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ABSTRACT With an increase in the complexity of society, solving multi-objective optimization problems
(MOPs) has become crucial. In this study, we introduced a novel method called ‘‘quadratic unconstrained
binary optimization based on theweighted normal’’ for solvingMOPs using Isingmachines, such as quantum
annealing and digital annealer (DA), in the field of combinatorial optimization. The proposed method
applies the penalty-based boundary intersection method to Ising machines under a setting limited to linear
objective functions and maximizes the speed and performance of the DA, which is a quadratic unconstrained
binary optimization-specific solver. We demonstrated the effectiveness of the proposed method by solving
a real-world problem with a nonconvex shaped Pareto front (component combination problem). The results
suggested that the proposed method could handle both convex- and nonconvex-shaped Pareto fronts,
expanding the potential applications of Ising machines to solving complex MOPs. This development could
significantly enhance decision-making processes, particularly in achieving sustainable development goals.

INDEX TERMS Multi-objective optimization, algorithm, combinatorial optimization.

I. INTRODUCTION
As society becomes increasingly complex, decision-making
in corporate production activities and problem-solving
requires a balance between multiple optimization indicators.
For instance, achieving Goal 8 of Sustainable Development
Goals – ‘‘decent work and economic growth’’– necessitates
multi-objective solutions via mathematical optimization,
which can be represented as follows:

minimize F (x) = (f1(x), f2(x), . . . , fm(x)) , (1)

subject to x ∈ �. (2)

Here, we attempt to minimize the function F (x), which
represents our objective, subject to certain constraints rep-
resented by x belonging to a set �. This is a common way
to represent optimization problems mathematically. Here, x
is the decision variable vector, � is the decision variable
vector space, fi(x) is the ith objective function; and F is the
mapping from � to Rm. Rm denotes the objective function
vector space. F (x) is the objective function vector, and the
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set of attainable objective function vectors is {F (x)|x ∈
�}. In multi-objective optimization problems (MOPs), the
objective functions often conflict with each other. In such
cases, improving one objective function degrades the other.
Therefore, obtaining a balance between multiple objective
functions in MOPs is necessary for an optimal solution,
which is typically a set of solutions, called Pareto solutions,
with trade-offs [1]. The set of objective function vectors
corresponding to Pareto solutions in the objective function
vector space is called the Pareto front (PF) [2].
In many applications of multi-objective optimization,

decision-makers are interested in a set of Pareto solutions [3],
[4]. Therefore, in continuous multi-objective optimization,
methods for obtaining multiple Pareto solutions via mul-
tiple single-objective optimizations have been developed.
A representative method is the weighted sum method [5],
which involves constructing an objective function E(x)
from multiple objective functions f1(x), f2(x), . . . , fm(x)
via scalarization followed by optimization to obtain Pareto
solutions. However, the weighted sum method cannot obtain
sufficient Pareto solutions because the PF is nonconvex.
To overcome this limitation, the Tchebycheff method [6],
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normal boundary intersection (NBI) [7], penalty-based
boundary intersection (PBI) [8], and Pareto adaptive PBI
(PaP) [2] have been developed.
Quantum annealing has attracted attention as a single-

objective optimization solver in combinatorial optimiza-
tion [9], [10]. This method was inspired by quantum
phenomena and has already been put into practical use [11],
[12], [13]. Other optimization platforms that implement
quantum annealing processing methods on digital systems,
such as Fujitsu’s digital annealer (DA) [14] and Hitachi’s
CMOS annealer [15], have also gained attention.

Quantum annealing formulates combinatorial optimization
problems as an energy function called the Ising model. The
Ising model links the values of variables with the up-spin
and down-spin states and minimizes the energy function
represented as a Hamiltonian via annealing processing.
Quantum annealing and optimization platforms that use the
quantum annealing processing methods described previously
are collectively referred to as Ising machines. Replacing
the spins of the Ising model with binary variables results
in a quadratic unconstrained binary optimization (QUBO).
Because the Ising model and QUBO are mutually convertible
and equivalent, in this study, we used QUBO as a model that
can be handled using Ising machines.

Single-objective optimization using QUBO (i.e., single-
objective optimization that can be handled by Isingmachines)
is mathematically defined as follows:

minimize f (x) =
n∑
i=1

n∑
j=1

Gijxixj (3)

subject to x ∈ {0, 1}n. (4)

Here, G is a two-dimensional matrix, and the objective
function f (x) is represented by QUBO using G. Gij is the
element of G. We attempt to minimize the function f (x),
which represents the energy of the system. f (x) is subject to
the constraint that x can only consider the values 0 or 1. This
is a common approach to represent optimization problems in
the context of quantum annealing. Here, x = (x1, x2, . . . xn)
is the decision variable vector, which is a point in an n-
dimensional discrete space with binary variables (0 or 1).

In the field of combinatorial optimization, several recent
studies have investigated the solution of multi-objective
optimization using Ising machines [16], [17], [18], [19].
These studies investigated the following problem settings on
Ising machines, which are collectively called multi-objective
unconstrained binary quadratic programming (mUBQP):

minimize ck (x) =
n∑
i=1

n∑
j=1

Cijkxixj, ∀k ∈ {1, 2, . . . ,m}

(5)

subject to x ∈ {0, 1}n. (6)

Here,C is a three-dimensional matrix consisting ofm×n×n
matrices, and Cijk is the element of C. In other words,
it is a problem setting where each function ck is QUBO.

The mUBQP methods using the Ising model [16], [17],
[18], [19] are similar to the previously described weighted
sum method, where the weighted sum of objective functions
c1, c2, . . . , cm is used as the objective function and single-
objective optimization is performed repeatedly. However, this
method cannot obtain sufficient Pareto solutions when the PF
is nonconvex.

In this study, we proposed a novel method that applies PBI
using Isingmachines under a problem setting limited to linear
objective functions for the MOP. This method maximizes
the speed and performance of the DA, a QUBO-specific
solver [20], and obtains sufficient Pareto solutions even when
the PF is nonconvex. We demonstrated the effectiveness
of the proposed method by solving a real-world problem
with a nonconvex-shaped PF, the component combination
problem.

The remainder of this paper is organized as follows: In
Section III, we explain the proposed method. In Section IV,
we describe a simple problem that considers various PF
shapes by changing only the constraints. In Section V,
we present the results of the numerical experiments and the
results of solving a newly given problem that is close to
the actual field issues. Finally, in Section VI, we summarize
the findings of this study.

II. RELATED RESEARCH
In this section, we discuss the research pertaining to the
proposed method. First, we introduce the weighted sum
method, Tchebycheff method [6], NBI [7], PBI [8], and
PaP [2] in continuous MOPs and explain multi-objective
optimization methods using Ising machines in combinatorial
optimization.

A. OVERVIEW OF THE WEIGHTED SUM METHOD
The problem setting of the weighted sum method is defined
as follows:

minimize EWS (x|w) =
m∑
i=1

wifi(x) (7)

subject to x ∈ �. (8)

Here, w = (w1,w2, . . . ,wm) is an m-dimensional weight
vector. In addition,

∑m
i=1 wi = 1, and wi ≥ 0 for each

i = 1, . . . ,m. Pareto solutions are obtained by minimizing
EWS (x|w) for several w values. However, the weighted sum
method cannot obtain sufficient Pareto solutions when the
shape of the PF is nonconvex [21]. Methods such as the
Tchebycheffmethod, NBI, PBI, and PaP have been developed
to overcome this drawback.

B. OVERVIEW OF THE TCHEBYCHEFF METHOD
The problem setting of the Tchebycheff method is defined as
follows:

minimize ETE (x|w, z∗) = max
1≤i≤m

{
wi|fi(x)−z∗i |

}
(9)

subject to x ∈ �, (10)
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FIGURE 1. Illustration of the NBI approach (modified from [8]).

where z∗ = (z∗1, . . . , z
∗
m) is the reference point. The

reference point is a point in the objective function vector
space consisting of the minimum values of each objective
function in the MOP, where z∗i = min{fi(x)|x ∈ �} for
each i = 1, . . . ,m. w is the weight vector, as defined above.
In the Tchebycheff method, Pareto solutions are obtained by
minimizing ETE (x|w, z∗) for several w values.

C. OVERVIEW OF NBI
The problem setting of NBI is defined as follows:

minimize ENBI (x|w, z∗) = d (11)

subject to F (x)− z∗ = dw, x ∈ �. (12)

Here, w and z∗ are the weight vector and reference
point, respectively, as previously defined. NBI minimizes
ENBI (x|w, z∗) under the constraint F (x)− z∗ = dw. Con-
straint F (x)− z∗ = dw restricts F (x) to the line L passing
through z∗ in the w direction, as shown in Fig. 1. In NBI,
Pareto solutions are obtained by minimizing ENBI (x|w, z∗)
for several w values. In addition, the attainable objective
shown in Fig. 1 represents the set of objective function vectors
for constraint-satisfying solutions.

D. OVERVIEW OF PBI
PBI can be used to obtain Pareto solutions in continuous
MOPs, even when the shape of the PF is nonconvex. The goal
of the PBI is to identify points where a line extending from
the reference point intersects the PF in the objective function
vector space. The PBI problem setting is defined as follows:

minimize EPBI (x|w, z∗) = d1 + θd2 (13)

subject to x ∈ �. (14)

Here,

d1 =
∥(F (x)− z∗)Tw∥

∥w∥
, (15)

d2 = ∥F (x)− (z∗ + d1w)∥. (16)

FIGURE 2. Illustration of the PBI approach (modified from [8]).

Here, θ > 0 is the penalty parameter; when projecting
F (x) onto line L shown in Fig. 2, y is the projection; d1 is
the distance between z∗ and y; d2 is the distance between
line L and F (x); and θ is a parameter that balances d1 and
d2 in EPBI (x|w, z∗). In the PBI, Pareto solutions can be
obtained by minimizing EPBI (x|w, z∗) for several w values.
However, PBI may not easily obtain Pareto solutions when
the PF is nonconvex, although it exhibits good convergence
when θ is small [22]. To address this issue, the PaP method
is adopted, as it modifies θ accordingly. It is worth noting
that a similar approach is adopted in the study of determining
consensus in multiagent networks with constraints [23].

E. OVERVIEW OF OTHER MULTI-OBJECTIVE
OPTIMIZATION METHODS USING ISING MACHINES FOR
COMBINATORIAL OPTIMIZATION PROBLEMS
The solution methods using Ising machines for mUBQP [16],
[17], [18], [19] minimize the following objective function
E(x|w) using the weight vector w for scalarization:

minimize E(x|w) =
m∑
i=1

wici(x). (17)

This scalarization is similar to that of the weighted sum
method described above. Applying the Tchebycheff method,
NBI, PBI, and PaP to Ising machines makes it difficult to
obtain Pareto solutions even when the PF is nonconvex. This
is because the maximum value operations, absolute values,
and distance operations used in these methods cannot be
processed by QUBO.

III. METHODS
A. PROBLEM SETTING OF MULTI-OBJECTIVE
OPTIMIZATION
The problem setting of the MOP in the field of combinatorial
optimization to be solved using the proposed method is as
follows:

minimize fk (x) =
n∑
i=1

Cikxi + Dk , ∀k ∈ {1, 2, . . . ,m}

(18)

subject to Hp(x) = 0, x ∈ {0, 1}n. (19)
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Here, Hp(x) is a nonlinear constraint represented in the form
of QUBO, which is expressed as,

Hp(x) =
n∑
i=1

n∑
j=1

Sijxixj + K , (20)

where Hp(x) ≥ 0,∀x. Furthermore, C is an m × n two-
dimensional matrix and the objective function fk is a linear
expression withDk as the constant term, as mentioned above.
S is an n × n two-dimensional matrix, and K is a constant
term. The constraints on the decision variable vector are
described by Hp. In this MOP, the decision variable vector
x was adjusted to optimize multiple objective functions.
A solution refers to a decision variable vector x that satisfies
the constraints and represents a point in the decision variable
vector space. The decision variable vector space is the space
of all possible values of x. The objective function vector
F (x) = (f1(x), f2(x), . . . , fm(x)) corresponding to each x
represents a point in the objective function vector space.
Therefore, the goal of optimization is to select a pointx in the
decision variable vector space and optimize the pointF (x) in
the objective function vector space, thereby obtaining the PF.

B. SCALARIZATION IN QUBO BASED ON THE WEIGHTED
NORMAL
We proposed a novel method, which we named QUBO
weighted normal (QUBO-wN), that applies PBI using Ising
machines. This method is specifically designed for problem
settings limited to linear objective functions in the MOP.
It utilizes theweight vectorw and performs scalarization. The
scalarized objective function is expressed as follows:

minimize E(x|w) = Hs(x|w)+ξHd (x|w)+λHp(x).

(21)

The first and second terms of (21), Hs(x|w) + ξHd (x|w),
are the objective terms; the third term, λHp(x), is the
constraint term; and λ is a penalty parameter for the
constraint term. The objective term is QUBO, which will be
described later, and ξ is a parameter with a value greater
than or equal to zero. Additionally, because the constraint
term is a QUBO from the problem setting, the objective
function E(x|w) in (21), which includes the constraint
term, is a constrained QUBO. Constrained QUBO is an
approach to solve combinatorial optimization problems,
which is aimed at finding solutions that satisfy constraint
conditions and is applied to optimization methods using
quantum annealing and quantum computers [24]. The larger
the penalty parameter λ, the greater the penalty for solutions
that do not satisfy the constraint conditions, and the more
likely it is to choose solutions that satisfy the constraints [20].
Moreover, the objective terms Hs(x|w) and Hd (x|w) are
represented by the following expressions using the weight
vector w:

Hs(x|w) =
m∑
k=1

wk fk (x), (22)

Hd (x|w) =
m∑
k=1

(
1−

w2
k

Z

)
(fk (x))2

−
2
Z

m∑
k=1

m∑
l>k

wkwl fk (x)fl(x). (23)

Here, Z =
∑m

k=1 w
2
k . Because fk (x) is a linear expression

with xi(i = 1, . . . , n) as a variable, Hs(x|w) is a linear
expression. Each element xi of the decision variable vector
x is a binary variable, and the identity equation x2i = xi
holds, as Hs(x|w) defined using (22) becomes a QUBO.
Furthermore, forHd (x|w) in (23), (fk (x))2 and fk (x)fl(x) are
the most quadratic, and Hd (x|w), which is represented by
their linear sum, becomes a QUBO.

C. BASIC CONCEPT OF QUBO-WN
To better understand the concept of QUBO-wN, it is essential
to grasp the principles of multi-objective optimization and the
weighted sum method. Multi-objective optimization involves
optimizing multiple conflicting objectives simultaneously.
In this study, we used a MOP with two objective functions.
The weighted sum method is a common approach to this
problem, where each objective is assigned a weight and the
sum of these weighted objectives is minimized. We first
discussed the weighted sum method related to Hs(x|w)
in (22) and its drawbacks. Next, we explained the derivation
of Hd (x|w) in (23), which extends the PBI.
In the weighted sum method, scalarization is performed

using the weight vector w as follows:

EWS (x|w) = w1f1(x)+ w2f2(x). (24)

Here, w1 and w2 are the weights assigned to the first and
second objectives, respectively, and f1(x) and f2(x) are
the values of these objectives for a given solution x. The
weighted sum method obtains multiple Pareto solutions by
performing minimization multiple times while changing the
weights w1 and w2 in (24) to satisfy w1 ≥ 0, w2 ≥ 0,
w1 + w2 = 1. However, the weighted sum method cannot
obtain sufficient Pareto solutionswhen the PF is nonconvex in
the objective function vector space, as shown in Fig. 3, when
it bulges to the upper right. The weighted sum method can
obtain only two solutions: points A and B.

The part corresponding to the objective function in (24)
is Hs(x|w) in (22) for the proposed method. With this
part alone, similar to that in the weighted sum method,
sufficient Pareto solutions cannot be obtained when the PF is
nonconvex, which is a drawback. Therefore, in the proposed
method, we incorporated the idea of including the distance
d2 between line l and point Q of the PBI in the objective
function to obtain sufficient Pareto solutions even when the
PF is nonconvex. Specifically, Hd (x|w) in (23) was added
to the scalarized objective function to bring point Q in the
objective function vector space shown in Fig. 3 closer to
line l. Here, point Q is the point F (x) = (f1(x), f2(x))
in the objective function vector space, with coordinates
corresponding to the pair of two objective function values
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FIGURE 3. Schematic diagram around the PF of the nonconvex type.

for solution x. Line l passed through point P in the objective
function vector space and had n as the unit direction vector.
The weight w vector determines the unit direction vector n
as follows:

n =
1
√
Z
(w1,w2). (25)

Hd (x|w) is defined as,

Hd (x|w) = |PQ|2 − (n · PQ)2. (26)

If we add a perpendicular from point Q to line l and denote
the foot of the perpendicular point R, Hd becomes the square
of the distance between points R and Q, that is, the square of
the distance between point Q and line l. Hd becomes smaller
as point Q approaches line l. Assuming that f1(x) ≥ 0 and
f2(x) ≥ 0without the loss of generality, we set pointP to have
coordinates (0, 0), and, because n is calculated using (25),
we obtain

|PQ|2 = (f1(x))2 + (f2(x))2 , (27)

(n · PQ)2 =
1
Z

(w1f1(x)+ w2f2(x))2 . (28)

By incorporating (27) and (28) into (26), we obtained
Hd (x|w), as shown in (29).

Hd (x|w) = (f1(x))2 + (f2(x))2

−
1
Z

(w1f1(x)+ w2f2(x))2

=

(
1−

w2
1

Z

)
(f1(x))2 +

(
1−

w2
2

Z

)
(f2(x))2

−
2
Z
w1w2f1(x)f2(x). (29)

As mentioned earlier, Hd becomes a QUBO. For weights
w1 andw2, the sum of (24) and ξHd was used as the scalarized
objective function. Similar to the weighted sum method,
we adjusted the weights w1 and w2 to satisfy w1 ≥ 0,

w2 ≥ 0, w1 + w2 = 1 and performed the optimization
to obtain multiple Pareto solutions. While PBI includes the
distance between line l and pointQ in the scalarized objective
function, the proposed method includes the square of the
distance between line l and pointQ in the scalarized objective
function. By repeatedly optimizing the QUBO that brings
point Q closer to the intersection of the line defined by the
weight vector and PF, we obtained the Pareto solutions of
the MOP. Owing to this characteristic, we named this method
QUBO-wN.

Here, we consideredHd for the case in which the objective
functions of the MOP are m(≥ 3), as in the case with two
objective functions. In this case, assuming that fk (x) ≥ 0
(k = 1, . . . ,m) without the loss of generality, we set point P
as the origin in the objective function vector space under this
assumption. Therefore, (25), (27), and (28) can be rewritten
as follows:

n =
1
√
Z
(w1, . . . ,wm), (30)

|PQ|2 =
m∑
k=1

(fk (x))2 , (31)

(n · PQ)2 =
1
Z

(
m∑
k=1

wk fk (x)

)2

. (32)

By incorporating (31) and (32) into (26), Hd becomes:

Hd (x|w) =
m∑
k=1

(
1−

w2
k

Z

)
(fk (x))2

−
2
Z

m∑
k=1

m∑
l>k

wkwl fk (x)fl(x). (33)

This is consistent with (23).
For the case where the objective functions of the MOP

are m(≥ 3), we generalized the above formulas. The unit
direction vector n is expressed in (30), |PQ|2 is the sum
of the squares of the objective function values (31), and
(n · PQ)2 is the square of the weighted sum of the objective
function values (32). By incorporating (31) and (32) into (26),
Hd (x|w) becomes as shown in (33).

D. DETAIL PARAMETER DETERMINATION FOR EFFECTIVE
SEARCH
Here, we explain the method for determining the parameter
ξ ≥ 0, which is included in the objective term of the
scalarized QUBO used in the proposed method, using a MOP
with two objective functions. The objective term mentioned
earlier is denoted by Hobj as follows:

Hobj(x|w) = Hs(x|w)+ ξHd (x|w). (34)

To clarify the necessity of the parameter ξ , Figs. 4(a) and 4(b)
show the contour lines connecting the same values of Hs
and Hd in the objective function vector space when f1(x)
and f2(x) both ranges from 0 to 5, respectively. The contour
lines of Hs are perpendicular to the unit direction vector n
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determined by the weights w1 and w2, and we observed that
Hs becomes smaller as we moved in the opposite direction of
n. Furthermore, from the contour lines of Hd , we observed
that Hd decreases as it approaches the line extending from
the origin in the n direction. Figures 4(c) and 4(d) show the
contour lines of the objective term Hobj when ξ = 1 and 5,
respectively. A comparison of these two figures showed that
the spacing between the contour lines becomes narrower as ξ

increased. In addition, focusing on the values of the objective
term Hobj at points P1 and P2, we observed that Hobj is
smaller at P2 when ξ = 1 and at P1 when ξ = 5. Thus,
the relationship between the values of the objective termHobj
for the two points changed as ξ changed.
Considering the relationship between ξ and the values of

the objective term Hobj, we determined the range of ξ based
on a certain criterion. The criterion is as follows: ‘‘When
an unknown Pareto solution x exists on the line extending
from point P in the n direction in the objective function
vector space, the value of the objective term Hobj for that
x is less than or equal to the value of the objective term
Hobj for any ‘known solution’.’’ To clarify the procedure
for determining the range of ξ that satisfies this criterion,
we first defined the terms ‘‘known solution,’’ ‘‘known
nondominated solution,’’ ‘‘dominated region of the solution,’’
‘‘dominated region boundary of the solution,’’ ‘‘dominated
region of a nondominated solution set,’’ and ‘‘dominated
region boundary of a nondominated solution set.’’

Regarding the ‘‘known solution,’’ the proposed method
repeats single-objective optimization by changing the weight
vector, thereby providing solutions for the previous weight
vectors, except for the first weight vector case. These
solutions are called ‘‘known solutions.’’ Among the known
solutions, if one solution is better in at least one objective
function than other known solutions, the solution is consid-
ered a ‘‘known nondominated solution.’’ The ‘‘dominated
region of the solution’’ is the region in the objective function
vector space where all objective functions are worse than the
values of objective functions of the solution. An example of
the dominated region of solution j is shown in Fig. 5(a).
The ‘‘dominated region boundary of the solution’’ is the
boundary between the dominated region of the solution and
other regions, as shown in Fig. 5(a). Figures 5(a) and 5(b)
illustrate the objective function vector space. In this case,
because both objective functions f1 and f2 are better when
smaller, the region to the upper right from the objective
function vector F (j) corresponding to solution j is the
dominated region of solution j. The ‘‘dominated region of
the nondominated solution set’’ is the sum of dominated
regions of each nondominated solution included in the
nondominated solution set. An example of the dominated
region of a nondominated solution set consisting of two
nondominated solutions j1 and j2 is shown in Fig. 5(b).
The region combining the upper-right areas of the objective
function vectorsF (j1) andF (j2) corresponding to solutions,
j1 and j2 is the dominated region of the two nondominated
solutions j1 and j2. The ‘‘dominated region boundary of

a nondominated solution set’’ is the boundary between the
dominated region of the nondominated solution set and other
regions, as shown in Fig. 5(b).

Next, we explain the procedure for determining the range
of ξ that satisfies the criteria under these definitions. First,
we considered an unknown Pareto solution x, on the line
extending from point P in the n direction. Because points in
the dominated region of the known nondominated solution
set cannot be Pareto solutions, point X , whose coordinates
are (f1(x), f2(x), . . . , fm(x)), in the objective function vector
space with coordinates of the objective function values
at solution x, must be outside the dominated region of
the known nondominated solution set. Here, point T is the
intersection of the boundary of the dominated region of the
known nondominated solution set and the line extending from
P in the n direction, with coordinates (t1, t2, . . . , tm). If point
X is on the opposite side of P from point T , x cannot be a
Pareto solution. Therefore, point X must be on the same side
of P as T .

Because the objective term Hobj and its elements Hs
and Hd are the functions of both the decision variable and
objective function vectors, Yobj, Ys, and Yd hold the following
relationships for all solutions x:

Hobj(x|w) = Yobj(X |w), (35)

Hs(x|w) = Ys(X |w), (36)

Hd (x|w) = Yd (X |w). (37)

Using the functions Yobj, Ys, and Yd , the objective term at
point T is Yobj(T |w), and the objective term at point x is
Yobj(X |w). Because T and X are on the line extending from
point P in then direction, this is, on line l shown in Fig. 3, the
value of Yd is 0 for both points. Therefore, regardless of ξ ,

Yobj(T |w) ≥ Yobj(X |w). (38)

Furthermore, let us assume that the set of known solutions as
S and the objective term Hobj at solution j as Hobj(j|w). If

∀j ∈ S, Hobj(j|w) ≥ Hobj(x|w). (39)

the value of Hobj for solution x is less than or equal to that of
Hobj for all known solutions j, and the criterion is satisfied.
Based on (38) and (39), the sufficient condition for this is
expressed as follows:

∀j ∈ S, Hobj(j|w) ≥ Yobj(T |w). (40)

In the proposed method, we determined the range of ξ that
satisfies (40).
The coordinates of point T can be calculated by identifying

the set of nondominated solutions included in the existing
solution set S and performing a geometric intersection cal-
culation between the dominated region of the nondominated
solution set in the objective function vector space and the
line extending from point P in the n direction. From the
coordinates of point T , the value of Ys(T |w) on the righthand
side of (39) can be calculated. Because F (j) is known for
solution j included in the known solution set S, Hs(j|w) and
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FIGURE 4. Contour maps of the respective objective functions under respective conditions.

FIGURE 5. Schematic describing the technical terms used to determine
the process of balanced parameters, ξ .

Hd (j|w) can be calculated. Because point T is on the line,
Yd (T |w) is zero. Therefore, (40) is modified as follows:

∀j ∈ S, Hs(j|w)+ ξHd (j|w) ≥ Ys(T |w). (41)

If Hd (j|w) is 0, the objective function values for solution
j are on the line extending from P in the n direction in
the objective function vector space. Because T is a point
on the boundary of the dominated region of the known
nondominated solution set, solution j cannot be closer to
point P than point T . Therefore, for solution j on the line,
Hobj(j|w) ≥ Ys(T |w) holds. However, if Hd (j|w) is not 0,
(41) can be transformed, considering that Hd (j|w) > 0

according to (26), as follows:

∀j(j ∈ S ∧ Hd (j|w) ̸= 0), ξ ≥
Hs(x|w)− Hs(j|w)

Hd (j|w)
.

(42)

Let Sd be the set of solutions in the known solution set
S with nonzero Hd values, and let ξth be the smallest ξ

satisfying (42). This is calculated as follows:

ξth = max
j∈Sd

Ys(T |w)− Hs(j|w)
Hd (j|w)

. (43)

Thus, the range ξ ≥ ξth satisfies the criterion, and this range
of ξ was used in the proposed method.
However, there may be cases where the intersection of the

dominated region boundary of the nondominated solution set
and the line extending from point P in the n direction does
not exist depending on n. In such cases, as the range of ξ

cannot be determined using the above criterion, we used the
distance to the farthest point from point P among the points
in the objective function space corresponding to the existing
nondominated solutions. We then determined the range of
ξ using the point on the line extending from point P in
the n direction at that distance as a substitute for point T .
Furthermore, for the first weight vector case, as there are no
known solutions and the range of ξ cannot be determined
using the above criterion, the range of ξ was set to be greater
than or equal to 0.

Let us consider a scenario where we have a known solution
set S as follows:

S = {j1, j2, j3, . . . , jm}. (44)

First, we identified the intersection point T of the line
extending from point P in the n direction and the boundary
of the dominated region of the known nondominated solution
set. Next, for each solution ji, the values of the objective
functions Hs(ji|w) and Hd (ji|w) were calculated. Let us
assume these values are expressed as follows:

Hs(j1|w) = 1.0, Hd (j1|w) = 0.5 (45)

Hs(j2|w) = 0.8, Hd (j2|w) = 0.6 (46)
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Hs(j3|w) = 0.9, Hd (j3|w) = 0.7 (47)

Hs(j4|w) = 0.7, Hd (j4|w) = 0.0

· · · (48)

Then, we identify the set Sd of solutions in the known solution
set S for which Hd is not zero. In this example, let us assume
Sd = {j1, j2, j3}.
Next, we calculate ξth using (43). In this example, ξth is

calculated as follows:

ξth = max
{
Ys(T |w)− Hs(j1|w)

Hd (j1|w)
,
Ys(T |w)− Hs(j2|w)

Hd (j2|w)
,

Ys(T |w)− Hs(j3|w)
Hd (j3|w)

}
(49)

Therefore, the range of ξ is ξ ≥ ξth. This range was used
in the proposed method. However, at the beginning, there are
no known solutions; hence, the intersection point T does not
exist. Therefore, the range of ξ is set to be greater than or
equal to 0. Furthermore, the pseudocode for the process of
determining the range of ξ is provided in the Appendix A.

IV. PROBLEM SETTING
The primary purpose of this study was to confirm that
sufficient Pareto solutions could be obtained for MOPs with
nonconvex PF shapes using the proposedmethod. In addition,
because the shape of the PF is convex or nonconvex in
real-world MOPs, the objective of the experiment was to
confirm that sufficient Pareto solutions could be obtained
for MOPs with either PF shape using the developed
method.

In this study, we created a MOP in which the PF can be
either convex or nonconvex based on imposing constraints.
We used the following objective functions:

f1(x1, x2) = x1 + x2 + 5, (50)

f2(x1, x2) = −x1 + x2 + 20. (51)

Here, the range of the input variables is xi ∈ [0, 15], and all
xi are integers. In this MOP, the PF can be made convex by
imposing the following constraints:

0.5 x1 + x2 − 4 ≥ 0, (52)

−0.5 x1 + x2 + 3.5 ≥ 0. (53)

Conversely, the PF can be made nonconvex by changing the
constraints as follows:

(0.5 x1 + x2 − 11.5 ≥ 0) ∨ (−0.5 x1 + x2 − 4 ≥ 0). (54)

Considering that the constraints having an OR relationship
(i.e., at least one of (54) must hold) results in a nonconvex
MOP. Hereafter, the MOP with constraints (52) and (53) is
referred to as problem 1, and the MOP with constraint (54) is
referred to as problem 2.

Figure 6 shows the objective function vectors of constraint-
satisfying solutions for all combinations of x1 and x2,
where each vector ranged between 0 and 15, represented
as points on a scatter plot in the objective function vector

FIGURE 6. Problem settings of PFs of (a) convex and (b) nonconvex
shapes.

space. Figure 6(a) shows the points of the objective function
vectors of constraint-satisfying solutions for problem 1, and
Fig. 6(b) shows the points of objective function vectors of
the constraint-satisfying solutions for problem 2. In Figs. 6(a)
and 6(b), the points corresponding to the objective function
vectors of Pareto solutions are indicated by light blue markers
and the points corresponding to the objective function vectors
of constraint-satisfying solutions other than Pareto solutions
are indicated by green markers. Figures 6(a) and 6(b) indicate
that the PF shapes of problems 1 and 2 are convex and
nonconvex, respectively.

V. RESULTS AND DISCUSSION
A. NUMERICAL RESULTS OBTAINED BY THE MIP SOLVER
First, we executed the weighted sum method represented
in (53) using a known mixed integer programming (MIP)
solver. The weights w1 and w2 were changed in increments
of 0.02 to satisfy w1 ≥ 0, w2 ≥ 0, and w1 + w2 = 1.
The representation for handling the OR constraint of problem
2 in the MIP solver is explained in Appendix B. Figure 7
shows the points corresponding to the objective function
vectors of the solutions obtained using the MIP solver, added
to Fig. 6 as yellow markers. Problems 1 and 2 are shown
in Figs. 7(a), and Fig. 7(b), respectively. Notably, 5 of 10
Pareto solutions were obtained in problem 1, whereas, 2 of 8
Pareto solutions were obtained in problem 2. As expected,
in problem 1 (with a convex PF shape), the obtained solution
objective function vectors were distributed in several regions
on the PF, whereas, in problem 2 (with a nonconvex PF
shape), only the two points at both ends of the PF could
be obtained. Of note, the objective function vectors of the
solutions obtained by the weighted summethod using the DA
were consistent with those shown in Fig. 7.

In problems 1 and 2, as the decision variables are
integer variables, we converted integer variables to binary
variables using binary expansion — a general method
for representing problems with integer variables in the
QUBO format [25]. Subsequently, we executed the weighted
sum method using the DA. Inequality constraints were
processed using the inequality constraint input function of the
DA [20].
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FIGURE 7. Results obtained by the MIP solver for (a) convex and
(b) nonconvex PFs.

FIGURE 8. Results obtained by the QUBO-wN solver for a PF of (a) convex
and (b) nonconvex shapes.

B. NUMERICAL RESULTS OBTAINED BY QUBO-WN
Using the binary expansion method [25] and the inequality
constraint input function of the DA [20], we executed
the proposed method for problems 1 and 2. The results
for problems 1 and 2 are shown in Figs. 8(a) and 8(b),
respectively. The points indicated by orange triangles in
each figure correspond to the objective function vectors of
the solutions obtained by the proposed method using the
DA. When compared with Fig. 7(a), we confirmed that 10
Pareto solutions and 14 other solutions are obtained for the
convex-shaped problem. On the other hand, when compared
with Fig. 7(b), 8 Pareto solutions and 16 other solutions
are obtained for the nonconvex-shaped problem. Thus, the
proposed method can obtain sufficient Pareto solutions for
both PF shapes.

In problems 1 and 2, we used a narrow range of problem
settings, with xi ranging from 0–15, to demonstrate that
sufficient Pareto solutions can be obtained using the proposed
method. Next, we created problems 3, 4, and 5 to investigate
whether sufficient Pareto solutions can be obtained when xi
ranged from 0–255 and for more complex PF shapes. The
objective functions for problems 3, 4, and 5 were the same
and are expressed as follows:

f1(x1, x2) = x1 + x2, (55)

f2(x1, x2) = −x1 + x2 + 255. (56)

To shape the PF according to the problem, the constraints for
problems 3, 4, and 5 are expressed in (57), (58), and (59),

respectively, as follows:

(0.5x1 + x2 − 74 ≥ 0)

∧ (−0.5x1 + x2 + 53 ≥ 0)

∧ (−0.25x1 + x2 − 62 ≥ 0)

∧ (0.5x1 + x2 − 144 ≥ 0), (57)

(0.5x1 + x2 − 144 ≥ 0) ∨ (−0.5x1 + x2 − 17 ≥ 0), (58)

[(0.5x1 + x2 − 74 ≥ 0) ∧ (−0.5x1 + x2 + 53 ≥ 0)]

∨ (0.5x1 + x2 − 144 ≥ 0)

∨ (−0.5x1 + x2 − 17 ≥ 0). (59)

The results for problems 3, 4, and 5 using the proposed
method are shown in Figs. 9(a), 9(b), and 9(c), respectively.
The figures represent the objective function vector spaces
of each problem, with the regions corresponding to the
objective function vectors of constraint-satisfying solutions
shown in blue as well as the regions corresponding to the
objective function vectors of constraint-violating solutions
shown in red. PF is indicated in light blue. From Fig. 9(c),
we confirmed that the PF of problem 5 has a complex
shape, similar to the two concave shapes that are connected.
In each figure, the points corresponding to the objective
function vectors of the Pareto solution obtained using the
proposed method are indicated by orange markers. The
results for 101 repetitions with different weights are shown,
and Pareto solutions or solutions near the PF were obtained
for problems 3, 4, and 5.

For a quantitative evaluation, we compared the PF shape
obtained using the proposed method and the true PF obtained
through the exhaustive search of all combinations of decision
variables using the hypervolume [26]. The results indicated
that the proposed method obtained PFs with hypervolume
values of 99% or more compared with the true PF.

C. NUMERICAL RESULTS OF THE PARTS-COMBINATION
PROBLEM
In this study, we addressed the component combination
optimization problem in manufacturing as a real-world
problem to which the proposed method must be applied.
The problem setting for the component combination opti-
mization problem is explained in this section. A single
product consists of multiple functions and there are multiple
candidate components for each function. The corresponding
function is realized by selecting and implementing one
component among the component candidates. The product
is completed when all functions are realized. In this case,
we set two objective functions with a trade-off relationship.
For example, the purchase cost and production difficulty in
assembly production can be considered objective functions.
When changing to a lower-cost component, the difficulty of
assembly production may increase. Because the selection of
components affects the values of each objective function,
selecting components that optimize the purchase cost and
production difficulty when assembling the product is crucial.
We assumed an exclusive constraint in which only one
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FIGURE 9. Results obtained by the QUBO-wN solver for problems 3, 4, and 5.

component can be selected among the candidate components
for each function. We also assumed an exclusive constraint
between the components of different functions, where,
if component ai of function α is selected, component bj
of another function β cannot be selected. This constraint
arises when components ai and bj cannot be implemented
in the productowing to the positional interference between
the two components. Under these two constraints, that is,
the constraint between components within the same function
and the constraint between the components of different
functions, the two objective functions were optimized. The
two objective functions are represented by the following
equations:

f1 =
∑
i

∑
j

aijxij, (60)

f2 =
∑
i

∑
j

bijxij. (61)

Here, f1 and f2 represent the two objective functions; xij
is a binary variable representing the selection/non-selection
of the jth component of the ith function; and aij and bij
are coefficients representing the contribution of the jth

component of the ith function to f1 and f2, respectively. The
shape of the PF of the component combination optimization
problem is not necessarily nonconvex; however, a component
combination optimization problem with a nonconvex PF
shape can be created depending on the constraints between
the two components and the magnitude of the contribution of
each component to the two objective functions. In this study,
we created a problem in which the shape of the PF is expected
to be nonconvex and solved the problem using the proposed
method.

To create a certain product, all functions can be covered
by components from Company A; however, some or all
components of the functions can be replaced with compatible

TABLE 1. List of interrelationships between the companies.

components from Company B. Replacing the components
may improve or worsen objective functions 1 and/or 2.
Moreover, some or all components of the functions can be
replaced with compatible components from Company C, but
components from Companies B and C are not compatible
and cannot coexist in the product. Some or all functional
components can be replaced with compatible components
from Company D, and components from Companies A,
C, and D can coexist in the product. Components from
Company D can be replaced with those from Company E,
but components from Company E are not compatible with
those from Companies A, B, and C and cannot coexist in the
product.

The objective function vectors using components from
only one of Companies A–E are represented by the values
at the positions labeled A to E in Fig. 10, which represents
the objective function vector space. The objective function
vectors for cases where components from Companies A and
B are mixed, components from Companies A, C, and D are
mixed, and products from Companies D and E are mixed,
corresponding to the regions shown in Fig. 10. The shape
of the PF was expected to be nonconvex. The compatibility
and incompatibility of mixing components from Companies
A–E are represented by inter-component constraints between
different functions, and inter-component constraints are set
for pairs of companies marked with ‘‘×’’ in Table 1.
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FIGURE 10. Schematic diagram showing the solutions of the
parts-combination optimization problem with intercompany
relationships.

Next, we considered a component combination opti-
mization problem for a product with 10 functions and
components from each of the five Companies A–E for each
function. The two coefficients aij and bij were randomly
set around the coordinates of Companies A–E as shown in
Fig. 10, for the generation of experimental data. Figure 11(a)
shows the region corresponding to the objective function
vectors obtained by exhaustively enumerating the compo-
nent selection combinations. The regions of the objective
function vectors of constraint-violating solutions owing to
compatibility issues between the components are indicated
by red markers, and the objective function vectors of
constraint-satisfying solutions are indicated by blue markers.
Figure 11(a) shows that the PF has two connected concave
shapes, as expected in Fig. 10. The points corresponding to
the objective function vectors of the solutions obtained by
the proposed method using the DA are shown in Fig. 11(b).
Figure 11(b) shows that the proposed method can identify
Pareto solutions, even when the PF has a connected concave
shape. The results of the proposed method for an expanded
problem with 200 functions are shown in Fig. 11(c). Even
for large-scale problems, the proposed method can identify
PFs with connected concave shapes, thereby confirming its
effectiveness.

VI. CONCLUDING REMARK
In this study, we proposed QUBO-wN as a method for
solving the PF of MOPs using Ising machines. This method
involves performing single-objective optimization repeatedly
to minimize a QUBO that includes the weighted sum of the
objective function values as well as the distance between the
objective function values and a line that varies according
to the weights. The methods for solving the PF of MOPs
using single-objective optimization have been investigated;
however, scalarization techniques, such as the weighted sum
method, cannot easily solve PFs with nonconvex shapes,
leading to the development of methods such as the PBI.
The proposed method is an application of PBI to MOPs
in the combinatorial field using Ising machines, which can
quickly solve the QUBO for single-objective optimization
processes and PFs with convex and nonconvex shapes.

The effectiveness of the proposed method was verified
via numerical analyses. By solving the PF of a MOP in
component combination as a real-world problem, its ability
to solve even complex-shaped PFs was confirmed. From this
result, we believed that this development could significantly
enhance decision-making processes, particularly in achieving
sustainable development goals. However, this study has
some limitations. Currently, Ising machines only support
QUBO, limiting the MOPs that can be solved using the
proposed method to those with linear objective functions.
This limitation must be addressed in a future work. However,
if Ising machines are able to handle higher-order problems in
the future, they will resolve combinatorialMOPswith higher-
order objective functions. This is a promising direction
for future research. Furthermore, the exploration of other
scalarization techniques and their application to MOPs using
Ising machines could also be a potential area of future
investigation.

APPENDIX A
PSEUDOCODE FOR DETERMINING THE RANGE OF ξ

The algorithm for determining the range of ξ is described in
detail as follows:

Algorithm 1 Range_of_xi
Input: P, n, S
Output: ξrange
1: if len(S) == 0 then
2: ξrange← [0,∞]
3: else
4: # Calculate the intersection point T by function of

calculate_intersection_point.
5: T ← calculate_intersection_point(P,n, S)
6: # Calculate Ys(T |w)
7: YST←

∑m
k=1 wk tk

8: ξth←−∞

9: for each ji in S do
10: Hs←

∑m
k=1 wk fk (ji)

11: Hd ←
∑m

k=1

(
1−

w2
k
Z

)
−

2
Z

∑m
k=1

∑m
l>k wkwl fk (ji)fl(ji)

12: if Hd == 0 then
13: continue
14: end if
15: ξth← max

(
ξth,

YST−Hs
Hd

)
16: end for
17: ξrange← [ξth,∞]
18: end if
19: return ξrange

The function calculate_intersection_point(P,n, S) on
line 5 computes the intersection coordinate T =

(t1, t2, . . . , tm) between the boundary of the dominated
region of the known nondominated solution set and the line
extending from P in the n direction.
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FIGURE 11. Problem setting and results obtained by the QUBO-wN solver for the parts-combination problem.

APPENDIX B
HANDLING CONSTRAINTS WITH OR RELATIONS IN THE
MIXED INTEGER PROGRAMMING SOLVER USING THE
BIG M METHOD
MIP is a method for solving optimization problems that com-
bines continuous and integer variables. MIP solvers generally
process constraint conditions that are expressed as linear
inequalities and equations. These constraints must all be
satisfied simultaneously because they are connected by AND
relations. However, MIP solvers can also handle constraints
with OR relationships. In this appendix, we explained how to
handle constraints with OR relations in MIP solvers using the
Big M method.

The Big M method introduces a sufficiently large value
(Big M) into the constraint conditions and controls whether
each constraint condition is satisfied by binary variables. For
example, to handle the OR relation constraint of (54) in an
MIP solver, we introduced the binary variables z1 and z2 and
transformed them as follows:

0.5 x1 + x2 − 11.5 ≥ −M (1− z1), (62)

−0.5 x1 + x2 − 4 ≥ −M (1− z2), (63)

z1 + z2 ≥ 1, (64)

where, M is a sufficiently large positive value. This allows a
solution to be obtained when at least one of the constraints
in (62) or (63) is satisfied.
Furthermore, the constraint with mixed AND and OR

relations in (59) can also be transformed using the Big
M method by introducing binary variables z1, z2, . . . , z5 as
follows:

0.5 x1 + x2 − 74 ≥ −M (1− z1), (65)

−0.5 x1 + x2 + 53 ≥ −M (1− z2), (66)

z1 + z2 − 1 ≤ z5, (67)

z5 ≤ z1, (68)

z5 ≤ z2, (69)

0.5x1 + x2 − 144 ≥ −M (1− z3), (70)

−0.5x1 + x2 − 17 ≥ −M (1− z4), (71)

z3 + z4 + z5 ≥ 1. (72)

As described above, MIP solvers can handle constraints with
OR relations using the Big M method.
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