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ABSTRACT Many DNA storage codes take into account homopolymer and GC-content constraints. Still,
these codes often need to meet additional practical database requirements, such as error correction and data
queries, necessitating considerable financial and time investment in their training or design. As DNA storage
technologies, including sequencing and synthesis, continue to evolve rapidly, these codes may need to be
retrained or redesigned to adapt to new constraints. In this study, we aim to design a method for adapting an
existing DNA storage code to satisfy a new constraint, specifically concerning homopolymer variations.
We present a simple and effective framework known as Transfer Coding, which directly maps DNA
sequences from an original homopolymer constraint h1 to a new constraint h2. This approach essentially
combines the existing coding scheme with a Transfer encoder. The proposed method uses strategic base
replacements to ensure compliance with constraints, achieving results close to the theoretical limit while
keeping alterations to the original sequence minimal.

INDEX TERMS DNA storage, DNA-to-DNA coding, edit distance, GC contents, homopolymer constraint.

I. INTRODUCTION
DNA storage, a pioneering technique for preserving digital
information, capitalizes on the inherent properties of DNA
molecules [1], [2]. DNA, a sophisticated biological molecule
carrying genetic data within living entities, offers the capacity
to accommodate colossal volumes of data within minuscule
spaces [3]. DNA storage transmutes digital data into the
four chemical bases constituting DNA: adenine (A), cytosine
(C), guanine (G), and thymine (T), thereby encoding the
data as a sequence. This sequence can then be synthesized
and preserved within a tube or a similar storage medium.
With DNA serving as the storage medium, data longevity
potentially extends to thousands of years [4], far surpassing
the lifespan of conventional storage devices like hard drives,
while simultaneously cutting costs.

DNA storage faces two biological limitations that can
negatively impact data storage. The first of these limitations
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is known as the homopolymer constraint, which restricts
the number of consecutive instances of the same nucleotide
base in a DNA sequence, namely the encoded sequence
can contain at most h consecutive identical bases. The
second limit is the GC content constraint, which restricts
the proportion of G and C bases in all bases in the encoded
sequence. Specifically, the proportion must fall within the
range [0.5 − cGC , 0.5 + cGC ], for some 0 < cGC < 0.5.
Deviations from these constraints can incite complications in
DNA sequencing and structure, thereby possibly resulting in
incomplete data recovery [5]. Addressing these constraints,
various DNA storage codes have been devised by researchers.
The homopolymer constraints can be managed via the
utilization of 3-ary Huffman codes [6]. In an alternative
approach, short sequences are engineered and subsequently
concatenated to form longer sequences to satisfy these
constraints [7], [8], [9]. Moreover, the constraints can also
be met by adopting the minimum variance Huffman tree
encoding [10] or by implementing a greedy algorithm [11].
It is worth noting that all of the aforementioned methods are
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focused on the encoding of binary data into DNA sequences,
and they do not extend to encoding the resultant DNA data
outputs generated by other methodologies.

In addition to the above constraints, for DNA storage to
operate effectively as a database, it demands several practical
elements. A key element is the query feature, which enables
the extraction of specific data of interest. An example of
this is the image-to-sequence coding method proposed by
Bee et al. [12]. This technique involves transmuting images
into a DNA base sequence and employing hybridization
probes to align query targets with corresponding images.
The authors have trained a neural network to translate the
image into a sequence in such a way that similar images
are likely to hybridize. Subsequently, users can retrieve
images corresponding to the query image by identifying the
hybridized sequence. Furthermore, for data storage to be
reliable, an error-correction code is required to minimize the
effect of errors. Numerous error-correcting code methods
have been developed to tackle the problems of insertion,
substitution, and deletion that may transpire during the
sequencing process [3], [13], [14], [15], [16].

Hence, a proficient DNA storage encoding scheme
ought to concurrently accommodate the classical constraints
(homopolymer and GC contents) and the pragmatic neces-
sities (error correction functionality and query handling).
However, in light of rapid advancements in sequencing
and synthesis technology, these classical constraints may
undergo changes over time. For example, the homopolymer
constraint could exhibit variability, where it can be increased
to h + 1 or decreased to h − 1 based on the technology
development. As a result, the DNA storage encoding scheme
necessitates occasional updates. The implementation of these
practical requirements, such as retraining the neural network
(for query-database [12]) or devising error-correcting codes,
incurs substantial costs in terms of both time and financial
resources. This situation prompts the exploration of adapta-
tion, a method that applies minimal alterations to the DNA
storage encoding to satisfy new constraints while preserving
features of the pre-existing encoding scheme.

In this paper, we propose a streamlined and effective
conversion coding method based on intuitive mapping that
allows flexible conversion of sequences under different
constraints, thereby efficiently addressing these challenges.
This strategy avoids the need for retraining or redesigning
the encoding scheme, leading to cost savings and enhanced
capacity utilization. The proposed adaptation framework
adjusts a given encoding scheme to accommodate the new
homopolymer constraint while minimizing the variation
between input and output (in terms of edit distance).
Specifically, consider the pretrained encoder fpre that satisfies
a homopolymer constraint h1 as well as its own criteria
(e.g., query). Our objective is to propose a new encoding
scheme fnew that satisfies a new homopolymer constraint h2,
while maintaining pretrained features by minimizing the edit
distance between fpre(b) and fnew(b) for all inputs b.

Rather than designing the new encoding scheme, fnew,
from the ground up, our principal approach is to introduce
a straightforward and efficient modification of the existing
encoder, fpre, using Transfer Coding. This method involves
a direct mapping from a DNA sequence that satisfies
homopolymer constraint h1 to another sequence that meets
a different homopolymer constraint h2. As a result, the new
encoding scheme fnew becomes a simple concatenation of the
Transfer encoder and the existing encoder, fpre. With its linear
complexity, our Transfer Coding scheme is extremely easy to
implement and apply to actual sequences.

We have also conducted various experiments and com-
pared the results with the approximated theoretical limit.
We consider both relaxing and restricting constraints; the
relaxing case involves transferring the code for a stricter
homopolymer constraint (e.g., h = 3) to a less stringent
homopolymer constraint (e.g., h = 4). Conversely, the
restricting case involves transferring the code originally
designed for a less stringent homopolymer constraint (e.g.,
h = 4) to a stricter homopolymer constraint (e.g., h = 3).
The proposed scheme achieves a superior rate compared to a
naive scheme and shows results comparable with theoretical
limits.

II. MATERIALS AND METHODS
A. PROBLEM FORMULATION
Let X = {A,C,G,T}∗ = ∪∞k=1{A,C,G,T}k be the set of all
lengths of DNA sequences. Similarly, letXh ⊂ X be the set of
all lengths of DNA sequences that satisfies the homopolymer
constraint h, i.e., any sequence X ∈ Xh can have at most h
consecutive identical bases.

Suppose the encoder fpre : {0, 1}∗→ Xh1 is given for some
h1 > 0, which satisfies the homopolymer constraint h1 as
well as its own requirements (e.g., for query). Our goal is to
obtain the new encoding scheme fnew : {0, 1}∗ → Xh2 that
satisfies the new homopolymer constraint h2. On the other
hand, we also want to preserve what fpre originally aims for,
such as querying. In other words, we want d(fpre(b), fnew(b))
to be small where d(·, ·) denotes the edit distance metric
between two sequences.

We also highlight another significant metric, the rate

R =
E

[
ℓ(fpre(b))

]
E [ℓ(fnew(b))]

,

where ℓ(·) represents the length of the encoded DNA
sequence, and E [·] represents the expectation. Essentially,
we want to maintain the length of the encoded DNA sequence
as compact as possible while simultaneously satisfying
the new homopolymer constraints and minimizing the edit
distance.

Our approach endeavors to strike a nuanced balance
between the two objectives. Firstly, it seeks to minimize
modifications to the sequence content, ensuring that both
the original and adjusted sequences retain their intended
functionality. Secondly, it aspires to maximize the utilization
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TABLE 1. Insertion map M to satisfies homopolymer constraint. Symbol ∗

indicates any base. If not specified, M(B, ·) is identity, for example
M(A,GC) = GCG.

Algorithm 1 Homopolymer Encoding
1: Input: h ≥ 1, ℓX ≥ 1, B ∈ {A,C,G,T}, and DNA

sequence X
2: Output: DNA sequence Y
3: Y ← ∅
4: while X is nonempty do
5: if last h bases of Y are the same then
6: x1x2← pop two bases from X
7: Y ← CONCAT(Y ,M (B, x1x2))
8: else
9: x1← pop one base from X

10: Y ← CONCAT(Y , x1)
11: end if
12: end while
13: return Y

of the encoding capacity, thereby employing the available
resources in the most efficient manner possible.

B. ALGORITHM
Our core proposition involves introducing a simple and
effective method to modify the given encoder, fpre, into a
new encoder without necessitating a design from scratch.
More specifically, we propose Transfer Coding that directly
maps from Xh1 to Xh2 , allowing the new encoding scheme to
be a straightforward composition. For the Transfer encoder
fh1→h2 : Xh1 → Xh2 , the new encoding scheme is given by

fnew = fh1→h2 ◦ fpre, (1)

where f ◦ g represents the function composition of f and g.

1) HOMOPOLYMER CODING
Before introducing Transfer Coding, which converts
sequences from one homopolymer constraint (h1) to another
(h2), we first focus on a simpler scenario that transforms any
sequence to one that abides by a homopolymer constraint h.
Recall that Xh is a set of DNA sequences of any length that
satisfy the homopolymer constraint h. We then establish the
encoder fh : X → Xh that maps any length DNA sequence
to a sequence that meets the homopolymer constraint h.
Essentially, this process can be viewed as a Transfer from
homopolymer constraintX∞ toXh. As in the Transfer Coding
approach, we aim for fh to preserve the original structure of

Algorithm 2 Homopolymer Decoding
1: Input: h ≥ 1, ℓY ≥ 1, B, and DNA sequence Y
2: Output: DNA sequence X
3: X ← ∅
4: while Y is nonempty do
5: if last h bases of Y are the same then
6: y1y2y3← pop three bases from Y
7: X ← CONCAT(X ,M−1(B, y1y2y3))
8: else
9: y1← pop one base from Y

10: X ← CONCAT(X , y1)
11: end if
12: end while
13: return X

the input DNA sequence, meaning the edit distance between
x and fh(x) should be minimal for any given DNA sequence
x ∈ X . Note that fh will also be serving as a building block
for our broader Transfer Coding scheme.

To ensure homopolymer constraints are met while min-
imally altering the sequence, we propose a table-based
insertion scheme. Simply put, if the input DNA sequence
contains a homopolymer sequence exceeding h in length, we
insert a different base following the h-th base. For instance,
if the input contains h+ 1 consecutive A’s, we would insert a
base C. The choice of C is due to the balance of GC content.
However, we must satisfy decodability, or the ability to

recover the original sequence from the encoded sequence,
and prevent collisions, i.e., fh(x1) ̸= fh(x2) for x1 ̸= x2.
The above insertion technique might lead to such conflicts.
To illustrate, in the case of h = 3, both AAAA and AAACA
map to AAACA, making it impossible to decode AAACA
uniquely. To resolve this, we introduce additional rules for
sequences that could potentially conflict when decoded.More
precisely, we modify AAACA to AAAGCA and AAAGC to
AAAGCG to differentiate between them. This modification is
also captured in Table 1, where the symbol ‘*’ denotes any
nucleotide base. More specifically, if the preceding h bases
are A and the next two bases are GC, we replace GCwith GCG.
We denote this mapping, as defined by Table 1, as M . All
other scenarios, such as h consecutive C’s, can be similarly
defined and are also included in Table 1.

It is worth noting that if an input sequence concludes
with h consecutive identical bases, we may not be able to
read two bases afterward. In these scenarios, we interpret
the any-base-symbol ‘*’ as indicating an end-of-sequence
(eos). As an illustration, if a sequence ends with AAAAwhere
h = 3, we replace the last A with CA, interpreting A* as a
concatenation of A and eos symbol.

We then propose a scheme called Homopolymer Coding,
that reads the bases of the input DNA sequence sequentially
and records the number of consecutive occurrences of the
same base. If this number equals the homopolymer constraint
h, then the above rules (based on mapping M ) are followed
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TABLE 2. Replacement map Mr to obtain the invertible sequence. If not
specified, Mr (B, ·) is identity, for example Mr (A,CCC) = CCC.

Algorithm 3 Replacement Encoding
1: Input: h ≥ 1, ℓX ≥ 1, B, and DNA sequence X
2: Output: DNA sequence Y
3: Y ← ∅
4: while X is nonempty do
5: if last h bases of Y are the same then
6: if len(X ) = 2 then
7: x1x2← pop two bases from X
8: Y ← CONCAT(Y ,Mr (B, x1x2))
9: else
10: x1x2x3← pop three bases from X
11: Y ← CONCAT(Y ,Mr (B, x1x2x3))
12: end if
13: else
14: x1← pop one base from X
15: Y ← CONCAT(Y , x1)
16: end if
17: end while
18: return Y

when reading the next bases. Otherwise, the bases are
output directly. This scheme inserts ‘dummy’ bases to satisfy
homopolymer constraints, i.e., striving to keep the number of
insertions minimal, thereby maintaining a small edit distance
between the input and output sequences. The complete
encoding process is detailed in Algorithm 1.

Decoder gh serves as the left inverse of fh, i.e., gh(fh(x)) =
x for all x ∈ X . Mirroring the encoder, the decoder gh
sequentially decodes the sequence y, where y = fh(x). It starts
by checking and counting the number of consecutive identical
bases. If the last h bases are identical (Yi−h = · · · =
Yi−1 = B at step i), it then reads the three subsequent
bases (YiYi+1Yi+2) and locates the corresponding inverse
mapping base in Table 1. This decoding process is outlined
in Algorithm 2.

2) TRANSFER CODING
We now present a Transfer Coding scheme. The proposed
scheme includes an encoder, denoted as fh1→h2 , which
modifies a sequence that satisfies a homopolymer constraint
of h1 to one that satisfies with a homopolymer constraint of
h2. We aim to maintain a minimal edit distance between x

TABLE 3. Rate of the Homopolymer encoder, evaluated across varying
sequence lengths (100, 200, 500, and 1000) and differing homopolymer
constraints (3, 4, 5). TL denotes the theoretical limits [3] and ℓi denotes
the input sequence length of i .

TABLE 4. Normalized edit distance between the input and the output of
the Homopolymer encoder, evaluated across varying sequence lengths
(100, 200, 500, and 1000) and differing homopolymer constraints (3, 4, 5).
Recall that ℓi denotes the input sequence length of i .

and fh1→h2 (x) for any given x ∈ Xh1 , while also modifying
the input sequence minimally.

It may be tempting to think that we can directly apply
fh2 to the output of fpre to satisfy the stricter condition of
h2 if h2 < h1 (i.e., fnew = fh2 ◦ fpre). However, this
approach does not effectively utilize the information that the
output of fpre already satisfies the homopolymer constraint
h1. Likewise, if h2 > h1, we could theoretically maintain the
same encoding strategy with fnew = fpre, since fpre already
complies with the stricter homopolymer constraint h1, and
therefore, automatically fulfill the homopolymer constraint
of h2. Nonetheless, this approach would fail to make full use
of the available sequence options in the output space.

Our core approach is to construct

fh1→h2 (x) = fh2 (gh1 (x)). (2)

This entails converting x ∈ Xh1 to a general sequence
in X without having any homopolymer constraints using
decoder gh1 , then applying Homopolymer encoding fh2 to
satisfy homopolymer constraint h2. However, encoder fh1
is not surjective, and there are instances where gh1 (x)
is not well-defined. For instance, Table 1 demonstrates
cases where a redundant base is introduced to meet the
homopolymer constraint, leaving certain codewords like
AAAGCC unused, as AAAGC is always converted to AAAGCG.
Hence, combinations like AAAGCC and AAAGCT are
non-invertible.
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For sequences x ∈ Xh1 that cannot be decoded, we suggest
an additional encoding r , ensuring that r(x) is decodable,
i.e., gh1 (r(x)) is well-defined. We refer to r as ‘replacement,’
which is based on the mapping shown in Table 2. We replace
both base combinations that cannot be decoded and those
that could potentially cause conflicts. For instance, when
h = 3, the replacement r modifies AAAGCG to AAAGCAG,
and AAAGCXG to AAAGCGXG, with XG representing any base
other than G. This strategy allows us to minimally alter the
sequence while still meeting our objectives. Like themapping
in Table 1, we interpret XG as an end-of-sequence (eos)
symbol when it occurs at the end of a sequence.

The formal encoding process involves reading the
sequence sequentially and counting consecutive occurrences
of the same base in the sequence. When the last h1 bases are
identical, we read the next three bases and replace them if
they are specified in Table 2. The entire replacement process
is detailed in Algorithm 3.

Finally, our proposed Transfer encoding can be expressed
as:

fh1→h2 (x) = fh2 (gh1 (rh1 (x))), (3)

for x ∈ Xh1 . Conversely, the decoding step is the reverse of
the encoding.

gh2→h1 (x) = r−1h1
(fh1 (gh2 (x))), (4)

for x ∈ Xh2

III. ENCODING RATES
In this section, we examine the theoretically achievable rates
of both Homopolymer encoding and Transfer encoding, using
results from the theory of binary to DNA encoding.

A. HOMOPOLYMER ENCODING
When it comes to encoding binary sequences into DNA
sequences, Erlich et al. [3] propose a theoretical rate limit
considering homopolymer constraints of h. The maximum
achievable rate, RB(h), is given by

RB(h) ≈ 2−
3 log2 e
4h+1

(bits/nt), (5)

where e is Euler number. In the case of Homopolymer
encoding where we map a DNA sequence to a sequence with
a homopolymer constraint h, we consider the unconstrained
DNA sequence as providing 2 bits per base. Consequently,
the theoretically achievable rate becomes

RH (h) =
E [ℓ(x)]
E [ℓ(y)]

=
RB(h)
2
≈ 1−

3 log2 e
2× 4h+1

. (6)

We implicitly assume that the input unconstrained sequence x
results from binary to DNA encoding with an optimal coding
ratio of 2 bits.

B. TRANSFER ENCODING
For Transfer encodings, in order to compare the optimal
coding ratio, for y = fh1→h2 (x), we need to compute the rate

TABLE 5. Rate of Transfer Coding evaluated across differing sequence
lengths (100, 200, 400, and 1000) and varying constraint transitions
(4 → 3, 3 → 2, and 4 → 2). ‘TL’ represents theoretical limits [3] and ℓi
denotes an input sequence of length i . The rate of the Naive approach
(which directly applies fh to the input sequence) is also provided for
comparison.

as the ratio between the expected sequence lengths of y and
x, i.e., R = E [ℓ(x)]/E [ℓ(y)]. Assuming that both x and y are
outcomes of optimal encoding from binary to Xh1 and Xh2 ,
respectively, the theoretical limit of the rate would be

RT (h1→ h2) =
E [ℓ(x)]
E [ℓ(y)]

=
2/E [ℓ(y)]
2/E [ℓ(x)]

=
RH (h2)
RH (h1)

. (7)

For example, RB(2) is 1.93237, RB(3) is 1.98309, and RB(4)
is 1.99577 can be obtained through equation 5, so RT (2 →
3) = RH (3)/RH (2) ≈ 1.0262. In the subsequent section on
experiments, we will offer the rate of the proposed scheme
and compare it to these theoretical limits.

IV. EXPERIMENTS
In this section, we report the experimental results from
testing our proposed encoding scheme, employing simulated
data for the evaluation process. To gauge the performance
of our Homopolymer encoding, we utilize DNA sequences
originating from an independent and identically distributed
(i.i.d.) uniform distribution (each base has a 1/4 probability)
as the input. Conversely, Transfer encoding fh1→h2 focuses
on transitioning between DNA sequences under different
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homopolymer constraints, necessitating the generation of
DNA sequences that fulfill these homopolymer constraints.
To fulfill this requirement, we generate DNA sequences in
a sequential manner, utilizing the i.i.d. uniform distribution
(each base has a 1/4 probability), and if there are h1 identical
bases B in a sequence, the subsequent base is sampled
from the i.i.d. uniform distribution excluding base B (i.e.,
probability of 1/3 excluding B).
To further substantiate our findings, we conducted an

additional experiment using a Markov distribution for input
sequence generation. The initial base was chosen with
equal likelihood from among the four possible nucleobases.
For subsequent bases, the probability of the same base
reoccurring was set at 0.7, whereas each of the remaining
three bases had an equal chance of being chosen, with
a probability of 0.1. To ensure the generated input DNA
sequences adhered to specified homopolymer constraints, we
implemented logic such that if adding another identical base
would violate the constraint, a different base was randomly
selected from the remaining three, each with an equal
likelihood. Conversely, in states where the homopolymer
constraint was not at risk of being violated, the same base was
generated again with a probability of 0.7, while the remaining
bases each had a 0.1 probability of being selected.

We randomly create 100,000 DNA sequences of lengths
100, 200, 400, and 1000, ensuring that they satisfy homopoly-
mer constraints h1 ∈ {2, 3, 4} respectively, and then encode
them into sequences that comply with a homopolymer
constraint of h2 ∈ {2, 3, 4} using Transfer encoding.
We analyze the experimental results separately, segmenting
them into two categories: cases with stricter constraints
(h1 > h2) and those with relaxed constraints (h1 < h2).
The source code of our program is available for review on
https://github.com/gyfbianhuanyun/DNA2DNA_Codec_for_
Homopolymer_constraints. In this experiment, featuring
a DNA sequence length of 100 and a total of 100,000
sequences, the program’s runtime for function f3→4 was
recorded as 65.78 seconds. In contrast, the runtime for
f4→3 was 62.31 seconds. It is noteworthy that when using
Homopolymer encoding exclusively, the execution time is
51.59 seconds for f4→3, while there is no additional execution
time for f3→4.

A. HOMOPOLYMER ENCODING
Before presenting the results of Transfer encoding, we first
illustrate the performance of our Homopolymer encoding.
In this case, we administer our method to input sequences
x, considering various homopolymer constraints and DNA
sequence lengths. We apply the Homopolymer encoder fh
to 100,000 randomly generated DNA sequences of assorted
lengths, and the outcomes are presented in Table 3 and
Table 4. As evidenced in Table 3, our algorithm stays
remarkably close to the theoretical limit, irrespective of
whether h is small or large. Table 4 exhibits the ratio of
edit distance to input sequence length between the input
and output sequences of the Homopolymer encoder. It can

TABLE 6. Rate of Transfer Coding evaluated across differing sequence
lengths (100, 200, 400, and 1000) and varying constraint transitions
(2 → 3, 3 → 4, and 2 → 4). ‘TL’ represents theoretical limits [3] and ℓi
denotes an input sequence of length i . The rate of the Naive approach
(does not apply any additional coding), which is 1, is also provided for
comparison.

be observed that, while the change in the sequence length’s
edit distance is up to 1.7% in the i.i.d experiment, in most
instances it remains constant (especially when h = 4 and
h = 5). Under identical homopolymer conditions, the ratio
remains essentially the same. In addition, we calculated the
proportion of GC content before and after encoding. In the
i.i.d. experiment using homopolymer encoding with h =
3 and DNA sequence length of 100, the average proportion
of GC content before the experiment was 50.039%, and the
proportion after encoding was 50.037%, which remained
basically unchanged.

To highlight the superiority of our method in preserving
edit distance, we conducted a comparison with existing
DNA encoding techniques. In our comparative experiments,
we initially used an i.i.d. process to generate a dataset of
10,000 DNA sequences, each 100 bases long. These DNA
sequences were then converted into binary format, assigning
2 bits per base, which is a standard practice in this field.
This binary data was then encoded into DNA sequences using
different algorithms as documented in previous papers. The
final step involved comparing the encoded DNA sequences
with the original sequences, focusing on the ratio and
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FIGURE 1. Distribution of length and edit Distance for Transfer Coding in a stricter constraint case when the input sequence length is 100. (a, b) display
the length distribution of output sequences produced by the proposed Transfer Coding (in red) and the Naive Coding (in green) for transitions 4 → 3 and
3 → 2, respectively. (c) demonstrates the edit distance between the input and output sequences of the Transfer encoder in the 4 → 3 case, given input
sequence lengths of 100, 200, and 400.

FIGURE 2. Distribution of length and edit Distance for Transfer Coding in a relaxing constraint case when the input sequence length is 100. (a, b) display
the length distribution of output sequences produced by the proposed Transfer Coding (in red) and the Naive Coding (in green) for transitions 2 → 3 and
3 → 4, respectively. (c) demonstrates the edit distance between the input and output sequences of the Transfer encoder in the 3 → 4 case, given input
sequence lengths of 100, 200, and 400.

TABLE 7. Comparative analysis of edit distance preservation capabilities.
Ed indicates the normalized edit distance. Our Result (Ours (h))
demonstrates results with constraint h.

normalized edit distance as key metrics. It is crucial to note
that Goldman et al. [6] uses a homopolymer setting with h =
1, while the methods by Song et al. [7] and Wang et al. [8]
use a homopolymer setting with h = 3. This specific
setting aligns with the object settings as mentioned in the
paper. The comparisons, detailed in Table 7, demonstrate
that our encoding method results in fewer alterations to the
original DNA data than the others. This can be attributed
to the tendency of other techniques to completely reprocess
the binary data, resulting in a more significant deviation
from the original DNA sequence. Overall, our innovative
encoding strategy more effectively maintains the integrity of
the original DNA data compared to other recent methods.

B. THE STRICTER CONSTRAINT
Firstly, we consider the scenario of stricter constraints, where
Transfer encoding is implemented on a DNA sequence

with a higher homopolymer constraint h1, while modifying
the encoder so that the output meets the more rigorous
constraint h2 < h1. In this case, the straightforward
approach would be to directly apply the encoder fh2 , which is
designed to meet a homopolymer constraint of h2. However,
this naive approach achieves sub-optimality as it fails to
utilize the information that the input has a homopolymer
sequence with a length h1 at most. In this section, we com-
pare our proposed Transfer encoding against this naive
approach.

Simulation experiments are carried out on random DNA
sequences with lengths of 100, 200, 400, and 1000, fulfilling
the homopolymer constraint h1 ∈ {2, 3, 4}. The objective
was to transfigure these into DNA sequences complying with
h2 ∈ {2, 3, 4}. The results are displayed in Table 5. In the
scenario of transfer to stricter constraints, the rate falls below
1. The rate of our proposed scheme demonstrates comparable
results with the theoretical limits and also exhibits sufficiently
small edit distances. The impact analysis of the proposed
encoding is illustrated in Figure 1. When comparing the
outcomes from Naive coding (using only fh2 ), our Transfer
encoding method excels in achieving a higher rate and shorter
sequence length, enabling the representation of the same data
using fewer bases.
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Additionally, we assessed the results of the edit distance,
as portrayed in Figure 1(c). In the figure, we selected the
performance of f4→3 under sequences of different lengths,
where the edit distance is small compared to the input
sequence length.

C. RELAXING THE CONSTRAINT
Then, we take into consideration the scenario of a more
relaxed homopolymer constraint, wherein the original
sequence complies with a stricter homopolymer constraint.
In such a scenario, the sequence can be directly utilized
without encoding (with the rate of 1). This is a baseline
for comparison with our results. Note that this simplistic
approach (utilizing without encoding) is strictly suboptimal
as it does not completely exploit the available sequence
combinations in the output space. For comparison purposes,
simulations were conducted on random DNA sequences with
lengths of 100, 200, 400, and 1000.

Table 6 illustrates that our results closely align with the
theoretical limit. It is worth noting that the rate values exceed
1 due to the relaxed constraint, indicating a smaller number
of bases are needed to represent the same amount of data.
In Figure 2, we explore the output sequence lengths of
our proposed method, fh1→h2 . We also provide results of
Naive encoder using only fh2 where all sequence lengths
remained constant. Our Transfer encodingmethod showcased
superior performance by representing the same data volume
with fewer bases. Additionally, we present the edit distance
outcomes in Figure 2(c). Our method affords several benefits,
including shorter sequence length and an elevated rate. The
results highlight that the edit distance is minimal relative to
the original sequence length.

V. CONCLUSION
Wehave presented a novel, efficientmethod forDNA-to-DNA
encoding. This approach is grounded in a mapping method-
ology that significantly curtails the number of base insertions
and substitutions required. Despite its linear complexity,
our method outperforms conventional encoding strategies.
It facilitates the swift conversion of DNA sequences across
disparate homopolymer constraints, offering a viable and
efficient solution for the storage of digital data via DNA
molecules.
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