous studies have shown
fundamental similarities between microservices and multi
agent systems [15], such as the isolation of the state, enabling
them to function autonomously; working in a distributed
manner, across different nodes; and being loosely coupled.
However, the studies also report differences, for instance
microservices are designed as small units to be used for a
narrow purpose, while agents can be considered as arbitrary
complex systems. Also, microservices have a purely reactive
behavior, while agents can be proactive, able to take initiative.

Despite the differences in those concepts, Collier et al. [15]
recognize the many similarities as well and describe
their approach for developing microservice-based agents.
Therefore, other researches focus on that topic as well.
Limón et al. [16] present SagaMAS: a multi-agent frame-
work that is designed to handle distributed transactions
in the microservices architecture. It streamlines transaction
coordination and relieves microservice developers of this
responsibility by acting as a decoupled, autonomous layer.
Without a central command unit, the SagaMAS model
operates in a semi-orchestrated fashion. Instead, agents

10014 VOLUME 12, 2024



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

request each other to perform subsequent steps, fostering
a decentralized workflow. Asynchronous communication
allows agents to share and request without having to wait
for immediate responses. Each microservice, regardless of
its server location, is associated with a dedicated agent in
SagaMAS. In order to initiate a transaction, the microservice
communicates the start to its associated agent in a variety of
ways. For example, the use of a pipe if the microservice and
the agent are located on the same server or the use of agent
technologies like CArtAgO to react to microservice signals.

The work of Jagutis et al. [20] focuses on traffic simulation
systems (TSS), an established field of study with the
goal of improving the planning, design, and operation of
transportation systems. They are using agent-based mod-
eling (ABM) as one of the means to achieve this goal.
ABM is an approach that analyzes how complex systems
behave by modeling them as a population of interacting
individuals in a shared environment. To construct ABM
simulations, the environment is represented as a collection
of interconnected hypermedia resources using Hypermedia
Multi-Agent System (MAS) simulation. Each hypermedia
resource acts as a micro-environment. It is connected to
other related micro-environments through hyperlinks. These
micro-environments are implemented as microservices. They
communicate using REST. Building complex agent-based
simulations by combining loosely coupled reusable com-
ponents is the key principle behind the Hypermedia MAS
Simulation approach. Thus, a simulation is constructed by
integrating multiple subsimulations, each being an instance
of a microservice.

Despite the similarities between microservices and agent
systems, and the adoption of emerging design principles
such as the use of REST as an interface between agents,
we could not find any framework that has emerged that
effectively implements these microservices agent systems
while seamlessly integrating with popular microservices
frameworks such as Kubernetes. For this reason, we propose
our framework, which can be used to take advantage of both
the agent principles as well as the microservice paradigm.

IV. APPROACH
In a nutshell, our approach combines multi-agent systems
with microservices and container technologies in order to
integrate different multi-agent frameworks and other types
of software services, with different strength and scopes of
application, allowing them to run on different hosts, both in
the cloud and on premise, each encapsulated inside containers
and communicating with each other and the ‘‘external world’’
using a common API.

A. REQUIREMENTS
The API was build around a set of simple design principles
and requirements:

1) Open, Standardized Interfaces: It should be easy
to implement and allow the combination of different

systems and different architectures to allow the
integration of legacy components. Established proto-
cols by the Internet Engineering Task Force (IETF)
acknowledge the importance of standardization and
interoperability [21].

2) Language Agnostic: It should be a generic interface
that can be implemented in different languages and
run on different hardware. As shown in [22], different
programming languages use different concepts and
therefore have different strengths. By being language
agnostic, the API allows developers to take advantage
of these different strengths.

3) Modularity and Reusability: It should be modular
and allow reusability of existing components within
the system. As described in [23], modularity is
an important design principle for software design.
Concepts such as Docker images also have shown that
modularity often comes along with reusability [24].

4) Self-Descriptive: It should be self-describing in the
sense that the components using the API provide
information about their functionality and how to use
them. Concepts such as the Web Service Description
Language (WSDL) [25] have shown the benefits of
providing an abstract layer of information to describe
expected input parameters and result types, as well as
a basic description of the function’s intent.

5) Open, Multi-Tenancy: It should allow new tenants to
enter the system, connect services/agents by different
vendors, and create new value out of them. The benefits
of such a multi-tenancy include efficiency through
shared resources and competitive costs [26].

6) Distribution: It should allow the seamless distribution
of computing tasks, on the one hand connecting
different types of devices (e.g. microcomputers and
servers), and on the other hand allowing for e.g.
replication, being an enabler of high performance and
reliable computing [27].

In particular, the API does not require the use of a
particular agent framework. While the use of some agents
framework or language is encouraged, and the reference
implementation is using one, individual agent components
can also be implemented as simple web services, or wrap
existing web services or algorithms, thus making it easier to
e.g. wrap legacy components or deploying components on
resource-limited devices.

The overall goal of the API is to help in the development
of autonomous, scalable, reusable and secure distributed
components.

B. THE OPACA API
Amulti-agent system in the OPACA approach consists of two
types of components:

• Agent Containers are containerized applications (that
may or may not contain actual ‘‘agents’’) that implement
the OPACA Agent Container API.

VOLUME 12, 2024 10015



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

• Runtime Platforms are used to manage one or more
Agent Containers, deploying those in Docker or Kuber-
netes, acting to connect different Agent Containers
(and different Runtime Platforms) while also providing
basic services such as yellow pages, authentication,
monitoring, etc.

Table 1 shows an overview of the different routes for
the Agent Container and Runtime Platform components.
In the following we will describe the different routes (REST
services) the OPACA API expects from those two types of
components.

1) AGENT CONTAINER API
The Agent Container provides REST routes that allow the
outside world to find out about the agents running inside
the container, and to interact with those agents by means of
sending asynchronous messages (unicast and broadcast) and
invoking synchronous actions.

• The agents route is used to get information on one or
all agents and their actions running in the component.

• The send and broadcast routes are used to send
an asynchronous message to a specific agent, or to all
agents subscribed to the given channel or topic.

• The invoke route is used to invoke an action or service
provided by either any or the given agent and get the
result (synchronously). Expected parameter and output
types are given in the action description.

2) RUNTIME PLATFORM API
The Runtime Platform provides REST routes for managing
(adding, listing, updating, removing) both, containers running
in the container runtime (Docker or Kubernetes) associated
with that particular Runtime Platform, and connections to
other Runtime Platforms (and thus their containers) running
on a different host.

• The info route is used to get information on the
Runtime Platform, its currently deployed containers and
connections to other platforms.

• The different containers routes are used to get
information on one specific or all agent containers
currently running on this platform as well as to deploy
new containers or update or remove existing ones.

• Likewise, the connections routes are used to get
a list of connected platforms, to establish or remove
connections to other platform or update the information
on those platforms.

In addition to those, the Runtime Platform provides all the
routes of the Agent Container, such as invoke, or send,
forwarding the calls to the Agent Container providing the
respective agent or action (if it exists), both within the
platform’s own containers and within connected platforms.

When an Agent Container is started, the Runtime Platform
will pass certain environment variables into the container,
such as the container’s own ID, information needed for com-
municating with the platform, as well as application-specific

FIGURE 2. UML class diagram of models used in API routes.

parameters for, e.g., interfacing with external resources,
defined in the Agent Container’s description.

3) MODEL ELEMENTS
An overview of the different model classes and their relations
is shown in Figure 2. Most attributes should be self-
explanatory. The requires and provides lists can be
used to declare certain features an Agent Container requires
from or provides to the platform. The PortDescription
element is used to describe additional ports (besides the
main API port) where Agent Containers provide additional
services, and the Connectivity element denotes which
ports on the host those have been mapped to, since multiple
containers may request the same port.

V. IMPLEMENTATION
In the following, we will shed light on the technical
realization of our approach, described in section IV. At its
core, the OPACA API is just that: An API. There is no one
definite implementation, as its purpose is to connect different
agent components implemented in different languages, using
different (agent) frameworks, running on different hardware
platforms (Figure 3). In the followingwewill describemerely
the reference implementations of both, the Runtime Platform
(RP) and Agent Container (AC). The implementation has
been released as open-source under https://github.com/
gt-arc/opaca-core.

A. REFERENCE IMPLEMENTATION: RUNTIME PLATFORM
The Runtime Platform has been implemented in Java using
Spring Boot.1 It is in itself not an agent-based application
but just a web service, whereas the actual agents are situated
in the agent containers. It provides an Open-API compatible
Swagger web UI for inspecting and invoking the different
REST services provided by the OPACA API. For the routes
of the Agent Container API, the RP will look up the AC (or
connected RP) containing the requested agent or action and

1Spring Boot: https://spring.io/projects/spring-boot

10016 VOLUME 12, 2024



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

TABLE 1. Different REST routes of the API. First block: Agent container routes; second block: Runtime platform routes.

forward the REST call to those. Parameters like the execution
environment to use, or containers to create on startup, are
defined in a properties file or as environment variables.

Agent containers can be deployed either on Docker (on
the same or a remote host) or Kubernetes. Both the Docker
and Kubernetes client will check if the image exists, pull
it if necessary (with appropriate credentials as required),
run the image, establish the connection between the AC
and the RP, and finally stop the container when requested
or when the RP itself is shut down.2 For productive use,
the Kubernetes client should be used; for testing and if no
Kubernetes cluster is available, the Docker client can be used.
Clients for alternative execution environments can easily be
added.

Besides implementing the basic API routes, the RP
also provides additional functionality that is automatically
available to all its ACs, such as logging and monitoring
of certain events and interactions, and basic authentication
and authorization using JSON Web Tokens (JWT).3 Further
features, such as a service registry and a better generic
UI (on top of the basic Swagger UI), are currently under
development.

1) KUBERNETES INTEGRATION
One of our objectives was the integration of our MAS into
Kubernetes (K8s), used as our underlying infrastructure for
production environments. This decision was mainly due to
the recognition of the widespread application of Kubernetes
in common microservices architectures. One of the most
striking differences to Docker lies in the way we deploy
our platform. Instead of deploying it natively on the host
machine, the platform is deployed within a K8s pod. Since

2The Runtime Platform can also be configured to restart all containers
that were running when it stopped, or to leave the containers running and
re-connect to them when restarted.

3JSON Web Token: https://jwt.io/

FIGURE 3. Visualization of the deployment strategies within our
framework: The runtime platform can be deployed natively on a
computer, in Docker or in Kubernetes. Agent containers typically run in
Kubernetes or a (remote) Docker engine, but may also be deployed
natively and bundled with a Runtime platform for resource-limited
devices. Multiple RPs (and their containers) can be connected to each
other. Very limited devices such as microcontroller sensor nodes may be
connected via the REST API.

the platform itself is used to deploy new agent container
pods, and such practices are not very common inmicroservice
environments, the platform needs special privileges within
its environment. By using K8s Service Accounts and Role
Bindings, the platform pod has the capabilities to monitor,
create and delete pods. However, to ensure best practices,
all components (agents and platform) are deployed within a
dedicated namespace, and the platform’s special permissions
are limited to that namespace, rather than the full K8s
environment. In addition to the deployment of the platform,
a service is created that maps to the platform pod, enabling
effortless communication with the platform by just using the
service DNS. The remaining functionalities and principles
are similar to the Docker-centric approach, thanks to the
comparable concepts of pods and containers.

B. SAMPLE IMPLEMENTATION: AGENT CONTAINER
A reference/sample Agent Container has been implemented
in Kotlin using the JIAC VI framework [28] as a library

VOLUME 12, 2024 10017



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

FIGURE 4. Architecture of JIAC VI used inside the sample agent
containers [28].

that can be used as the basis for different ACs. The general
architecture of a JIAC VI application is shown in Figure 4.
The AC uses a simple HTTP Servlet for implementing the
REST routes of the Agent Container API. Since the API
routes of the AC are not called directly (and in fact not
exposed at all), features such as a web UI, input validation,
and security can be provided by the RP.

Inside the container, a Container Agent establishes contact
to the parent RP, accepts all incoming communication
and forwards messages and requests to the appropriate
agent(s). Those agents can extend an abstract super-class,
Containerized Agent, collecting information on the agent,
the actions it provides and messages it will respond to, and
registering the agent at the Container Agent when it starts.
Afterwards, it runs in its own life-cycle, executing regular
behaviors, reacting to messages (from the Container Agent
or other agents within the container), etc.

As pointed out earlier, agent containers can be imple-
mented in any language, and they do not have to include a
full agent life-cycle as well, but could be mere microservices.
A second, simpler Agent Container library has been created
for Python, e.g. for using Python’s rich set of machine
learning libraries.

VI. EVALUATION
In this section, we try to provide a preliminary evaluation of
our approach. While we do not yet have enough data to fully
assess its feasibility, we will (a) show how it can be applied
in a number of realistic application examples, and (b) explain
how it fulfills the different requirements we stated earlier in
this work.

A. SAMPLE APPLICATIONS
The API and reference implementation are being developed
in the course of theGo-KI research project.4 We are currently
applying and evaluating the approach in three application
examples. Those are still work-in-progress, but the results so
far are promising.

1) SMART DESK-BOOKING SYSTEM
As the first example, a smart desk booking system is being
developed for the workstations at the ZEKI Reallabor,5 a
testing site for hard- and software projects as well as a

4Go-KI Project: https://go-ki.org/
5ZEKI Reallabor: https://ze-ki.de/zeki-spaces/

shared co-working space, which leverages environmental
sensors to provide users with a better understanding about the
environmental conditions of each workplace, such as CO2 or
noise levels and illumination.

The desk booking system consists of several components
that utilize the OPACA API for the communication between
these components.

• The first component is a container for managing the
sensors and their recorded data. It has a Manager Agent
that can add and remove Sensor Agents, representing the
individual sensors. These sensor agents regularly collect
and persistently store data from the actual sensors and
provide actions to update the sensor settings, get the
recorded data for the latest or a specific time, or an
average over a subset of the recorded data samples.

• The second component is a container for managing
the desks and their reservations. Similar to the sensor
container, it has a Manager Agent, which provides
actions for adding and removing Desk Agents, which
represent the individual desks and provide actions for
making and deleting reservations or updating the desk’s
settings. Each desk also has the sensor registered which
provides the best environmental data for it, usually this
is the sensor closest to it.

• The third component provides a web interface and uses
the OPACA API to tie the two other containers together
by requesting data from them to enable the users to easily
make reservations for desks, see existing reservations
and examine each desk’s environmental conditions to
find the one that suits them the most. It also provides
interfaces for deleting reservations, as well as adding,
updating and deleting desk and sensor agents, using the
actions described above.

In this example, using the OPACA API allowed to
dynamically add and remove agents for desks and sensors,
and to quickly combine the desk- and sensor-components to
a smart, environmental-aware desk-booking system.

2) FEDERATED LEARNING NETWORK
As a second example, we implemented a federated learning
(FL) network, which generally consists of multiple partici-
pants and a single director working together in a cooperative
manner to create one global neural network model.

The director initially sends its model parameters to each
participant, which then start training their own, identical
neural network models with data only available to the respec-
tive participant. After successful training, the participants
send their updated model parameters back to the director,
which then aggregates said parameters and applies them to
the global model on the director’s side. This process can be
repeated until a satisfying model has been developed.

This design allows the distribution of computational power
required to train machine learningmodels, while also limiting
the network traffic by only training with locally available
data. It also protects a participant’s data, since no data gets
shared outside the participant’s scope.

10018 VOLUME 12, 2024



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

With the OPACA API, the director as well as the partici-
pants can be modeled by the same type of agent, providing
multiple actions to start and participate in an FL process.
These agents make use of a popular FL framework called
Flower,6 which creates a dedicated server on the director’s
side, multiple client agents (incl. from other containers)
can connect to, exemplifying the scalability concept of the
OPACA framework. All the communication regarding the FL
process will be managed by this internal server.

As a demonstration, a sample FL network was created
to classify images of the FEMNIST7 dataset, which was
specifically designed for an FL environment, including
handwritten digits and letters for classification. This dataset
is an extension of the commonly used MNIST dataset and
additionally contains uppercase and lowercase letters as well
as information about the author of each digit/letter. Splitting
the dataset based on the author’s information simulates the
limited access of domain-specific data for each participant,
introducing a domain-bias while training the participants’
models.

Implementing the FL network as an agent container for
the OPACA API inherits useful functionalities for an FL
environment. Adding and removing agents from the FL
model is done in a dynamic manner by (dis-)connecting
additional containers to the runtime platform. Agents can
communicate by making requests to the OPACA API,
allowing them to exchange information such as collected
metrics during the model training. Finally, the language
independent implementation allowed us to easily integrate
commonML libraries, in this scenarioPyTorch, into the agent
container written in Python.

3) DATA ACQUISITION
In order to evaluate the effectiveness of our MAS, we have
integrated it into our project BeIntelli,8 which focuses on
autonomous driving enhanced by digital road infrastructure.
We strategically deployed road side units (RSU) with various
types of sensors and edge computers to enable over-the-
horizon capabilities along the BeIntelli test track. Generating
large datasets that cover the entirety of our testbed is
one of the goals of BeIntelli. This data is mainly camera
data collected from various sources. Our overall aim is
to enable other researchers and developers working on
infrastructure-enhanced autonomous driving without needing
direct access to our physical test bed. In order to achieve
this goal, we have designed and implemented a network of
microservice-based agents that are deployed both on the edge
computers and in our cloud infrastructure. A visualization of
the architecture is provided in Fig. 5.
At the edge level, we have two types of agents. The first

is dedicated solely to communicating with nearby cameras,
and capturing real-time streams from these. It receives the

6Flower Framework: https://flower.dev/
7FEMNIST Dataset: https://github.com/TalwalkarLab/leaf
8BeIntelli Project: https://be-intelli.com/

FIGURE 5. Visualization of the data acquisition architecture based on
OPACA. An Edge PC is shown here as an example, which is responsible for
acquiring and processing the image data. The cloud infrastructure, which
is responsible for orchestrating and collecting the processed data from
the various Edge PCs, is also shown.

video streams and captures frames based on the specific
requirements and specifications. The same agent also ensures
that the captured frames are anonymized before storing. The
second edge agent is responsible for providing a data stream
download, so that the cloud can retrieve the collected edge
data.

A separate set of agents is deployed for each corresponding
edge computer in the cloud environment. These cloud-based
agents orchestrate the entire process of collecting data
by working with their corresponding edge agents. They
effectively manage the flow of data from the edge to the cloud
infrastructure by requesting the necessary frames from the
edge agents. To simplify the collection process, a final agent
orchestrates these cloud agents.

By seamlessly integrating these microservice-based
agents, our MAS successfully acquires, processes, and man-
ages the vast amounts of camera data from our infrastructure-
enhanced autonomous driving testbed in Berlin. The resulting
dataset can serve as a valuable resource for the research
community. It supports the advancement of autonomous
driving and infrastructure-integrated technologies.

B. REQUIREMENTS REVISITED
In the following, we will evaluate our framework against the
requirements, formulated in Section IV:

1) OPEN/STANDARDIZED INTERFACES
The utilization of REST/HTTP ensures a common and
standardized approach to data exchange. Furthermore,
according to a Statista evaluation (2022), the adoption rate
of Kubernetes in organizations is 61% [29]. By leveraging
microservices and using them in Kubernetes-based architec-
tures, our components can be easily integrated into popular
software architectures.

2) LANGUAGE-AGNOSTIC
By using REST-based web-services for the different inter-
actions and container technologies for encapsulation, agent
components can be written in virtually any programming
language for which there are suitable REST and JSON
libraries, interacting seamlessly with each other. While there

VOLUME 12, 2024 10019



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

is a full-features reference implementation of the runtime
platform, that, too, could be rewritten in another language,
as could be external tools for e.g. runtime monitoring and
interaction.

3) MODULARITY & REUSABILITY
The basis of our framework is a microservice architecture
in which the agents are deployed containerized. Container
technologies have intrinsic properties in the sense of
modularity, through which they are encapsulated with all
their dependencies in images. These are particularly easy to
transfer across environments and are easy to deploy overall,
especially in microservice-optimized environments, such as
Kubernetes clusters. That makes them especially reusable,
due to ease of encapsulation and transfer. To make reusability
more practical, we are currently developing a registry service
that can be used to search agent components running on other
platforms or available for installation, and to connect to or
install them onto the current platform.

4) SELF-DESCRIPTIVE
The proposed API includes routes providing information on
different levels: the deployed containers, their agents, actions,
and parameters of the actions. Further, each container can
specify what functionalities it requires and what it provides
to other containers. The exact format of those requirements’
descriptions is still to be finalized.

5) OPEN, MULTI TENANCY
The API allows both, to add and remove agent containers at
runtime, and connect or disconnect other runtime platforms.
Individual Agent Containers can also spawn (or remove)
agents or actions and notify their parent runtime platform.
The platform’s description is automatically updated with the
new information.

6) DISTRIBUTION
The platform allows for distribution on two levels: First,
the agent-containers registered at a single runtime-platform
can run on different physical hosts, e.g. different remote
Docker hosts, or Kubernetes nodes. Second, multiple
runtime-platforms running in different environments can be
connected, connecting all their respective agent-containers as
if they were running on the same platform.

C. LIMITATIONS
While our API itself is highly flexible and with the ‘‘extra-
ports’’ feature can be extended with arbitrary additional
features, the core API may be limited in what it is able to
express. We are currently investigating ways to improve the
expressiveness towards, e.g., using JSON Schema to describe
used data types, or related projects in the context of inter-
agent protocols. Further limitations, and ways to address
them, may be revealed as our API is used in more practical
projects.

VII. CONCLUSION
MAS have formed a large field of research for many
years, but despite their notoriety and popularity, agent-
oriented programming principles have found their way into
software engineering only to a limited extent. This was
especially due to the fact that those systems often do not
conform tomodern software paradigms. Through theOPACA
API, we have taken a first step towards applying MAS in
production-level environments, making it possible to easily
develop and connect agents. By exploiting basic concepts, our
approach is easily tangible and extensible. Due to principles
of microservice-based software architectures, our system
inherits properties such as reusability, service-orientation,
open-interfaces, language-agnosticism, and others.

The use of the MAS in the context of data acquisi-
tion for the BeIntelli project illustrates how coordination
and collaboration between microservice-based agents can
successfully gather, process, and manage large amounts of
camera data from test beds such as ours. The provisioning
of a comprehensive data set is made possible by the MAS,
allowing for seamless communication between the edge and
cloud agents, and showing that our approach is a viable
solution for such data tasks. Furthermore, the usage in
the context of our smart desk booking system has shown
the benefits of our framework in the context of hardware-
related applications. Moreover, we applied our framework
within the context of federated learning, demonstrating
its seamless combination capabilities with state-of-the-art
technology. Our framework provides multiple examples of
agent-containers that can be used as a blueprint for own
containers, allowing an entry point with a low barrier.

A. FUTURE WORK
The approach presented in this paper can be extended in
several directions. These include establishing a sophisti-
cated user/role management system and advanced security
concepts, as well as integrating more general Machine
Learning (ML) and distributed problem solving approaches.
Furthermore, it is necessary to further explore the integration
within larger application projects, to ensure the performance,
security, scalability, and applicability of the system in real-
world scenarios.

First, while the system already includes basic authenti-
cation, implementing more advanced security concepts is
crucial to protect sensitive data and ensure secure inter-
agent communication. The MAS should establish secure
and authenticated interactions by integrating public/private
key concepts and cryptographic techniques [30], thus pro-
viding a solid foundation for secure and reliable operation
by strengthening the system’s resistance to unauthorized
access, data leakage, and malicious attacks. In addition,
for production-level deployments of MAS, it is essential
to establish a user management system, including role
management capabilities that allow, e.g., administrators to
define and assign permissions to users and agents (cf. e.g.
[31]). With such a system in place, the system will ensure

10020 VOLUME 12, 2024



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

proper access control, security, and efficient administration,
thereby facilitating its use in real-world scenarios.

Second, there is great potential for enhancing the
capabilities of the MAS through the integration of more
general ML techniques, in addition to the already included
federated learning that allows agents within the system to
jointly train machine learning models using data that is
distributed across a number of containers, and to learn from
a variety of data sets while preserving data privacy [32].
In addition, to enable collaborative problem solving among
agents, the use of distributed problem solving approaches is
essential [33]. The MAS will facilitate agents to collaborate,
share information, coordinate actions, and collectively search
for optimal solutions by applying distributed algorithms.
This collaborative approach enables the MAS to efficiently
and effectively tackle optimization problems by using the
collective intelligence of the agents.

Further, the framework is being showcased and discussed
in different workshops in the Go-KI project, collecting
feedback from different development teams associated with
the initiative. Finally, the integration of the MAS into larger
application projects will provide an opportunity to evaluate
its performance and identify potential limitations of the
approach in production environments. We started testing and
refining our framework in different contexts, among others
for data acquisition in the BeIntelli project (see example in
section VI), which will also be the topic of an upcoming
paper, providing a comprehensive analysis of its performance
on big data sets. As more will follow, we expect to find
limitations for production-level usage of our framework,
directing us to define and implement new concepts to allow a
wider application.

REFERENCES
[1] X. Feng, K. L. Butler-Purry, and T. Zourntos, ‘‘A multi-agent system

framework for real-time electric load management in MVAC all-
electric ship power systems,’’ IEEE Trans. Power Syst., vol. 30, no. 3,
pp. 1327–1336, May 2015.

[2] F. Bellifemine, A. Poggi, and G. Rimassa, ‘‘Developing multi-agent
systems with jade,’’ in Proc. Int. Workshop Agent Theories, Archit., Lang.
Boston, MA, USA. Cham, Switzerland: Springer, Jul. 2000, pp. 89–103.

[3] M. Waseem, P. Liang, and M. Shahin, ‘‘A systematic mapping study on
microservices architecture in DevOps,’’ J. Syst. Softw., vol. 170, Dec. 2020,
Art. no. 110798.

[4] A. H. Bond and L. Gasser, Readings in Distributed Artificial Intelligence.
San Mateo, CA, USA: Morgan Kaufmann, 2014.

[5] P. G. Balaji and D. Srinivasan, ‘‘An introduction to multi-agent systems,’’
in Innovations in Multi-Agent Systems and Applications1. Cham, Switzer-
land: Springer, 2010, pp. 1–27.

[6] A. Dorri, S. S. Kanhere, and R. Jurdak, ‘‘Multi-agent systems: A survey,’’
IEEE Access, vol. 6, pp. 28573–28593, 2018.

[7] V. Julian and V. Botti, ‘‘Multi-agent systems,’’ Appl. Sci., vol. 9,
no. 7, p. 1402, 2019. [Online]. Available: https://www.mdpi.com/2076-
3417/9/7/1402

[8] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak Using Jason. Hoboken, NJ, USA: Wiley,
2007.

[9] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, ‘‘Microservices in
agile software development: A workshop-based study into issues, advan-
tages, and disadvantages,’’ in Proc. XP Sci. Workshops, May 2017,
pp. 1–5.

[10] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo,
‘‘Microservices in practice: A survey study,’’ 2018, arXiv:1808.04836.

[11] Statista. (2021). Microservices Adoption Level by Organizations.
Accessed: May 25, 2023. [Online]. Available: https://www.statista.com/
statistics/1233937/microservices-adoption-level-organization/

[12] E. Al-Masri, ‘‘Enhancing the microservices architecture for the Internet
of Things,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2018,
pp. 5119–5125.

[13] S. Baškarada, V. Nguyen, and A. Koronios, ‘‘Architecting microservices:
Practical opportunities and challenges,’’ J. Comput. Inf. Syst., vol. 60, no. 5,
pp. 428–436, Sep. 2020.

[14] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and
tomorrow,’’ in Present and Ulterior Software Engineering, M. Mazzara
and B. Meyer, Eds. Cham, Switzerland: Springer, 2017, pp. 195–216.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
67425-4_12

[15] R. W. Collier, E. O’Neill, D. Lillis, and G. O’Hare, ‘‘MAMS: Multi-agent
MicroServices,’’ in Proc. Companion World Wide Web Conf., May 2019,
pp. 655–662.

[16] X. Limón, A. Guerra-Hernández, A. J. Sánchez-García, and J. C. Peréz
Arriaga, ‘‘SagaMAS: A software framework for distributed transactions
in the microservice architecture,’’ in Proc. 6th Int. Conf. Softw. Eng. Res.
Innov. (CONISOFT), Oct. 2018, pp. 50–58.

[17] V. Charpenay, A. Zimmermann, M. Lefrançois, and O. Boissier, ‘‘Hyper-
medea: A framework for web (of things) agents,’’ in Proc. CompanionWeb
Conf., Apr. 2022, pp. 176–179.

[18] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, ‘‘Multi-
agent oriented programming with JaCaMo,’’ Sci. Comput. Program.,
vol. 78, no. 6, pp. 747–761, Jun. 2013.

[19] M. Dastani, ‘‘Programming multi-agent systems,’’ Knowl. Eng. Rev.,
vol. 30, no. 4, pp. 394–418, 2015.

[20] M. Jagutis, S. Russell, and R. Collier, ‘‘Simulating traffic with agents,
microservices andREST,’’ in Intelligent Distributed Computing XV. Cham,
Switzerland: Springer, 2023, pp. 89–99.

[21] R. Morabito and J. Jimenez, ‘‘IETF protocol suite for the Internet of
Things: Overview and recent advancements,’’ IEEE Commun. Standards
Mag., vol. 4, no. 2, pp. 41–49, Jun. 2020.

[22] A. Y. Bahar, S. M. Shorman, M. A. Khder, A. M. Quadir, and
S. A. Almosawi, ‘‘Survey on features and comparisons of programming
languages (Python, JAVA, AND C#),’’ in Proc. ASU Int. Conf. Emerg.
Technol. Sustainability Intell. Syst. (ICETSIS), Jun. 2022, pp. 154–163.

[23] F. Beck and S. Diehl, ‘‘On the congruence of modularity and code
coupling,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found.
Softw. Eng., Sep. 2011, pp. 354–364.

[24] M. Vanegas Ferro, A. Lee, C. Pritchard, C. M. Barton, and M. A. Janssen,
‘‘Containerization for creating reusable model code,’’ Socio-Environ. Syst.
Model., vol. 3, p. 18074, Mar. 2022.

[25] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, ‘‘Web
services description language (WSDL) 1.1,’’ W3C, Mar. 2001. [Online].
Available: https://www.w3.org/TR/2001/NOTE-wsdl-20010315

[26] N. Goyal, A. K. Pandey, S. K. Gupta, and R. Pandey, ‘‘Suppleness
of multi-tenancy in cloud computing: Advantages, privacy issues and
risk factors,’’ in Proc. Int. Conf. Sustain. Comput. Sci., Technol.
Manage. (SUSCOM), 2019, pp. 2185–2190. [Online]. Available: https://
papers.ssrn.com/sol3/papers.cfm?abstract_id=3358249

[27] M. Van Steen and A. S. Tanenbaum, Distributed Systems. Leiden, The
Netherlands: Maarten van Steen Leiden, 2017.

[28] C. Rakow, ‘‘A framework for simulating mobility services in large scale
agent-based transportation systems,’’ in Proc. 2019 Summer Simulation
Conf. San Diego, CA, USA: Society for Computer Simulation Interna-
tional, 2019.

[29] Statista. (2022). Kubernetes Adoption Level by Organizations. Accessed:
Jul. 13, 2022. [Online]. Available: https://www.statista.com/statistics/
1233945/kubernetes-adoption-level-organization/

[30] H. Subramanian and P. Raj, Hands-On RESTful API Design Patterns Best
Practices: Design, Develop, Deploy Highly Adaptable, Scalable, Secure
RESTful Web APIs. Birmingham, U.K.: Packt Publishing Ltd, 2019.

[31] J. Ferber and O. Gutknecht, ‘‘A meta-model for the analysis and design
of organizations in multi-agent systems,’’ in Proc. Int. Conf. Multi Agent
Syst., Sep. 1998, pp. 128–135.

[32] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh,
‘‘Federated learning review: Fundamentals, enabling technologies, and
future applications,’’ Inf. Process. Manage., vol. 59, no. 6, Nov. 2022,
Art. no. 103061.

[33] E. H. Durfee and J. S. Rosenschein, ‘‘Distributed problem solving and
multi-agent systems: Comparisons and examples,’’ in Proc. 13th Int.
Distrib. Artif. Intell. Workshop, 1994, pp. 94–104.

VOLUME 12, 2024 10021



B. Acar et al.: OPACA: Toward an Open, Language- and Platform-Independent API

BENJAMIN ACAR holds a master’s degree in
technomathematics (mathematics with a minor in
physics) from the Karlsruhe Institute of Technol-
ogy (KIT), Germany. He is currently pursuing
the Ph.D. degree in computer science (Technis-
che Universität Berlin), focusing on multi-agent
systems. Previously, he worked as a Risk Analyst
in one of the largest German banks. His research
interests include encompass distributed systems,
machine learning, and software engineering.

TOBIAS KÜSTER received the Diploma degree
in computer science from Technische Universität
Berlin (TU Berlin), in 2007, and the Ph.D.
degree, in 2017. He is currently the Head of the
Go-KI Project with GT-ARC gGmbH. He is also
directing the Competence Center ‘‘Agent Core
Technologies’’ (ACT), DAI-Labor, TU Berlin.
He has worked on different research projects on
multi-agent systems, process modeling, and the
optimization of industrial processes and schedules.

OSKAR F. KUPKE is currently pursuing the
bachelor’s degree in computer science with Tech-
nische Universität Berlin (TU Berlin). Since
February 2023, he has been a Student Assistant
with the German–Turkish Advanced Research
Centre for ICT (GT-ARC), Berlin. His research
interests include the applications of agent tech-
nologies in everyday scenarios.

ROBERT K. STREHLOW received the B.Sc.
degree in computer science from Technische
Universität Berlin (TU Berlin), in 2022, where
he is currently pursuing the master’s degree in
computer science. He has the bachelor’s thesis
centered around the application of neural networks
to NP-complete problems. Since 2023, he has
been a Student Assistant with the German-Turkish
Advanced Research Centre for ICT (GT-ARC),
Berlin. His research interests include AI and
machine learning.

MARC GUERREIRO AUGUSTO is currently
pursuing the Ph.D. degree in computer science
with the DAI-Labor/Technische Universität Berlin
(TU Berlin), focusing on platform economy and
distributed AI for CCAM solutions. He is a
Computer Scientist with the Port Logistics Indus-
try with an emphasis on process optimization
and automation. He also leads the BeIntelli
Research Project, exploring AI in mobility based
on platform economy, a lighthouse project on

autonomous driving in Berlin, Germany. He acts as a Partner and the
Program Manager with the Center for Tangible AI and Digitalization
(ZEKI). His research interests include automation, artificial intelligence, and
digital platforms, with an application focus on autonomous mobility and
transportation.

FIKRET SIVRIKAYA received the bachelor’s
degree in computer engineering from Boğaziçi
University, Istanbul, Turkey, in 2000, and the
Ph.D. degree in computer science from the
Rensselaer Polytechnic Institute, Troy, NY, USA,
in 2007. Since 2008, he has been a Senior
Researcher and a Lecturer with Technische Uni-
versität Berlin (TU Berlin), Berlin, Germany.
Since 2016, he has also been the Research Director
with the German–Turkish Advanced Research

Center for ICT (GT-ARC), an affiliated institute of TU Berlin. His research
interests include future mobile networks, the Internet of Things, and artificial
intelligence, with an application focus on intelligent transport systems and
smart cities.

SAHIN ALBAYRAK received the Ph.D. and
Habilitation degrees in computer science from
Technische Universität Berlin (TU Berlin),
Germany, in 1992 and 2002, respectively. He is
currently a Full Professor in business applications
and telecommunication (AOT) with the Chair
of Agent Technology, TU Berlin. He is the
Founder and the Head of the Distributed Artificial
Intelligence Laboratory (DAI-Labor), TU Berlin.
He is also the Founding Director of the Connected

Living Association, the German-Turkish Advanced Research Centre for
ICT (GT-ARC), and the Center for Tangible AI and Digitalization (ZEKI),
Berlin, Germany. His research interests include distributed systems, machine
learning, cybersecurity, multi-agent systems, and autonomous systems, with
their particular applications in autonomous driving, smart cities, smart
energy systems, telecommunications, and preventive health.

10022 VOLUME 12, 2024


